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Abstract—Industrial Control Systems (ICS) are the brain and
backbone of nation’s critical infrastructure such as nuclear
power, water treatment, and petrochemical plants. In order
to increase interoperability, real-time availability of data, and
flexibility, information/communication technologies are adopted
in this domain. While these information technologies have
been effective, they are integrated into operational technologies
without the necessary security defense. Designing an effective,
layered security defense is not possible unless security threats
are identified through a structural analysis of the ICS.

For that reason, this paper provides an attacker’s point of
view on the reconnaissance effort necessary to gather details of
the system dynamics - which are required for the development
of sophisticated attacks. We present a reconnaissance approach
which uses the system’s I/O data to infer the dynamic model
of the system. In this effort, we propose a novel cyber-attack
which targets the controller proportional-integral-derivative gain
values in a constant setpoint control system. Our findings will
help researchers design more secure control systems.

Index Terms—cybersecurity, control systems, system identifi-
cation, covert attack

I. INTRODUCTION

Technology advancements and investments in smart man-
ufacturing have resulted in the integration of digital instru-
mentation and computational control through communication
networks. Smart manufacturing not only results in processes
which are more responsive, precise, reliable, and efficient, they
also provide better operational and management capabilities
through factory and supply chain visibility [3]. Although,
this transformation has many advantages, it has resulted in
systems that are traditionally configured to operate in an air
gap environment (i.e. a server cluster without access to the
internet) to be exposed to new threats which originate in
the cyber domain [18], [19], [22], [25], [29]. The perceived
threat of a large impact cyber-attack on control systems
proved to be a reality in 2010 with the launch of the Stuxnet
worm [9], prompting plant owners, engineers, technicians, and
researchers to feel the need to design and develop algorithms,
tools, and techniques to protect the security of control systems.
There are core features that separate the security of control
systems from that of the traditional information technology
(IT) domain. The fact that operational technologies (OT)
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and process control systems comprise proprietary hardware,
software, and communication protocols, presents a new set of
opportunities that require detection and protection techniques
beyond what IT security can offer. Security technologies in
the IT domain aim at protection of data and software by not
allowing access from unauthorized users. The integration of
IT security in control systems has lead to a false sense of
security, as no amount of perimeter hardening can guarantee
restriction of access by an attacker [10], [20], [27]. To address
this issue, researchers have put forth efforts in physics-based
detection methods to identify irregularities in the physics of
the system [6].

In order to design and develop appropriate detection and
protection techniques, researchers first turned their focus on
constructing attack models [1], [15], [16], [23], [24], [26].
However, there is a lack of research on how the attackers
are able to gain specific system knowledge that is required
to carry out a successful attack. In most research studies, it
is assumed that the reconnaissance efforts have been already
carried out and the dynamics of the systems are known to the
attackers. While attacks on cyber-physical systems (CPS) and
industrial control systems (ICS) can have devastating impacts
on human lives and the environment, it is not easy for attackers
to inflict their desired effects on a targeted system. Krotofil
and Larsen [8] outline five questions that an attacker should
be able to answer to successfully complete the stages of an ICS
kill chain1: (I) Access: How to utilize traditional IT network
hacking, (II) Discovery: How to discover the system config-
uration and dynamics, (III) Control: What system parameters
can be modified and in what degree these changes can be
implemented so they are not detected, (IV) Damage: How can
the attack scenario cause the greatest damage, (V) Cleanup:
How to stay undetected after the attack is completed.

This paper provides a perspective from an attacker’s point
of view on the reconnaissance effort necessary to gather
details of the system dynamics - which are required for the
development of sophisticated attacks. Our findings will help
researchers to design a more secure control system. We present
a reconnaissance approach which is based on a data-driven

1https://www.sans.org/reading-room/whitepapers/ICS/industrial-control-
system-cyber-kill-chain-36297



technique using the system’s input/output (I/O) data to infer
the dynamic model of the system. This process is known as
system identification. We propose a novel cyber-attack which
targets the controller Proportional-Integral-Derivative (PID)
gain values in a constant setpoint control system. Accurately
identifying the dynamic model of constant setpoint control
systems is challenging, because there is little excitation of the
system variables, i.e. the signal-to-noise ratio of the dynamic
characteristics of the system are too low. Thus, the intent
of our PID attack is to initiate excitation in the data so the
dynamic characteristics of the system are present in the data,
leading to more accurate system models. Additionally, we
demonstrate the covertness of our attack in regards to physics-
based detection algorithms.

The rest of this paper is organized as follows: Section II
introduces related works and gives necessary background
information. In Section III, we present our proposed system
identification attack and analyze the accuracy and covertness
of the attack. Finally, conclusions and possible directions of
future work are covered in Section IV.

