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1.  Introduction

Naturally occurring zwitterions (e.g. glycine betaine and β-
alanine betaine) are very common moieties found in cell mem-
branes, proteins, or osmolytes [1–3]. These zwitterions often 

exhibit a variety of molecular structures, and accordingly 
play distinct functions in biological process via their differ-
ent interactions with or stimulation by environmental factors 
such as ions, pH, and functional groups outside proteins [4]. 
So, inspired by natural evolution, zwitterionic polymers, as 
analogues of naturally occurring biological molecules, are 
designed and synthesized with different zwitterionic moieties, 
which have an equal number of cationic and anionic groups 
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in the same polymer chains. Such unique combination of 
two oppositely charged groups in the same moiety empowers 
zwitterionic polymers with unique structure and property fea-
tures, e.g. overall charge neutrality, high hydrophilicity, strong 
dipole pairs, and anti-polyelectrolyte effect [5]. These features 
make zwitterionic polymers promising biomaterials to fight 
against long-term fouling problems. Apart from antifouling-
related applications, the unique structures and chemistries of 
zwitterionic materials also offer other properties and func-
tions for other application, e.g. ionic liquid for polyelectro-
lyte systems [6, 7], drug/gene delivery system with supreme 
cell uptake efficiency and nontoxicity [8], and smart materials 
with pH-, solvent-, thermal-responsive property [9–11]. As 
a generally-accepted water barrier principle, the antifouling 
property of zwitterionic polymers fundamentally originates 
from a tightly and stably bounded water layer near zwitter-
ionic polymers via strong electrostatically induced hydration 
[12]. The hydration-induced antifouling principle is also con-
firmed by hydrophilic polymers such as poly(ethylene gly-
col) (PEG) [13], poly(acrylamides) [14], and poly(acrylates) 
[15] due to their strong hydration via hydrogen bonding [16], 
which are relatively easy to break and reform as compared 
to ionic solvation [17]. Strong hydration requires large free 
energy for foulants to be adsorbed on the surface made of 
zwitterionic and hydrophilic polymers [16, 18]. Moreover, 
the formation of dipole pairs between intra- and inter-zwit-
terionic groups also leads to the self-association of zwitter-
ionic polymers to some extents [19] (figure 1). In this way, 
different from polyelectrolytes containing anionic groups, or 
cationic groups, or non-equal numbers of cationic and anionic 
groups, zwitterionic polymers display the anti-polyelectrolyte 
behavior [20, 21], i.e. zwitterionic polymer chains shrink in 
water but stretch in salt solution, making them to have the 
greater solubility in salt water than in pure water. Thus, from 
molecular simulation, in vitro, and in vivo experiments, zwit-
terionic polymers have demonstrated their excellent antifoul-
ing property, comparable to or even better than PEG-based 
hydrophilic and polyelectrolyte-based polymers for resisting 
protein adsorption [22–24], cell adhesion [25, 26], and bacte-
rial attachment [27–30].

The first synthesis of zwitterionic polymers could be 
traced back to 1950s [31], including methacrylic acid-stat-2-
(dimethylamino)ethyl methacrylate copolymers [32], acrylic 
acid-stat-2-vinylpyridine copolymers [33], and acrylic acid-
stat-2-(diethylamino)ethyl methacrylate copolymers [34]. 
Initial studies of these zwitterionic polymers focus primarily 
on polymer design, synthesis development, and physicochem-
ical characterization, while their corresponding applications 
mainly target wastewater treatment, ion exchange, pigment 
retention, and solid conditioning by making use of their 
ion-binding/chelation features [35]. The first discovery of 
antifouling property of zwitterionic 2-methacryloyloxyethyl 
phosphorylcholine (MPC) was reported by Ishihara and co-
workers [36], but antifouling performance of zwitterionic 
MPC copolymers was not optimized yet and only worked for 
protein resistance from single protein solutions. Since then, 
a different family of zwitterionic polymers have been devel-
oped and proved for their improved antifouling capacity of 
efficiently resisting nonspecific protein adsorption from com-
plex media. These zwitterionic polymers are generally formed 
or copolymerized by five common zwitterionic moieties, car-
boxybetaine (CB), sulfobetaine (SB), phosphatidylcholine 
(PC), Cysteine (Cys), and 3-(1-(4-vinylbenzyl)-1H-imidazol-
3-ium-3-yl)propane-1-sulfonate (VBIPS) (figure 2). The past 
decade has witnessed the growing interest in (1) development 
of different zwitterionic antifouling coatings to improve the 
reduction of nonspecific protein adsorption [12, 24, 37]; (2) 
mechanistic study of the structure-hydration-antifouling rela-
tionship of zwitterionic polymers [18, 38, 39]; (3) in vitro 
antifouling applications of zwitterionic polymers for mem-
brane separation/filtration [40], wastewater treatment [41], 
biosensors [42, 43], drug delivery carriers [44]; (4) in vivo 
biomedical applications of zwitterionic polymers for implants 
[45], wound dressing [46], blood purification [47], and contact 
lenses [48]; (5) computational study of the structural-depend-
ent hydration, ionic association, and protein interaction of 
zwitterionic polymers [49–55], and (6) apart from antifoul-
ing property, exploration of additional functionality (e.g. anti-
microbial [28], friction [56], actuation [57, 58], self-healing 
[59]) of zwitterionic polymers.

While the acceleration in scientific publication in figure 3 
has shown significant progress and high impacts of zwitte-
rionic polymers on both fundamental and practical research, 
zwitterionic antifouling polymers as a relatively new class 
of biomaterials are still a subject under less investigation, 
as compared to intensive research on PEG-based and other 
antifouling materials. Thus, the more and continuous efforts 
are still needed to develop alternative antifouling materials. 
In this review, we strive to provide an updated summary of 
the research related to zwitterionic antifouling polymers, cov-
ering basic antifouling concepts, dual/multiple functionality, 
in vitro and in vivo applications, and computational materials 
design. Finally, we discuss some of the persistent technologi-
cal barriers that still remain and the research directions that 
should be undertaken to overcome these barriers. Hopefully, 
this review will stimulate further computational and exper
imental efforts to obtain new knowledge (synthesis/coating 
methods and polymer systems) for exploring all the potentials 

Figure 1.  Different interaction modes between polymeric 
zwitterions.
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of other antifouling materials (e.g. nanoparticle, peptides, 
lipids, and their hybrids with polymers).

