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Abstract: 

Ergotamine (ERG) and dihydroergotamine (DHE), common migraine drugs, have small 

structural differences, but leading to clinically important distinctions in their pharmacological 

profiles. For example, DHE is less potent than ERG by about ten-fold at the 5-hydroxytrptamine 

receptor 1B (5-HT1B).  Although the high resolution crystal structures of the 5-HT1B receptor 

with both ligands have been solved, the high similarity between these two complex structures 

does not sufficiently explain their activity differences and the activation mechanism of the 

receptor. Hence, an examination of the dynamic motion of both drugs with the receptor is 

required. In this study, we ran a total of 6.0 µs molecular dynamics simulations on each system. 

Our simulation data show the subtle variations between the two systems in terms of the ligand-

receptor interactions and receptor secondary structures. More importantly, the ligand and protein 

root-mean-square fluctuations (RMSF) for the two systems were distinct, with ERG having a 

trend of lower RMSF values, indicating it to be bound tighter to 5-HT1B with less fluctuations. 

The Molecular Mechanism-General Born Surface Area (MM-GBSA) binding energies further 

illustrate this, as ERG has an overall stronger MM-GBSA binding energy. Analysis of several 

different micro-switches has shown that the 5-HT1B-ERG complex is in a more active 

conformation state than 5-HT1B-DHE, which is further supported by the dynamic network model, 

reference to mutagenesis data with the critical nodes and the first three low energy modes from 

the normal mode analysis. We also identify Trp3276.48 and Phe3316.52 as key residues involved in 

the active state 5-HT1B for both ligands.  Using the detailed dynamic information from our 

analysis we made predictions for possible modifications to DHE and ERG that yielded 5 

derivatives that might have more favorable binding energies and reduced structural fluctuations.  
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Introduction:  

In designing drug analogs, it has been shown that minor modifications can have 

significant effects on the action, potency, or selectivity of a drug 1. This so-called “minor 

modification rule” illustrates that simple changes such as adding/switching substitutes, 

hydroxylations, racemate resolutions, isosteric replacements  and hydrogenation can greatly 

change the activities of a drug 1. In some cases, these simple changes can cause such a difference 

as to whether a chemical acts as an agonist or antagonist. The imidazolinic compound Efaroxan 

is an agonist 2, but an antagonist when changed to an imidazole 3. Similarly, the benzofuranic 

compound 2-BFI is an agonist 4, but an antagonist when acting as its dihydroderivative 5.   

Ergotamine (ERG) and its hydrogenated analog, dihydroergotamine (DHE), are another 

example of this phenomena. ERG is a migraine drug that has been used since 1925 6. It is an 

alkaloid from the ergot family that has well-documented vasoconstriction effects, one of the 

main focal points of many migraine drugs 7. Due to some persistent common side effects such as 

nausea, DHE was created in 1945 as an attempt to improve upon the original drug8. DHE is 

structurally similar to ERG, with the only difference being the hydrogenation of a single double 

bond on ERG’s ergoline ring. Interestingly, DHE is a significantly less potent arterioconstrictor 

than ERG, which makes it a safer drug with less adverse effects such as medication-withdrawal 

headache, nausea and vomiting 9-11. 

Notably the two drugs have been found to exhibit very different levels of activity at many 

serotonin and some dopamine receptors. Specifically, seven 5-HT receptor subtypes with various 

biological activities - 5-HT1A , 5-HT1B , 5-HT1D , and 5-HT1F , 5-HT2A , 5-HT2C , and 5-HT4 - 

have been associated with high (but generally very different) affinity for the two ligands 7, 12, 13. 

Of particular interest in our study is the 5-HT1B receptor, a G-protein-coupled receptor (GCPRs), 

which has been found to exhibit different activity levels with the ERG and DHE. In the rodent 5-

HT1B receptor, ERG was found to display higher activity with a pKi of 8.69 14 compared to 



DHE’s pKD of 7.85 15. Yet despite this significant difference, the drugs’ crystal structures show 

no significant differences (Figure 1) and so additional analysis for ligand recognition and 

selectivity has been impossible 16.  

This study attempts to remedy this by delving deeper into the ligand-protein interactions 

through molecular dynamics (MD) simulations, which are important tools for understanding the 

physical basis of the dynamic structure and function of biological macromolecules 17.  MD 

simulations have been successfully used to probe receptor and ligand dynamics of various GPCR 

receptors18-25. Though GPCRs have been extensively studied, novel scientific innovations are 

still on the rise, for example, using MD simulation Yuan and coworkers recently identified a 

deeper binding pocket that is common to most GPCRs, providing significant opportunities for 

novel GPCR drug discovery 26  in addition to characterizing the relationship between GPCR 

activation and internal water pathways27.  Li and coworkers used MD simulation to characterize 

the mechanism of GPCR pituitary adenylate cyclase activating polypeptide (PAC1) shapeshifters 

28. Zhang and coworkers published a number of works characterizing the structural diversity of 

allosteric sites of GPCRs to better understand the drug-target interactions which will ultimately 

contribute to the design of allosteric drugs with enhanced therapeutic actions 29-31. Pu and 

coworkers used MD simulation to elucidate the mechanism driving the allosteric modulation of 

ligand binding of the C-C chemokine receptor type 5 (CCR5) homodimer32. MD simulation was 

used by Liu and coworkers to characterize the interactions between high affinity GPCR 

chemokine receptor 1 (CXCR1) and interleukin-8 33. We have also used MD simulation in our 

previous work to probe the binding of biased agonists to the D2 dopamine receptor 34, the 

interaction between morphine and IBNtxA in complex with the μ-opioid receptor 35, and 

described the antagonist activity of fexofenadine to the histamine (H1) receptor36. Specific to the 

5-hydroxytryptamine receptor, Sylte et al. 37, 38 and Seeber et al. 39 have successfully probed the 

ligand induced different conformational states of the 5-HT1A receptor using comparative MD 



simulations. Another interesting study by Marti-Solano et.al 40 showed different dynamic 

behaviors caused by the binding of ERG to the two subtypes of serotonin receptors (5-HT1B and 

5-HT2B) using MD simulations.  Their micro-switches analysis has shown that the differences in 

the conformational freedom of helix 6 between both receptors could explain their different G 

protein-coupling capacity. In particular, as compared to 5-HT1B,  the helix 6 in the 5-HT2B 

receptor showed a limited movement, blocking the opening of the G protein bonding site and 

thus reducing G protein coupling 40.  

 Additionally, the use of computational dynamic network models to decipher residue-

residue interactions within bimolecular systems and elucidate allosteric communication 

pathways have become increasingly popular in recent years. The use of dynamic network models 

based on MD trajectories provides an efficient manner to extract correlated motions and 

allosteric signals within a complex system that are normally hard to accurately discern by 

visualizing MD simulations alone41, 42. From these networks, different regions of the complex 

system to be clustered into highly correlated communities which can provide insight into the 

effect of ligand binding to the overall communication within the system43, 44. Through use of a 

dynamic network model in their work on the μ-Opioid Receptor, Schneider et al. identify the 

major residues involved in the induced allosteric communication between the orthosteric binding 

pocket and the intracellular region of the receptor45. Jiang et al. also used a dynamic network to 

elucidate the dynamic and allosteric properties of three GPCR homodimers 46. Thus, the use of 

dynamic network models have been effectively use to providing experimentally validated insight 

into the long-range interactions essential in a variety of allosteric and communication pathways.  



