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Abstract:

Ergotamine (ERG) and dihydroergotamine (DHE), common migraine drugs, have small
structural differences, but leading to clinically important distinctions in their pharmacological
profiles. For example, DHE is less potent than ERG by about ten-fold at the 5-hydroxytrptamine
receptor 1B (5-HTig). Although the high resolution crystal structures of the 5-HT s receptor
with both ligands have been solved, the high similarity between these two complex structures
does not sufficiently explain their activity differences and the activation mechanism of the
receptor. Hence, an examination of the dynamic motion of both drugs with the receptor is
required. In this study, we ran a total of 6.0 us molecular dynamics simulations on each system.
Our simulation data show the subtle variations between the two systems in terms of the ligand-
receptor interactions and receptor secondary structures. More importantly, the ligand and protein
root-mean-square fluctuations (RMSF) for the two systems were distinct, with ERG having a
trend of lower RMSF values, indicating it to be bound tighter to 5-HT g with less fluctuations.
The Molecular Mechanism-General Born Surface Area (MM-GBSA) binding energies further
illustrate this, as ERG has an overall stronger MM-GBSA binding energy. Analysis of several
different micro-switches has shown that the 5-HT1s-ERG complex is in a more active
conformation state than 5-HT1g-DHE, which is further supported by the dynamic network model,
reference to mutagenesis data with the critical nodes and the first three low energy modes from
the normal mode analysis. We also identify Trp327%*® and Phe331%4? as key residues involved in
the active state 5-HT1s for both ligands. Using the detailed dynamic information from our
analysis we made predictions for possible modifications to DHE and ERG that yielded 5

derivatives that might have more favorable binding energies and reduced structural fluctuations.
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Introduction:

In designing drug analogs, it has been shown that minor modifications can have
significant effects on the action, potency, or selectivity of a drug !. This so-called “minor
modification rule” illustrates that simple changes such as adding/switching substitutes,
hydroxylations, racemate resolutions, isosteric replacements and hydrogenation can greatly
change the activities of a drug !. In some cases, these simple changes can cause such a difference
as to whether a chemical acts as an agonist or antagonist. The imidazolinic compound Efaroxan
is an agonist 2, but an antagonist when changed to an imidazole 3. Similarly, the benzofuranic
compound 2-BFI is an agonist 4, but an antagonist when acting as its dihydroderivative °.

Ergotamine (ERG) and its hydrogenated analog, dihydroergotamine (DHE), are another
example of this phenomena. ERG is a migraine drug that has been used since 1925 . It is an
alkaloid from the ergot family that has well-documented vasoconstriction effects, one of the
main focal points of many migraine drugs ’. Due to some persistent common side effects such as
nausea, DHE was created in 1945 as an attempt to improve upon the original drug®. DHE is
structurally similar to ERG, with the only difference being the hydrogenation of a single double
bond on ERG’s ergoline ring. Interestingly, DHE is a significantly less potent arterioconstrictor
than ERG, which makes it a safer drug with less adverse effects such as medication-withdrawal
headache, nausea and vomiting °-!!.

Notably the two drugs have been found to exhibit very different levels of activity at many
serotonin and some dopamine receptors. Specifically, seven 5-HT receptor subtypes with various
biological activities - 5-HT1a , 5-HT 18, 5-HT1p, and 5-HTir , 5-HT2a , 5-HT2c , and 5-HTj -
have been associated with high (but generally very different) affinity for the two ligands 1% 13,
Of particular interest in our study is the 5-HT g receptor, a G-protein-coupled receptor (GCPRs),
which has been found to exhibit different activity levels with the ERG and DHE. In the rodent 5-

HTs receptor, ERG was found to display higher activity with a pK; of 8.69 '* compared to



DHE’s pKp of 7.85 '°. Yet despite this significant difference, the drugs’ crystal structures show
no significant differences (Figure 1) and so additional analysis for ligand recognition and
selectivity has been impossible '°.

This study attempts to remedy this by delving deeper into the ligand-protein interactions
through molecular dynamics (MD) simulations, which are important tools for understanding the
physical basis of the dynamic structure and function of biological macromolecules '7. MD
simulations have been successfully used to probe receptor and ligand dynamics of various GPCR
receptors'®2°, Though GPCRs have been extensively studied, novel scientific innovations are
still on the rise, for example, using MD simulation Yuan and coworkers recently identified a
deeper binding pocket that is common to most GPCRs, providing significant opportunities for
novel GPCR drug discovery ?° in addition to characterizing the relationship between GPCR
activation and internal water pathways?’. Liand coworkers used MD simulation to characterize
the mechanism of GPCR pituitary adenylate cyclase activating polypeptide (PAC1) shapeshifters
28 Zhang and coworkers published a number of works characterizing the structural diversity of
allosteric sites of GPCRs to better understand the drug-target interactions which will ultimately
contribute to the design of allosteric drugs with enhanced therapeutic actions 2°>!'. Pu and
coworkers used MD simulation to elucidate the mechanism driving the allosteric modulation of
ligand binding of the C-C chemokine receptor type 5 (CCRS) homodimer*?. MD simulation was
used by Liu and coworkers to characterize the interactions between high affinity GPCR
chemokine receptor 1 (CXCR1) and interleukin-8 *3. We have also used MD simulation in our
previous work to probe the binding of biased agonists to the D2 dopamine receptor **, the
interaction between morphine and IBNtxA in complex with the p-opioid receptor *, and
described the antagonist activity of fexofenadine to the histamine (H1) receptor®¢. Specific to the

1 37,38

5-hydroxytryptamine receptor, Sylte et a and Seeber et al. *° have successfully probed the

ligand induced different conformational states of the 5-HTa receptor using comparative MD



simulations. Another interesting study by Marti-Solano et.al ** showed different dynamic
behaviors caused by the binding of ERG to the two subtypes of serotonin receptors (5-HTig and
5-HT2g) using MD simulations. Their micro-switches analysis has shown that the differences in
the conformational freedom of helix 6 between both receptors could explain their different G
protein-coupling capacity. In particular, as compared to 5-HTig, the helix 6 in the 5-HT2p
receptor showed a limited movement, blocking the opening of the G protein bonding site and
thus reducing G protein coupling *°.

Additionally, the use of computational dynamic network models to decipher residue-
residue interactions within bimolecular systems and elucidate allosteric communication
pathways have become increasingly popular in recent years. The use of dynamic network models
based on MD trajectories provides an efficient manner to extract correlated motions and
allosteric signals within a complex system that are normally hard to accurately discern by
visualizing MD simulations alone*" 2. From these networks, different regions of the complex
system to be clustered into highly correlated communities which can provide insight into the
effect of ligand binding to the overall communication within the system****. Through use of a
dynamic network model in their work on the u-Opioid Receptor, Schneider et al. identify the
major residues involved in the induced allosteric communication between the orthosteric binding
pocket and the intracellular region of the receptor®. Jiang et al. also used a dynamic network to
elucidate the dynamic and allosteric properties of three GPCR homodimers “. Thus, the use of
dynamic network models have been effectively use to providing experimentally validated insight

into the long-range interactions essential in a variety of allosteric and communication pathways.



Figure 1 Structure of ergotamine and dihydroergotamine and their crystal complexes with the 5-
HT B receptor.

