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Abstract:  Chiglitazar is a promising new generation insulin sensitizer with low reverse effects 

for treatment of Type II Diabetes Mellitus (T2DM) and has shown activity as a non-selective 

pan agonist to the human peroxisome proliferator-activated receptors (PPARs) (i.e. full 

activation of PPARγ, and a partial activation of PPARα and PPARβ/δ). Yet, it has no high-

resolution complex structure with PPARs, its detailed interactions and activation mechanism 

remain unclear. In this study, we docked Chiglitazar into three experimentally resolved crystal 

structures of hPAARs subtypes PPARα, PPARβ/δ, and PPARγ, followed by 3 μs molecular 

dynamics simulations for each system. Our MM/GBSA binding energy calculation revealed 

that chiglitazar most favorably bound to hPPARγ (-144.6 kcal/mol) followed by hPPARα (-

138.0 kcal/mol) and hPPARβ (-135.9 kcal/mol), and the order is consistent with the 

experimental data. The decomposition of the MM/GBSA binding energy by residue, and by 

use of the two dimensional interaction diagrams, key residues involved in the binding of 

Chiglitazar were identified and characterized for each complex system. Additionally, our 

detailed dynamics analyses support that the conformation and dynamics of helix 12 play a 

critical role in determining the activities of the different type ligands (e.g. full agonist vs. partial 

agonist).  Rather than being bent fully in the direction of the agonist versus antagonist 

conformation, a partial agonist can adopt a more linear conformation and have a lower degree 

of flexibility. Our finding may aid in further development of this new generation of medication. 

  

  



 

1. Introduction  

In the year 1999, the World Health Organization estimated that by 2025 roughly 300 

million people would be suffering from diabetes. However, in 2014, the World Health 

Organization reported 422 million people suffering from diabetes worldwide, surpassing the 

estimate by a shocking 122 million people with 11 years to spare. This statistic highlights the 

ongoing and crucial need for an effective treatment for Type II Diabetes Mellitus (T2DM) [1-

3].  

Human peroxisome proliferator-activated receptors (PPARs) belong to a subfamily of 

nuclear hormone receptors that act as ligand-activated transcription factors to regulate a variety 

of biological process including glucose metabolism, lipoprotein metabolism and immune 

response [4-6]. The ligand binding domain (LBD) of PPARs forms a heterodimer with the 

retinoid X receptor (RXR), and binds specific DNA sequences in the regulatory region of target 

genes to modulate their transcription (Figure S1). Upon ligand binding, conformational 

changes occur to the PPAR LBD which promotes the recruitment of coactivators such as 

nuclear receptor coactivator-2 (NCOA-2). However, the exact mechanism for which full and 

partial activation occurs at the PPAR LBD remains to be fully understood, despite being well 

studied in the past. A common conception of PPAR full agonists is that the activation 

mechanism primarily occurs through stabilization of helix 12 [7] in the activation function 2  

(AF-2) region. However a number of studies show that for both full and partial agonist’s the 

activation of the receptor is not solely dependent on the stabilization of helix 12 but that 

interactions with helices 3, 4, 6, 7 and 11, and the beta region also play a role [8-13].  It has also 

been shown that agonists of PPAR can adopt multiple binding poses [9,14] suggesting that one 

true understood mechanism for all PPAR agonist is not feasible, and that a detailed binding 

mode is needed to fully understand the unique activation mechanism of the receptor. 



 
 

Figure 1 Sequence alignment of PPARα (PDB ID: 3VI8), PPARβ (PDB ID: 3TKM), and 

PPARγ (PDB ID: 2PRG): 202 (alpha), 174 (beta/delta), 238 (gamma). The sequences were 

aligned using PPARγ as a reference and each residue that differs is colored based on side-chain 

chemistry. See methods section for reference to colors. 

 

The hPPARs are divided into three distinct subtypes -PPARα (NR1C1), PPARβ/δ (NR2C2) 

and PPARγ (NR3C3) (Figure 1), each of which are discrete in terms of expression and 

biological function. PPARα plays an important role in lipid and glucose metabolism [6,15-20], 

PPARβ/δ is integral in energy metabolism[21], and PPARγ has a variety of implications in 

adipocyte differentiation and sensitivity, cell cycle regulation, inflammation, and even immune 

responses [6,15-18,20,22-24]. Thiazolidinediones (TZDs) rosiglitazone (Avandia) and 

pioglitazone (Actos) are selective full agonists to the PPARγ receptor and were once a common 

method for T2DM treatment. TZDs act as insulin-sensitizers that improve glycemic control but 

have now become “Non-formulary oral options that are non-preferred but can be considered 

 



in patients at high hypoglycemia risk where cost is an issue” because studies have linked these 

drugs to hepatotoxicity, increased risk for cardiovascular failure, myocardial infarction, 

increased risk for bladder cancer and body weight gain [6,25-32].  Despite the adverse effects of 

current medications, development of new PPAR agonists are still of great interest because of 

the unique and promising feature of this class of drug, including the ability to directly target 

insulin resistance and provide a more durable glycemic (HbA1c) control when compared to 

other antidiabetic medications[33]. In an attempt to reduce the reverse effects, alternative 

approaches were considered to target the PPAR receptors including partial PPARγ agonists [34-

44], multi-targeted cooperative PPARα/γ dual agonists [28,31,40,45-58] and PPARα/β/γ pan 

agonists [30,35,59-65].  

 

 
 

Figure 2 Chemical structure of Chiglitazar 

 

Chiglitazar (Figure 2), discovered and synthesized by Chipscreen Biosciences Ltd. has 

recently completed phase Ⅲ clinical trials in China. Chiglitazar is a non-TZD insulin sensitizer 

and described as a non-selective pan agonist to the three PPAR receptor subtypes shown to act 

on the PPARα, PPARβ/δ and PPARγ subtypes with an EC50 value of 1.2, 1.7 and 0.08 uM 

respectively [66-68]. Research into chiglitazar’s activity has significantly progressed over time. 

Initially considering Chiglitazar a PPARα/γ dual agonist in 2006, Li and coworkers determined 



that in addition to improving insulin and glucose tolerance, Chiglitazar’s therapeutic effect on 

lipid homeostasis was discrete of the mechanism used by rosiglitazone and suggested it was 

this distinction that would decrease multiple risk factors associated with selective PPARγ full 

agonists [69].  Further research performed by He and coworkers in 2012 demonstrated 

Chiglitazar’s trans-activating activity on each of the PPARα, PPARβ/δ and PPARγ subtypes 

with a favorable distribution pattern, reclassifying Chiglitazar a PPAR pan-agonist. Through a 

comparison between Chiglitazar and Rosiglitazone in their work, He and coworkers studied 

Chiglitazar’s in vitro and in vivo activity highlighting the differential effects observed by use 

of Chiglitazar; a safer cardiac profile and no heart or body weight gain observed also provided 

evidence to support less risk for side effects [67]. Research by Pan and coworkers in 2017 

further supported the benefits of Chiglitazar’s discrete mechanism through a comparison to two 

TZD drugs Rosiglitazone and Pioglitazone. In their study, Pan and coworkers described the 

interactions of Chiglitazar as full activation of PPARγ, linked to insulin related resistance gene 

expression, and a partial activation of PPARα and PPARβ/δ that allows a balance between 

glucose and fatty acid uptake that positively affected other mechanisms implicated in insulin 

resistance and obesity [66]. Therefore, the current understanding is that Chiglitazar’s distinct 

interactions with the three PPAR subtypes will show enhanced efficacy and produce less long 

term side effects than previously marketed T2DM drugs. Although Chiglitazar is promising, 

molecular details on the full and partial activation mechanisms and the interactions and binding 

mechanism remains to be elusive. For example, Pan and coworkers molecular docking data 

showed that Chiglitazar and the two TZD drugs bind differently to PPARγ[66]. While 

Rosiglitazone and Pioglitzone form hydrogen bonds with PPARγ Tyr473, Chiglitazar forms 

hydrogen bonds with Ser289 and Glu343 instead. To verify the different binding modes, three 

point mutations (Tyr473Asp, Ser289Ala and Glu343Ala). Unexpectedly, the Tyr473Asp 

significantly diminished the transactivity of Chiglitazar as well as Rosiglitzone and 



Pioglitzone[66]. Of the other two point mutations, only Ser289Ala attenuates the transactivity 

of Chiglitazar which is different from Rosiglitzone and Pioglitzone.  Clearly, molecular 

docking data does not completely explain the binding interaction between Chiglitazar and 

PPARγ. 