II. BACKGROUND AND RELATED WORK

Numerous research studies have investigated security issues
of control systems; however, research communities (i.e. control
engineers and cybersecurity experts) often work independent
of one another in the areas of ”cyber” and ”physical” and
do not consider the overlap of the two domains. A good
example of this is when in the control area mathematical
models are constructed from the observed data to discover
the dynamic models of the system. This process is known
as system identification [11], which could be utilized by an
attacker to learn about the system dynamics, and as a result,
carry out more targeted attacks. However, not all system
identification approaches used by the control community, such
as an impulse-response, could be used by attackers for the
discovery of the system dynamics, because it might raise
an alarm by physics-based detection algorithms. In order to
provide more details on the proposed approach, we first study
control systems and the specific architecture that is the focus
of this paper.

A control system is composed of four general components;
the plant or physical system, sensors which measure the phys-
ical state of the plant, the controller which calculates control
commands to send the actuators, and the actuators which make
the physical changes to the plant. A continuous feedback-
loop design, depicted in Fig. 1, is the general landscape used
for continuous control of a system. Here, controlled variables
such as pressure, temperature, or flow rate are measured using
sensors, y(t), and new control commands, u(t), are sent to
actuators based on the calculated error, e(t), from their desired
setpoint. In this work, we consider constant setpoint systems,
i.e. the desired setpoint does not change in time. New control
commands are calculated using the error between the setpoint
and sensor measurements using the PID algorithm. The PID is
the most commonly applied algorithm in practice today [28].
It calculates the control command sent to plant actuators using

Fig. 1. Block diagram of a feedback-loop industrial control system. The
controller calculates control commands using the setpoint and feedback data
from the sensor measurements to control actuators.

three terms; proportion, integral, and derivative, hence the
name. Mathematically this is given as

u(t) = Kpe(t) +Ki

∫ t

0

e(t)dt+Kd
de(t)

dt
(1)

here, Kp,Ki, and Kd are the gain values of the proportional,
integral, and derivative terms, respectively. In practice on a
controller such as a programmable logic controller, a discrete
form of the PID is used, given as

uk = Kpek +Ki

k∑
n=1

en +Kd [ek − ek−1] (2)

Discrete PID control is usually implemented using the so-
called velocity form

uk = uk−1 +Kp[ek − ek−1] +Kiek+

Kd[ek − 2ek−1 + ek−2] (3)

which is obtained by subtracting uk−1 from uk. The obvious
advantage of the velocity form is that there is no need to keep
track of the sum of the errors.

In these types of controllers, it is possible to target and alter
the PID gain values on the controller. This attack can influence
the I/O data and result in a more accurate dynamic model of
the physical system.

A. System Models and System Identification

System models are a representation of real-world phenom-
ena where the essential aspects of a system are described by
mathematical equations [21]. Historically, system modeling
has been based on physical laws to derive system model. For
example, mechanical systems follow Newton’s and Hooke’s
laws, electrical systems follow Ohm’s and Kirchoff’s laws,
and thermodynamics follow the ideal gas law and entropy.

As complexity of systems has increased, the models which
describe their dynamics have become extremely complex as
well. Researchers could rely on abstraction or simplification
of the model, however, this could result in loss of information
about physical phenomena that might be crucial for system
discovery and analysis. In these cases, control engineers gen-
erally rely on system identification methods which construct
the mathematical models using the systems I/O data. One of
these mathematical models is the transfer function, which is
the ratio of the output of a system to the input in the Laplace



domain. The mathematical formula for the transfer function
H is given as

H(s) =
N(s)

D(s)
(4)

Here, N and D are polynomials with unknown parameters in
the frequency domain, (s).

To estimate the polynomial coefficients of the transfer
function we apply the MATLAB [13] discrete-time transfer
function estimation algorithm, tfest. This algorithm applies an
estimated output-error polynomial model represented as

y(t) =
B(q)

F (q)
u(t− nk) + e(t) (5)

where y(t) is the output, u(t) is the input, nk is the system
delay, and e(t) is the error. B(q) and F (q) are polynomials
with respect to the backward shift operator, q−1, and defined
as follows

B(q) = b1 + b2q
−1 + · · ·+ bnbq

−nb+1 (6)

and
F (q) = 1 + f1q

−1 + · · ·+ fnfq
−nf (7)

In this algorithm, the polynomial coefficients are initialized
using ARX, followed by nonlinear least squares search-based
updates to minimize a weighted prediction error norm.