In this study, both the ERG- and DHE-5-HT g complexes from the crystal structures were
prepared, processed, and subjected to 6.0 us (3x2.0 pus) molecular dynamics (MD) simulations
for each system. The resulting trajectories were combined and compared to find the differences
in protein-ligand binding dynamics between the two systems including a dynamic network

model. Our data confirmed that DHE, which lacks the additional = bond, is more flexible than



ERG (Figure 1). This structural difference causes notable variances in terms of interactions and
our analyses highlight the differences in dynamics between the two ligands with the receptor,

offering insight as to why the activity of ERG and DHE are so different at the 5-HT g receptor.

Materials and Methods:

Ligand Preparation. The crystal structures of human 5-HT g receptor (Figure S1) in complex
with DHE (PDB id: 41AQ) and ERG (PDB id: 4IAR) were downloaded from the Research
Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank. Further preparation of
the ligand-protein complex was carried out using Maestro*’. Initially, the fusion protein and
cofactors were removed. The ligand structures were split from the protein and prepared by
correcting the bond order and adding the appropriate hydrogens. Calculations of pKa were
conducted using Epik, a tool based on accurate methodologies from Hammer and Taft, to get the
correct charge state at pH=7.?’ The ligands were then merged with the protein to form
complexes. These complexes were further preprocessed, optimized, and minimized with the
Maestro protein preparation wizard*’.

Molecular Dynamics Simulation System Setup. The prepared receptor-ligand complexes were
then used to construct a molecular dynamics simulation systems. The complex was immersed in
a membrane of POPC lipids *® using Maestros system builder and was placed in the predefined
position in the membrane using default parameters. Next, it was solvated in an orthorhombic
water box with a buffer distance of 10 A with a SPC water model *°. Wang et al. reported POPC
lipids are the most favorable option for membrane modeling because they are regularly found in
biological membranes and contain an unsaturated carbon-carbon tail, which increases system
stabilization . To neutralize the system, Na* ions were added with a salt concentration of 0.15

M NaCl. The OPLS3 force field was used for modeling the receptor-ligand-lipid system °'.



MD simulation protocols. Using Desmond module, the system was first relaxed using the
default relaxation protocol for membrane proteins >2. This relaxation protocol
(relax_membrane.py) consists of eight steps: 1). Minimization with restraints on solute heavy
atoms; 2) Minimization without any restraints; 3). Simulation with heating from 0 K to 300 K,
H>O barrier (i.e. Gaussian Barrier potential on H20) and gradual restraining; 4). Simulation
under the NPT ensemble (constant number of particles, constant pressure of 1 bar and constant
temperature of 300 K) with H>O barrier and with heavy atoms restrained; 5) Simulation under
the NPT ensemble with equilibration of solvent and lipids; 6). Simulation under the NPT
ensemble with protein heavy atoms annealing from 10.0 kcal/mol to 2.0 kcal/mol; 7). Simulation
under the NPT ensemble with Ca atoms restrained at 2 kcal/mol; and 8). Simulation for 1.5 ns
under the NPT ensemble with no restraints. After the relaxation, three 2000.0 ns production runs
were conducted under the NPT ensemble for each of the two systems using the default protocol.
In details, temperature was controlled using the Nosé-Hoover chain coupling scheme’® with a
coupling constant of 1.0 ps. Pressure was controlled using the Martyna-Tuckerman-Klein chain
coupling scheme® with a coupling constant of 2.0 ps. M-SHAKE ** was applied to constrain all
bonds connecting hydrogen atoms, enabling a 2.0 fs time step in the simulations. The k-space
Gaussian split Ewald method > was used to treat long-range electrostatic interactions under
periodic boundary conditions (charge grid spacing of ~1.0 A, and direct sum tolerance of 10~).
The cutoff distance for short-range non-bonded interactions was 10 A, and the long-range van
der Waals interactions was based on a uniform density approximation. To reduce the
computation, non-bonded forces were calculated using an r-RESPA integrator*® where the short
range forces were updated every step and the long range forces were updated every three steps.
The trajectories were saved at 50.0 ps intervals for analysis. The three independent simulations

per system were combined for analysis.



Convergence of Simulation. To check the convergence of MD simulations, we investigated the
average protein Ca and ligand RMSD plots for both trajectories (Figure S2). The plots depict
relatively flat changes within the last 900 ns, providing evidence that the system had reached a
steady state.

Trajectory Clustering Analysis. Complex structures from the last 500 ns of the two simulations
of each ligand-protein system were grouped to find top structural families with abundance for
each ligand. The Desmond trajectory clustering tool >/, with Backbone RMSD matrix as the
structural similarity matrix, hierarchical clustering with average linkage for the clustering
method, and a merging distance cutoff set at 2.5 A, was used for this analysis >’. The structure
with the greatest number of neighbors in the structural family, called the centroid structure, was
used for representation (Figure 2). All clusters are shown in Figure S3.

Simulation interaction diagram (SID) analysis. The Desmond SID tool was used to analyze
the receptor-ligand interactions throughout the MD trajectory. Particular attention was given to
ligand-residue interactions (Figure 3-4), secondary structure changes (Figure 5), protein Ca
Root Mean Square Fluctuation/RMSF (Figure 6), ligand RMSF (Figure 7), and ligand torsion
plots (Figure 8). In addition to this, we use our simulation data to analyze a number of molecular
switches (Figure 9; Figure S8-S9). In reference to these figures we define antagonist as a
molecule whose binding results in the receptor being in an inactive state and an agonist as a
molecule that activates the receptor when bound. In addition we reference the active and inactive
states of these molecular switches, which refer to the positon of the transmembrane helix
involved in the molecular switch when bound to an antagonist (inactive conformation) and
agonist (active conformation) and comparisons are made from the crystal structure.

Binding energy Calculations and decomposition methods. Molecular Mechanism-General
Born Surface Area (MM-GBSA) binding energies were calculated on the 2x50 frames in the last

500ns for both systems (Table 1). Prior studies found MM-GBSA to be useful when ranking and



comparing ligands %, The surface-area-based Generalized Born model " ®? with implicit
membrane model was used (VSGB 2.0) in the calculation. The implicit membrane is a slab-
shaped region with a low dielectric constant between 1 and 4, and the regions to exclude from
membrane is assigned with the solvent (water) dielectric constant of 80. The OPLS3 force field
and the default Prime protocol was used. The OPLS3 force field employs a CM1A-BCC based
charge model based on a combination of Cramer-Truhlar CM1A charges ! with an extensive
parameterization of bond charge correction terms (BCC). The default procedure consists of three
steps: Receptor alone, Ligand alone, Receptor-ligand complex. The original interaction terms
include Coulombic, H-bond, GB solvation, van der Waals, pi-pi packing, self-contact, and
lipophilic. The total binding free energy equation was then done: AE (vind) = Ecomplex - Eligand +
Ereceptor. The interaction terms were then merged into three components, Eeiectrostatics, Evaw, and
Elipophilic, for increased understanding of binding nature: where Eelectrostatics= Hvond + Ecoutomb
+EGB_solvation, Evaw = Evaw+Enn +Eself-contact and Eipophitic. The MM-GBSA scoring function lacks
the solute conformational entropy which results in higher negative values when compared to the
actual values. Nevertheless, when used to rank different drugs targeting receptors with
comparable binding entropy values, it has proven to be extremely useful °'. Previous works,
including the use of 1,864 crystal complexes, have shown that MM-GBSA is a powerful tool in
ranking ligands 380 93:64 Further evaluation of the binding energy calculations were performed
by decomposing the MM-GBSA data by residue and comparing those more favorable than -2.0
kcal/mol (Table 2).