2.  Fundamental and computational aspects:  
structural-dependent antifouling activity  
of zwitterionic polymers

While a number of computational and experimental studies 
have been undertaken with prevalently promising findings, the 
results have merely empirical character and are not satisfac-
tory from a fundamental viewpoint. On one hand, different 
zwitterionic polymers are so different in structures, but all of 
them are highly resistant to the attachment of proteins, cells, 
and bacteria. On the other hand, small differences in structures 
(e.g. change in carbon space length, pendant group, and charge 
type/pair/distribution) of zwitterionic polymers can also lead 
to large enhancement in antifouling performance. These phe-
nomena strongly suggest the structural-dependence of zwit-
terionic polymers on their hydration structures, hydration 

dynamics, and degrees of interactions with water molecules 
and foulants. While zwitterionic polymers comprise a large 
library of molecules with different, physicochemical proper-
ties of zwitterionic groups, these polymers are mainly built 
from five common zwitterionic moieties. It still remains a 
great challenge to derive the chemical structure–antifouling 
property relationships of zwitterionic polymers based on the 
limited variations in zwitterionic groups, i.e. combinations 
of anionic/cationic types and topological structures of zwit-
terionic groups. Thus, molecular modeling and simulations 
are a powerful and suitable tool that enables to capture subtle 
differences in structural-dependent properties of materials at 
atomic length- and time-scale.

2.1.  Zwitterionic identities

Intuitively, from a structural viewpoint, zwitterionic types and 
structures are two key properties for the antifouling perfor-
mance of zwitterionic polymers. As shown in figure 1, the five 
zwitterionic moieties exhibit completely different structures. 
Molecule dynamics (MD) simulations have shown that, on 
one hand, all of the different zwitterionic moieties display 
strong binding with water molecules (i.e. strong hydration) 
that is dominated by electrostatic interactions similar to ionic 
hydration [51]. On the other hand, variations of function 
groups, charge density, and separation distance of zwitterionic 
moieties also influence their hydration free energy, hydration 
dynamics, and hydration structures at atomic details. In addi-
tion, the presence of cationic and anionic groups in zwitter-
ionic moieties enables to self-associate zwitterionic moieties 
together via electrostatic interactions, and such self-associa-
tion behavior has been observed in all zwitterionic materials. 
Different degrees of self-association capacity not only offer 
distinct functions (e.g. stimuli response [57, 58, 60, 61], anti-
polyelectrolyte effect [20, 62], lower/upper critical solution 
temperatures [63–65]) of zwitterionic materials, but also affect 
their antifouling properties. Thus, hydration, ionic interaction, 
and self-association are the three key parameters in control-
ling the protein resistance capability of zwitterionic materials.

CB and SB are the two most commonly used zwitteri-
onic moieties for (co)polymerization into different CB- and 

Figure 2.  Representative zwitterionic moieties.
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SB-based zwitterionic polymers. CB moiety contains a cati-
onic trimethyl ammonium group and an anionic carboxylic 
group, while SB moiety possesses a cationic trimethyl ammo-
nium group and an anionic sulfonate group. So, SB moiety 
shares the same cationic group as the CB moiety, but has an 
anionic sulfonate group whose charge density is lower than 
that of the carboxylic group in CB moiety. Distinct structure 
makes SB-based materials with salt-responsive properties and 
CB-based materials with ease of functionalization. Since sul-
fonate group of SB moiety has less charge density than the 
carboxylic group of CB moiety, (i) SB moieties tend to attract 
more water molecules than CB moieties, while CB moieties 
interact more strongly with individual water than SB moieties 
[66]; (ii) SB moieties prefer to have stronger association with 
chaotropic cations (K+ and Cs+) than CB moieties, while CB 
moieties tend to associate with kosmotropic cations (Li+ and 
Na+) stronger than SB moieties [67]; and (iii) SB moieties 
exhibit relatively stronger self-association property than CB 
moieties, probably because SO3 possess the stronger charge 
density than CO2 [52]. While SB and CB moieties have dis-
tinct charge identify and density, all of SB- and CB-derived 
materials possess strong hydration, which is necessary for 
resisting nonspecific protein adsorption. However, a lack of 
self-association capacity makes CB materials more effec-
tive to resist unwanted protein adsorption than SB materials 
with moderate self-association property. Additionally, CB 
materials with moderate charge strength and density could 

better mimic the zwitterionic feature of protein surfaces than 
SB materials. This also explains experimental results that CB 
materials generally behave more inertness than SB materials 
in complex media (e.g. human blood plasma/serum, whole 
blood, and tissues) [50, 51, 68].

Apart from typical CB and SB moieties, a complete com-
bination of three anionic groups: carboxylic (CO2), sulfonate 
(SO3), and sulfate (OSO3) with four cationic groups: qua-
ternary ammonium (NC4), tertiary ammonium (NC3), sec-
ondary ammonium (NC2), and primary ammonium (NC1) 
produced 12 different zwitterionic moieties, each with distinct 
chemical structure and charge density (figure 4). Overall, all 
of 12 different zwitterionic moieties (−238–303 kJ mol−1) 
had the lower hydration free energy than a well-known eth-
ylene glycol (EG4) moiety (−180 kJ mol−1), indicating that 
ionic-induced hydration in these zwitterionic moieties has 
more favorable interaction with water molecules than hydro-
gen-bond-induced hydration in hydrophilic moieties. Among 
12 zwitterionic moieties, a trend of hydration free energy can 
be observed in a decreased order in term of anionic group: 
OSO3  >  SO3  >  CO2, where NC3-OSO3, NC2-OSO3, and 
NC1-OSO3 (except for NC4 groups) had much lower hydra-
tion free energy than others by 30-87 kJ mol−1, presumably 
because OSO3 group has the lowest charge density compared 
to other anionic groups. Differently, no trend was displayed 
in terms of cationic groups. Free energy calculation reveals 
that the hydration free energy of zwitterionic moieties largely 

Figure 4.  Twelve zwitterionic moieties, each with a distinct combination of anionic and cationic groups. Reprinted with permission from 
[51]. Copyright © (2014) American Chemical Society.
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depends on the charge densities of the charged groups, par
ticularly anionic groups have more predictable structure-
property relationship, i.e. the lower charge density of anionic 
groups, the more favorable hydration free energy. Regarding 
the water dynamics around zwitterionic moieties, cationic-
based NC1, NC2, NC3, and NC4 moieties allow to associate 
with water molecules in an increase order of NC1 (<5 water 
molecules)  <  NC2 (10–14 water molecules)  <  NC3 (~15 
water molecules)  <  NC4 (~16 water molecules). These water 
association numbers appear not to largely depend on the types 
of cationic groups, and these associated water molecules tend 
to stay around the carbon atoms of NC2, NC3, and NC4 in an 
increased order of residence time of ~20, 25, and 25 ps, respec-
tively. Different from hydration free energy, hydration struc-
tural and dynamic properties of these zwitterionic moieties 
are not sensitive to cationic groups. Moreover, the hydration-
related properties are also affected by the self-aggregation of 
zwitterionic moieties. Strong self-aggregation is likely to be 
driven by electrostatic, dipole, and some hydrophobic attrac-
tion among zwitterionic moieties, and consequently these 
interactions would consume potential binding sites with water 
molecules, thus reducing zwitterionic-water interactions and 
leading to weak hydration. Among them, NC2 and NC3-based 
zwitterionic moieties displayed moderate self-associations, 
while NC4-based moieties, particularly NC4-CO2 moiety, 
have the least potential for self-association. Among 12 zwit-
terionic moieties, since NC4-CO2 and NC3-CO2 moiety have 
the highest hydration and the least self-association properties, 
both showed to have the unfavorable interaction with a model 
protein, demonstrating their strong ability to resist nonspecific 
protein adsorption.