By use of a computational approach, research has studied protein-ligand interaction at the 

PPAR receptor that have successfully provided experimentally verified detailed structural 

information at the molecular level and identified a large number PPAR agonists [22,36,38,63,70-

81] [8,82]. Including a number studies combining virtual screening with molecular modeling [71] 

[64], molecular docking [36] molecular dynamics (MD) simulations [83], and in vitro assays [38] 

[70] for further validation. Additionally, Ricci and coworkers have successfully used a dynamic 

network model coupled with a principal component analysis to determine the allosteric 

pathways of the PPARγ-RXRα nuclear receptor complex[80].  However, without an 

experimentally solved crystal structure of Chiglitazar bound to the PPAR receptors, a detailed 

binding mode nor the structural and dynamic properties have yet to be elucidated. To approach 

this in our study, we used molecular docking and molecular dynamics simulations to ascertain 

detailed structural and dynamic information at the molecular level to characterize the 

interactions of Chiglitazar in complex with the PPARα, PPARβ/δ and PPARγ receptors. 

Through visual inspection of the structural clustering analysis, decomposition of the 

MM/GBSA binding energy by residue, and by use of the two dimensional interaction diagrams, 

key residues involved in the binding of Chiglitazar were identified and characterized for each 

complex system, supporting chiglitazar’s activity as a pan agonist and providing dynamic 

details to describe the underlying mechanism to fully activate PPARγ while partially activating 

PPARα and PPARβ. 

 

Materials and Methods  



Protein Preparation and Receptor Grid Generation 

The crystal structures of the hPPARα (PDB ID: 3VI8) hPPARβ (PDB ID: 3TKM) and 

hPPARγ (PDB ID: 2PRG) receptor subtypes were obtained from the Protein Data Bank 

website. A sequence alignment of these receptors is presented in Figure 1. In Figure 1, the 

sequences were aligned using PPARγ as a reference and each residue that differs is colored 

based on side-chain chemistry where red indicates residues D and E (acidic, hydrophilic), blue 

represents residues R, K and H (basic, hydrophilic), green represents residues G, A, V, I, L and 

M (neutral, hydrophobic, aliphatic), orange represents residues F, Y, and W (neutral, 

hydrophobic, aromatic), cyan represents residues S, T, N and Q (neutral, hydrophilic), yellow 

represents residue C (primary thiol), and dark grey represents residue P (imino acid). 

Using the Protein Preparation Wizard implemented in Maestro 10.2 [84] the following 

modifications were made to prepare the proteins: hydrogens and missing side chains were 

added, water molecules beyond 5 Å were deleted and the proteins were optimized at pH 7.0. 

For hPPARγ only chain A was used. The optimized proteins underwent a restrained 

minimization to relax the protein structure using OPLS3 force field [85]. To generate the 

receptor grid for each PPARα, PPARβ/δ and PPARγ, the centroid of the crystal ligand was 

used as the active site [86]. Each receptor grid was generated using the default Van der Waals 

scaling factor of 1 and a partial charge cut off of 0.25. 

 

Ligand Preparation 

The two dimensional structures of all ligands (Chiglitazar, Rosiglitazone, Pioglitazone, 

WY-14643) were downloaded from the Pubchem website. The three dimensional ligand 

structures were prepared using Maestro Elements 2.2 implemented in the Maestro 10.2 

software. The ionization/tautomeric states were generated at pH =7 using EPIK which uses 

refined Hammett and Taft methodologies [84]. The lowest ionization/tautomeric state was 



selected. Ligand structure was relaxed via restrained minimization. 

 

Ligand Docking 

Glide XP docking provides a comprehensive and systematic search for the most favorable 

ligand-receptor conformations for a drug complex. Standard Glide dock was used to dock each 

crystal ligand into its respective receptor grid (3VI8 (hPPARα), 3TKM (hPPARβ) and 2PRG 

(hPPARγ)), using Glide XP scoring functions under default parameters [87,88]. Following the 

same protocol, prepared Chiglitazar was docked into each receptor, then additional induced fit 

docking protocol was used to optimize the docking pose. The results from the induced fit 

docking of Chiglitazar and the initial crystal structure are shown in Figure 3.  

 

Molecular Dynamics Simulation Setup and Production Runs 

Using the prepared receptor-ligand complexes, six molecular dynamic simulations systems 

were created: the crystal ligands in complex with PPARα, PPARβ, and PPARγ, and Chiglitizar 

in complex with PPARα, PPARβ, and PPARγ. Each system was solvated in an orthorhombic 

water box using the SPC water model with 10 Å water buffer [89]. To neutralize the systems, 

Na+ ions were added with a salt concentration of 0.15 M NaCl. After successful solvation of 

each system, OPLS3 force field [86] was used to represent the receptor-ligand complex.  

 For each system, the default relaxation protocols were followed in the Desmond 

simulation package [90]. Detailed relaxation procedures follow our early work [91-93]. After the 

relaxation step, three independent 1000 ns production runs were carried out for each system, 

leading to a total of 3000 ns for each system.    

Convergence of Simulation.  

In order to check the convergence of the simulation systems and determine whether the 

complex systems had reached a steady state, the Cα (protein) and ligand RMSD was generated 



using the average of all three simulation runs for the systems (Figure 4 and Figure S2). From 

the RMSD plot we see that the simulation systems reach a steady state around 500ns and thus, 

the last 500 ns were used for subsequent analysis. 

Simulation interaction diagram (SID) analysis.  

The SID tool within Desmond was used to analyze the interactions between the protein 

and ligand in each of the simulation systems. We also included 2D interaction diagrams 

(Figure 6), secondary structure changes (Figure 7), Protein and Ligand Root Mean Square 

Fluctuation (RMSF) (Figure 8-10), protein-ligand contacts (Figure S5), and torsional angle 

profiles (Figure S6). The protein and ligand RMSF, 2D interaction diagrams, secondary 

structure diagram, torsional angle plots, and 2D interaction profiles were generated using a 

combined trajectory of the simulation runs.  

 

Clustering Analysis  

The trajectory clustering tool implemented in Desmond [94] was used to group together 

the complex structures of the simulation period for each system based on structural similarity. 

The merging distance cut-off was set to 2.5 Å for the hierarchical clustering with average 

linkage method [94]. The structure with the largest number of neighbors in the structural family 

(centroid structure) was used to represent the structural family. These centroid structures (>1% 

of total structure population) are presented in Figure 5. For further analysis we repeated our 

clustering analysis technique on our combined trajectory for each system (Figure S4). 

 

Binding Energy Calculations 

Molecular Mechanics-General Born Surface Area (MM-GBSA) binding energies were 

calculated for the last 200 nanoseconds of the combined trajectory for each system (Table 1). 