Dynamical Network Model

The combined trajectories of each system were used to generate a dynamic network model, defined
as a set of nodes connected by edges, **: 6% ysing the NetworkView plugin®-® in VMD 7°. For
each system, we generated a contact map which added an edge between nodes whose heavy atoms

interacted within a cutoff of 4.5A for at least 75% of the MD simulation time. The 4.5A distance



cutoff was explicitly chosen based on the work of Luthey-Schulten and coworkers®® where they
studied distance cut offs ranging from 3.5-5.0A and found the data from the 4.5A cut off showed
the least difference community repartition, therefore showed the least change in the community
distributions of the network. In this contact map, the edge distance was derived from pairwise
position fluctuation correlations®® using the program Carma’!, (Figure 10) which defines the

probability of information transfer across a given edge using the following equation:

(Ar; (t)-Ar; (1))
((Ari(£)2)( Ar;(t)2))1/2

|1

Cij =

Using the pairwise correlation data in the dynamic network model, the edges are weighted
(wy) between two nodes i and j using the following calculation® %°: w;; = —log(ICyl). This method
of weighting is based on the correlated motion in the simulation trajectory whereby the weight of
the edge represents the probability for information to transfer across the edge between the two
nodes, thus, a thicker edge represents a lower probability of information transfer. In addition to
weighting networks based on the correlated motion in the simulation trajectory, the networks may
also be weighted based on the strength on interactions within a single structure as demonstrated
by Bhattacharyya, Bhat, and Vishveshwara’® as well as Gadiyarum, Vishveshwara, and
Vishveshwara’>.

Each network was then further grouped into subnetworks, termed communities, based on
groups of nodes with stronger and more frequent connection to each other. This was done by
applying the Girvan-Newman algorithm to the original network’. Critical nodes that connect
communities to another were also identified (Figure 10). Using the molecular switch data, an
optimal communication path was generated between the ligand node and the molecular switch
residue (Figure 11).

Normal Mode Analysis

The combined trajectories for each system were used in the VMD Normal Mode Wizard 7 to



generate a principal component analysis of the top 10 normal modes (Figure S10).

Virtual Screening

Two and three derivatives were chosen from a virtual screening of ergotamine and
dihydroergotamine derivative libraries, respectively, using Maestro 10.376, followed by MD
simulations and MM-GBSA analysis. First, a combinatorial library including 256 ligands for DHE
and 64 ligands for ERG was prepared using the Interactive Enumeration program. The variants
were defined by establishing substitution sites where there were four possible points of substitution
to DHE and three possible points of substitution to ERG. At each possible point of substitution
there were 4 functional groups that can be substituted which included hydrogen, fluorine, chlorine,
bromine. This suggests that there are 4* possible modified versions of DHE and 4° possible
modified versions of ERG, and a combinatorial library of these 256 ligands for DHE and 64 ligands
for ERG was generated. The charge of each compound at pH=7 was determined by Epik (an
empirical pKa prediction program)*’ followed by a geometry optimization that minimized the
potential energy using the default parameters. Using the active receptor structure from the most
abundant conformation of each system, a grid file was generated using the Receptor Grid
Generation program to prepare the complex for the subsequent docking calculation. In each
system, ergotamine or dihydroergotamine was selected and a grid box was generated around the
ligand with a Van der Waals radius scaling factor of 1.0 and a partial cutoff of 0.25. Then, these
256 ligands for DHE and 64 ligands for ERG compounds were docked using Glide with Extra
Precision (XP) scoring function, and then filtered using QikProp package’’, to predict the
absorption, distribution, metabolism, and excretion (ADME) properties. QikProp ranks the full
molecular structure based on pharmaceutically relevant properties by giving each compound a
number of stars; compounds with no starts are predicted to be the most drug-like. Finally, three

potential compounds for each ligands were manually chosen based on XP scores (< -9.0 kcal/mol)



that were more negative than the docking of ERG or DHE into the active conformation of SHT g
from the most abundant clusters, along with the compounds’ synthesizability containing fewer
substitution groups. The five XP docking complexes were subjected to 200 ns MD simulations.

MM-GBSA binding energies from the last 100 ns simulation were then calculated and compared.



Results

Table 1 MM-GBSA binding energies of ergotamine and dihydroergotamine to the 5-HT g
receptor.

AVDW! ALIPO’  AGBELE’ AE* AOriginal®

ERG Original | -68.6+4.9  -61.6+4.7  -36.2+44.6  -166.5+11.2 0
ERG Compound 1 | -70.943.8  -46.743.8  -65.943.0  -183.446.7 -16.9
ERG Compound 2 | -70.9+4.3  -44.7+4.1  -67.542.9  -183.146.5 -16.6

DHE Original | -66.243.3  -53.742.6  -31.743.0  -151.6+6.2 0
DHE Compound 1 | ~71.122.1  -4196.1 59322  -172.3%6.6 -20.7
DHE Compound 2 | 651435 -52.7+54  -513+29  -169.148.2 17.5
DHE Compound 3 | 709446  -43.0853  -602+3.8  -174.2:9.4 22,6

" AVDW: Change of van der Waals energy (VDW + n-n stacking +Self-contact correction) in
gas phase upon complex formation

2 ALIPO: Change of lipophilic term (Lipophilic energy) upon complex formation.

3 AGBELE: Change of electrostatic interactions (GB/Generalized Born electrostatic solvation
energy+ ELE/Coulomb energy +Hydrogen-bonding) upon complex formation.

* AE: MM-GBSA binding energy (Complex — Receptor — Ligand).

> AOriginal: Change between either ERG or DHE and their respective new compounds

Our MM-GBSA binding energy data indicates that ERG binds stronger than DHE to the 5-
HTig receptor. MM-GBSA calculations were performed in order to compare the ligand binding
affinities of both drugs with the receptor. Table 1 shows, ERG shows an overall stronger MM-
GBSA binding energy by -15 kcal/mol. Individually, van der Waal (-2.4 kcal/mol), lipophilic (-
4.5 kcal/mol), and electrostatic interaction (-7.9 kcal/mol) energies were all weaker for DHE then
ERG. This is qualitatively consistent with activity data for the drugs where ERG has higher binding

affinity (pKi = 8.69) compared to DHE (pKp = 7.85).



Side View Top View Ligand-Only

Figure 2 Comparison on the representative structure of the most abundant cluster from the MD
trajectories of the two complexes (5-HTig/yellow//ergotamine/red and 5-
HTig/purple//dihydroergotamine/blue).

The two active complexes (ERG-5-HTig and DHE-5-HTg) are structurally similar. After
identifying the major binding poses as described in the methods, additional analysis was done on
both ligand complexes. For comparison, we superimposed the representative structure of the most
abundant cluster of each complex. Figure 3 shows a side view, a top view, and only the ligands for
appraisal. Figure S4 similarly shows superimposition of the most abundant MD complexes with
the crystal complexes. As these views show, the complexes have subtle differences in most cases

but lacks major configurational changes.