2.2.  Zwitterionic structures

Apart from different zwitterionic identities, zwitterionic 
moieties can also be varied by change their structures (e.g. 
separation distance between the charged groups), which 
would be expected to induce different hydration structures, 
hydration dynamics, and degrees of interactions with water 
and proteins. Carbon spacer length (CSL) is defined as the 
number of methylene groups of (CH2)n between the anionic 
and cationic groups. Intuitively, variation of CSL is expected 
to change (i) the hydrophilicity/hydrophobicity ratio of the 
zwitterionic polymers and (ii) the flexibility of polymers, both 
of which will in turn affect polymer conformation and their 
interactions with water and protein. For instance, zwitterionic 
polymers with different CSLs could have different extents of 
hydrophobic interactions, while zwitterionic polymers with 
longer CSLs may have a larger chain entanglement and flexi-
bility. While a number of experimental works have studied the 
effect of CSL of zwitterionic molecules on their bulk physico-
chemical properties [69], adsorbed protein conformation [70], 
mobility of ionic group [71], thermal stability of the material 
[72], and adsorption at the air–water interface [73], very few 
MD simulations have been conducted to examine how CSL 
changes affect the hydration–structure-interaction relation-
ship of zwitterionic materials in bulk solution or at air/water 

interface. To our knowledge, only one MD study by Shao et al 
[53] has reported the effect of CSL on the hydration behavior 
of five CB molecules from structural, dynamic, and interac-
tion aspects, where CSL is varied from 0 to 4. It was found 
that as CSL in CB moieties increases from 0 to 3, a number 
of water molecules around CB moieties increases monotoni-
cally from 22 to 32, residence time of water molecules around 
CB moieties (i.e. tendency of water molecules to stay around 
CB moieties) increases from ~8.6 ps to 37 ps, and hydration 
free energy significantly decreases from 270 kJ mol−1 to 
0 kJ mol−1, respectively. But, as CSL  ⩾  3, further increase of 
CSL does not alter the hydration behavior of CB moieties. 
Such structural-induced hydration differences for zwitterionic 
polymers at nanoscale could account for different antifouling 
performance of zwitterionic polymers at macroscale.

From a structural viewpoint from molecular simulations, 
highly inert zwitterionic materials should have possess a high-
charge-density anionic group and a low-charge-density cati-
onic group, and such combination of zwitterionic pairs allows 
to form a strong hydration layer, disfavor self-association, and 
weaken interactions with proteins, all of which account for 
three design criteria of hydration, self-association, and protein 
interaction for zwitterionic antifouling materials.

3.  Fundamental and experimental aspects:  
antifouling activity of zwitterionic polymer surfaces

Biomedical materials, particularly for (pre)clinical or 
implanted materials, should have a basic but important prop-
erty of reducing foreign body reaction. So, combating the for-
eign-body response requires the coating surfaces to be inert or 
stealthy for preventing nonspecific protein adsorption at the 
first step. In past decades, solid surfaces coating with zwitter-
ionic polymers have been regarded as a promising strategy for 
the creation of hydrophilic, biocompatible, inert (noninteract-
ing) surfaces, which generally exhibit high surface resistance 
to biofouling formation, comparable to or even better than 
PEG-based antifouling materials that are susceptible to oxida-
tion damage upon long-term use, thus losing their antifouling 
function [24, 74].

3.1.  Enhanced surface hydration of zwitterionic polymer 
brushes

Inspired by the phospholipid structure on cell membranes, 
zwitterionic 2-methacryloyloxyethyl phosphorylcholine 
(MPC) moiety was first identified for its antifouling prop-
erty. Protein resistance of MPC-based polymers is attributed 
to their similar structure to the polar group of phospholipids, 
which can further form the organized bilayer-like membrane 
structure and thus inhibit the surface interaction with proteins 
and cells [75]. Since then, a new class of zwitterionic moi-
eties, such as phosphorylcholine (PC), sulfobetaine (SB), and 
carboxybetaine (CB), were designed, tested, and identified as 
basic building units for antifouling materials. A deeper under-
standing of protein resistance mechanism reveals that a tightly 
bonded water layer around antifouling surfaces is critical for 
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preventing proteins from approaching surfaces closely [76, 
77]. By comparing the hydration of zwitterionic polymers and 
poly-hydrophilic materials, numerous studies have demon-
strated that different from the water layer formed on hydro-
philic materials via hydrogen bonding, the water layer formed 
on the zwitterionic polymer is more tightly bonded in larger 
quantity and higher quality, as a result of the electrostatically 
induced strong solvation [78].

Wu et  al [79] compared the hydration characteristics of 
zwitterionic polySBMA and hydrophilic PEG antifouling 
materials by the spin–spin relaxation time (T2) using the low-
field nuclear magnetic resonance (LF-NMR). They found that 
zwitterionic polySBMA contained a much larger number of 
nonfreezable water than PEG, highlighting the stronger asso-
ciation of water molecules with zwitterionic N+(CH3)3 and 
SO−