Figure 1 Structure of ergotamine and dihydroergotamine and their crystal complexes with the 5-

HT1B  receptor. 

 

In this study, both the ERG- and DHE-5-HT1B complexes from the crystal structures were 

prepared, processed, and subjected to 6.0 µs (3x2.0 µs) molecular dynamics (MD) simulations 

for each system. The resulting trajectories were combined and compared to find the differences 

in protein-ligand binding dynamics between the two systems including a dynamic network 

model. Our data confirmed that DHE, which lacks the additional π bond, is more flexible than 



ERG (Figure 1). This structural difference causes notable variances in terms of interactions and 

our analyses highlight the differences in dynamics between the two ligands with the receptor, 

offering insight as to why the activity of ERG and DHE are so different at the 5-HT1B receptor.  

 

Materials and Methods: 

Ligand Preparation. The crystal structures of human 5-HT1B receptor (Figure S1) in complex 

with DHE (PDB id: 4IAQ) and ERG (PDB id: 4IAR) were downloaded from the Research 

Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank. Further preparation of 

the ligand-protein complex was carried out using Maestro47. Initially, the fusion protein and 

cofactors were removed. The ligand structures were split from the protein and prepared by 

correcting the bond order and adding the appropriate hydrogens. Calculations of pKa were 

conducted using Epik, a tool based on accurate methodologies from Hammer and Taft, to get the 

correct charge state at pH=7.29 The ligands were then merged with the protein to form 

complexes. These complexes were further preprocessed, optimized, and minimized with the 

Maestro protein preparation wizard47. 

Molecular Dynamics Simulation System Setup. The prepared receptor-ligand complexes were 

then used to construct a molecular dynamics simulation systems. The complex was immersed in 

a membrane of POPC lipids 48 using Maestros system builder and was placed in the predefined 

position in the membrane using default parameters. Next, it was solvated in an orthorhombic 

water box with a buffer distance of 10 Å with a SPC water model 49. Wang et al. reported POPC 

lipids are the most favorable option for membrane modeling because they are regularly found in 

biological membranes and contain an unsaturated carbon-carbon tail, which increases system 

stabilization 50. To neutralize the system, Na+ ions were added with a salt concentration of 0.15 

M NaCl.  The OPLS3 force field was used for modeling the receptor-ligand-lipid system 51. 



MD simulation protocols. Using Desmond module, the system was first relaxed using the 

default relaxation protocol for membrane proteins 52. This relaxation protocol 

(relax_membrane.py) consists of eight steps: 1). Minimization with restraints on solute heavy 

atoms; 2) Minimization without any restraints; 3). Simulation with heating from 0 K to 300 K, 

H2O barrier (i.e. Gaussian Barrier potential on H2O)  and gradual restraining; 4). Simulation 

under the NPT ensemble (constant number of particles, constant pressure of 1 bar and constant 

temperature of 300 K) with H2O barrier and with heavy atoms restrained; 5) Simulation under 

the NPT ensemble with equilibration of solvent and lipids; 6). Simulation under the NPT 

ensemble with protein heavy atoms annealing from 10.0 kcal/mol to 2.0 kcal/mol; 7). Simulation 

under the NPT ensemble with Cα atoms restrained at 2 kcal/mol; and 8). Simulation for 1.5 ns 

under the NPT ensemble with no restraints.  After the relaxation, three 2000.0 ns production runs 

were conducted under the NPT ensemble for each of the two systems using the default protocol.  

In details, temperature was controlled using the Nosé-Hoover chain coupling scheme53 with a 

coupling constant of 1.0 ps. Pressure was controlled using the Martyna-Tuckerman-Klein chain 

coupling scheme53 with a coupling constant of 2.0 ps. M-SHAKE 54 was applied to constrain all 

bonds connecting hydrogen atoms, enabling a 2.0 fs time step in the simulations. The k-space 

Gaussian split Ewald method 55 was used to treat long-range electrostatic interactions under 

periodic boundary conditions (charge grid spacing of ~1.0 Å, and direct sum tolerance of 10–9). 

The cutoff distance for short-range non-bonded interactions was 10 Å, and the long-range van 

der Waals interactions was based on a uniform density approximation. To reduce the 

computation, non-bonded forces were calculated using an r-RESPA integrator56 where the short 

range forces were updated every step and the long range forces were updated every three steps. 

The trajectories were saved at 50.0 ps intervals for analysis. The three independent simulations 

per system were combined for analysis. 



Convergence of Simulation. To check the convergence of MD simulations, we investigated the 

average protein Cα and ligand RMSD plots for both trajectories (Figure S2). The plots depict 

relatively flat changes within the last 900 ns, providing evidence that the system had reached a 

steady state.  

Trajectory Clustering Analysis. Complex structures from the last 500 ns of the two simulations 

of each ligand-protein system were grouped to find top structural families with abundance for 

each ligand. The Desmond trajectory clustering tool 57, with Backbone RMSD matrix as the 

structural similarity matrix, hierarchical clustering with average linkage for the clustering 

method, and a merging distance cutoff set at 2.5 Å, was used for this analysis 57. The structure 

with the greatest number of neighbors in the structural family, called the centroid structure, was 

used for representation (Figure 2). All clusters are shown in Figure S3.   

Simulation interaction diagram (SID) analysis. The Desmond SID tool was used to analyze 

the receptor-ligand interactions throughout the MD trajectory. Particular attention was given to 

ligand-residue interactions (Figure 3-4), secondary structure changes (Figure 5), protein Cα 

Root Mean Square Fluctuation/RMSF (Figure 6), ligand RMSF (Figure 7), and ligand torsion 

plots (Figure 8). In addition to this, we use our simulation data to analyze a number of molecular 

switches (Figure 9; Figure S8-S9). In reference to these figures we define antagonist as a 

molecule whose binding results in the receptor being in an inactive state and an agonist as a 

molecule that activates the receptor when bound. In addition we reference the active and inactive 

states of these molecular switches, which refer to the positon of the transmembrane helix 

involved in the molecular switch when bound to an antagonist (inactive conformation) and 

agonist (active conformation) and comparisons are made from the crystal structure.   

Binding energy Calculations and decomposition methods. Molecular Mechanism-General 

Born Surface Area (MM-GBSA) binding energies were calculated on the 2x50 frames in the last 

500ns for both systems (Table 1). Prior studies found MM-GBSA to be useful when ranking and 



comparing ligands 58-60. The surface-area-based Generalized Born model 61, 62 with implicit 

membrane model was used (VSGB 2.0) in the calculation. The implicit membrane is a slab-

shaped region with a low dielectric constant between 1 and 4, and the regions to exclude from 

membrane is assigned with the solvent (water) dielectric constant of 80.  The OPLS3 force field 

and the default Prime protocol was used.  The OPLS3 force field employs a CM1A-BCC based 

charge model based on a combination of Cramer-Truhlar CM1A charges 51 with an extensive 

parameterization of bond charge correction terms (BCC). The default procedure consists of three 

steps: Receptor alone, Ligand alone, Receptor-ligand complex. The original interaction terms 

include Coulombic, H-bond, GB solvation, van der Waals, pi-pi packing, self-contact, and 

lipophilic. The total binding free energy equation was then done:  ΔE (bind) = Ecomplex - Eligand + 

Ereceptor. The interaction terms were then merged into three components, Eelectrostatics, EvdW, and 

Elipophilic, for increased understanding of binding nature: where   Eelectrostatics= Hbond + Ecoulomb 

+EGB_solvation, EvdW = EvdW+Eπ-π +Eself-contact and Elipophilic.  The MM-GBSA scoring function lacks 

the solute conformational entropy which results in higher negative values when compared to the 

actual values.  Nevertheless, when used to rank different drugs targeting receptors with 

comparable binding entropy values, it has proven to be extremely useful 51. Previous works, 

including the use of 1,864 crystal complexes, have shown that MM-GBSA is a powerful tool in 

ranking ligands 58-60, 63, 64. Further evaluation of the binding energy calculations were performed 

by decomposing the MM-GBSA data by residue and comparing those more favorable than -2.0 

kcal/mol (Table 2). 