Table 2. Key residues of 5-HT'B interacting with ERG and DHE, with MM-GBSA decomposition

analysis (better than -2.0 kcal/mol), and difference in binding energies of DHE and ERG.

Residue # Ergotamine Dihydroergotamine Difference in bonding
(Contact #, kcal/mol) (Contact #, kcal/mol) energy (kcal/mol)!
N Terminal Y38 (0.139) Y38 (0.120)
N Terminal Y40 (1.55)

3.26 D123 (-2.5)

3.28 W125 (0.153) WI125 (0.117)

3.29 L126 (-2.2) L126 (0.058) L126 (-2.6)

3.32 D129 (2.068) D129 (-17.3) D129 (2.121) D129 (-17.8)

3.33 1130 (0.165) 1130 (-7.1) 1130 (0.250) 1130 (-7.9)

3.36 C133(0.148) C133 (0.394)

3.37 T134 (0.180) T134 (0.603)

4.57 S181 (0.152)

ECL2 K191 (1.59)
ECL2 E198 (0.063) E198 (-1.0)

ECL2 C199 (-2.0)

ECL2 V200 (0.089) V200 (-5.1) V200 (0.051) V200 (-3.5) V200 (1.55)
ECL2 V201 (0.968) V201 (-7.5) V201 (.901) V201 (-5.6) V201 (1.88)
ECL2 D204 (-2.1) D204 (-1.12)
5.39 Y208 (0.081)

5.40 T209 (-1.95)
5.41 V210 (0.480)

543 S212 (0.147) S212 (-4.3) S212 (2.76)
5.44 T213 (-2.4) T213 (-5.9) T213 (-3.51)
5.46 A216 (0.080) A216 (0.360) A216 (-1.03)
5.47 P217 (0.272)

6.48 W327 (0.221) W327 (-1.0) | W327 (0.308)

6.51 F330 (0.832) F330 (-7.0) F330 (0.361) F330 (-2.5) F330 (4.43)
6.52 F331 (0.880) F331 (-2.0) F331 (0.198) F331 (1.84)
6.54 1333 (0.046)

6.55 S334 (-2.3) S334 (1.17)
6.58 M337 (0.230) M337 (-4.1) M337 (4.06)
6.59 P338 (0.136)

6.60 1339 (0.205)
ECL3 C340 (0.170) C340 (-2.4) C340 (-2.33)
ECL3 K341 (0.035) K341 (0.091)

7.31 L348 (0.143) L348 (-3.3) 1348 (2.85)
7.34 F351 (0.270) F351 (-4.7) F351 (0.134) F351 (-2.8) F351 (1.84)
7.35 D352 (0.087) D352 (-5.9) D352(-5.3)

7.38 T355 (0.636) T355 (-2.8) T355(0.613) T355 (-2.0)

7.42 Y359 (0.076) Y359 (0.079)

! Top contributors to the bonding energy difference between DHE and ERG.




The protein-ligand interaction analysis shows that the key protein-ligand residual contacts
in ERG are conserved in DHE, but they exhibit different bonding energies. A SID analysis
was preformed, aforementioned in the methods, to identify key residues in the 5-HTis receptor
involved with ERG and DHE bindings. All residues in the table are assigned the Ballesteros-
Weinstein number for the receptor ’®. The significant 5-HT5-ERG interactions include a total of
23 residues from N-terminal, TMs 3, 4, 5, 6, and 7, and extracellular loops 2 and 3 (Table 2). For
5-HTs-DHE, there are also 23 key residues from N-terminal, TMs 3, 5, 6, 7, and extracellular
loops 2 and 3. Even though the majority of the key residue interactions are conserved for each
ligand, there are limited observed differences of the interaction fractions for each of the complexes.
Interaction fractions for each residue in both complexes remain similar, with exception to P3316-2
and P330%%!, which were highly conserved in ERG but not in DHE. The MM/GBSA energy
decomposition was used to identify key residues that contribute more than -2.0 kcal/mol (Table
2). There is some evidence of overlap with the contact analysis. Several additional key residues
were identified: A12332%, L1263, C199%2, T213°#, and S334°%°3 for ERG; A204"%, T213%*, and
A352735 for DHE. Also, the difference in MM/GBSA energy decomposition was calculated
between DHE and ERG, with ERG binding stronger at residues V200F?, V20152, 212542 F3305!,
F331652, M337%%8, 1.3487!, and F35174, which correlates with mostly hydrophobic interactions.
On the other hand, DHE bound stronger at residues D204 F2, T20953° T213%4 A216>4¢ and
C340%. The significant differences in MM/GBSA bonding energies correlate with the identified
key residues, which suggests that these residues have a strong contribution to the absolute bonding
energy with each ligand. A number of these residues are involved in known binding features of
the 5-HT g receptor. For example, N-terminal residues such as Y40NT™ are known to fold over
the top of the binding pocket to enhance binding interaction and is thought to play a role in ligand
recognition'®, Residue D129%2? is known to anchor the ergoline scaffold through a salt bridge and

this interaction is further stabilized through hydrogen binding with Y35974. A hydrogen bond is



formed between the indole N-H Hydrogen of ergotamine and T134%7 In addition, a hydrophobic
cleft is known to form from the side chains of C1333¢, 113033, W327%4% F330%>!,and F331%?

16 all of which are observed in our two-dimensional interaction diagrams.
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Figure 3 Ligand-residue interactions that persist for more than 30% of MD simulation time for
ergotamine (top) and dihydroergotamine (bottom) with 5-HTs. Ballesteros-Weinstein
numbering is annotated for each interacting residue.
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Figure 4 Interaction fractions of ergotamine (top) and dihydroergotamine (bottom) with 5-HT g
over the MD trajectory.

The ligand-residue analysis shows subtle differences between ERG and DHE. To identify the
critical interactions the drugs made with the protein, SID analysis was conducted as described in
the methods. The major interacting residues are outlined in Table 2 and visually represented in
Figures 3-4 and Figure S5. Table 2 also contains Ballesteros-Weinstein numbering and interaction

fraction’®. Some noteworthy differences between the two drugs include: A) A much higher



interaction fraction with THR134°37and DHE compared to that residue with ERG. B) A greater
interaction fraction at residues PHE330 and PHE331 in ERG. C) A significant interaction fraction
for water bridges between residues 338-341 of DHE not seen in ERG. It should also be noted that
ASP1293 has the greatest interaction fraction for both ligands. That fraction remains fairly

consistent for both ligands, with ERG’s being 2.068 and DHE’s at 2.121.
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Figure 5 Comparison of the secondary structure percentage of each protein residue between

Ergotamine system and Dihydroergotamine system. Overall SSE percent contribution is
annotated.

An examination of secondary structures shows that helices are maintained but still contain
subtle differences. The shape, abundance over the MD trajectory, and time evolution for the two
secondary structures are shown in Figure 5. Some notable features include: A) Presence of very

short B-strands in DHE between transmembrane four and five. B) Additional kinks in DHE from

transmembrane 7 to the C-terminal.
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Figure 6 Receptor protein RMSF (A) diagram of 5-HTs with the two ligands, ergotamine and
dihydroergotamine, from MD simulations.