3  groups via electrostatic interactions. Leng et  al [18] 
studied the real-time surface hydration of polySBMA and 
oligo (ethylene glycol) methacrylate (polyOEGMA) brushes 
in contact with proteins using the sum frequency generation 
(SFG) vibrational spectroscopy. The results showed that upon 
contacting with proteins, the water ordering was disturbed on 
polyOEGMA surface, but remaining unaffected on polyS-
BMA surface. This indicates from another angle that polyS-
BMA binds water molecules stronger than polyOEGMA. In 
parallel, Leng et al [80] prepared the mixed charged polymers 
at the equal molar of positively charged [2-(methacryloyloxy)
ethyl]trimethylammonium chloride and negatively charged 
3-sulfopropyl methacrylate potassium salt, and they found 
that interfacial water behavior on the 1:1 mixed charged poly-
mer was similar to that on zwitterionic polymers, revealing 
the importance of charge neutrality in creating strong surface 
hydration. Ladd et al [24] performed a comparative study on 
six different polymers (i.e. polyOEGMA, polySBMA, poly-
CBMA) and self-assembled monolayers (i.e. OEG, mixed 
trimethylamine and sulfonic acid (TMA/SA), mixed trimeth-
ylamine and carboxylic acid (TMA/CA)) for testing their sur-
face resistance to nonspecific protein adsorption from human 
serum and plasma. All polymer surfaces outperformed SAMs 
on nonspecific protein adsorption resistance due to the higher 
packing density. Among polymer surfaces, as a result, both 
zwitterionic polySBAA and polyCBAA present ultralow 
non-specific adsorption in 100% human serum (<50 ng cm−2 
for polySBAA, <10 ng cm−2 for polyCBAA) and plasma 
(<10 ng cm−2 for polySBAA, immeasurable for polyCBAA). 

PolyCBAA surface outperformed polySBAA surface for 
protein resistance due to the stronger hydration layer around 
ionic groups. Further comparison between three polyCBAA 
surfaces with different carbon spacer lengths (i.e. methylene, 
ethylene and propylene) confirmed that the shorter CSLs (~1–
2) the better protein resistance capacity in undiluted human 
plasma and serum (<5 ng cm−2) [81]. Under optimal condi-
tions, the highly enhanced surface hydration by zwitterionic 
polymer brushes could achieve nearly zero protein adsorp-
tion from undiluted human blood serum and plasma [82–84]. 
In addition to their ultra-low fouling property, zwitterionic 
polySBMA brushes are highly stable without undergoing 
significant oxidation or degradation in a wide range of ionic 
strength, pH values and temperature [85]. Zwitterionic CB 
group exhibits an acid-base equilibrium and is a great plat-
form for coupling with primary amines (proteins or antibod-
ies) to create ligand-functionalized materials in a nonfouling 
background, which could be used as highly sensitive biosen-
sors for detecting specific proteins/antibodies in complex 
biological media (e.g. human blood, serum, plasma) with the 
improved false alarm [81, 86, 87].

Microbial adhesion and the subsequent biofilm formation 
are another critical issue for biomedical and industrial applica-
tions. Hypothetically, high surface hydration may have influ-
ence on microbial adhesion, but there is no direct correlation 
between protein resistance and microbial adhesion [88, 89]. 
Hydrophilic PEG-coated surfaces resist bacterial adhesion in 
a short term due to enzyme-catalyzed oxidation and instabil-
ity. Cheng et al [27, 29] reported the resistance of bacterial 
adhesion and the prevention of biofilm formation by polyS-
BAA and polyCBAA surfaces. As compared to PEG-coated 
surfaces, zwitterionic polySBAA- and polyCBAA-coated  
surfaces greatly suppressed 95% of microbial attachment up 
to 10 d [27, 29]. More importantly, a modified polyCBMA 
material was designed and possessed a switchable bacteria-
killing and bacteria-releasing capability. The working prin-
ciple is that a reversible lactonization reaction for CB esters 
occurs between a cationic ring form and a linear zwitterionic 
form, i.e. original CB esters contain high cationic charge den-
sity that enables to kill bacteria at its cationic state, but once 
it is hydrolyzed into a zwitterionic form under pH ~ 10 alka-
line conditions whose nonfouling nature enables to release 
dead bacterial cells [90]. In this way, a single polyCBMA 
cationic derivatives surface can achieve bacteria-killing, 

Figure 5.  The ‘kill-release’ regeneration process of zwitterionic materials.
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bacteria-release, and surface regeneration in a cyclic way [30]. 
So, zwitterionic materials offer a promising ‘kill–release’ 
strategy to construct dual-function antibacterial-antifouling 
surfaces, which can kill bacteria attached to their surface and 
then release the dead bacteria to regenerate a clean surface 
under an appropriate stimulus [91], thus maintaining long-
term antibacterial activity (figure 5) [92, 93].

3.2.  Anti-polyelectrolyte effect of zwitterionic polymer 
brushes

Zwitterionic polymers carry a total of neutral charge with 
equally balanced cationic and anionic groups, while tradi-
tional polyelectrolyte polymers always bear net charges. 
Due to ionic nature in both types of polymers, electrostatic 
interactions always play an important role in controlling their 
physicochemical properties. However, completely different 
from polyelectrolyte polymers, zwitterionic polymers shrink 
(collapse) in salt solution, but swell (expand) in water, and 
such unique behavior is called as ‘anti-polyelectrolyte effect’ 
(figure 6). Addition of salts in zwitterion polymers will screen 
out electrostatic interactions of intra- and inter-zwitterionic 
chains and break ionic pairs, thus causing the extension and 
dissociation of polymer chains. On the other hand, the extent 
of changes in chain conformations and associations for zwit-
terionic polymers strongly depends on charge distribution and 
identities [20, 56, 94]. SBMA and CBMA polymers present 
weak ‘anti-polyelectrolyte effect’ even in high salt concentra-
tions (0.1–1 M) [95], while the later developed poly(3-(1-(4-
vinylbenzyl)-1H-imidazol-3-ium-3-yl)propane-1-sulfonate) 
(polyVBIPS) exhibit strong ‘anti-polyelectrolyte effect’ in a 
dilute salt concentrations (0.05–0.1 M) due to its optimized 
spatial distribution of charged groups [21, 96]. Thus, the 
discovery and design of new zwitterionic polymers with the 
‘anti-polyelectrolyte effect’ is still at its preliminary stage.