The objective for control engineers and attackers is to
estimate the unknown parameters of the system model as ac-
curately as possible. Based on this accuracy, control engineers
can optimize system performance, whereas attackers can better
design attacks which are more likely to remain covert and
reach their goals.

B. Attack Scenarios for Control Systems

In order to compromise the control system, an attacker
could affect its forward and feedback streams by attacking
any of its components (i.e. controller, sensor, and actuator) or
its communication system. Long et al. [12] and Farooqui et
al. [5] provide examples of such attack models. In [12], the
communication network of the control system is arbitrarily
flooded, causing jitter and packet loss in the communication
links. Whereas [5] uses false signals that are randomly gener-
ated and transmitted to the controller and actuator to impact
the overall system. In these tactics, the system may become
unstable leading to unpredictable behavior which is easier to
identify using physics-based detection.

To this point, Teixeira et al. [26] investigated the attack
models demonstrated in [1], [4], [23] and concluded that the
design of a successful covert attack requires a high level of
knowledge about the dynamics of the system. For example,
the design and development of the man-in-the-middle attacks
carried out in [23], [24] was based on the assumption that
the dynamics of the control systems are known to the attack
model. Based on that, the proper values were computed and
injected into the feedback stream to remain covert. Hence,
these attacks require an inside knowledge of the dynamics

Fig. 2. General block diagram of an ICS continuous feedback-loop indicating
where cyber-attacks can target and compromise the system: (1) actuators, (2)
sensors, or (3) controller. Here, altered data from the attack is highlighted in
red which the physics-based detection intends to detect.

of the system and is limited to, and dependent on, inside
attackers.

To overcome this limitation, de Sá et al. [2], [4] de-
signed and developed cyber-attack techniques known as cyber-
physical intelligence attacks to acquire the system knowledge
necessary to model covert and controlled attacks. In their
earlier work, de Sá et al. [4] carried out a passive system
identification attack and eavesdropped on the forward and
feedback data streams to estimate the system model’s transfer
function. However, since the effectiveness of the passive attack
depends on the occurrence of events or excitation of the
system variables, the authors introduced an active system
identification attack [2]. In the second attempt, they tailor
signals to insert into the communication channel and observe
the resulting response. While, the active system identification
resulted in a faster discovery of system dynamics, there is a
higher probability of getting detected by an anomaly detection
algorithm.

In this paper, we further investigate an active system iden-
tification attack by altering the control command PID gain
calculation. We will demonstrate that while the attack is still
effective, it is much more difficult to detect our proposed
approach. In order to prove the covertness of the proposed
attack, we need to be able to pass the intrusion detection
systems (IDS) used by these type of control systems. In the
next section, we will discuss the different types of attacks
that occur in control systems and the IDS approaches that are
utilized to detect these attacks.

C. Physics-Based Anomaly Detection

The types of attacks that occur in a control system are
depicted in Fig. 2 and summarized as follows:

1) When an actuator or forward stream is compromised, the
actuation, vk, to the plant is different than the intended
action by the controller, vk 6= uk. This false actuation
will in turn affect the measured variables of the plant.

2) When a sensor or feedback stream is compromised,
the controller logic will accept incorrect input which is
different than the real state of the plant, yk 6= zk.

3) When the controller is compromised, it will generate a
control command that does not satisfy the intended logic
of the controller, uk 6= K(yk), where K is the control
logic and a function of the sensor measurements, yk.



In order to detect the above attacks, hardware- and/or
software-based intrusion detection systems are designed and
developed to monitor network and system activities to detect
malicious acts [7]. An attack’s ability to elude detection by the
IDS determines its covertness. Covertness can be analyzed in
the traditional IT domain as well as the physical domain; in
this work we are interested in the latter.

Physics-based detection focuses on the problem of using
real-time measurements to detect attacks. Two popular meth-
ods are anomaly-based and safety limit detection. Anomaly-
based detection relies on the fact that physical processes must
follow immutable laws of physics. In general, detection is
done through the use of mathematical models of the system
to predict the expected measurement, ŷk, using the current
control commands, uk, and previous sensor measurement,
yk−1.

The anomaly detection test itself uses a time series of
residual values, rk. The residual is the difference between the
measured and predicted values, given as

rk = |yk − ŷk| (8)

The residuals are then used in either a stateless or stateful
anomaly test. A stateless test raises an alarm every time a
residual value reaches a threshold value, rk ≥ τ , shown by
Fig. 3. In a stateful test the historical changes of the residual
are kept as an additional statistic denoted as Sk, to generate
an alert if Sk ≥ τ . There are many ways to keep track of
the residual for a stateful test, such as taking an average over
a time-window, an exponential weighted moving average, or
using change detection statistics such as the non-parametric
cumulative sum statistic.