The receptor RMSF data shows that the receptor have differences in flexibility when
interacting with different ligands. The receptor RMSFs for the different ligands is shown in
Figure 6. Because the intracellular loop three that was missed in the crystal structure was not
included in the simulations, its RMSF was not available for both systems. In general, this figure
shows that the more rigid components of the receptor, such as the helices, have lower RMSF. In
contrast, more flexible areas like the intra and extra cellular loops and the N- and C- terminals
have high RMSF values. While the shape of the curves across residue numbers is generally
consistent between the ligands, there is a marked contrast in size. DHE has higher RSMF
throughout almost every transmembrane and intra and extra cellular region. Some major areas of
contrast are seen at intracellular region one, intracellular region two, extracellular region two, and
the C-terminus. These differences emphasize the receptor increased flexibility when interacting
with more flexible DHE than ERG, this is likely the main factor at receptor level contributing to

the biological and activity differences caused by the two drugs.
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Figure 7 Ligand RMSF (A) diagram of 5-HTp with the two ligands, ergotamine and

dihydroergotamine, from MD simulations. The two ligands have the same atom numbering,

but only ergotamine is shown here.

A trend of higher ligand position fluctuation was also observed for DHE. Ligand RMSF can
be used to gain a sense of how the ligand conformation dynamics between the drugs differ. Figure
7 shows that ERG has lower RMSF values at almost all atoms. It is only around atom 25 and atom
32 in the phenol ring that its RMSF value is greater than that of DHE. This is consistent with what

was expected from the structures of the two drugs — ERG, which contains one more © bond then

DHE, is overall the more rigid ligand compared to DHE’s flexibility.
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Figure 8 Ligand torsion plots showing the average conformational evolution of three rotatable
bonds throughout the MD trajectory for ergotamine (A) and dihydroergotamine (B). The color of

the plots correspond to the color of the rotatable bond.

Ligand torsion plots further illustrate difference in rotational mobility at the two linkers

between the ligands. The hydrogenation of a double bond in DHE changes the rotational

flexibility of the rotatable bonds at the two linkers of the ligand. While many of the bonds retained

similar conformational evolution throughout the MD trajectory for both ligands, three bonds at the

two flexible linkers did exhibit some clear changes as shown in Figure 8. This indicates the small

ligand modification can lead to subtle allosteric effects away from the change origin. Additional

torsional angle plots can be found in Figures S5-S6.



Figure 9 A. Tyr Toggle Switch (NPXXY) (ERG: red/DHE: black) shown with a moving distance
of 11.4 A for the tyrosine”>* sidechain. B. Transmission Switch (CWXP) (ERG: red/DHE: black)
shown with a moving distance of 1.58A for the tryptophan®*® sidechain, and a moving distance of
2.73 A for the TM6 helix. C. Ionic Lock Switch (DRY), (ERG: red/DHE: black) shown with
difference of salt bridge bond lengths of 10.9A (DHE), and 13.4 A (ERG). All residues are labeled
using the Ballesteros-Weinstein numbering system.

Micro-molecular switch analysis suggests while the tyrosine toggle switch, the transmission
switch and the ionic lock are activated in 5S-HT8-ERG, only the latter two switches are on in
5-HTs-DHE. Class A GPCRs share a set of conversed residues that are considered to be important
in the receptor activation. For HT g, three such motives are considered to be critical in regulating
its activity’’: NPXXY (in which X represents any amino acid) in TM7, CWXP in TM6 and DRY
in TM3. We compared the structural aspects of these three molecular switches in the two HTs-
ligand complexes (Figure 9). For the Tyr toggle switch (NPXXY), 5-HTs-DHE is in an active
state, while 5-HT5-ERG is shown in the inactive state’’. The transmission switch (CWXP) does

not show a significant difference between the two complexes with an agonist, it is likely that both



are in the inactive state. At the ionic lock switch (DRY), both 5-HTs-ERG and 5-HTis-DHE are
shown as in an active state, due to the breaking of the salt bridge bond (13.4 A and 10.9 A). The
micro switch analysis also includes a comparison of both ERG and DHE with the 5-HTis
antagonist methiothepin (PDB: 5V54) (Figure S8 and S9)*. ERG is inactive, while DHE is active
for the Tyr toggle switch (NPXXY). For the ionic lock switch (DRY), both ERG and DHE show
an active conformation when compared to the antagonist. At the transmission switch (CWXP),
there is no significant conformational changes between the two systems and the antagonist, which

could indicate an inactive state.

The dynamic network model identified subtle differences between the DHE and ERG
systems at TMS5 and TM6. Unweighted networks and network models weighed on the basis of
the correlated motion in the simulation trajectory for the DHE and ERG systems (Figure S10 and
Figure 11) were calculated as described in the method section. When comparing the unweighted
network models of DHE and ERG systems, it is clear that there is a good agreement in terms of
connection. However, when the correlation between the nodes are quantified in the weighted
network model (Figure 10), differences are observed between the two systems. Most notably are
the edges that surrounds TMS5 and TM6, and are next to the binding pocket. The DHE system
shows very high correlations between edges in TMS5 and TM6 compared to the ERG system which
shows extremely low correlated connections as depicted by the much thicker edges. Subtle
differences were also observed at TM4 where ERG shows much smaller correlation between nodes

around intercellular loop 2.

The weighted network model was then used to generate a community network model
(Figure 10) which grouped together residues that interact more frequently and stronger than to
residues in other communities. Figure 10 showed clear differences between the DHE and ERG

systems. Specifically, ERG showed one large network (dark blue) with rigid connections



surrounding the entire binding pocket, whereas the DHE system has the binding pocket broken
into three different communities. Critical edges were also generated which linked communities

together (Figures 10 and 12) and those critical residues were identified (Table S1).

Weighted Network Community w/ Critical Edges Critical Edges

Figure 10. The dynamic network models weighted by correlation motion, each of the receptors
structural communities separated by a different color and the critical edges shown in purple for
the DHE (A) and ERG (B) complex systems.



Optimal paths revealed key residues involved in the shortest pathway for passing a signal
from DHE or ERG to the site of the molecular switch. From the weighted network models,
the shortest pathway able to pass a signal from the ligand (DHE or ERG) to the site of each
molecular switch (Tyrosine Toggle Switch: 1le384, Transmission Switch Ala312, Ionic Alal50)
was calculated as the optimal path (Figure 11). Although there are similarities between the two
systems, most notably for the Ionic Lock (DRY) each optimal path generated is unique. For the
Tyrosine Toggle Switch (NPXXY'), DHE’s optimal path sends signals primarily along TM1,
TM2 and TM3, whereas ERG’s optimal path goes primarily through TM7. Also consistent with
our micro-switch analysis, the Transmission Switches (CWXP) for both DHE and ERG are very

different where ERG shows to have a much more direct path of communication.

In order to check the convergence of our simulation systems, we extracted the last 800 ns
of each system as indicated from the RMSD (Figure S2). This 800 ns portion of the trajectories
were split into two blocks of 400 ns each and subjected to individual network analyses (Figure
S14). Evident from these figures, the combined trajectories were nearly identical to the trajectory
blocks. Optimal paths were also generated for the trajectory blocks which showed identical

optimal paths as in the combined trajectory.
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Figure 11. The shortest path generated for each major molecular switch observed in the MD
simulations of the DHE (A) and ERG (B) complex systems.