Due to this unique ‘anti-polyelectrolyte effect’ of zwit-
terionic polymers, Hong et  al [96] developed salt-responsive 
polyVBIPS brushes, which could be switched reversibly and 
repeatedly between protein capture/release from undiluted 

blood plasma/serum in a controllable manner. On one hand, 
polyVBIPS brushes inducde protein adsorption by adopting 
a collapsed chain conformation in PBS solution; on the other 
hand, polyVBIPS brushes resisted protein adsorption from 
100% blood plasma/serum once they adopt extended chain 
conformation treated with 1 M NaCl solution. The collapsed 
and extended chain conformation of polyVBIPS could be dis-
tinguished by film thickness differences by ~20 nm. Apart from 
proteins, polyVBIPS brush also showed its switching ability to 
promote and resist bacterial attachment in PBS and salt solu-
tions. As compared to other smart surfaces, polyzwitterionic 
surfaces offer alternative but more promising platform that can 
be regenerated between bio-adhesion and antifouling proper-
ties, where the former property is favored for tissue scaffolds 
and dental implants requiring cell proliferation and implant 
osseointegration, while the latter one is liked by biosensors, 
bioanalytical and diagnostics devices. From the structural view-
point, Xiao et al [21] further studied the ‘anti-polyelectrolyte 
effect’ of polyVBIPS polymers. By tuning carbon spacer length 
(CSL  =  1, 3, and 4) between zwitterionic groups, different cati-
onic groups (imidazolium, ammonium, and pyridinium), and 
salt concentrations and types, five polyzwitterionic brushes 
(polyVBIPS, polyDVBAPS, polySVBP, polyDVBAMS, and 
polyDVBABS) were prepared to show salt-responsive surface 
properties, including that surface wettability could be changed 
from a highly hydrophobic surface (~60°) to a highly hydro-
philic surface (~9°). Meanwhile, interfacial friction can also be 
changed from ultrahigh friction (µ  ≈  3.15) to superior lubrica-
tion (µ  ≈  10−3), and this is highly desirable for applications 
such as artificial joints (knees, hips, fingers) and eyes [56].

4.  Multifunctional zwitterionic-based antifouling 
materials

4.1.  Zwitterionic hydrogels with both antifouling  
and antibacterial properties

Hydrogels are considered as excellent biomimetic and biocom-
patible materials because their porous 3D network structures 

Figure 6.  Anti-polyelectrolyte effect of zwitterionic polymers with reduced friction, enhanced wettability, and antifouling property in 
response to salts.
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and high-water content (>80%) resemble many distinct struc-
tural and mechanical features of tissues and organs. However, 
most of hydrogels have been developed and used as tissue 
scaffolds, drug delivery devices, and artificial implants, all of 
which tend to promote the adhesion of proteins, cells, and tis-
sue. Less efforts have been paid to reduce undesirable interac-
tions between hydrogels and biomolecules, so challenging still 
remains for antifouling hydrogels. Historically, polyCBMA 
hydrogel was one of a few that have demonstrated their anti-
fouling property. PolyCBMA hydrogels could reduce cell 
adhesion by 90% as compared to polyHEMA hydrogels [97]. 
When coating polyCBMA hydrogel on a glucose sensor tip, 
the sensor can retain not only its excellent detection ability for 
glucose, but also its stability in 100% human blood serum up 
to 12 d. Furthermore, zwitterionic polyCBMA hydrogels could 
be conjugated antimicrobial agent of salicylic acid (SA) via a 
hydrolyzable ester linkage to simultaneously achieve dual anti-
fouling and antibacterial ability [92] (figure 7). Upon hydro-
lysis, SA was released from polyCBSA hydrogel network to 
inhibit bacterial growth on the surface and the surrounding 
solution. Meanwhile, hydrolysis transferred the SA group of 
CBSA to negatively charged carboxylate to maintain zwit-
terionic antifouling nature that makes surface highly resistant 
to bacterial attachment. Compared with hydrogel formed by 
polyCBMA alone or SA-incorporated polyCBMA, polyCBSA 
hydrogel synchronized both nonfouling and antimicrobial 
properties, which not only inhibited bacterial growth on the 
surface, but also kept bacteria from approaching the surface. 
Thus, combining both properties in materials and coatings pro-
vides a new and effective strategy to keep surfaces clean in a 
long term. Additionally, some components such as AgNPs [98] 
and chitosan [99] can also introduce additional antimicrobial 
activity in the zwitterionic-based hydrogels. Natural polysac-
charide chitosan (CS) can form the first network of hydrogels, 
while antifouling zwitterionic sulfopropylbetaine (PDMAPS) 
and nonionic poly(2-hydroxyethyl acrylate) (PHEA) were 
chosen as the second and third network. The resultant 

hydrogels possessed high mechanical property (tensile stress 
0.4 MPa, tensile strain ~10), high antimicrobial rates (91.6% 
to S. aureus, 89.7% to E. coli), and without any macrophage 
cell adhesion [99]. Accompanying the as mentioned excellent 
repellent to undesirable biomolecules interactions, zwitter-
ionic hydrogels are quite appealing in applications like bio-
sensor [100], contact lenses and cornea regeneration implants 
[48]. For example, by incorporating zwitterionic groups like 
SBMA with strong surface hydration ability enabled to achieve 
enhanced water content, optical transparency, and oxygen per-
meability (e.g. increase water content from 41.9% to 95.4%, 
optical transmittance from 2.3% to 98.1%, oxygen transmis-
sion from 17.5 to 54.7, which comparable to the commercial 
silicon contact lens) [48].

4.2.  Zwitterionic nanoparticles with super stability

Nanoparticle-based drugs or diagnosis systems are very 
promising techniques for their high loading capacity, specific 
targeting, and intercellular uptake. However, one of major 
road blockers for drug delivery is unwanted nonspecific pro-
tein adsorption, which often result in nanoparticle aggrega-
tion and adverse response of immune system. Conventional 
PEGylation-coated nanoparticles are subject to rapid oxida-
tion in the presence of oxygen and transition metal ions, thus 
losing antifouling property and the circulation of nanopar-
ticles. Alternatively, coating of zwitterionic materials on 
nanoparticles may prevent the aggregation, precipitation, or 
clearance of nanoparticles, thus allowing them to increase 
circulation time in vivo and the chance for specific targeting 
via passive (e.g. a leaky vasculature) or active (e.g. antibodies 
or aptamers) pathways [101]. Yang et al [23] modified gold 
nanoparticles (GNPs) with polyCBMA whose activated car-
boxyl groups were further linked bio-recognition elements 
(anti-ALCAM) for detecting leukocyte cell. In sharp contrast 
to PEG-coated GNPs, polyCBMA-GNPs could well maintain 
their hydrodynamic diameters unchanged in 100% human 

Figure 7.  A hydrogel made up of the polyCBSA polymer (a designed zwitterionic polymer with cationic zwitterionic-precursor and an 
antimicrobial counter ion) able to keep the surface free from bacteria and inhibit bacterial growth in bulk simultaneously. Reprinted from 
[92], Copyright © 2012, with permission from Elsevier.
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blood serum solution up to 70 h, indicating that polyCBMA-
GNPs are super stable in complex media without agglom-
eration. Super stability of polyCBMA-GNPs also enabled its 
ultralow fouling background to realize specific recognition of 
antigen by anti-ALCAM in 100% human blood serum (fig-
ure 8). Also, the designed zwitterionic dopamine sulfonate 
(ZDS) ligands were able to coat on superparamagnetic iron 
oxide nanoparticles (SPIONs) for stabled magnetic reso-
nance imaging (MRI) [102]. Zwitterionic dopamine moiety 
in ZDS provided strong binding affinity to SPIONs, while the 
combination of quaternary amine and sulfonate group offers 
long-term pH stability in a range of 6.0–8.5. The resultant 

ZDS-SPIONs showed high stability not only in PBS or NaCl 
solution for a month, but also in fetal bovine serum without 
significant aggregation and size changes due to their high sur-
face resistance to nonspecific protein adsorption.