Dynamical Network Model  

The combined trajectories of each system were used to generate a dynamic network model, defined 

as a set of nodes connected by edges, 45, 65-68 using the NetworkView plugin65, 69 in VMD 70. For 

each system, we generated a contact map which added an edge between nodes whose heavy atoms 

interacted within a cutoff of 4.5Å for at least 75% of the MD simulation time. The 4.5Å distance 



cutoff was explicitly chosen based on the work of Luthey-Schulten and coworkers69 where they 

studied distance cut offs ranging from 3.5-5.0Å and found the data from the 4.5Å cut off showed 

the least difference community repartition, therefore showed the least change in the community 

distributions of the network. In this contact map, the edge distance was derived from pairwise 

position fluctuation correlations65 using the program Carma71, (Figure 10) which defines the 

probability of information transfer across a given edge using the following equation: 

 
Using the pairwise correlation data in the dynamic network model, the edges are weighted 

(wij) between two nodes i and j using the following calculation65, 69: wij = −log(∣Cij∣). This method 

of weighting is based on the correlated motion in the simulation trajectory whereby the weight of 

the edge represents the probability for information to transfer across the edge between the two 

nodes, thus, a thicker edge represents a lower probability of information transfer. In addition to 

weighting networks based on the correlated motion in the simulation trajectory, the networks may 

also be weighted based on the strength on interactions within a single structure as demonstrated 

by Bhattacharyya, Bhat, and Vishveshwara72 as well as Gadiyarum, Vishveshwara, and 

Vishveshwara73. 

Each network was then further grouped into subnetworks, termed communities, based on 

groups of nodes with stronger and more frequent connection to each other. This was done by 

applying the Girvan-Newman algorithm to the original network74. Critical nodes that connect 

communities to another were also identified (Figure 10).  Using the molecular switch data, an 

optimal communication path was generated between the ligand node and the molecular switch 

residue (Figure 11). 

Normal Mode Analysis  

The combined trajectories for each system were used in the VMD Normal Mode Wizard 75 to 



generate a principal component analysis of the top 10 normal modes (Figure S10).   

 

Virtual Screening 

Two and three derivatives were chosen from a virtual screening of ergotamine and 

dihydroergotamine derivative libraries, respectively, using Maestro 10.376, followed by MD 

simulations and MM-GBSA analysis. First, a combinatorial library including 256 ligands for DHE 

and 64 ligands for ERG was prepared using the Interactive Enumeration program. The variants 

were defined by establishing substitution sites where there were four possible points of substitution 

to DHE and three possible points of substitution to ERG. At each possible point of substitution 

there were 4 functional groups that can be substituted which included hydrogen, fluorine, chlorine, 

bromine. This suggests that there are 44 possible modified versions of DHE and 43
 possible 

modified versions of ERG, and a combinatorial library of these 256 ligands for DHE and 64 ligands 

for ERG was generated. The charge of each compound at pH=7 was determined by Epik (an 

empirical pKa prediction program)47 followed by a geometry optimization that minimized the 

potential energy using the default parameters. Using the active receptor structure from the most 

abundant conformation of each system, a grid file was generated using the Receptor Grid 

Generation program to prepare the complex for the subsequent docking calculation. In each 

system, ergotamine or dihydroergotamine was selected and a grid box was generated around the 

ligand with a Van der Waals radius scaling factor of 1.0 and a partial cutoff of 0.25. Then, these 

256 ligands for DHE and 64 ligands for ERG compounds were docked using Glide with Extra 

Precision (XP) scoring function, and then filtered using QikProp package77, to predict the 

absorption, distribution, metabolism, and excretion (ADME) properties. QikProp ranks the full 

molecular structure based on pharmaceutically relevant properties by giving each compound a 

number of stars; compounds with no starts are predicted to be the most drug-like. Finally, three 

potential compounds for each ligands were manually chosen based on XP scores (< -9.0 kcal/mol) 



that were more negative than the docking of ERG or DHE into the active conformation of 5HT1B 

from the most abundant clusters, along with the compounds’ synthesizability containing fewer 

substitution groups. The five XP docking complexes were subjected to 200 ns MD simulations. 

MM-GBSA binding energies from the last 100 ns simulation were then calculated and compared.   

  



 

Results 

Table 1 MM-GBSA binding energies of ergotamine and dihydroergotamine to the 5-HT1B 

receptor. 

 ΔVDW1 ΔLIPO2 ΔGBELE3 ΔE4 ΔOriginal5 

ERG Original -68.6±4.9 -61.6±4.7 -36.2±4.6 -166.5±11.2 0 

ERG Compound 1 -70.9±3.8 -46.7±3.8 -65.9±3.0 -183.4±6.7 -16.9 

ERG Compound 2 -70.9±4.3 -44.7±4.1 -67.5±2.9 -183.1±6.5 -16.6 

DHE Original -66.2±3.3 -53.7±2.6 -31.7±3.0 -151.6±6.2 0 

DHE Compound 1 -71.1±2.1 -41.9±6.1 -59.3±2.2 -172.3±6.6 -20.7 

DHE Compound 2 -65.1±3.5 -52.7±5.4 -51.3±2.9 -169.1±8.2 -17.5 

DHE Compound 3 -70.9±4.6 -43.0±5.3 -60.2±3.8 -174.2±9.4 -22.6 

1 ΔVDW: Change of van der Waals energy (VDW + π-π stacking +Self-contact correction) in 

gas phase upon complex formation 
2 ΔLIPO: Change of lipophilic term (Lipophilic energy) upon complex formation. 
3 ΔGBELE: Change of electrostatic interactions (GB/Generalized Born electrostatic solvation 

energy+ ELE/Coulomb energy +Hydrogen-bonding) upon complex formation.  

4 ΔE: MM-GBSA binding energy (Complex − Receptor − Ligand). 
5 ΔOriginal: Change between either ERG or DHE and their respective new compounds 

Our MM-GBSA binding energy data indicates that ERG binds stronger than DHE to the 5-

HT1B receptor. MM-GBSA calculations were performed in order to compare the ligand binding 

affinities of both drugs with the receptor. Table 1 shows, ERG shows an overall stronger MM-

GBSA binding energy by -15 kcal/mol. Individually, van der Waal (-2.4 kcal/mol), lipophilic (-

4.5 kcal/mol), and electrostatic interaction (-7.9 kcal/mol) energies were all weaker for DHE then 

ERG. This is qualitatively consistent with activity data for the drugs where ERG has higher binding 

affinity (pKi = 8.69) compared to DHE (pKD = 7.85). 