Referencing the critical nodes with mutagenesis data identified residues that may play an
important role in the receptor activation of for each system. From the community analysis
(Figure 10) there were 45 critical nodes identified for the DHE system (Figure 12 A-B), 40 for
the ERG system (Figure 12 C-D) and 13 identified to be critical nodes in both systems (Figure
12 E-F). Since the critical nodes were involved in signal transduction between different parts of
the receptor in our simulations, the critical residue information was then referenced with
experimentally reported mutagenesis data available on the G-protein coupled receptor databank
(GPCRGdD) to see if there residues were involved in the physical signal transduction (Figure 13;
Figure S11). There were 15 critical residues that overlapped with natural or in vitro mutations of
the 5-HTip receptor. The DHE system had nine critical residues were also mutations (171!-%,
A92%47 V93248 T134337 C14134 F18546! v200%-! W327648 F331652)16.81.82 ' ERG had 10
(S45128 T60' 43, A92247, C14134, W327648, F331652, Y359652, 362743, P3667-50, Y3697-53)16. 81,
82 and four were conserved between the two systems (A92247, C14134, W327%48 F331652), We
speculate that the four conserved residues may be critical for the activation of the receptor, whereas

the differences may help to explain the different potencies of the two drugs.
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Figure 12. Critical nodes of th' .DHE (A-B) and ERG (C-D) systems in a snake plot and structure view.
A plot comparison between the two system in presented in E-F where purple represents DHE, dark pink
represents ERG, and the light pink residues are those that are conserved in both systems.




5HT;s Natural Mutations

5HTig In Vitro Mutations

A GE@e@e@@.
§ B
N-term ECL1 “ ".
EETD B © & Q@
g @ o) @9 o gl @O
510 P &L S B (L I
el "L, “@ULs “OXsh L “ERTRL RS TaRIes
LX) AT SIS MsrN MLEN Derey Oy
69?2 A,‘Qg ,»,99 AL g‘g Q. l’g G g !)E
O, G @I TR T T TG
@?Tg i‘ﬂ%’ _6,?,; == 5973 .697., &5 9f {
O = TR [OD G RS O
A GO S G ‘3}@ &
o Lo .| G S agd)
oj e
E..'Q/
K (D
@o‘ ®
L D (K)
GODRS, &
COSCESISED, U
COEYOEYEERD é'?
CECUITCETE v GY,

B
(25 %
& o G
B30 o} 5 &R
G gl i, @R ol @R G
OO NG COONG OO NG aCONG U NG s CUNGHOD
ek Sk, T TSt SRR S ik
sy Mo SSkersy Narsy My Ay Ao
.9&"1;' ggﬁ 7oy .,'.-"’g .@"3' G;—%n' G "é' }A?-@
.,%56 9&5@* ..a 5;6 g&ﬁo' %7’ -%‘6 9&6"'
G o G G S S T
() »»:-G‘-o >%‘.g »6’ .—5’;@ .»ec;.o p%.m‘ﬁ
G5 &5 G G g T
oS S 600 2508 coc i)
& (DL IR (SR OQ
G = sl S, T WY &
& DB = &
o o
&
@13@ g
COEETY 3
SCECEECECTONIS e
CEPURETEERD) &
CECUGUCCOCORC L

Overlap of ERG and DHE Critical Node Mutations

Location of Critical Node Mutations

C

RWTD
s (©) ®
CLEL, (D2 (O

iy O P
o0 NG IS ONGoOY
OV GO OB
IS A, SRIS)
g SARY CE5y
) Ggfr-** W7~

2N A X
O T Cesy
Q?%ﬁ 27y ey
Rxy, oy Ko
[OD- G R
SOl

D

Figure 13. Reported mutagenesis data for the SHT1B receptor. Mutated residues in red cause decrease in
activity, green cause increase in activity and purple is a deleterious stop gained mutation (A-B). The
critical nodes that overlapped with the mutation data are in C-D where purple represents DHE, dark pink

is ER@G, and light pink represents the overlap between DHE and ERG.

Discussion

clearly seen when the ligands are superimposed (Figures 3, S3). Yet, other studies have found clear

The structures of DHE and ERG share many similarities - a characteristic that can be



activity differences between the ligands at many receptors. This study aimed to use molecular
dynamics to better understand why such activity difference occurs at 5-HT1s. Molecular dynamics
is widely known to complement experimental data by illuminating functionally relevant

characteristics of the ligand-protein interaction '’

Specifically, simulations can provide
information about dynamic motion that may be otherwise hard to model. Proteins exist in a natural
state of fluctuation, making an understanding of dynamic motion essential to understanding
specific functions of a biomacromolecule 3. Thus, our dynamic analyses such as the protein and
ligand RMSF, micro switch analysis, dynamic network models, and normal model analyses sought
to determine whether an understanding of these fluctuations could illustrate the activity differences
between DHE and ERG. Following this, based on the dynamic information gained from our

analyses, we also suggest possible modifications to both DHE and ERG that may enhance their

binding at 5-HT .

Molecular dynamics (MD) simulations were performed on each complex and the resulting
trajectories analyzed and compared. ERG showed stronger MM-GBSA binding energy and much
less flexibility than DHE. There were also significant differences in bonding energies at several
key residues, the majority of which indicated that ERG showed a higher bonding energy to the
receptor than DHE. The receptor protein and ligand RMSF both illustrate the tighter binding of
ERG to 5-HT}s. The ligand torsion plots illustrate how the introduction of an extra m bond can
cause clear changes in the rotatable bonds of the system. Furthermore, interaction diagrams
indicate that the ligands have some similar, but many distinct, interactions with its environment.
Evaluations of several molecular switches were preformed using the most abundant conformation
from the MD simulations. A study by reported on the distance of the ionic lock switch on a mutant
B2AR GPCR with a distance of approximately 13 A, indicating complete breakage. The 5-HT5 -

ERG has a salt bridge bond distance of 13.4 for the ionic lock switch (DRY), much like the distance



in an activated B2AR receptor. The conformation state in the ionic lock switch (DRY) showed
evidence that both 5-HTis -ERG and 5-HTs-DHE had broken the salt bridge bond and was in the
active state. It appears both 5-HTs-ERG and 5-HTg-DHE are in the inactive state conformation
for the transmission switch when compared to an antagonist. The Tyr toggle switch (NPXXY)
shows a significant difference in the molecular switch state of 5-HTs-DHE and 5-HTs-ERG. 5-
HTs-ERG is shown in an inactive state, while 5-HTs-DHE is shown in an active state. The
difference in the Tyr toggle switch provides a possible mechanism for why ERG is more potent

than DHE.