On the other hand, safety limit detection is based on the
normal operating range of the system variables. In this case an
alarm is raised if the sensor measurement, yk, exceeds lower
or upper limits, given as

yk < ykmin (9)

and
yk > ykmax (10)

From the standpoint of a cyber-attacker the measure of
covertness in regards to physics-based detection is important.
Remaining covert is often necessary in order to be successful
in reaching their attack goals.

III. PROPOSED SYSTEM IDENTIFICATION ATTACK

In this section, we present the proposed covert active system
identification attack approach along with the running example
of an inverted pendulum. We begin by deriving the transfer
function of the inverted pendulum which mathematically de-
scribes the behavior of the system. The transfer function is
then used to perform simulations which model the behavior
of the system under normal and attack scenarios. We then
analyze the effectiveness and covertness of attacks which alter
the derivative gain value.

Fig. 3. Physics-based detection where the residual between the measured
value, yk , and model prediction, ŷk , is used for an alarm if exceeding a
given threshold, τ .

Fig. 4. Schematic showing the forces acting on an inverted pendulum attached
to a cart. Image adapted from Messner and Tilbury [17].

A. Inverted Pendulum as a Target System

In this example, the control system objective is to keep the
pendulum at the vertical position, i.e. a constant setpoint. To
accomplish this objective, a PID controller is used to apply
an input force to the cart on which the inverted pendulum is
mounted. The input and system forces are shown in Fig. 4.
Using the system forces, the transfer function can be derived.
We present a partial derivation, for the full derivation the
reader is referred to Messner and Tilbury [17]. First, the
horizontal forces acting on the cart lead to the following

Mẍ+ bẋ+N = F (11)

and summing the forces on the pendulum results in

N = mẍ+mlθ̈ cos θ −mlθ̇2 sin θ (12)

From here, substitution gives the first governing equation

(M +m)ẍ+ bẋ+mlθ̈ cos θ −mlθ̇2 sin θ = F (13)

We get the second governing equation by summing the forces
perpendicular to the pendulum at the axis, giving

(I +ml2)θ̈ +mgl sin θ = −mlẍ cos θ (14)

where I is the moment of inertia of the pendulum. To linearize
the governing equations we assume that the pendulum only has



Fig. 5. Block diagram of a continuous feedback-loop control system show-
ing where our system identification attack targets the Proportional-integral-
derivative (PID) gain calculation.

small deviations from the vertical position and use the small
angle approximation. This lead to a set of linearized governing
equations

(I +ml2)φ̈−mglφ = mlẍ (15)

and
(M +m)ẍ+ bẋ−mlφ̈ = F (16)

To obtain the transfer function of the linearized governing
equations, we first take the Laplace transform and assume zero
initial conditions. The resulting Laplace transforms are given
as

(I +ml2)Φ(s)s2 −mglΦ(s) = mlX(s)s2 (17)

and

(M +m)X(s)s2 + bX(s)s−mlΦ(s)s2 = U(s) (18)

In this study, we are concerned with the output of the angle,
Φ(s), and its relation to the force input, U(s). We eliminate
X(s) from (17) and (18) by solving for X(s) and then using
substitution. The transfer function of the pendulum angle
becomes

Ppend(s) =

ml
q s

2

s3 + b(I+ml2)
q s2 − (M+m)mgl

q s− bmgl
q

(19)

where
q = [(M +m)(I +ml2)− (ml)2] (20)

The linearized transfer function of the inverted pendulum is
used for the simulations carried out in this work.

B. Active System Identification Attack

The goal of a system identification attack is to increase the
accuracy of the transfer function estimation - which represents
the dynamics of the system. The accuracy of system identifica-
tion algorithms increases for data types that have high signal-
to-noise ratios for the dynamic characteristics of the system,
i.e. variable excitation. Thus, in order to force the excitation
in the system, we employ a novel attack which briefly targets
the PID gain values, Kp,Ki, and Kd, as depicted by Fig. 5.

The performance of the attack is evaluated through a set
of simulations performed in Simulink [14]. Simulink is a

Fig. 6. Simulink block diagram of an inverted pendulum transfer function
controlled using a discrete PID controller.
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Fig. 7. Results of the inverted pendulum angle under different derivative
attack scenarios. From top to bottom the derivative gain is 5 (no attack), 3.2,
1.05, 0.67, and 0.27, respectively.

graphical programming environment for modeling, simulating,
and analyzing multi-domain dynamic systems. We utilize its
environment to compute the control command, uk, using the
angle measurement, yk, in a simulated environment, shown in
Fig. 6.