4.3.  Zwitterionic antifouling membranes

Protein-resistance is also an important feature of ultrafiltra-
tion membranes for biomedical applications including blood/
protein separation and purification. Undesirable nonspecific 
protein adsorption on membrane surface or inside membrane 
pores will rapidly compromise the permeation flux, leading 

Figure 8.  The polyCBAA-coated GNPs (polyCBAA-GNPs) immobilized with antibodies and the surfaces are highly resistant to 
nonspecific protein adsorption after antibody immobilization without agglomeration. Reprinted from [23], Copyright © 2009, with 
permission from Elsevier.

Figure 9.  Surface resistance of zwitterionic antifouling membranes prepared by different surface coating methods to proteins, cells, and 
bacteria, (a) PVDF-g-pSBMA membrane by atmospheric plasma-induced surface copolymerization, (b) PPO-b-pSBMA-coated PVDF 
membrane by the self-assembling coating process of PPO-b-pSBMA copolymers on PVDF microfiltration membranes, (c) PS-r-pSBMA-
coated PVDF membrane by a combination of polymerization and self-assembling process, (d) poly(GMA-r-SBMA)-functionalized PET 
membrane by self-assembly assisted dip-coating and UV irradiation. (a) Reprinted with permission from [85]. Copyright © (2008) American 
Chemical Society. (b) Reprinted from [109], Copyright © 2013, with permission from Elsevier. (c) Reprinted from [110], Copyright © 2018, 
with permission from Elsevier. (d) Reprinted with permission from [111]. Copyright © (2019) American Chemical Society.
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to the failure of ultrafiltration function of membranes in very 
short time. A random sulfobetaine copolymer (DMMSA-
BMA) synthesized by reacting hydrophilic N,N-dimethyl-
N-methacryloxyethyl-N-(3-sulfopropyl) (DMMSA) with 
hydrophobic butyl methacrylate (BMA) through radical 
polymerization achieved excellent flux recovery property after 
blending with polyethersulfone (PES). At 8.0 wt% DMMSA-
BMA concentration, the BSA flux of PES membrane can 
increase from ~40 to ~60 l (m2 h)−1, consequently, irrevers-
ible fouling was considerably reduced, so that flux recovery 
ratio achieved as high as 82.8% after simple water flushing 
[103]. Later, an integrated plasma technique (figure 9(a)) was 
adopted to graft zwitterionic polySBMA layer onto different 
membranes such as poly(vinylidene fluoride) (PVDF) [104, 
105], polypropylene (PP) [106], and poly(tetrafluoroethylene) 
(ePTFE) membranes [107]. Zwitterionic antifouling mem-
branes can be designed by introducing poly-zwitterionic 
functionalized multiwalled carbon nanotubes (MWNT) as 
nanocomposites into the ultrafiltration polymer membrane. 
Adding 1 wt% polySBMA and poly(sulfone) (PSF) function-
alized MWNT hybrid (MWNT-PSF/PSBMA) into PSF film 
led a significant reduction of fibrinogen protein adsorption to 
7.2% as compared to the pristine PSF membrane [108].

However, surface grafting and polymerization methods 
are somehow too complicate to be applied to a large-scale 
production. To overcome this limit, some facile surface 
self-assembly processes are developed. First, as shown in 
figure  9(b), a simple dip-coating process was developed by 
incorporating diblock copolymer poly(propylene oxide)-
block-poly(sulfobetaine methacrylate) (PPO-b-pSBMA) 
into PVDF membranes to achieve surface zwitterionization, 
and the presence of strong hydrophobic anchorage group 
from PPO allowed PPO-b-pSBMA to strongly interact with 
PVDF membranes. The resulting membranes achieved 15% 
of fibrinogen adsorption and 45% of protein adsorption from 
undiluted human plasma solution as compared with the virgin 
PVDF [109]. Furthermore, another simple one-step polymeri-
zation and membrane surface-modification was developed by 
self-depositing polystyrene (PS) and polySBMA onto PVDF 
membrane at the presence of azobisisobutyronitrile (AIBN) 
in 60 °C methanol solution (figure 9(c)). At optimal condi-
tions of a 50/50 of SBMA/styrene monomer ratio and total 
5 wt% SBMA and styrene in methanol solution, 5 h reaction 
time, the PS-r-pSBMA/PVDF membranes exhibited superior 
surface hydrophilicity (~0° water contact angle) and surface 
resistance to 90% of fibrinogen adsorption. The antifouling 
property of this optimized PS-r-pSBMA/PVDF membrane 
realized was nearly complete resistance to platelets, leuko-
cytes, erythrocytes, whole blood and E. coli adhesion [110], 
superior to the former zwitterionization membranes like 
pSBMA/PVDF [104] and pSBMA/PP [106] prepared through 
complicated radical polymerization. A further combination 
of dip-coating process with UV irradiation enabled the cova-
lent grafting of poly(glycidyl methacrylate-r-SBMA) onto 
poly(ethylene terephtalate) (PET) membrane and reduced 
bacterial attachment by 70%–80%, protein adsorption from 
whole blood by 80%, and fibroblast cell adhesion by 95%, 

without greatly altering the porosity of PET membranes [111] 
(figure 9(d)).