For this calculation, the OPLS3 force field, VSGB 2.0 solvation model and the default Prime 



protocol was used to separately minimize the receptor, ligand, and receptor-ligand complex 

using the equation for the total binding free energy: ΔG(bind) = Ecomplex (minimized) – (Eligand (minimized) 

+ Ereceptor (minimized)). The components (Coulombic + H-bond + GB solvation+ van der Waals + 

π-π packing + self-contact + lipophilic) were further merged into three groups to provide deeper 

insight in the binding process: Eelectrostatic, EvdW, and Elipophilic, where (Eelectrostatic = Ecoulombic + EH-

bond + EGB-solvation) and (EvdW = EvdW + Epi-pi stacking + Eself-contact).   

 

Normal Mode Analysis  

The combined trajectories were used in the VMD Normal Mode Wizard[95] to generate a 

principal component analysis (PCA) of the top 5 modes, and their associated root mean square 

fluctuation graphs were generated (Figure S7-S8). The antistrophic network models were 

generated using the ANM 2.1 webserver [96]. 

 

Dynamical Network Model  

The combined trajectories of each system were used to generate a dynamic network model, 

defined as a set of nodes connected by edges, [97-101] using the NetworkView plugin [97] in 

VMD [102]. For each system, we generated a contact map (Figure 11A) which added an edge 

between nodes whose heavy atoms interacted within a cutoff of 4.5Å for at least 75% of the 

MD simulation time. The early study has shown that the effect of the cutoff parameter on the 

network properties is minor when the cutoff distance ~ 4.5Å [103]. In this contact map, the edge 

distance was derived from pairwise correlations [97] using the program Carma [104], which 

defines the probability of information transfer across a given edge using the following equation: 

𝐶𝑖𝑗 =
< (∆𝑟𝑖⃑⃑ (𝑡)  ∙  ∆𝑟𝑗⃑⃑ (𝑡) > 

(< (∆𝑟𝑖⃑⃑ (𝑡)2 ><  ∆𝑟𝑗⃑⃑ (𝑡)2 >)1/2 
 

 



In the pairwise correlation equation (𝐶𝑖𝑗), the term  𝑟𝑖⃑⃑  ⃑(𝑡) is the positon of the atom used to 

define the node "𝑖” and ∆𝑟𝑖⃑⃑ (𝑡)=𝑟𝑖⃑⃑ (𝑡)−< 𝑟𝑖⃑⃑ (𝑡) > which represents the change in the position of 

this atom at two different times. Using the pairwise correlation data in the dynamic network 

model, the edges are weighted (wij) between two nodes i and j using the following calculation: 

wij = −log(∣Cij∣). The weight of the edge represents the probability for information to transfer 

across the edge between the two nodes, thus, a thicker edge represents a higher probability of 

information transfer.  

Each network was then further grouped into subnetworks, termed communities, based 

on groups of nodes with stronger and more frequent connection to each other. This was done 

by applying the Girvan-Newman algorithm to the original network [105]. Critical nodes that 

connect communities to another were also identified (Figure 12).   

 

RESULTS  

Docking Revealed Subtle Differences in the Binding Poses of Chiglitazar Compared to 

the Crystal Structures. For the PPARs, several structural features are conserved amongst the 

receptor subtypes (PPARα, PPARβ, and PPARγ) which include the activation function 1(AF-

1), DNA binding Domain (DBD), activation function 2 (AF-2) and the ligand-binding domain 

(LBD) [58,106,107] which the sequence alignment is presented in Figure 1 and shows a 65% 

homology among the three subtypes [15,27,107].  Based on the current experimental 

understanding of Chiglitazar’s activity on each receptor subtypes LBD the following receptors 

were used in our study  (Table S1): a partial agonist (APHM13) system of PPARα (PDB ID: 

3VI8) [108], a partial agonist (GW0742) system of PPARβ (PDB ID: 3TKM) [109], and a full 

agonist (Rosiglitazone) system of PPARγ (PDB ID: 2PRG) [110]. To validate the docking 

protocol, the crystal ligands were successfully docked back to their respective receptors, 

overlapping well with the original crystal pose (data is not shown). Using identical Glide XP 



docking protocol followed by the induced fit docking protocol, we docked Chiglitazar into each 

of the PPARα, PPARβ, and PPARγ receptors and compared the binding of Chiglitazar to the 

crystal ligands (Figure 3).  Though subtle differences in binding poses were observed between 

Chiglitazar and the crystal ligands, the overall agreement provided additional validation for the 

docking procedure used in this study.   

 

 
CRYSTAL 

STRUCTURE 
IFD SUPERIMPOSED LIGAND 

P
P

A
R

 α
 

   

 

 

 

 

 

P
P

A
R

 β
 

   

 

 

 

 

 
 

P
P

A
R

 γ
 

   

 

 

 

 

 
 

   



Figure 3. Structure comparison between the crystal complex and the induced fit docking of 

Chiglitazar to PPARα with a partial agonist APHM13 (PDB ID: 3VI8) , PPARβ with a partial 

agonist GW0742 (PDB ID: 3TKM), and PPARγ with a full agonist Rosiglitazone (PDB ID: 

2PRG). Chiglitazar is shown in green whereas each crystal ligand is shown in yellow. 

 

MD Simulation  

We used a combined trajectory from three independent simulation trajectories for our MD 

analysis. The protein ligand RMSD plot (Figure 4) of the combined trajectories shows that 

both the protein and ligand remained stable throughout the simulation runs. The Cα of PPARα 

experiences a gradual increase in deviation for the entirety of the simulation period; whereas 

chiglitazar, in complex with PPARα, undergoes more prominent deviations until roughly 300 

ns average ~1.25 Å for the last 750 ns. For PPARβ, Cα experiences gradually increasing 

deviations until the ~600 ns where it maintains ~2 Å for the remainder of the simulation period; 

as for chiglitazar in complex with PPARβ, only minor deviations were observed throughout 

the length of the trajectory maintaining ~1.5 Å. PPARγ’s Cα showed a gradual increase in 

deviation until roughly 500 ns where it maintained a deviation of ~2.6 Å; chiglitazar in complex 

with PPARγ showed the very little deviation across the simulation period maintaining roughly 

1.4 Å for the entirety of the simulation period. In addition to this, the RMSD of the simulated 

crystal systems for PPARα, PPARβ, and PPARγ are presented in Figure S2, and the crytal 

complex structures are well maintained in the MD simulation. The binding pose of Chiglitazar 

from the induced fit binding and the MD simulation are presented in the supporting (Figure 

S3) and showed very minor changes in the position of chiglitazar for each system.   

 

 

 

 

 



 

 

 

 
Figure 4 Average Root Mean Square Deviation (RMSD) plot for the three MD simulation runs 

of each protein-ligand complex over the length of the trajectory. The Cα-RMSD for the protein 

(shown in blue) and ligand RMSD (shown in red) is based on the initial protein alignment.  

 

MM-GBSA binding energy calculations predicted PPARγ was most energetically 

favorable followed by PPARα and PPARβ.  The MM-GBSA binding energy calculations 
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(Table 1) showed that chiglitazar binds most favorably to PPARγ (-144.6 kcal/mol) followed 

by a comparable binding interaction with PPARα (-138.0 kcal/mol) and PPARβ (-135.9 

kcal/mol), where PPARγ binds more strongly to chiglitazar than to PPARα by 6.6 kcal/mol and 

to PPARβ by 8.7 kcal/mol. Van der Waals interactions contributed the most to the binding of 

PPARγ (-87.9 kcal/mol),  PPARα (-82.9 kcal/mol), and PPARβ (-76.4 kcal/mol). However, the 

lipophilic term also contributed greatly to the binding of chiglitazar to PPARγ (-71.3 kcal/mol), 

PPARα (-67.5 kcal/mol), PPARβ (-71.9 kcal/mol).  

 

Table 1 MM-GBSA binding energies with standard deviation, of Chiglitazar bound to 

PPAR/α, PPAR/β, and PPAR/γ receptors.  