 

Figure 2 Comparison on the representative structure of the most abundant cluster from the MD 

trajectories of the two complexes (5-HT1B/yellow//ergotamine/red and 5-

HT1B/purple//dihydroergotamine/blue).  

 

The two active complexes (ERG-5-HT1B and DHE-5-HT1B) are structurally similar. After 

identifying the major binding poses as described in the methods, additional analysis was done on 

both ligand complexes. For comparison, we superimposed the representative structure of the most 

abundant cluster of each complex. Figure 3 shows a side view, a top view, and only the ligands for 

appraisal.  Figure S4 similarly shows superimposition of the most abundant MD complexes with 

the crystal complexes. As these views show, the complexes have subtle differences in most cases 

but lacks major configurational changes. 

  



Table 2. Key residues of 5-HT1B interacting with ERG and DHE, with MM-GBSA decomposition 

analysis (better than -2.0 kcal/mol), and difference in binding energies of DHE and ERG. 

1 Top contributors to the bonding energy difference between DHE and ERG.  

Residue # 
Ergotamine 

(Contact #, kcal/mol) 
Dihydroergotamine 

(Contact #, kcal/mol) 
Difference in bonding 

energy (kcal/mol)1 

N Terminal Y38 (0.139)  Y38 (0.120)   

N Terminal     Y40 (1.55) 

3.26  D123 (-2.5)    

3.28 W125 (0.153)  W125 (0.117)   

3.29  L126 (-2.2) L126 (0.058) L126 (-2.6)  

3.32 D129 (2.068) D129 (-17.3) D129 (2.121) D129 (-17.8)  

3.33 I130 (0.165) I130 (-7.1) I130 (0.250) I130 (-7.9)  

3.36 C133 (0.148)  C133 (0.394)   

3.37 T134 (0.180)  T134 (0.603)   

4.57 S181 (0.152)     

ECL2     K191 (1.59) 

ECL2 E198 (0.063) E198 (-1.0)    

ECL2  C199 (-2.0)    

ECL2 V200 (0.089) V200 (-5.1) V200 (0.051) V200 (-3.5) V200 (1.55) 

ECL2 V201 (0.968) V201 (-7.5) V201 (.901) V201 (-5.6) V201 (1.88) 

ECL2    D204 (-2.1) D204 (-1.12) 

5.39   Y208 (0.081)   

5.40     T209 (-1.95) 

5.41   V210 (0.480)   

5.43 S212 (0.147) S212 (-4.3)   S212 (2.76) 

5.44  T213 (-2.4)  T213 (-5.9) T213 (-3.51) 

5.46 A216 (0.080)  A216 (0.360)  A216 (-1.03) 

5.47   P217 (0.272)   

6.48 W327 (0.221) W327 (-1.0) W327  (0.308)   

6.51 F330 (0.832) F330 (-7.0) F330 (0.361) F330 (-2.5) F330 (4.43) 

6.52 F331 (0.880) F331 (-2.0) F331 (0.198)  F331 (1.84) 

6.54 I333 (0.046)     

6.55  S334 (-2.3)   S334 (1.17) 

6.58 M337 (0.230) M337 (-4.1)   M337 (4.06) 

6.59   P338 (0.136)   

6.60   I339 (0.205)   

ECL3   C340 (0.170) C340 (-2.4) C340 (-2.33) 

ECL3 K341 (0.035)  K341 (0.091)   

7.31 L348 (0.143) L348 (-3.3)   L348 (2.85) 

7.34 F351 (0.270) F351 (-4.7) F351 (0.134) F351 (-2.8) F351 (1.84) 

7.35 D352 (0.087) D352 (-5.9)  D352(-5.3)  

7.38 T355 (0.636) T355 (-2.8) T355 (0.613) T355 (-2.0)  

7.42 Y359 (0.076)  Y359 (0.079)   



The protein-ligand interaction analysis shows that the key protein-ligand residual contacts 

in ERG are conserved in DHE, but they exhibit different bonding energies. A SID analysis 

was preformed, aforementioned in the methods, to identify key residues in the 5-HT1B receptor 

involved with ERG and DHE bindings. All residues in the table are assigned the Ballesteros-

Weinstein number for the receptor 78. The significant 5-HT1B-ERG interactions include a total of 

23 residues from N-terminal, TMs 3, 4, 5, 6, and 7, and extracellular loops 2 and 3 (Table 2). For 

5-HT1B-DHE, there are also 23 key residues from N-terminal, TMs 3, 5, 6, 7, and extracellular 

loops 2 and 3. Even though the majority of the key residue interactions are conserved for each 

ligand, there are limited observed differences of the interaction fractions for each of the complexes. 

Interaction fractions for each residue in both complexes remain similar, with exception to P3316.52 

and P3306.51, which were highly conserved in ERG but not in DHE. The MM/GBSA energy 

decomposition was used to identify key residues that contribute more than -2.0 kcal/mol (Table 

2). There is some evidence of overlap with the contact analysis. Several additional key residues 

were identified: A1233.26, L1263.29, C199E2, T2135.44, and S3346.55 for ERG; A204E2, T2135.44, and 

A3527.35 for DHE.  Also, the difference in MM/GBSA energy decomposition was calculated 

between DHE and ERG, with ERG binding stronger at residues V200E2, V201E2, S2125.42, F3306.51, 

F3316.52, M3376.58, L3487.31, and F3517.34, which correlates with mostly hydrophobic interactions. 

On the other hand, DHE bound stronger at residues D204 E2, T2095.39, T2135.43, A2165.46, and 

C340E3. The significant differences in MM/GBSA bonding energies correlate with the identified 

key residues, which suggests that these residues have a strong contribution to the absolute bonding 

energy with each ligand. A number of these residues are involved in known binding features of 

the 5-HT1B receptor. For example, N-terminal residues such as Y40N-Term
   are known to fold over 

the top of the binding pocket to enhance binding interaction and is thought to play a role in ligand 

recognition16. Residue D1293.32
 is known to anchor the ergoline scaffold through a salt bridge and 

this interaction is further stabilized through hydrogen binding with Y3597.43. A hydrogen bond is 



formed between the indole N-H Hydrogen of ergotamine and T1343.37. In addition, a hydrophobic 

cleft is known to form from the side chains of C1333.36, I1303.33, W3276.48, F3306.51,and F3316.52 

16, all of which are observed in our two-dimensional interaction diagrams.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Ligand-residue interactions that persist for more than 30% of MD simulation time  for 

ergotamine (top) and dihydroergotamine (bottom) with 5-HT1B. Ballesteros-Weinstein 

numbering is annotated for each interacting residue.  
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Figure 4 Interaction fractions of ergotamine (top) and dihydroergotamine (bottom) with 5-HT1B 

over the MD trajectory.  

 

The ligand-residue analysis shows subtle differences between ERG and DHE. To identify the 

critical interactions the drugs made with the protein, SID analysis was conducted as described in 

the methods. The major interacting residues are outlined in Table 2 and visually represented in 

Figures 3-4 and Figure S5. Table 2 also contains Ballesteros-Weinstein numbering and interaction 

fraction78. Some noteworthy differences between the two drugs include: A) A much higher 



interaction fraction with THR1343.37and DHE compared to that residue with ERG. B) A greater 

interaction fraction at residues PHE330 and PHE331 in ERG. C) A significant interaction fraction 

for water bridges between residues 338-341 of DHE not seen in ERG. It should also be noted that 

ASP1293.32 has the greatest interaction fraction for both ligands. That fraction remains fairly 

consistent for both ligands, with ERG’s being 2.068 and DHE’s at 2.121. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Comparison of the secondary structure percentage of each protein residue between 

Ergotamine system and Dihydroergotamine system. Overall SSE percent contribution is 

annotated.  