4.4.  Zwitterionic wound dressings

Antifouling properties of zwitterionic polymers are critical 
for wound healing [46], because unwanted protein adsorption 
always causes collagenous capsules to inhibit wound clo-
sure. Development of highly nonfouling wound dressing, in 
combination with specific drugs or growth factors, has been 
considered as a promising strategy to treat skin wounds. An 
ABA triblock copolymer was developed and consisted of a 
thermo-responsive poly (N-isopropylacrylamide) (PNIPAM) 
as two outer A blocks and a positively-charged hydrolysable 
betaine ester loaded with an antimicrobial drug (salicylate) 
as an inner B block. The resultant ABA copolymers enabled 
to realize a rapid gelation of A blocks at body temperature, 
the controllable release of antimicrobial drugs from B blocks 
for inhibiting bacteria growth, and the hydrolysis of cationic 
betaine ester to its zwitterionic form for preventing bacterial 
adhesion [112] (figure 10(a)). Study of the ultra-low-fouling 
zwitterionic hydrogels (polyCBMA) had demonstrated that 
the gel could resist capsule formation for 3 months in mice, 
as compared to the commonly used polyHEMA hydrogels 
that was fully encapsulated by collagens after 4 weeks (fig-
ure 10(b)) [45]. In addition to zwitterionic polyCBAA wound 
dressing hydrogels alone, Ag nanoparticles (AgNPs) can also 
be encapsulated into polyCBAA hydrogels, which offered 
additional antibacterial ability to accelerate and realize a 
complete wound closure of in vivo murine model by 14 d 
(figure 10(c)) [113]. Furthermore, Wu et al [46] synthesized 
ultra-low-fouling zwitterionic polySBMA hydrogels and 
applied them to full-thickness cutaneous wounds in mice. 
They found that wounds treat with polySBMA hydrogels 
were almost scar-less after 17 d, in sharp contrast to large 
wound areas treated with pure PEG hydrogel. More impor-
tantly, the incorporation of SBMA into PEG hydrogels also 
enhanced the overall wound healing efficiency as compared 
to pure PEG hydrogels. PolySBMA hydrogel, due to their 
unique antifouling and mechanical properties, have demon-
strated its ability to promote full-thickness excisional acute 
wound regeneration in mice by enhancing angiogenesis, 
decreasing inflammation response, and modulating macro-
phage polarization (figure 10(d)).

4.5.  Zwitterionic antifouling elastomers

Elastomers have huge demands in biomedical and industrial 
applications. Most of elastomers, particularly polydimethyl-
siloxane (PDMS) elastomer, are highly hydrophobic [114], 
which greatly limits their antifouling applications. Use of zwit-
terionic polyCBMA to modify PDMS surface via the surface-
initiated ATRP method enabled to form a super hydrophilic 
polyCBMA layer [115]. Strong chain–chain interactions of 
polyCBMA lead to the electrostatically-induced hydration 
and suppressed the PDMS surface reconstruction. The zwit-
terionic polymer modified PDMS elastomer is highly stable in 
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wet condition, with  <2% protein adsorption after 74 d (figure 
11(a)). Yeh et al [116] further developed a hybrid zwitterionic-
PDMS elastomer by covalently silanizing the sulfobetaine 

silane (SBSi) on PDMS elastomer. The resulting SBSi-PDMS 
elastomer reduced almost ~96% of bacterial adhesion as com-
pared to unmodified PDMS ones (figure 11(b)). More recently, 

Figure 10.  Zwitterionic polymer hydrogels for wound dressing. (a) PNIPAM-polyCB-PNIPAM wound dressing with both antifouling and 
antibacterial capacity, (b) polyCBMA wound dressings for promoting collagen (blue staining) and blood vessel (brown staining) formation 
in tissues, as compared to polyHEMA wound dressings, (c) polyCB-AgNPs wound dressing to prevent fouling and treat bacterial infection, 
and (d) polySBMA wound dressing for accelerating wound regeneration in full-thickness cutaneous wounds in mice, as compared to PEG 
hydrogel dressing. (a) [112] John Wiley & Sons. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (b) [45] © 2013 
Nature America, Inc. All rights reserved. With permission of Springer. (c) Reproduced from [113] with permission of The Royal Society of 
Chemistry. (d) Reprinted from [46], Copyright © 2018, with permission of Elsevier.

Figure 11.  Zwitterionic antifouling elastomers. (a) PolyCBMA-coated PDMS surface to resist protein adsorption up to 74 d, (b) SBSi-
coated PDMS elastomer to resist nonspecific adsorption of bacteria, proteins, and lipids, and (c) hydrolyzed carboxybetaine ester polymer 
(PTCBE) to resist protein adsorption. (a) Reprinted with permission from [115]. Copyright © (2012) American Chemical Society. 
(b) Reprinted with permission from [116]. Copyright © (2014) American Chemical Society. (c) [117] John Wiley & Sons. Copyright © 
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
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a coating-free antifouling zwitterionic-based elastomer was 
developed by replacing the quaternary amines in zwitterionic 
poly(carboxybetaine) (polyCB) moiety with tertiary amines 
and further protecting its carboxyl groups with esters [117]. In 
this way, a superhydrophilic and zwitterionic polyCB can be 
converted into charge-neutral and hydrophobic a tertiary car-
boxybetaine ester polymer (PTCBE). The resulting PTCBE 
exhibited high hydrophobicity to repel water in bulk, but upon 
hydrolysis PTCBE was converted into polyCB that exhibited 
zwitterionic characteristics and excellent nonfouling prop-
erties. The hydrolyzed, hydrophilic polyCB layer can resist 
95% of protein adsorptions (figure 11(c)). This design strategy 
offers a new and simple hydrolysis to develop coating-free, 
antifouling elastomers without sacrificing its bulk mechanical 
properties.

More challenging antifouling property is required in elas-
tomers for blood contacting device. In this case, elastomers 
with maintained thromboresistance during degradation is 
highly desirable, and can hardly achieved by simple surface 
modification or grafting approaches. To this end, elastomers 
with zwitterion incorporated backbone can be an effective 
solution. For example, biodegradable polyurethanes were 
designed and synthesized with zwitterions (SB and CB) incor-
porated into the polymer backbone [118, 119]. As a result, 
the incorporation of zwitterions could achieve tunable surface 
and mechanical properties, and maintain nonthrombogenic 
properties after periods of degradation. The polyurethane 
showed scattered platelet aggregates and deposition after 2 
weeks, while it was hard to find any platelets on the polyester 
SB urethane ureas surfaces which already had been partially 
degraded over 2 months.