Term PPAR/α PPAR/ β PPAR/ γ 

ΔE (kcal/mol) -138.0 ±7.3  -135.9± 5.3 -144.6±5.6 

ΔΔE (kcal/mol) 6.6 8.7 0.0 

ΔVDW -82.9 ± 3.8 -76.4 ± 2.9 -87.9 ± 3.0 

ΔΔVDW 5.0 11.5 0.0 

ΔLIPO -67.5 ± 3.0 -71.9 ± 2.4 -71.3 ± 2.2 

ΔGBELE 12.4 ± 4.8 12.4  ± 2.3 14.6 ± 3.5 

Experimental EC50 (uM) 1.2 ± 0.3  1.7 ± 0.2 0.08 ± 0.02 
1
 ΔE: MM-GBSA binding energy (Complex − Receptor − Ligand). 

2 ΔΔE: relative binding energy with reference to an active complex. 
3 ΔVDW: Change of van der Waals energy (VDW + π-π stacking +Self-contact correction) in 

gas phase upon complex formation 
4ΔGBELE: Change of electrostatic interactions (GB/Generalized Born electrostatic solvation 
energy+ ELE/Coulomb energy +Hydrogen-bonding) upon complex formation.  

5 Change of lipophilic term (Lipophilic energy) upon complex formation. 

 

 

The Clustering Analysis Identified the Major Binding Poses of Each Complex System.  

As described in the methods, the major binding pose from each complex system was identified 

using structural clustering of the combined trajectories [94], where the most abundant structure 

was used to represent the structural family (Figure 5). Clustering of the combined trajectory 

(Figure S4) revealed three major clusters for PPARα (48.9%, 31.9%, and 18.1%), two clusters 

for PPARβ (98.8% and 1.09%), and one cluster for PPARγ (100%). Superimposition and 

inspection of the receptor complexes show that although there is a good overlap of receptors 



themselves, the position of chiglitazar in complex with each receptor reveals subtle differences 

that may be responsible for the differences in binding energies between systems. Chiglitazar in 

complex with both PPARγ and PPARα were positioned with the carbazole side chain wrapped 

around the left side (respective for the point of view used in this study) of helix 3, whereas in 

the PPARβ system chiglitazar positioned the 4-flourobenzophenone side chain around the left 

of helix 3. The carbazole side chain of chiglitazar shows enhanced interactions with helices 3, 

7, and 11 in the PPARγ and PPARα systems. Whereas PPARβs conformation allows the least 

potential for interaction on the lower right region of the binding pocket (H6, H7, H2’).  

 

PPARα PPARβ PPARγ 
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Figure 5 Structural comparison of the most abundant complex structure of each PPARα 

(3VI8), PPARβ (3TKM), and PPARγ (2PRG) including the superimposed complex. 

Chiglitazar is represented in blue, green, and red for the PPARα, PPARβ, and PPARγ 



complexes, respectively, and each receptor is colored based on mobility where blue is the most 

mobile and red is the least.  

 

The Two Dimensional Protein-Ligand Interaction Diagrams Revealed Key Residues 

Involved in the Binding of Chiglitazar to PPARα, PPARβ, and PPARγ. Key residues that 

maintained interactions with chiglitazar within 2 Å for at least 30% of the simulation period, 

were identified to be involved in the binding of chiglitazar to each receptor subtype using the 

Desmond Simulation Interaction Diagram (Figure 6).  

For PPARα, the major interactions included hydrophobic interactions between Tyr334 

and the oxygen at position 4 of chiglitazar for 97% of the simulation period, as well as the 

aromatic ring starting at position 30 for 56% of the simulation period (see Figure 10 for 

reference to numbering). Through an interaction with water, Gly335 maintained interaction 

with chiglitazar for 39% of the simulation period and Lys358 for 38% of the simulation period. 

Hydrogen bonding between the oxygen at position five and the hydrogen attached the nitrogen 

on position 7 also occurred for 67% of the simulation period. Hydrophobic interactions also 

played a key role in the binding of chiglitazar where residues Cys275, Cys276, Tyr314, Leu321 

and Val332 all interacted with chiglitazar for at least 30% of the simulation period.  

For PPARβ, the key interacting residue was Lys331 which interacted with the oxygen’s 

at positions 3 and 4 for 34% and 50% of the simulation run, respectively, while also interacting 

with the oxygen at position 3, through water, for 39% of the simulation period. His413 

interacted with the oxygen at position 4 for 34% of the simulation period as well as maintained 

hydrophobic interactions with the aromatic ring at position 30. Hydrogen bonding between the 

oxygen at position five and the hydrogen attached the nitrogen on position 7 also occurred for 

30% of the simulation period. In addition, Cys249 and Val305 maintained hydrophobic 

interactions with the carbazole side chain for at least 30% of the simulation period.   

 



 

 

 

 

 
 

 

 

 

 

 

 

 
Figure 6. Two and three dimensional interaction diagrams of Chiglitazar’s binding pose in 

complex with the PPARα (A), PPARβ (B), and PPARγ (C) receptors from the most abundant 

cluster of the combined MD simulation. 

 

For PPARγ, Glu343 interacted with the oxygen at positon 4 for 83% of the simulation 

period, and through an interaction with water Lys265 also interacted with the oxygen at 

A. 

B. 

C. 



position four for 30% of the simulation period. Lys367 interacted directly with the pyrrole core 

of the carbazole side chain for 42% and one of the aromatic rings for 46% of the simulation 

period. Hydrogen bonding between the oxygen at position five and the hydrogen attached the 

nitrogen on position 7 also occurred for 30% of the simulation period. Additionally, Ile431, 

Leu330 and Phe282 maintained hydrophobic interactions with chiglitazar for at least 30% of 

the simulation period. In addition, Figure S5 provides a histogram plot summarizing the type 

and fraction of interaction of each major residue in the combined trajectory systems.  

 



Figure 7 Illustrations of residue index as well as the %SSE in hPPAR receptors: PPARα 

(3VI8), PPARβ (3TKM), and PPARγ (2PRG). Protein receptors secondary structure elements 

and their compositions percentages are annotated. 

 

Secondary Structure Analysis Reveals Differences in Helices 2, 2’, 3, 5, and 11 Between 

Systems. The Secondary Structure Analysis (Figure 7) represents the residue index and the 



percentage of the secondary structure element abundance for the combined trajectory analysis. 

Changes in the SSE are represented by dips and reflect bends in the transmembrane regions.  

Black arrows are used to represent major differences in secondary structure between systems. 

The PPARα complex differs from both PPARβ and PPARγ in helix 2, 2’ and 11. The PPARβ 

complex differs from both PPARα and PPARγ in helix 3, 5, and 12, and the PPARγ complex 

differs from both PPARα and PPARβ in helix 2’ and 6.  

 

The Protein Cα Root Mean Square Fluctuation Confirms the Overall Stability of PPARα, 

PPARβ and PPARγ. Overall, the protein RMSF (Figure 8) for each system were comparable. 

The RMSF for each system remained relatively low for the residues of the core. The most 

significant differences were within the first 60 residues of each receptor with PPARα showing 

slightly larger fluctuations around residues 20 to 40, and from 50 to 60. Small fluctuations were 

present in the last 60 residues of each system, which may correspond to the movement of the 

terminal helix 12. However, differences were also observed for helix 11 between systems. The 

RMSF broken down by helix is presented in the supporting document (Table S2). 



 
Figure 8 Average receptor Protein Cα RMSF for all trajectories PPARα (red), PPARβ (blue), 

and PPARγ (green), presented with the sequences aligned. 