 

An examination of secondary structures shows that helices are maintained but still contain 

subtle differences.  The shape, abundance over the MD trajectory, and time evolution for the two 

secondary structures are shown in Figure 5. Some notable features include: A) Presence of very 

short β-strands in DHE between transmembrane four and five. B) Additional kinks in DHE from 

transmembrane 7 to the C-terminal.  



 

Figure 6 Receptor protein RMSF (Å) diagram of 5-HT1B with the two ligands, ergotamine and 

dihydroergotamine, from MD simulations.  

The receptor RMSF data shows that the receptor have differences in flexibility when 

interacting with different ligands. The receptor RMSFs for the different ligands is shown in 

Figure 6. Because the intracellular loop three that was missed in the crystal structure was not 

included in the simulations, its RMSF was not available for both systems. In general, this figure 

shows that the more rigid components of the receptor, such as the helices, have lower RMSF. In 

contrast, more flexible areas like the intra and extra cellular loops and the N- and C- terminals 

have high RMSF values. While the shape of the curves across residue numbers is generally 

consistent between the ligands, there is a marked contrast in size. DHE has higher RSMF 

throughout almost every transmembrane and intra and extra cellular region. Some major areas of 

contrast are seen at intracellular region one, intracellular region two, extracellular region two, and 

the C-terminus. These differences emphasize the receptor increased flexibility when interacting 

with more flexible DHE than ERG, this is likely the main factor at receptor level contributing to 

the biological and activity differences caused by the two drugs.   



 

Figure 7 Ligand RMSF (Å) diagram of 5-HT1B with the two ligands, ergotamine and 

dihydroergotamine, from MD simulations. The two ligands have the same atom numbering, 

but only ergotamine is shown here.  

A trend of higher ligand position fluctuation was also observed for DHE. Ligand RMSF can 

be used to gain a sense of how the ligand conformation dynamics between the drugs differ. Figure 

7 shows that ERG has lower RMSF values at almost all atoms. It is only around atom 25 and atom 

32 in the phenol ring that its RMSF value is greater than that of DHE. This is consistent with what 

was expected from the structures of the two drugs – ERG, which contains one more π bond then 

DHE, is overall the more rigid ligand compared to DHE’s flexibility.  



 

Figure 8 Ligand torsion plots showing the average conformational evolution of three rotatable 

bonds throughout the MD trajectory for ergotamine (A) and dihydroergotamine (B). The color of 

the plots correspond to the color of the rotatable bond. 

 

Ligand torsion plots further illustrate difference in rotational mobility at the two linkers 

between the ligands. The hydrogenation of a double bond in DHE changes the rotational 

flexibility of the rotatable bonds at the two linkers of the ligand. While many of the bonds retained 

similar conformational evolution throughout the MD trajectory for both ligands, three bonds at the 

two flexible linkers did exhibit some clear changes as shown in Figure 8. This indicates the small 

ligand modification can lead to subtle allosteric effects away from the change origin.  Additional 

torsional angle plots can be found in Figures S5-S6. 



 

   
 

Figure 9 A. Tyr Toggle Switch (NPXXY) (ERG: red/DHE: black) shown with a moving distance 

of 11.4 Å for the tyrosine7.53 sidechain.  B. Transmission Switch (CWXP) (ERG: red/DHE: black) 

shown with a moving distance of 1.58Å for the tryptophan6.48 sidechain, and a moving distance of 

2.73 Å for the TM6 helix. C. Ionic Lock Switch (DRY), (ERG: red/DHE: black) shown with 

difference of salt bridge bond lengths of 10.9Å (DHE), and 13.4 Å (ERG). All residues are labeled 

using the Ballesteros-Weinstein numbering system.  

 

Micro-molecular switch analysis suggests while the tyrosine toggle switch, the transmission 

switch and the ionic lock are activated in 5-HT1B-ERG, only the latter two switches are on in 

5-HT1B-DHE. Class A GPCRs share a set of conversed residues that are considered to be important 

in the receptor activation. For HT1B, three such motives are considered to be critical in regulating 

its activity79:  NPXXY (in which X represents any amino acid) in TM7, CWXP in TM6 and DRY 

in TM3. We compared the structural aspects of these three molecular switches in the two HT1B-

ligand complexes (Figure 9). For the Tyr toggle switch (NPXXY), 5-HT1B-DHE is in an active 

state, while 5-HT1B-ERG is shown in the inactive state79. The transmission switch (CWXP) does 

not show a significant difference between the two complexes with an agonist, it is likely that both 

N7.49 

 

10.9 Å

13.4 Å 

11.4 Å 

2.73 Å 

 

P6.50 

C6.47 
W6.48 

TM6 

N7.49 

 

Y7.53 

P7.50 

F7.60 

TM7 

H8 

TM3 

TM6 

R3.50 

D3.49 

E6.30 

A C B 

1.58 Å 



are in the inactive state.  At the ionic lock switch (DRY), both 5-HT1B-ERG and 5-HT1B-DHE are 

shown as in an active state, due to the breaking of the salt bridge bond (13.4 Å and 10.9 Å). The 

micro switch analysis also includes a comparison of both ERG and DHE with the 5-HT1B 

antagonist methiothepin (PDB: 5V54) (Figure S8 and S9)80. ERG is inactive, while DHE is active 

for the Tyr toggle switch (NPXXY). For the ionic lock switch (DRY), both ERG and DHE show 

an active conformation when compared to the antagonist. At the transmission switch (CWXP), 

there is no significant conformational changes between the two systems and the antagonist, which 

could indicate an inactive state.   

The dynamic network model identified subtle differences between the DHE and ERG 

systems at TM5 and TM6.  Unweighted networks and network models weighed on the basis of 

the correlated motion in the simulation trajectory for the DHE and ERG systems (Figure S10 and 

Figure 11) were calculated as described in the method section. When comparing the unweighted 

network models of DHE and ERG systems, it is clear that there is a good agreement in terms of 

connection. However, when the correlation between the nodes are quantified in the weighted 

network model (Figure 10), differences are observed between the two systems. Most notably are 

the edges that surrounds TM5 and TM6, and are next to the binding pocket.  The DHE system 

shows very high correlations between edges in TM5 and TM6 compared to the ERG system which 

shows extremely low correlated connections as depicted by the much thicker edges. Subtle 

differences were also observed at TM4 where ERG shows much smaller correlation between nodes 

around intercellular loop 2.  

The weighted network model was then used to generate a community network model 

(Figure 10) which grouped together residues that interact more frequently and stronger than to 

residues in other communities.  Figure 10 showed clear differences between the DHE and ERG 

systems. Specifically, ERG showed one large network (dark blue) with rigid connections 



surrounding the entire binding pocket, whereas the DHE system has the binding pocket broken 

into three different communities. Critical edges were also generated which linked communities 

together (Figures 10 and 12) and those critical residues were identified (Table S1).  