4.6.  Zwitterionic-coated proteins

Unlike PEGylated protein therapeutics products that inevi-
tably introduce additional immune response via haptenic 
effect, zwitterionic polymers could be coated on proteins 
to improve their stability and immunological properties 
[120–122]. Generally speaking, hydrophobic interactions 
are critical for protein and substrate binding (or bioactiv-
ity). Different from the PEGylation that could reduce such 
hydrophobic interaction at protein-substrate interface due to 
its amphiphilicity [50], super-hydrophilicity of zwitterionic 
polymers can greatly draw away water from the hydrophobic 
regions of the protein, increase the hydrophobic–hydropho-
bic driving force of the substrate and binding site, and allow 
them to interact consequently. An early study of polyCB and 
chymotrypsin (CT) conjugation showed that zwitterioniz
ation not only preserved enzyme bioactivity, but also slightly 
increased its binding affinity to peptide substrates, in con-
trast to PEGylation-induced the binding affinity decreases 
of enzymes [120] (figure 12(a)). Furthermore, zwitterionic 
polyCB-based hydrogel was coated on protein surface to 
form a core–shell structure. The resultant polyCB-encapsu-
lated uricase displayed high thermal stability to retain 100% 
activity at 65 °C and prolonged circulation up to 3.6-fold 
improvement over uricase-PEG, without any detectable anti-
protein and anti-polyCB antibodies [121] (figure 12(b)). 
Zwitterionic polymer-conjugated proteins also significantly 
mitigated the bioactivity loss of interferon alpha-2a (IFN-
α2a). polyCB-conjugated IFN-α2a exhibited 62.1% anti-
proliferative activity that was 4.4-fold higher than that of 
the PEGylated IFN-α2a (14.2%), as well as prolonged blood 

Figure 12.  Zwitterionic polymer-coated proteins. (a) Zwitterionic polymer-induced interacial interactions between proteins and 
substrate, (b) zwitterionic protein encapsulation: the process of zwitterionic polyCBAA network encapsulation of a protein surface and 
the consequently formation of hydration layer. (c) A zwitterionic polyCB-conjugated IFN-α2a to reduce the bioactivity loss of IFN-
SO3SO32a, (d) polyCB nanocages for uricase encapsulation to minimize the production of antipolymer or antiuricase antibodies and to 
improve pharmacokinetics for gout treatment. (a) [120] © Macmillan Publishers Ltd. All rights reserved. With permission of Springer. 
(b) Reproduced from [121]. (c) Reproduced from [123]. CC BY 3.0. (d) [44] John Wiley & Sons. Copyright © 2018 WILEY-VCH Verlag 
GmbH & Co. KGaA, Weinheim.
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circulation [123] (figure 12(c)). Another example was a 
polyCB-based nanocage that was recently developed to min-
imize the influence of the encapsulation on enzymatic activ-
ity [44]. Zwitterionic polyCB polymers can physically wrap 
therapeutic proteins and protect proteins noninvasively as a 
nanocage. High hydrophilicity and bio-inertness of zwitter-
ionic polyCB make the nanocage effectively eradicate almost 
all immune responses, without evoking any loss of efficacy 
in clinical-mimicking gouty rat model (figure 12(d)).

5.  Conclusions and perspectives

Throughout decade research, zwitterionic materials have 
attracted the growing interest as excellent antifouling mat
erials for their promising applications in diverse fields. 
Significant progress has been achieved in the design and 
synthesis of different zwitterionic materials, whose antifoul-
ing properties have been well optimized for promoting other 
important functions both in vitro and in vivo for biosensors, 
targeting drug/gene delivery, wound dressing, contact lenses, 
separation membrane, and therapeutic applications. Despite 
the great success so far, the research in zwitterionic materials 
is still in its early stage as compared to PEGylated materials. 
There are still some remaining challenges to be overcome 

before the widespread practical applications of zwitterionic 
materials become possible. Here, we offer some personal per-
spectives regarding challenges and future research for zwit-
terionic materials.

First of all, the most prominent issue with antifouling 
materials (not limited only to zwitterionic materials) is still 
their short-term structural stability against different biofou-
lants in much longer timescale. While zwitterionic materials 
have been well demonstrated for their superior antifouling 
properties in simple aqueous solution and complex media 
(e.g. undiluted human blood, cultured cells and bacteria) for 
a short period time (hours to weeks), they are still lacking 
sufficient quality or long-term stability, presumably the deg-
radation of zwitterionic groups (e.g. sulfonium groups are 
rapidly degraded by the attack of nucleophiles in a natural 
environment). Thus, modification of zwitterionic polymer 
backbone with protection agents is alternative strategy to 
remedy the long-term stability issue. Nowadays, PEG, poly-
acrylamide, and polyacrylate are among the most popular 
antifouling materials. It is, therefore, not a surprising to 
copolymerize highly hydrophilic groups (e.g. ethylene gly-
col, amide, and ester group) with zwitterionic groups (e.g. 
CB, SB, MPC) to produce hybrid hydrophilic-zwitterionic 
polymers (figure 13). For example, polyacrylamides and 

Figure 13.  Design of hybrid hydrophilic-zwitterionic polymers for superior long-term fouling resistance stability.
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poly(vinyl amides) usually contain tertiary amide moiety 
that will simultaneously increases the resistance to hydroly-
sis. Hydrophobic polystyrenes and poly(vinyl pyridines) are 
chemically very stable, and could be integrated with zwitte-
rionic polymers to enhance the long-term stability of hybrid 
hydrophobic-zwitterionic polymers at the expense of anti-
fouling behavior to a reasonable level. So, combination of 
hydrophilic/hydrophobic and zwitterionic moieties into a 
single polymer chain allows us to not only introduce addi-
tional hydration forces (e.g. hydrogen bonding) to enhance 
antifouling stability, but also increase the structural/chemi-
cal diversity of zwitterionic polymers.

From a computational viewpoint, very few molecular sim-
ulations have been carried out to study the interfacial proper-
ties of zwitterionic polymers. Current MD simulations largely 
focus on bulk zwitterionic polymers and their interactions with 
and without proteins, but not on zwitterionic polymer brushes 
that are anchored on the substrate to mimic antifouling surface. 
MD simulations of zwitterionic polymer brushes require not 
only more accurate force fields to describe surface potential 
energy, but also optimal lattice structures to better determine 
polymer packing structures and density. Thus, no MD simula-
tion studies have been reported so far to directly study the pro-
tein adsorption/resistance on zwitterionic polymer brushes. If 
workable, such interfacial MD simulations enable to directly 
examine the effects of polymer thickness and grafting den-
sity on interfacial interactions between zwitterionic polymer 
brushes and a protein in the presence of water and counter 
ions, as well as to offer atomic details of hydration-induced 
structural and energy barriers at the protein-brush interface 
for better understanding antifouling mechanisms. We are cur
rently simulating zwitterionic polymer brushes in the absence 
and presence of proteins. More importantly, different from 
bulk polymer systems with relatively well-controlled proper-
ties, zwitterionic polymer brushes and coatings often contains 
heterogeneous data (e.g. physicochemical, morphological, 
and antifouling properties) obtained from different labs and 
at different conditions. Some datasets may contain errone-
ous or inconsistent entries. Thus, it is equally important to 
(1) collect a reliable benchmarking dataset and (2) develop a 
computational predictive model for better assessing the comp
onent-structure-property-performance relationship of zwitte-
rionic polymer coatings and for achieving the structural-based 
design of next-generation zwitterionic materials with optimal 
properties and desirable functions.
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