Dynamic network models based on MD simulations data are an efficient manner to extract
correlated motions, allosteric signals and signal transduction networks within a complex system.
This is useful because these correlation motions are likely linked to their activity and are normally
hard to accurately discern through visualization of the MD simulations alone*':#?. Furthermore,
the dynamic networks allow different regions of the complex system to be clustered into highly
correlated communities which can provide insight into the effect of ligand binding to the overall
communication network *'*4>4_ In our study, significant differences were identified between the
DHE and ERG complex systems in the dynamic network analysis. Specifically, when comparing
the original unweighted dynamic network (Figure 10) to the connections between nodes in the
networks that were weighted based on correlated motion in the simulation trajectories. The nodes
of the ERG system have a significantly lower covariance, as shown by the thicker edges between
nodes. In addition, the community models show that the ERG system is composed of less
communities, and significantly different critical nodes, which pass information between the
various communities. Specifically, ERG showed one large network (dark blue) with rigid
connections surrounding the entire binding pocket, whereas the DHE system has the binding

pocket broken into three different communities (Figure 10), indicating that the residues



surrounding the 5-HTis binding pocket are highly correlated when ERG is bound. Since the
communities are grouped together based on residues that interact more frequently and strongly
with one another, this analysis highlights how the small structural difference between ERG and

DHE can cause significant changes to the dynamics of the 5-HT .

The optimal path generated for the molecular switches of each system also varied between
systems (Figure S12). The subtle difference in the optimal paths for the Tyrosine Toggle Switch
(NPXXY) may play a role in the difference of active and inactive states at the Tyr toggle switch
(NPXXY) and may further indicate a different molecular signal transduction pathway involving
each ligand. Additionally, the Transmission Switches (CWXP) for each system were noticeably
different. Thus, we propose the residues identified from the optimal paths are involved in the signal
transduction pathway leading to activation through the molecular switches and that DHE and ERG
are using separate communication pathways for activation, which is consistent with what was

inferred from our original micro-switch analysis.

Specifically, we identified residues A92247, C14134, W327%48, F331%%2 to be critical in
the binding and communication pathway for both the DHE and ERG systems. Based on the
comparison of our critical nodes to the experimental mutagenesis studies, these four residues were
identified, as critical residues involved in both the transfer of information between different
communities as well as residues that when mutated significantly affect the activity of the receptor.

7948 was the first residue

Building on this, for the ERG system’s optimal path analysis, W32
involved in the predicted optimal signal transduction pathway for both the Tyrosine Toggle Switch
(NPXXY) and Transmission Switch (CWXP). One study compared the crystal structure of an
inverse agonist at the 5-HT;, orthostatic binding pocket to ERG at the same binding pocket®’. Their

analysis described the outward movement of residues W327%*® and F331%3? upon binding of an

inverse agonist. Considering the results from our network analysis in combination with their



results, the importance of W327%4% and F331%%? in the active conformation of the receptor can be

deduced.

From the normal mode analysis (Figure S12), modes 1-3, show the most difference in
motion, which are the lowest energy modes identified from the principal component analysis. In
our analysis we observed the DHE system having a higher degree of fluctuation and an overall
distinct motion when compared to ERG. Through the normal mode analysis we were able to
provide another level of insight into the intrinsic dynamics of these complexes in the lowest
vibrational state. From this analysis we concluded that the overall intrinsic dynamics of the
complexes are distinct of another which provides further support to our hypothesis that the activity
differences of these complexes are due to differences in their dynamic interactions. Overall, this
information, in combination with our other dynamic analyses such as the RMSF, dihedral angle
distribution, and network models, help to explain the activity differences that cannot be explained

from the crystal structure alone.

Substitutions:

- ~ YN ERGCompoundl:H1—F
B —

H3 —F

ERG Compound2: H3 — F

DHE Compound 1: H1 — Cl

DHE Compound 2: H1 — Cl

H4 — Cl

DHE Compound3: H3 —= F

Figure 14. Substitutions made on the top compounds chosen from the high-throughput virtual
screening. Dihydroergotamine’s two dimensional structure is used as an example where the blue
arrows represent possible substitution sites (A), and the actual substitutions are listed on the right

(B).



Based on the dynamics insight gained from our MD simulations and post simulation
analysis we suggest two major modifications possible for DHE and ERG. The first is at position
41 of dihydroergotamine (see Figure 7 for reference to ligand positions). Evident from the
comparison of ergotamine to dihydroergotamine in our protein (Figure 6) and ligand (Figure 7)
RMSEF, the overall RMSF is higher in the dihydroergotamine system. Thus we suggest that
adding a small function group to carbon 41 could reduce the fluctuations and increase
interactions at this site. Our second suggested set of modifications are based on our torsional
angle distributions and our visual inspection of the most abundant poses. The torsional angle
distribution shows for both ergotamine and dihydroergotamine the carbon 26-27 and 27-28 bond
are highly flexible, and from a visual inspection of our simulations we observe this benzene
bending outward toward the solvent upon binding. Thus, we speculate that adding small
functional groups the 26", 30", and 31% positions of the benzene may enhance the potency of
both ligands by reducing the fluctuations of this side chain through enhanced interactions in the
binding pocket. At each possible point of substitution we picked 4 functional groups (hydrogen,
fluorine, chlorine and bromine) that could be substituted leaving a total of 4* possible modified
versions of DHE and 4° of ERG which we then used to generate a combinatorial library of these
256 ligands for DHE and 64 ligands for ERG. Each new compound was docked to the same
orthosteric binding site as the most abundant cluster of DHE or ERG, with similar hydrogen
bonds, -1 and hydrophobic interactions. The docking scores showed that of the 256 new
compounds for DHE, 127 bound with a more favorable docking score than DHE (-6.85
kcal/mol), and of the 64 compounds for ERG, 59 docked more favorably than the original (-
11.22 kcal/mol). Of these compounds, two compounds were chosen for ERG and three for DHE
(Figure S15) based on their synthesizability determined by a minimal number of functional
groups added, and more negative XP scores than ERG or DHE, respectively. Of these five

compounds (Figure 14), Qikprop predicted that both ERG compounds 1 and 2 had zero stars,



DHE compound 1 had one star, and DHE compounds 2 and 3 also had zero stars, thus suggesting
these molecules have suitable drug-like properties.

Since the docking scores were promising, the five complexes of these compounds were
subjected to 200 ns MD simulations. The first post simulation analysis performed was the MM-
GBSA calculations of the five systems (Table 1). Evident from this table each compound bound
more favorably to 5-HT g than its original ligand. Specifically, for ERG, compounds 1 and 2 had
binding energies that were -16.9 and -16.6 kcal/mol more favorable than ERG, respectively.
Similarly, for the DHE compounds, compounds 1, 2, and 3 bound more favorably to 5-HTig by -
20.7,-17.5 and -22.6 kcal/mol, respectively. Looking more into the MMGBSA, the VDW
contributed the more to the total energy followed by the electrostatic and lipophilic interactions.
Since in all but one compound, the VDW term increased when compared to the original ligand,
we suggest there may be enhanced n-m stacking between residues of 5-HT g and the aromatic
portions of the new compounds which were heightened after the addition of the functional
groups.

Following the MM-GBSA calculation, our next post-simulation analysis was to compare
the original ligands RMSF to the new compounds to see whether or not our prediction that
adding functional groups would decrease the fluctuations of these ligands in complex with 5-
HTigheld true. As predicted, the protein RMSF (Figure S16) showed that the new compounds
for both ergotamine and dihydroergotamine caused less fluctuations for the protein. Specifically,
there was a significant decrease at TM5 for the ergotamine compounds and an overall decrease
for the dihydroergotamine compounds. Further, the results of the ligand RMSF (Figure S17)
clearly show a decrease in RMSF for both the ERG and DHE compounds. Importantly, this
analysis clearly provided more evidence that our prediction of adding functional groups to the
benzene ring would decrease the fluctuations of atoms on the benzene (i.e. 25, 26, 30, 31, 32, 33)

could be true. Furthermore, this decreased fluctuation, which is likely due to an increase in



binding interactions and stability, is consistent with the improved MMGBSA binding energy of
the top compounds.