In this paper, we run 100 trial simulations under normal and
different attack scenarios. The normal operation is based on
”tuned” PID gain values of 162, 124, and 5, respectively. The
different attack scenarios in this work reduces the derivative
gain in intervals of 20%, i.e. the derivative gain value is 5, 4,
3.2, 2.56, etc. In order to emulate a real-world control system,
we apply a discrete PID controller running at 200 Hertz, add
white noise to the sensor measurements, and run the simulation
for 4 seconds of real-time. The resulting angle measurements
under different derivative values is shown in Fig. 7. Hence, it
is clear that the derivative gain attack can force excitation of
the system variable, forcing the pendulum to oscillate about
its setpoint.

To evaluate the accuracy of the estimated transfer functions
we calculate the normalized root mean square error (NRMSE)
measure of the goodness of the fit. The NRMSE is a fitness
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value indicator of how well an estimated model matches
validation data, given mathematically as

NRMSE = 100

(
1− ‖ y − ŷ ‖
‖ y −mean(y) ‖

)
(21)

where y is the validation data and ŷ is the estimation model.
The validation data used in this analysis is generated using
an impulse response simulation using the linearized transfer
function given in (19). To make a direct comparison, the sensor
noise is removed from these simulations. It can be seen in
Fig. 8 that the estimated transfer function has an increased
NRMSE when we employ our attack and the derivative term
is decreased. The NRMSE mean value under the different
attack scenarios is presented in Fig. 9. It is demonstrated
that the transfer function estimation in general increases as
the derivative term is reduced and excitation of the angle
measurement is increased. However, we must also consider
the covertness of these attacks, which is analyzed in the next
section.

C. Covertness to Physics-based Detection

The measure of covertness in regards to physics-based
detection is analyzed in both anomaly and limits detection.
In an anomaly detection test the time-series residual values
are calculated based on control commands that are sent to
the actuator and the resulting angle measurement based on
the previous measurement (Fig. 3). In our attack, we do
not inject false data into the control loop, i.e. the actuator
and anomaly detection algorithm receive the same control
command. Therefore, the residual values are calculated to be
the sensor noise when system disturbances are not present.
Thus, we argue that our attack is covert to anomaly based
detection statistics.

On the other hand, the attack effects the angle measurements
and limit based detection can potentially identify the attack.
Therefore, the covertness depends on the amount of excitation
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Fig. 9. Normalized root mean square error results under different derivative
attack scenarios. Each data point represent the mean of 100 simulations.

we force during the attack and the allowable limits that are
set. To determine the limits in this study, we assume the angle
data follows a Gaussian or normal distribution and select a
limit which would give a false positive alarm once per year.
This is calculated using the approximate expected frequency
equation where the frequency of occurrence is 1 in

1

1− erf
(
kσ√
2

) (22)

Here, erf is the error function and k is the number of standard
deviations, σ. Using the frequency of our controller we get k ∼
6.4. Since the angle mean is 0 and our limits are symmetric,
the detection limit for an alarm is calculated as

|yk| > 0.022 (23)

Therefore, we infer the covertness of the attack with a com-
parison of the absolute maximum deviation from the setpoint
under each derivative attack scenario. It can be seen in Fig. 10
that the absolute maximum deviation from the setpoint slowly
increases until the derivative is reduced to below a value of
∼ 0.6, where the system becomes unstable. We argue that the
attack would likely remain covert until the unstable region is
reached.

IV. CONCLUSION

At present time, we propose an attack which targets the
PID gain values of a controller. The intent of the attack is
to force excitation in system parameters in order to increase
the accuracy of data-driven system identification in constant
setpoint control systems. The effectiveness of the attack is
analyzed with the use of simulations, and we demonstrate that
the estimated system model’s accuracy increases as we reduce
the derivative gain value. Additionally, the PID attack is covert
in regards to physics-based anomaly detection by virtue of not
injecting false data into the system. However, physics-based
limits detection can potentially detect our attack if the altered
PID gains force too much excitation into the system.
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the setpoint under normal (Derivative = 5) and different derivative attack
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Currently, we manually change the derivative gain and
check the results of the estimated model. Since the actual
system model is unknown from an attackers standpoint, our
future work includes the implementation of an algorithm
which watches the parameter deviations from the setpoint
and alters the PID gains in order to maximize excitation
while staying covert to limits detection. Additionally, we plan
to investigate the effectiveness of our PID attack in a real-
world simulated environment such as the Tennessee Eastman
Process. However, we foremost encourage the development of
new identification techniques in order to identify attacks of
this nature.
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