 

The Protein Root Mean Square Fluctuation of Chiglitazar in complex with each receptor 

subtype as comparable to the crystal systems for each PPARα, PPARβ and PPARγ.  In 

order to better understand the relative fluctuation of Chiglitazar, as compared to known full 

and partial agonists, we compared the RMSF of our combined MD simulation runs to a 

simulation run of the crystal ligand system for each PPARα, PPARβ and PPARγ (Figure 9). 

For PPARα with a partial agonist (APHM13), Chiglitazar shows comparable fluctuations when 

compared to the crystal system.  The RMSF of Chiglitazar and the crystal system for PPARβ 

with a partial agonist (GW0742) are very comparable with Chiglitazar showing a slightly 

higher fluctuation in the 2’ helix as compared to the crystal system.  For PPARγ, there are 

slightly higher fluctuations overall, as compared to the crystal system with a full agonist 

(Rosiglitazone). Specifically, out of the three subtypes, PPARγ shows the highest fluctuation 

of helix 12 when compared to the crystal systems.  
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Figure 9. Root Mean Square Fluctuations of Chiglitazar from our MD simulation compared to 

the crystal ligand systems for PPARα (A) (PDB ID: 3VI8), PPARβ (B) (PDB ID: 3TKM), and 

PPARγ (C) (PDB ID: 2PRG) where the date for the crystal ligands are in blue and chiglitazar’s 

data is in black. 

 

The Ligand Root Mean Square Fluctuation for Chiglitazar in Complex with PPARα, 

PPARβ and PPARγ show minor fluctuations. With the largest fluctuation (Figure 10) of 

chiglitazar being ~2.25Å in the case of PPARγ around position 18, the overall fluctuation of 
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chiglitazar remained minimal across the combined trajectories. The overall ligand RMSF of 

chiglitazar was very comparable for the PPARα and PPARγ systems, where PPARγ 

experienced ~0.25 Å greater fluctuations on average. The PPARβ complex showed the lowest 

ligand RMSF averaging ~1 Å. Additionally, a lower exposure to solvent of chiglitazar in 

complex with PPARβ, might explain the lower ligand RMSF observed when compared to 

PPARα and PPARγ. 

 

Chiglitazar 

 

 
Figure 10 Ligand RMSF diagrams of Chiglitazar in complex with PPARα (red), PPARβ (blue), 

and PPARγ (green) in the combined trajectories.  
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Torsional Angle Distribution Profile of the Ligand Reveals Key Differences in the Major 

Binding Pose of Chiglitazar in complex with PPARα, PPARβ and PPARγ. 

The torsional angle distribution profile of the ligand (Figure S6) presents differences of PPARβ 

when compared to PPARα and PPARγ consistent with PPARβ having a major binding pose 

that was fundamentally different from the comparable poses of PPARα and PPARγ. Most 

notably, PPARβ differed from PPARα and PPARγ in the two bonds nearest the carbazole side 

chain (depicted in purple and brown), as well as for both the angle connecting the carboxylic 

acid at positon 31 (dark green) and for the angle connecting the aromatic ring at positon 32 

(light green).   

 

The Dynamic Network Model Reveals Key Features in The Overall Connectivity of 

PPARα, PPARβ and PPARγ. For each PPARα, PPARβ and PPARγ, the backbone Cα 

residues were used to generate an unweighted network model (Figure 11A) where edges 

connect two residues that came in contact over within 4.5 Å for over 70% of the length of the 

simulation period. The edges were then quantified using a correlation matrix so that two 

residues with high correlation would have smaller edges and those with low correlation would 

have larger edges, as represented in the weighted network model (Figure 11B).  For each 

PPARα, PPARβ and PPARγ, the unweighted networks had very similar connectivity, as 

expected for their similar structures and sequence. There were subtle differences when looking 

at the weighted network however, for example in the PPARα system, the area with the lowest 

correlation was the omega loop, where, as for PPARγ it was helix 3 and 4/5, but for PPARβ 

the weighted network showed roughly equal edges throughout so no notable correlations were 

observed. 

 

 



PPARα PPARβ PPARγ 

   

   

Figure 11. Unweighted (A) and weighted (B) network model of PPARα, PPARβ, and PPARγ.  

 

 Using the weighted network model, communities were generated which grouped 

together residues that interacted more frequently and stronger than to residues in other 

communities (Figure 12). Critical residues were also identified as residues that were most 

essential in the collective motions of different communities (Figure 12 and Table S3). Most 

notably from the network analysis was the differences in communities around helix 12 where 

PPARα (residues 548-462), PPARβ (residues 431-438), and PPARγ (residues 467-473) had 

helix 12 involved in completely different communities. Specifically, for PPARα, Helix 12 is 
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B

V 



completely separate of other communities but shows some critical edges linking its 

communication network to the lower portion of helix 3. For PPARβ, the helix 12 forms a large 

community with the bottom of helix 3, but there are also minor connections to helix 4. Then 

for PPARγ, the major community formed with helix 12 includes helix 11 in its entirety.  For 

the critical nodes, although very comparable, it appears the critical nodes of PPARγ were 

slightly more focused around the binding pocket as compared to the greatly spread out nodes 

of PPARα and PPARβ.  
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Figure 12. Model of structural communities separated by color with critical nodes shown in 

purple for PPARα (A), PPARβ (B), and PPARγ (C). Helix 12 is circled.  
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A principal component analysis of PPARα, PPARβ and PPARγ revealed significant 

differences in helix 12. A principal component analysis of the combined trajectories calculated 

the lowest energetic modes of the global motions of each PPARα, PPARβ and PPARγ (Figure 

S7). The lowest vibrational mode, Mode 1 (Figure 13A), showed clear differences at helix 12 

where both PPARα and PPARγ are moving outward away from the receptor, whereas PPARβ 

is moving upward toward the receptor. Consistent with the principal component analysis, the 

RMSF (Figure 13B) of this mode showed that at helix 12 PPARγ had the highest fluctuations, 

followed by PPARβ and then PPARα. The top five modes of the combined trajectories, which 

include two additional PCA analyses from the last 500 ns of our combined trajectories split 

into two 250 ns blocks (Figure S7), and the RMSF plots of the top five modes of the combined 

trajectories (Figure S8) are presented in the Supporting Document.  

  



 

                     PPARα                   PPARβ                       PPARγ 

   

 
Figure 13. Snap shots of Mode 1 from the trajectory based principal component analysis (A) 

and Root Mean Square Fluctuation of Mode 1 (B). For the principal component analysis, 

vectors (red) are shown that are longer than 3.5 Å. 

 

Discussion 

With diabetes affecting over 420 million people worldwide, there is a dire need for safe 

and effective treatment. The current medications available, Thiazolidinediones (TZDs), are 

PPARγ full agonists associated with dangerous side effects including hepatotoxicity, increased 

risk for cardiovascular failure, myocardial infarction, increased risk for bladder cancer, and 

body weight gain. It has been shown that the over-activation of PPARγ is likely the major 
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causative factor for the negative side effects[64]. Despite this, the development of new PPAR 

agonists are still of great interest because of the unique and promising features of this class of 

drug, like the ability to directly target insulin resistance and provide a more durable glycemic 

(HbA1c) control when compared to other antidiabetic medications[33]. With this in mind, the 

use of non-selective PPAR pan agonists that interact with PPARα, PPARβ and PPARγ with a 

balanced activation profile is a promising new strategy for the treatment of T2DM.  