Generally, when looking at dihedral angle distributions, the narrower the torsional range,
the smaller the structural fluctuation. Thus, in order to provide a deeper analysis of the
fluctuations of our new compounds in complex with 5-HT g, compared to DHE and ERG, we
calculated the dihedral angle distributions (Figure S18-S19). All calculated dihedral angles are
shown here, however we chose to focus on the light blue and light green torsional angles, as well
as minor interests in the light purple torsional angles, since these were the torsional angles for
which our predictions were made. Evident from the original ergotamine light blue torsional
angle, the two major angles are around +90 and -90 degrees, however there is a wide distribution
overall. Looking at the light blue torsional angles for the ERG compounds, it is evident that this
range was significantly decrease to -90 degrees for compound 1 and +90 degrees for compound
2. Similar patterns can be observed for the light green torsional angles where there is a huge
distribution in the original ergotamine simulation with major peaks at -180, -90, +90, and +180
degrees. However, in both compounds the distribution is significantly decreased to -90 and +90
degrees for compound 1 and just +90 degrees for compound 2. Although the contrast is not as
profound for the light purple torsional angles, both compounds have a slightly more narrow
distribution when compared to ergotamine. For the dihydroergotamine compounds, we observe
the same pattern where for the light blue and light green torsional angles there is a significant
decrease in the distribution of the angles, and a marginal decrease is observed for the light purple
angle. Specifically, the original dihydroergotamine ligand shows widespread peaks at both -90
and +90 degrees for the light blue torsional angle. When comparing the light blue torsional angle
of the new compounds to DHE both compounds 1 and 2 show the angle shift only to ~-90
degrees and for compound 3 this shift is toward +90 degrees. For the light green angle, DHE

shows small peaks ranging from -90 to -180 degrees and a large peak around +90 degrees.



However, this peak is primarily shifted to -180 degrees in compound 1, +90 degrees in
compound 2, and although there is still a distribution for compound 3 the shift was primarily
toward -90 degrees. For the light purple angle, compounds 1 and 3 show similar patterns with a
more narrow distribution, whereas compound 2 has a peak shift to -180 degrees. Overall, these
decreased distributions of torsional angles at the specific angles for which our predictions were
made provide further support that the compounds selected from our virtual screening would
show a decreased structural fluctuation upon binding. Thus suggesting that these compounds
would be more stable and bind more favorably to 5-HT g than ERG or DHE, respectively.

We also analyzed the interactions of each compounds at 5-HTig which are represented
here using a two dimensional ligand interaction diagram for ERG and compounds (Figure S20)
as well as DHE and compounds (Figure S21). From these diagrams it is clear that for both the
ERG and DHE compounds, a majority of the interactions that either ERG or DHE were involved
in were maintained, however many compounds were also involved in new interactions which
have likely stabilized them which we observed through the RMSF and dihedral angle
distribution, as well as contributed to the increase in binding energy as observed in the
MMGBSA analysis. Specifically, both ERG compound 1 and 2 showed additional hydrogen
bonding between the nitrogen at the second position (see Figure 7 for reference to numbering)
and Ser212%%* and hydrophobic interactions with Ala216°4® when compared to ERG. Although
compound 2 loses the polar interaction with Thr3557-% the energy contribution lost from a lack of
this interaction is made up through additional hydrophobic interactions with Phe3517-** and
Trp327%*%. On the other hand, the DHE compounds show a little more variation when compared
to DHE. Both DHE Compounds 1 and 2 maintained interactions with Asp129°-2, Val2015¢L2,
and Thr3557%, and compound 3 maintained interactions with Asp129%2, Val201? and
Cys133%3%, However none of the compounds interacted with Thr134°37. In terms of new

interactions conserved between compounds, compounds 1 and 3 formed hydrophobic



interactions with I1e339%°, compound 1 and 2 formed polar interactions with Tyr35974?, and
compounds 2 and 3 formed hydrophobic interactions with Cys3405¢L®, Interactions unique to
compound 2 include hydrogen bonding to Gly113® hydrophobic interactions with Tyr109%%*
and Leul126°%, and negatively charged interactions with Asp3527-°, and compound 3 formed
hydrophobic interactions with Ile130°-3. Interestingly, when comparing these results to the
MMGBSA, the additional interactions formed between DHE compound 2 and 5-HT;g did not
result in the most energetically favorable DHE compound. One possibility is that DHE’s
interaction plays a significant role in the final binding pose where compound 1 has 5 interactions
with water, DHE and compound 3 both have 3 interactions with water, but compound 2 only has
two water interactions. On the other hand DHE compound 3 may have a more favorable binding
energy due to its unique interactions with Ile130** which is known to contribute to a multi-
residue hydrophobic cleft which is known to stabilize the planar ergoline moiety. Nonetheless,
by comparing the interactions of each compound at the binding pocket of 5-HT g to the original
ligand, DHE or ERG, we identified potential residues which may have contributed to the
observed change in binding energy and the decreased fluctuations that led to an increased

stability for each new compound complex.

Conclusion

ERG and DHE differ by only a single © bond, yet have been shown to have almost a ten-fold
activity difference at the 5-HT g receptor. The crystal structures of the 5-HT g receptor in complex
with both ligands have been resolved, but the high similarity between two complexes cannot
sufficiently explain their activity difference. Hence, an examination of the dynamic motion of
both drugs with the receptor is needed. By comparing the complex trajectories and protein-ligand

interactions, a better understanding of the activity differences between the two ligands was



realized. The ligand-protein interactions and secondary structures of the ligands showed subtle
variations. More notably, the ligand and protein RMSFs for the systems were distinct, with ERG
having a trend of lower RMSF values, indicating it to be more tightly bound to 5-HT s with less
fluctuations. The MM-GBSA binding energies further illustrate this, as ERG has an overall
stronger MM-GBSA binding energy by -15 kcal/mol. The difference of active and inactive states
at the Tyr toggle switch (NPXXY) may suggest different signal transduction pathways for each
ligand. Our dynamic network model and normal mode analysis also show differences in the
dynamics of the two complex systems. Using our critical nodes and readily available mutagenesis
data, we identify W327%4 and F331%? as key residues involved in the active state of 5-HTp. All
of which provides dynamic insight into the crystal structures of ergotamine-5-HTig and
dihydroergotamine-5-HT1g receptor complexes. This dynamic insight helps to explain the activity
differences of these two molecules which was unclear from the crystal structures. Using the
detailed dynamic insights gained from our study we were able to predict potential modification
sites of both DHE and ERG which yielded compounds that show more favorable binding energies
and reduced structural fluctuation. These derivatives might be good candidates for further
experimental tests. Clearly, molecular dynamics can add additional important knowledge that

cannot be garnered from structure alone.

Supporting Information

Included in the supporting documents are the receptor sequence, the most abundant receptor-ligand

complexes from clustering analysis, superposition of the most abundant conformations from the



MD simulations of the receptor with the ligands, example of a protein-ligand contact table, and

the complete set of ligand torsion plots for all rotatable bonds throughout the MD trajectory.
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