Weighted Network Community w/ Critical Edges Critical Edges 

 
 

 

  

 

Figure 10. The dynamic network models weighted by correlation motion, each of the receptors 

structural communities separated by a different color and the critical edges shown in purple for 

the DHE (A) and ERG (B) complex systems. 
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Optimal paths revealed key residues involved in the shortest pathway for passing a signal 

from DHE or ERG to the site of the molecular switch. From the weighted network models, 

the shortest pathway able to pass a signal from the ligand (DHE or ERG) to the site of each 

molecular switch (Tyrosine Toggle Switch: Ile384, Transmission Switch Ala312, Ionic Ala150) 

was calculated as the optimal path (Figure 11). Although there are similarities between the two 

systems, most notably for the Ionic Lock (DRY) each optimal path generated is unique. For the 

Tyrosine Toggle Switch (NPXXY), DHE’s optimal path sends signals primarily along TM1, 

TM2 and TM3, whereas ERG’s optimal path goes primarily through TM7.  Also consistent with 

our micro-switch analysis, the Transmission Switches (CWXP) for both DHE and ERG are very 

different where ERG shows to have a much more direct path of communication.  

In order to check the convergence of our simulation systems, we extracted the last 800 ns 

of each system as indicated from the RMSD (Figure S2). This 800 ns portion of the trajectories 

were split into two blocks of 400 ns each and subjected to individual network analyses (Figure 

S14). Evident from these figures, the combined trajectories were nearly identical to the trajectory 

blocks. Optimal paths were also generated for the trajectory blocks which showed identical 

optimal paths as in the combined trajectory.  
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Figure 11. The shortest path generated for each major molecular switch observed in the MD 

simulations of the DHE (A) and ERG (B) complex systems. 
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Referencing the critical nodes with mutagenesis data identified residues that may play an 

important role in the receptor activation of for each system.  From the community analysis 

(Figure 10) there were 45 critical nodes identified for the DHE system (Figure 12 A-B), 40 for 

the ERG system (Figure 12 C-D) and 13 identified to be critical nodes in both systems (Figure 

12 E-F). Since the critical nodes were involved in signal transduction between different parts of 

the receptor in our simulations, the critical residue information was then referenced with 

experimentally reported mutagenesis data available on the G-protein coupled receptor databank 

(GPCRdb) to see if there residues were involved in the physical signal transduction (Figure 13; 

Figure S11). There were 15 critical residues that overlapped with natural or in vitro mutations of 

the 5-HT1B receptor. The DHE system had nine critical residues were also mutations (I711.54, 

A922.47, V932.48, T1343.37, C1413.44, F1854.61, V20045.51, W3276.48, F3316.52)16, 81, 82, ERG had 10 

(S451.28, T601.43, A922.47, C1413.44, W3276.48, F3316.52, Y3596.52, S3627.43, P3667.50, Y3697.53)16, 81, 

82, and four were conserved between the two systems (A922.47, C1413.44, W3276.48, F3316.52). We 

speculate that the four conserved residues may be critical for the activation of the receptor, whereas 

the differences may help to explain the different potencies of the two drugs.    
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Figure 12. Critical nodes of the DHE (A-B) and ERG (C-D) systems in a snake plot and structure view. 

A plot comparison between the two system in presented in E-F where purple represents DHE, dark pink 

represents ERG, and the light pink residues are those that are conserved in both systems.  
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Figure 13. Reported mutagenesis data for the 5HT1B receptor. Mutated residues in red cause decrease in 

activity, green cause increase in activity and purple is a deleterious stop gained mutation (A-B). The 

critical nodes that overlapped with the mutation data are in C-D where purple represents DHE, dark pink 

is ERG, and light pink represents the overlap between DHE and ERG. 

 

Discussion 

The structures of DHE and ERG share many similarities - a characteristic that can be 

clearly seen when the ligands are superimposed (Figures 3, S3). Yet, other studies have found clear 
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activity differences between the ligands at many receptors. This study aimed to use molecular 

dynamics to better understand why such activity difference occurs at 5-HT1B. Molecular dynamics 

is widely known to complement experimental data by illuminating functionally relevant 

characteristics of the ligand-protein interaction 17. Specifically, simulations can provide 

information about dynamic motion that may be otherwise hard to model. Proteins exist in a natural 

state of fluctuation, making an understanding of dynamic motion essential to understanding 

specific functions of a biomacromolecule 83. Thus, our dynamic analyses such as the protein and 

ligand RMSF, micro switch analysis, dynamic network models, and normal model analyses sought 

to determine whether an understanding of these fluctuations could illustrate the activity differences 

between DHE and ERG.  Following this, based on the dynamic information gained from our 

analyses, we also suggest possible modifications to both DHE and ERG that may enhance their 

binding at 5-HT1B.  

Molecular dynamics (MD) simulations were performed on each complex and the resulting 

trajectories analyzed and compared. ERG showed stronger MM-GBSA binding energy and much 

less flexibility than DHE. There were also significant differences in bonding energies at several 

key residues, the majority of which indicated that ERG showed a higher bonding energy to the 

receptor than DHE. The receptor protein and ligand RMSF both illustrate the tighter binding of 

ERG to 5-HT1B. The ligand torsion plots illustrate how the introduction of an extra π bond can 

cause clear changes in the rotatable bonds of the system. Furthermore, interaction diagrams 

indicate that the ligands have some similar, but many distinct, interactions with its environment. 

Evaluations of several molecular switches were preformed using the most abundant conformation 

from the MD simulations. A study by reported on the distance of the ionic lock switch on a mutant 

ß2AR GPCR with a distance of approximately 13 Å, indicating complete breakage. The 5-HT1B -

ERG has a salt bridge bond distance of 13.4 for the ionic lock switch (DRY), much like the distance 



in an activated B2AR receptor. The conformation state in the ionic lock switch (DRY) showed 

evidence that both 5-HT1B -ERG and 5-HT1B-DHE had broken the salt bridge bond and was in the 

active state. It appears both 5-HT1B-ERG and 5-HT1B-DHE are in the inactive state conformation 

for the transmission switch when compared to an antagonist. The Tyr toggle switch (NPXXY) 

shows a significant difference in the molecular switch state of 5-HT1B-DHE and 5-HT1B-ERG. 5-

HT1B-ERG is shown in an inactive state, while 5-HT1B-DHE is shown in an active state. The 

difference in the Tyr toggle switch provides a possible mechanism for why ERG is more potent 

than DHE.   

Dynamic network models based on MD simulations data are an efficient manner to extract 

correlated motions, allosteric signals and signal transduction networks within a complex system. 

This is useful because these correlation motions are likely linked to their activity and are normally 

hard to accurately discern through visualization of the MD simulations alone41, 42. Furthermore, 

the dynamic networks allow different regions of the complex system to be clustered into highly 

correlated communities which can provide insight into the effect of ligand binding to the overall 

communication network 41, 43, 44.  In our study, significant differences were identified between the 

DHE and ERG complex systems in the dynamic network analysis. Specifically, when comparing 

the original unweighted dynamic network (Figure 10) to the connections between nodes in the 

networks that were weighted based on correlated motion in the simulation trajectories. The nodes 

of the ERG system have a significantly lower covariance, as shown by the thicker edges between 

nodes. In addition, the community models show that the ERG system is composed of less 

communities, and significantly different critical nodes, which pass information between the 

various communities. Specifically, ERG showed one large network (dark blue) with rigid 

connections surrounding the entire binding pocket, whereas the DHE system has the binding 

pocket broken into three different communities (Figure 10), indicating that the residues 



surrounding the 5-HT1B  binding pocket are highly correlated when ERG is bound. Since the 

communities are grouped together based on residues that interact more frequently and strongly 

with one another, this analysis highlights how the small structural difference between ERG and 

DHE can cause significant changes to the dynamics of the 5-HT1B.  