Chiglitazar is a pan agonist to the PPAR receptors which has shown promising results 

in both in vitro and in vivo experiments as for the treatment of Type 2 Diabetes Mellitus 

(T2DM). Currently in stage III clinical trials, chiglitazar does not produce the harmful and 

potentially fatal side effects, like cardiac toxicity, that other PPAR selective medications have 

produced. However, since there is no crystal structure of Chiglitazar in complex with any 

subtype of the PPAR receptor, the detailed structural and dynamic information needed to fully 

understand the mechanism involved remains elusive. Understanding and further exploiting the 

mechanism of chiglitazar toward the PPAR receptors offers a unique opportunity to further 

expand this new generation of T2DM medications. To this end, we modeled the binding of 

Chiglitazar in complex with PPARα, PPARβ and PPARγ using molecular docking, molecular 

dynamics simulations to analyze the specific binding interactions of each system including the 

major helices and residues involved, present the major binding pose as extracted from our 

multiple trajectory clustering analysis, quantify the binding interactions with our MM/GBSA 

binding energy analysis, provide dynamic insight into the complexes using a network model, 

and characterize the global motions of the receptor complexes using PCA.  

Experiments have shown that Chiglitazar acts on the PPARα, PPARβ/δ and PPARγ 

subtypes with an EC50 value of 1.2, 1.7 and 0.08 uM respectively [66-68]. From our MM-GBSA 

binding energy analysis we determined the relative order of binding favorability was to PPARγ 

(-144.6 kcal/mol) followed by PPARα (-138.0 kcal/mol) and PPARβ (-135.9 kcal/mol). Our 



relative order of stability matched the EC50 values reported in experiments and validated the 

accuracy of our calculations. Additionally, when compared to our MMGBSA binding energy 

calculations of  PPARα, PPARβ/δ and PPARγ in complex with their crystal ligands (Table 

S1), Chiglitazar bound more favorably by -12.2, -12.6, and -43.6 kcal/mol than the PPARα, 

PPARβ/δ and PPARγ crystal complexes, respectively (Table S4).  Clustering of the combined 

trajectory (Figure S4) revealed three major clusters for PPARα (48.9%, 31.9%, and 18.1%), 

two clusters for PPARβ (98.8% and 1.09%), and one cluster for PPARγ (100%). From this, we 

observe the binding pose of Chiglitazar was fundamentally different in the PPARβ system, for 

both the docking and MD simulation, when compared to PPARα and PPARγ. Specifically, for 

the PPARβ system we observed the 4-flourobenzophenone side chain of chiglitazar wrap 

around the left of helix 3 (respective for the point of view used in this study), rather than the 

carbazole side chain as observed in both PPARα and PPARγ.   

Pan and coworkers of Shenzhen Chipscreen Biosciences Ltd performed a molecular 

docking of Rosiglitazone, Pioglitazone, and Chiglitazar in complex with PPARγ based on the 

crystal structure (PDB ID: 2PRG, 2XKW) [66]. Pan and coworkers docking results showed that 

Chiglitazar and TZD class compounds differentially bind to PPARγ based on the fact that 

Chiglitazar did not show hydrogen binding to Tyr473 or His323, key interactions of PPARγ 

full agonists. Instead Pan and coworkers docking identified Chiglitazar’s major interactions 

were with Ser289, Arg288, and Glu343. Using a transactivity assay, Pan and coworkers further 

examined the different binding poses using serial site-directed mutations of Tyr473, Ser289, 

and Glu343 replacing these residues with Asp, Ala, and Ala, respectively. It is unexpected that 

the transactivity of Chiglitizar was comparable to rosiglitazone and pioglitazone, with the most 

notable difference being the Ser289 mutation. Despite the docking of Chiglitazar to PPARγ not 

showing a hydrogen bond interaction with Tyr473, the transactivity was diminished upon 

mutation of Tyr473, showing experimental evidence of full agonist activity, a result Pan and 



coworkers were not expecting based on the docking pose[66]. We examined our docking results 

of Chiglitazar into the PPARγ receptor (Figure S9), which is very similar to the ones obtained 

by Pan and coworkers.  It also showed the major hydrogen bond interactions to be with Arg288, 

and Glu343. However when compared to the 2D interaction diagrams generated based on our 

MD simulation results Chiglitazar interacted with each residue Arg288, Tyr473, Ser289, and 

Glu343, amongst others (Figure 6 and Figure S5). Thus, we believe the lack of interaction 

between Chiglitazar and Tyr473 could be a flaw due to the lack of dynamics in molecular 

docking method, and more advanced MD simulation was able to obtain more complete 

interaction between the drug and the protein. Assuming this, the MD derived binding pose and 

major interactions identified in our study help to explain Pan and coworkers unexpected full 

agonist transactivation pattern and further supports Chiglitazar’s full agonist activity.  

As compared to the crystal structures of known full and partial agonists of PPARα, 

PPARβ and PPARγ (Figure 9), the RMSF of Chiglitazar from our combined MD simulation 

runs showed comparable fluctuations, with some regions showing slightly higher fluctuations 

than others. For PPARα, there were slightly higher fluctuations in the beta region, where the 

omega loop, helix 2 and the 2’ helix fluctuate slightly more than the crystal structure. This 

larger fluctuation could be due to the less conjugated side chain of Chiglitazar in this pocket, 

which may undergo slightly weaker van der Waals stabilization, as compared to the crystal 

ligand.  In addition, the smaller fluctuations of the crystal system may be because Chiglitazar’s 

binding pose is positioned slightly closer to helix 12, whereas the crystal ligand is slightly 

closer to the beta region and able to form slightly stronger interactions in this region. Despite 

the differences in fluctuations overserved in the omega region, the comparison to the crystal 

system supports Chiglitazar’s role as a partial agonist to PPARα. The RMSF of Chiglitazar and 

the crystal system for PPARβ are very comparable with Chiglitazar showing a slightly higher 

fluctuation in the 2’ helix as compared to the crystal system, also supporting Chiglitazar’s role 



as a partial agonist at PPARβ.  For PPARγ, there are slightly higher fluctuations overall, as 

compared to the crystal system. Specifically, out of the three subtypes, PPARγ shows the 

highest fluctuation of helix 12 when compared to the crystal systems. Generally, a weaker 

binding ligand will show a higher fluctuations, but there have been exceptions to this, as 

exemplified by Dhankik, McMurray, and Kavraki[111]. Despite the higher fluctuations of 

chiglitazar at PPARγ in our study, it was a much stronger binder to PPARγ as compared to the 

crystal ligand which presents another example of this exception. Overall, the comparison of 

PPARγ to the crystal system does support its activity as a full agonist at PPARγ where the 

slightly higher fluctuations may be due to the differences in binding poses when compared to 

the crystal system. 

  



 

Table 2 Key residues of each receptors interaction with Chiglitazar1 2.  

PPAR/α  (kcal/mol) PPAR/ β  (kcal/mol) PPAR/ γ  (kcal/mol) 

ILE_241 -1.2     

LEU_254 -1.5   ILE_262 -2.7 

VAL_255 -2.9     

LEU_258 -2.9     

  VAL_245 -1.0 ILE_281 -1.1 

PHE_273 -1.0 PHE_246 -2.4 PHE_282 -1.2 

CYS_275 -2.6 ARG_248 -5.3 GLY_284 -2.6 

CYS_276 -6.7 CYS_249 -4.9 CYS_285 -5.6 

GLN_277 -1.4 GLN_250 -1.9 GLN_286 -3.8 

    PHE_287 -3.2 

THR_279 -4.7 THR_252 -4.2 ARG_288 -5.1 

SER_280 -3.2   SER_289 -1.9 

THR_283 -3.0     

    HIS_323 -2.6 

ILE_317 -2.9 ILE_290 -1.6 ILE_326 -4.3 

PHE_318 -1.8 PHE_291 -1.9 TYR_327 -4.7 

    MET_329 -1.1 

LEU_321 -5.0 LEU_294 -4.7 LEU_330 -4.3 

  ILE_297 -2.6 LEU_333 -2.4 

  VAL_298 -1.4   

MET_330 -1.8 LEU_303 -4.2   

VAL_332 -8.7 VAL_305 -7.8 ILE_341 -9.6 

ALA_333 -4.2 ALA_306 -2.3 SER_342 -4.3 

TYR_334 -3.6   GLU_343 -1.0 

ILE_339 -1.2   MET_348 -1.9 

ILE_354 -1.5 ILE_327 -1.6 PHE_363 -1.0 

MET_355 -1.8     

LYS_358 -3.6 LYS_331 -9.3 LYS_367 -1.2 

HIS_440 -1.6     

  MET_416 -3.1   

VAL_444 -1.0     

  ILE_420 -1.2   

  LEU_429 -1.2 LEU_465 -1.7 

    LEU_469 -2.1 

    TYR_473 -1.1 
1Decomposition of MM-GBSA by residue 
2Based on structure alignment 
 