The optimal path generated for the molecular switches of each system also varied between 

systems (Figure S12). The subtle difference in the optimal paths for the Tyrosine Toggle Switch 

(NPXXY) may play a role in the difference of active and inactive states at the Tyr toggle switch 

(NPXXY) and may further indicate a different molecular signal transduction pathway involving 

each ligand. Additionally, the Transmission Switches (CWXP) for each system were noticeably 

different. Thus, we propose the residues identified from the optimal paths are involved in the signal 

transduction pathway leading to activation through the molecular switches and that DHE and ERG 

are using separate communication pathways for activation, which is consistent with what was 

inferred from our original micro-switch analysis.  

Specifically, we identified residues A922.47, C1413.44, W3276.48, F3316.52 to be critical in 

the binding and communication pathway for both the DHE and ERG systems. Based on the 

comparison of our critical nodes to the experimental mutagenesis studies, these four residues were 

identified, as critical residues involved in both the transfer of information between different 

communities as well as residues that when mutated significantly affect the activity of the receptor. 

Building on this, for the ERG system’s optimal path analysis, W3276.48 was the first residue 

involved in the predicted optimal signal transduction pathway for both the Tyrosine Toggle Switch 

(NPXXY) and Transmission Switch (CWXP). One study compared the crystal structure of an 

inverse agonist at the 5-HT1b orthostatic binding pocket to ERG at the same binding pocket80. Their 

analysis described the outward movement of residues W3276.48 and F3316.52 upon binding of an 

inverse agonist. Considering the results from our network analysis in combination with their 



results, the importance of W3276.48 and  F3316.52  in the active conformation of the receptor can be 

deduced.  

From the normal mode analysis (Figure S12), modes 1-3, show the most difference in 

motion, which are the lowest energy modes identified from the principal component analysis. In 

our analysis we observed the DHE system having a higher degree of fluctuation and an overall 

distinct motion when compared to ERG. Through the normal mode analysis we were able to 

provide another level of insight into the intrinsic dynamics of these complexes in the lowest 

vibrational state. From this analysis we concluded that the overall intrinsic dynamics of the 

complexes are distinct of another which provides further support to our hypothesis that the activity 

differences of these complexes are due to differences in their dynamic interactions. Overall, this 

information, in combination with our other dynamic analyses such as the RMSF, dihedral angle 

distribution, and network models, help to explain the activity differences that cannot be explained 

from the crystal structure alone.  

 

Figure 14. Substitutions made on the top compounds chosen from the high-throughput virtual 

screening. Dihydroergotamine’s two dimensional structure is used as an example where the blue 

arrows represent possible substitution sites (A), and the actual substitutions are listed on the right 

(B).  



Based on the dynamics insight gained from our MD simulations and post simulation 

analysis we suggest two major modifications possible for DHE and ERG. The first is at position 

41 of dihydroergotamine (see Figure 7 for reference to ligand positions). Evident from the 

comparison of ergotamine to dihydroergotamine in our protein (Figure 6) and ligand (Figure 7) 

RMSF, the overall RMSF is higher in the dihydroergotamine system. Thus we suggest that 

adding a small function group to carbon 41 could reduce the fluctuations and increase 

interactions at this site. Our second suggested set of modifications are based on our torsional 

angle distributions and our visual inspection of the most abundant poses. The torsional angle 

distribution shows for both ergotamine and dihydroergotamine the carbon 26-27 and 27-28 bond 

are highly flexible, and from a visual inspection of our simulations we observe this benzene 

bending outward toward the solvent upon binding. Thus, we speculate that adding small 

functional groups the 26th, 30th, and 31st positions of the benzene may enhance the potency of 

both ligands by reducing the fluctuations of this side chain through enhanced interactions in the 

binding pocket. At each possible point of substitution we picked 4 functional groups (hydrogen, 

fluorine, chlorine and bromine) that could be substituted leaving a total of 44 possible modified 

versions of DHE and 43 of ERG which we then used to generate a combinatorial library of these 

256 ligands for DHE and 64 ligands for ERG. Each new compound was docked to the same 

orthosteric binding site as the most abundant cluster of DHE or ERG, with similar hydrogen 

bonds, π-π and hydrophobic interactions. The docking scores showed that of the 256 new 

compounds for DHE, 127 bound with a more favorable docking score than DHE (-6.85 

kcal/mol), and of the 64 compounds for ERG, 59 docked more favorably than the original (-

11.22 kcal/mol). Of these compounds, two compounds were chosen for ERG and three for DHE 

(Figure S15) based on their synthesizability determined by a minimal number of functional 

groups added, and more negative XP scores than ERG or DHE, respectively. Of these five 

compounds (Figure 14), Qikprop predicted that both ERG compounds 1 and 2 had zero stars, 



DHE compound 1 had one star, and DHE compounds 2 and 3 also had zero stars, thus suggesting 

these molecules have suitable drug-like properties.  

Since the docking scores were promising, the five complexes of these compounds were 

subjected to 200 ns MD simulations. The first post simulation analysis performed was the MM-

GBSA calculations of the five systems (Table 1). Evident from this table each compound bound 

more favorably to 5-HT1B than its original ligand. Specifically, for ERG, compounds 1 and 2 had 

binding energies that were -16.9 and -16.6 kcal/mol more favorable than ERG, respectively. 

Similarly, for the DHE compounds, compounds 1, 2, and 3 bound more favorably to 5-HT1B by -

20.7, -17.5 and -22.6 kcal/mol, respectively. Looking more into the MMGBSA, the VDW 

contributed the more to the total energy followed by the electrostatic and lipophilic interactions. 

Since in all but one compound, the VDW term increased when compared to the original ligand, 

we suggest there may be enhanced π-π stacking between residues of 5-HT1B and the aromatic 

portions of the new compounds which were heightened after the addition of the functional 

groups.  

Following the MM-GBSA calculation, our next post-simulation analysis was to compare 

the original ligands RMSF to the new compounds to see whether or not our prediction that 

adding functional groups would decrease the fluctuations of these ligands in complex with 5-

HT1B held true. As predicted, the protein RMSF (Figure S16) showed that the new compounds 

for both ergotamine and dihydroergotamine caused less fluctuations for the protein. Specifically, 

there was a significant decrease at TM5 for the ergotamine compounds and an overall decrease 

for the dihydroergotamine compounds. Further, the results of the ligand RMSF (Figure S17) 

clearly show a decrease in RMSF for both the ERG and DHE compounds. Importantly, this 

analysis clearly provided more evidence that our prediction of adding functional groups to the 

benzene ring would decrease the fluctuations of atoms on the benzene (i.e. 25, 26, 30, 31, 32, 33) 

could be true.  Furthermore, this decreased fluctuation, which is likely due to an increase in 



binding interactions and stability, is consistent with the improved MMGBSA binding energy of 

the top compounds.  

Generally, when looking at dihedral angle distributions, the narrower the torsional range, 

the smaller the structural fluctuation. Thus, in order to provide a deeper analysis of the 

fluctuations of our new compounds in complex with 5-HT1B, compared to DHE and ERG, we 

calculated the dihedral angle distributions (Figure S18-S19). All calculated dihedral angles are 

shown here, however we chose to focus on the light blue and light green torsional angles, as well 

as minor interests in the light purple torsional angles, since these were the torsional angles for 

which our predictions were made. Evident from the original ergotamine light blue torsional 

angle, the two major angles are around +90 and -90 degrees, however there is a wide distribution 

overall. Looking at the light blue torsional angles for the ERG compounds, it is evident that this 

range was significantly decrease to -90 degrees for compound 1 and +90 degrees for compound 

2. Similar patterns can be observed for the light green torsional angles where there is a huge 

distribution in the original ergotamine simulation with major peaks at -180, -90, +90, and +180 

degrees. However, in both compounds the distribution is significantly decreased to -90 and +90 

degrees for compound 1 and just +90 degrees for compound 2. Although the contrast is not as 

profound for the light purple torsional angles, both compounds have a slightly more narrow 

distribution when compared to ergotamine. For the dihydroergotamine compounds, we observe 

the same pattern where for the light blue and light green torsional angles there is a significant 

decrease in the distribution of the angles, and a marginal decrease is observed for the light purple 

angle. Specifically, the original dihydroergotamine ligand shows widespread peaks at both -90 

and +90 degrees for the light blue torsional angle. When comparing the light blue torsional angle 

of the new compounds to DHE both compounds 1 and 2 show the angle shift only to ~-90 

degrees and for compound 3 this shift is toward +90 degrees. For the light green angle, DHE 

shows small peaks ranging from -90 to -180 degrees and a large peak around +90 degrees. 



However, this peak is primarily shifted to -180 degrees in compound 1, +90 degrees in 

compound 2, and although there is still a distribution for compound 3 the shift was primarily 

toward -90 degrees. For the light purple angle, compounds 1 and 3 show similar patterns with a 

more narrow distribution, whereas compound 2 has a peak shift to -180 degrees. Overall, these 

decreased distributions of torsional angles at the specific angles for which our predictions were 

made provide further support that the compounds selected from our virtual screening would 

show a decreased structural fluctuation upon binding. Thus suggesting that these compounds 

would be more stable and bind more favorably to 5-HT1B than ERG or DHE, respectively. 

 We also analyzed the interactions of each compounds at 5-HT1B which are represented 

here using a two dimensional ligand interaction diagram for ERG and compounds (Figure S20) 

as well as DHE and compounds (Figure S21). From these diagrams it is clear that for both the 

ERG and DHE compounds, a majority of the interactions that either ERG or DHE were involved 

in were maintained, however many compounds were also involved in new interactions which 

have likely stabilized them which we observed through the RMSF and dihedral angle 

distribution, as well as contributed to the increase in binding energy as observed in the 

MMGBSA analysis. Specifically, both ERG compound 1 and 2 showed additional hydrogen 

bonding between the nitrogen at the second position (see Figure 7 for reference to numbering) 

and Ser2125.43 and hydrophobic interactions with Ala2165.46 when compared to ERG. Although 

compound 2 loses the polar interaction with Thr3557.38
 the energy contribution lost from a lack of 

this interaction is made up through additional hydrophobic interactions with Phe3517.34 and 

Trp3276.48. On the other hand, the DHE compounds show a little more variation when compared 

to DHE.  Both DHE Compounds 1 and 2 maintained interactions with Asp1293.32, Val201ECL2, 

and Thr3557.38, and compound 3 maintained interactions with Asp1293.32, Val201ECL2
, and 

Cys1333.36. However none of the compounds interacted with Thr1343.37. In terms of new 

interactions conserved between compounds, compounds 1 and 3 formed hydrophobic 



interactions with Ile3396.60, compound 1 and 2 formed polar interactions with Tyr3597.42, and 

compounds 2 and 3 formed hydrophobic interactions with Cys340ECL3. Interactions unique to 

compound 2 include hydrogen bonding to Gly1132.68, hydrophobic interactions with Tyr1092.64 

and Leu1263.29, and negatively charged interactions with Asp3527.35, and compound 3 formed 

hydrophobic interactions with Ile1303.33. Interestingly, when comparing these results to the 

MMGBSA, the additional interactions formed between DHE compound 2 and 5-HT1B did not 

result in the most energetically favorable DHE compound. One possibility is that DHE’s 

interaction plays a significant role in the final binding pose where compound 1 has 5 interactions 

with water, DHE and compound 3 both have 3 interactions with water, but compound 2 only has 

two water interactions. On the other hand DHE compound 3 may have a more favorable binding 

energy due to its unique interactions with Ile1303.33
, which is known to contribute to a multi-

residue hydrophobic cleft which is known to stabilize the planar ergoline moiety. Nonetheless, 

by comparing the interactions of each compound at the binding pocket of  5-HT1B to the original 

ligand, DHE or ERG, we identified potential residues which may have contributed to the 

observed change in binding energy and the decreased fluctuations that led to an increased 

stability for each new compound complex.  

 

Conclusion  

ERG and DHE differ by only a single π bond, yet have been shown to have almost a ten-fold  

activity difference at the 5-HT1B receptor. The crystal structures of the 5-HT1B receptor in complex 

with both ligands have been resolved, but the high similarity between two complexes cannot 

sufficiently explain their activity difference.  Hence, an examination of the dynamic motion of 

both drugs with the receptor is needed. By comparing the complex trajectories and protein-ligand 

interactions, a better understanding of the activity differences between the two ligands was 



realized. The ligand-protein interactions and secondary structures of the ligands showed subtle 

variations. More notably, the ligand and protein RMSFs for the systems were distinct, with ERG 

having a trend of lower RMSF values, indicating it to be more tightly bound to 5-HT1B with less 

fluctuations. The MM-GBSA binding energies further illustrate this, as ERG has an overall 

stronger MM-GBSA binding energy by -15 kcal/mol. The difference of active and inactive states 

at the Tyr toggle switch (NPXXY) may suggest different signal transduction pathways for each 

ligand. Our dynamic network model and normal mode analysis also show differences in the 

dynamics of the two complex systems. Using our critical nodes and readily available mutagenesis 

data, we identify W3276.48 and F3316.52 as key residues involved in the active state of 5-HT1B. All 

of which provides dynamic insight into the crystal structures of ergotamine-5-HT1B and 

dihydroergotamine-5-HT1B receptor complexes. This dynamic insight helps to explain the activity 

differences of these two molecules which was unclear from the crystal structures. Using the 

detailed dynamic insights gained from our study we were able to predict potential modification 

sites of both DHE and ERG which yielded compounds that show more favorable binding energies 

and reduced structural fluctuation. These derivatives might be good candidates for further 

experimental tests.  Clearly, molecular dynamics can add additional important knowledge that 

cannot be garnered from structure alone. 

 

 

Supporting Information 

Included in the supporting documents are the receptor sequence, the most abundant receptor-ligand 

complexes from clustering analysis, superposition of the most abundant conformations from the 



MD simulations of the receptor with the ligands, example of a protein-ligand contact table, and 

the complete set of ligand torsion plots for all rotatable bonds throughout the MD trajectory.  
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