 

With the relative order of stability validated with experimental findings, we set out to 

gain insight into the interactions that are involved in chiglitazar’s full activation of PPARγ but 

partial activation of PPARα and PPARβ. It is known that all three hPPARs subtypes have a 



large Y-shaped pocket including three sub-arms (arm Ⅰ, Ⅱ and Ⅲ) [109] with approximately 

1300-1440 Å3 volume to accommodate the ligand [58].  Of the three arms, studies have 

identified that full agonists of PPARγ primarily occupy arm I ( helices 3, 5, 11, and 12) with 

key interactions with residues H323, H449, and Y473 [112,113] but also including Cys 285[64], 

Ser 289, Tyr 327 [30,64,71], whereas partial agonist maintain primary interactions in arm II 

(helices 2’, 3, 6, and 7) and arm III (2, 3, 5, β-sheet), with low energetic favorability for any 

interactions with residues of arm I. In our study, five of six reported key interacting residues 

contributed over 1.0 kcal/mol to the final binding energy for PPARγ (Table 2): Cys 285 (-5.6 

kcal/mol) , Ser 289 (-1.9 kcal/mol), His 323 (-2.6 kcal/mol), Tyr 327(-4.7 kcal/mol), and Tyr 

473(-1.1 kcal/mol). Though primary interaction was between residues Ile 341, Ser342 and 

Glu343 of the beta region (total 14.9 kcal/mol), and therefore occupying branch III of the 

binding pocket, two of three major interactions consistent with PPARγ full agonists were 

achieved (His 323 and Tyr 473) which has been shown important to change the protein 

conformation and recruiting the coactivator responsible for insulin sensitivity [44,114]. As for 

PPARα, the primary interaction was also between the conserved residues of the beta region, 

with an overall energy contribution of residues Val332, Ala 333, and Tyr 334 contributing a 

total of -16.5 kcal/mol to the total binding energy. Though this interaction in arm II provides 

evidence of the partial agonist activity, a weak binding interaction between His440 (analogous 

to His449 in PPARγ) and chiglitazar was also achieved in this system. In the PPARα system 

Chiglitazar has a similar binding mode as dual agonist muraglitazar, forming two polar 

interactions with residues Gln277, Ser280 on helix 3 (Figure 5a) in arm Ⅰ, which are key 

residues responsible for agonist recognition [115]. Chiglitazar also formed additional pi–pi 

staking interactions with His440 on helix 11, formed hydrogen bonds with residue Thr279 on 

helix 3, and hydrophobic interactions with residue Leu460, Tyr464 on helix 12 in arm Ⅰ, 



which are important to stabilize AF-2 helix and maintain the protein active conformation for 

recruiting the coactivator. In the PPARβ system, the most favorable binding interaction was 

with Lys331 of helix 7 followed by interaction with the beta region through residues Val305 

and Ala306 contributing a total of -10.1 kcal/mol to the final binding energy. The PPARβ 

complex did not achieve any characteristic full agonist interactions, explaining the lower 

binding energy observed for this system. With all of this in mind, the ability of chiglitazar to 

activate PPARγ slightly different than other known PPARγ agonists while still maintaining 

several key interactions may be responsible for the decrease in negative side effects observed 

in clinical trials. 

Desmond’s simulation interaction diagrams provided insight into the structural 

similarities and differences between systems. From the two dimensional interaction diagrams 

it was clear the carbazole side chain of Chiglitizar maintained hydrophobic interactions in each 

system. Specific attention is given to conserved residues Lys358, Lys331, and Lys367 for 

PPARα, PPARβ, and PPARγ, respectively. In both PPARα and PPARγ, this Lys residue 

contributes to the hydrophobic interactions surrounding the carbazole side chain. However, 

because of the difference in binding pose the PPARβ complex shows Lys331 interacting with 

the oxygen at position 3 on chiglitazar. Comparing the interaction of Lys331 to the 

decomposition of MM/GBSA by residue, this interaction contributed the most to the overall 

energy (-9.3 kcal/mol) and may be the key residue involved in the binding of chiglitazar in the 

PPARβ complex system. From a visual inspection of the most abundant binding poses and by 

comparing the secondary structure elements, the 2’ helix was fundamentally different from 

both PPARα and PPARγ leaving free space around the binding pocket which appeared to limit 

the interactions of Chiglitazar in the PPARβ complex system, which may explain the lower 

binding energy. The secondary structure elements of each trajectory is provided in Figure S10 

which shows PPARγ having he greatest loss of helical structure at helix 12 over the course of 



the trajectory, followed by PPARα and PPARβ. Which we attribute to the increased 

fluctuations of helix 12 of PPARγ when compared to PPARα and PPARβ. 

Another conserved residue involved in hydrophobic interactions was Val332, Val305, 

and Ile341 for the PPARα, PPARβ, and PPARγ receptors, respectively. The MM/GBSA 

binding energy decomposition by residue showed that the interaction of Val332 and Ile341 

were the highest contributing residue for both the PPARα (-8.7 kcal/mol) and PPARγ (-9.6 

kcal/mol) receptors, respectively, and the interaction of Val305 was the second highest 

contributor for the PPARβ system (-7.8 kcal/mol). Indicating the importance of this binding 

interaction for the activation of each PPARα, PPARβ, and PPARγ.  

 Further exploring the dynamics of each PPAR receptor, we used the combined 

trajectories of each system to calculate protein network models which identified connections 

between residues in the system (Figure 11A), generated a weighted representation of each 

connection (Figure 11B), and grouped each connection into communities based on stronger 

and more frequent connections to other nodes within that communities (Figure 12). From the 

weighted and unweighted network models it was clear that the connections between the nodes 

of each system had distinct differences in both the connections to the node selected from the 

ligand as well as for helix 12. Furthermore, the community models showed entirely different 

communities for helix 12. In PPARα helix 12 has its own community with several critical edges 

linked to helix 3 and helix 11, in PPARβ helix 12 is grouped in a community with the lower 

portion of helix 3, and in the PPARγ model helix 12 is grouped with helix 11. The observed 

differences in connection between receptor subtypes could be linked to the reported activity of 

the receptor. Where full agonists may activate the receptor through a direct interaction with 

helix 11 and 12, whereas the partial activation may be more linked to interactions with helix 3 

and 4. For our PPARγ system, our critical node analysis was consistent with the reported key 

residues for full agonist’s activation [112,113]: H449, Cys 285, Ser 289, Tyr 327 [30,71]. As for 



PPARα, the critical node analysis accurately predicted the following known primary residues 

involved in partial activation: His440 (analogous to His449 in PPARγ), Thr279 on helix 3, and 

Leu460 which is important to stabilize AF-2 helix and maintain the protein active conformation 

for recruiting the coactivator. 

To further probe the overall motion of the receptors we performed a principal 

component analysis based on the combined trajectories. Through analysis of the PCA (Figure 

S7) and the RMSF (Figure S8) of each systems top five modes provided insight that is 

consistent with an ongoing hypothesis into the activity of the PPAR receptors. In short, it is 

hypothesized that the conformation of helix 12 is determined by the activity of the ligand (i.e. 

agonist, antagonist) [109]. Building from that, our observations have led us to speculate that 

rather than being bent fully in the direction of the agonist versus antagonist conformation, a 

partial agonist can adopt a more linear conformation, we present a visual example of this in 

Figure 14. In addition to the overall conformation of helix 12, we also speculate the degree of 

flexibility plays a role in activity. 
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Figure 14. Proposed helix 12 conformations of PPAR full agonist, partial agonists, and 

antagonist. Helix 10/11 used as a reference. Full and partial agonist conformations derived 

from our simulations, antagonist conformation from the crystal structure.  Coloring of helices 

10-12 are based on secondary structure. 

 

To gain more insight into the activation mechanism we used a coarse grained 

anisotropic network model to calculate the normal modes on PPARγ with the nuclear receptor 

coactivator 2 (NCOA2) peptide docked. NCOA2 is a key part of the full structure of the PPARγ 
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-Retinoid X Receptor (RXR) alpha complex on DNA (Figure S1), so we found it important to 

understand its role by exploring the top vibrational mode (Figure 15). From our analysis, it is 

clear that the directionality of H12 is switched in the presence of NCOA2 which we speculate 

may play a role in the complex each PPAR subtype forms with both the DNA binding domain 

(DBD) and the retinoid X receptor (RXR) at that site.  In mode 1 of PPARγ we observed that 

H12 was extremely flexible, folding left of the front view point into a conformation that opens 

up the co-activator binding site between helix 12 and helix 4/5. Although PPARα is also in a 

left bent conformation, the flexibility of helix 12 itself is minimal. In this case, helix 12 remains 

stable and the C-terminal region is more flexible in a stretching manner. Evident from the 

RMSF (Figure 15D) of the lowest energy mode of the PPARγ-NCOA2 complex derived from 

docking NCOA2 into our most abundant cluster of PPARγ and the complex of the original 

crystal structure of the PPARγ-NCOA2, our MD derived system produces nearly identical 

RMSF when compared to the crystal structure. The closely comparable RMSF results not only 

suggest the accuracy of this prediction but reinforce the accuracy of the computational methods 

used for our simulations. 
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Figure 15. Anisotropic network models of our most abundant cluster of PPARγ (A),  our most 

abundant cluster of PPARγ with nuclear receptor coactivator 2 (NCOA2) peptide docked (B), 

and the PPARγ-NCOA2 complex from the original crystal structure (PDB ID: 3DZY) (C). Plus 

an RMSF plot (D) comparing the fluctuations of the PPARγ-NCOA2 complex derived from 

docking NCOA2 into our most abundant cluster of PPARγ (B; blue) to the original crystal 

structure of the PPARγ-NCOA2 complex (C; red).  

 

Extrapolating this data with comparison to our principal component analysis, the 

position of helix 12 in the PPARα system may help to explain PPARα’s increased binding 

energy over PPARβ, whereas the lack of flexibility may explain PPARα’s lower binding energy 

when compared to PPARγ. PPARβ, on the other hand, is somewhere between the two extremes, 
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the difference being the direction which helix 12 is moving. Rather than folding to the left, 

helix 12 adopts a more linear conformation, significantly reducing the area of the co-activator 

binding pocket when compared to PPARγ. These observations are supported by the RMSF of 

both the original trajectory (Figure 8) as well as the RMSF of mode 1 from the normal mode 

analysis (Figure 13), where the fluctuations are largest in PPARγ followed by PPARβ and 

PPARα.  

Further support of our helix 12 hypothesis is provided through a deeper evaluation of 

the RMSD of helix 12 in each system (Figure S11-S12). We measured the RMSD of helix 12 

in each system using the initial crystal structure as a reference and defined helix 12 residues 

for PPARα (448-468), PPARβ (421-441) and PPARγ (457-477) using the flexible portion of 

this region (Figure S11). From this we observed a wide range of RMSD’s for PPARγ when 

compared to PPARα and PPARβ. Specifically we saw that PPARγ had two major RMSD’s of 

2.5Å and 4.5Å where are PPARα was primarily 1.5Å and PPARβ was primarily 2.5Å. We have 

also included a time series of each of the three trajectories RMSD per system and structural 

representation of the conformation of H12 in the two most abundant RMSD’s (2.5 and 4.5 Å) 

for PPARγ (Figure S12). The difference in helix 12 RMSD for PPARγ when compared to 

PPARα and PPARβ further supports our hypothesis that the degree of flexibility at helix 12 

plays a role in activity.  

Although the omega loop, between helix 2’ and 3, is also hypothesized to be involved 

in the allosteric activation of the receptor, the receptor structures used in our study have small 

breaks in the omega loops sequence, as a result of a structural alignment. Therefore, we are 

unable to provide insight into how this portion of the receptor is linked to its biological activity. 

In order to do this, a homology model of the receptors would need to be built to fill in the gaps 

in sequence and then used in a new set of simulations, which is a direction we are likely to 

pursue in a future study.  



 With the detailed interaction profile provided in this study, the key residues as well 

as their major poses were identified and may be useful in designing other partial or selective 

PPAR agonists with an enhanced binding profile by activating only the key portion of the 

receptors, or by using the key interacting residue information to modulate the interactions with 

each receptor subtype. This may ultimately help to identify a new medication which completely 

eliminates negative side effects associated with current T2DM medications and provide a 

higher quality of life from those being treated for T2DM. 

 

Conclusions  

With type 2 diabetes mellitus (T2DM) effecting such a broad range of the population, 

there is a dire need for effective treatment with minimal side effects. Previous T2DM 

medications like rosiglitazone (Avandia) and pioglitazone (Actos) are thiazolidinediones 

(TZDs) that are insulin-sensitizers acting as full agonists to the PPARγ receptor. TZDs worked 

efficiently to reduce antihyperlipidemic and antihypertensive effects, however with higher 

chances of myocardial infarction and weight gain, amongst other negative side effects, use has 

been significantly restricted to a last line of defense against diabetes. Chiglitazar is a new 

generation of non-TZD T2DM medications able to regulate gene expression due to its 

configuration-restricted binding as well as the phosphorylation inhibition of hPPARγ with a 

significantly lower chance of cardiac toxicity when compared to TZDs. Though initially 

thought to be a dual agonist of PPARα and PPARγ, research over the past decade has provided 

evidence of chiglitazar’s pan agonist activity toward each of the PPAR receptor subtypes. In 

this study we used molecular dynamics (MD) simulation and a MMGBSA binding energy 

analysis to elucidate the mechanism driving the interaction of chiglitazar and the PPAR 

receptor subtypes PPARα, PPARβ and PPARγ. Our MM/GBSA binding energy calculation 

revealed that chiglitazar most favorably bound to hPPARγ (-144.6 kcal/mol) followed by 



hPPARα (-138.0 kcal/mol) and hPPARβ (-131.2 kcal/mol). Through visual inspection of the 

structural clustering analysis, decomposition of the MM/GBSA binding energy by residue, and 

by use of the two dimensional interaction diagrams, key residues involved in the binding of 

Chiglitazar were identified and characterized for each complex system. Our detailed analysis 

supports Chiglitazar’s activity as a pan agonist and provides dynamic details to describe the 

underlying mechanism used to fully activate PPARγ and partially activate PPARα and PPARβ, 

which may aid in further development of this new generation of medication. Our detailed 

analyses support that the conformation and dynamics of helix 12 play a critical role in 

determining the different activities of the different type ligands (e.g. full agonist vs. partial 

agonist).  Rather than being bent fully in the direction of the agonist versus antagonist 

conformation, a partial agonist can induce a more linear conformation and have a lower degree 

of flexibility. 
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