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Abstract—This paper focuses on the design and development
of attack models on the sensory channels and an Intrusion
Detection system (IDS) to protect the system from these types of
attacks. The encoding/decoding formulas are defined to inject
a bit of data into the sensory channel. In addition, a signal
sampling technique is utilized for feature extraction. Further,
an IDS framework is proposed to reside on the devices that
are connected to the sensory channels to actively monitor the
signals for anomaly detection. The results obtained based on
our experiments have shown that the one-class SVM paired
with Fourier transformation was able to detect new or Zero-day
attacks.

Index Terms—Industrial Control Systems, Sensory Channels,
Intrusion Detection System

I. INTRODUCTION

Industrial Control Systems (ICS) consists of a set of

hardware/software that is used to operate and/or automate

industrial processes. Depending on the industry, oil and gas,

water treatment plant, power plant, etc., each ICS is designed

to operate differently to manage critical processes. Supervisory

Control And Data Acquisition (SCADA), Distributed Control

Systems (DCS), and Programmable Logic Controller (PLC)

are different types pf Industrial Control Systems (ICS), which

are considered complex systems. The complexity of these

systems result from the fact that many components such as

actuators, sensors, and control logic, are not only are designed

to manage the critical operations but also connected to the

Internet so that business entities can also access the Human

Machine Interfaces (HMI), supervisory stations, and Remote

Terminal Units (RTU) for real-time monitoring of information.

Therefore, ICS have become high-value target of domestic and

foreign attacks and extremely challenging to protect. Based

on a survey conducted in 21 countries in 2017, half of the

industrial organizations reported at least one incident [1].

It is presented in the work of [2] that is possible to utilize

sensors as an endpoint to inject control commands and train the

implanted Malware for a more accurate attack on the system.

We extend this work with not only generating new attack

Identify applicable funding agency here. If none, delete this.

vectors based on the sensor’s output signal but proposing a

detection framework to protect the system from these types of

cyber-attack. Further, as a proof of concept, we utilize a test-

bed to conduct experiments on the designed attack models

and the proposed defense mechanisms. The rest of the paper

is organized as following: section 2 provides an overview of

related work, section 3 presents the attack models, including

the formulation of the encoding/decoding of a bit of control

command into the sensors signal. Section 4 discusses the

Intrusion Detection System (IDS), and Section 5 describes the

implementation of the attack models and the IDS framework

in the developed test-bed, and section 6 is a summary of our

contributions and plans for future work.

II. RELATED WORK

In general, sensory channel security research can be clas-

sified in three classes: the first is detecting attacks which

are trying to disable the sensory channel communication like

denial of service (DoS) attack [3]. Also, assessing the system

tolerance and integrity against sensor failure caused by an

attack.

The second is detecting and protecting against false data

injection attacks [4], [5]. False data injection (FDI) attacks

goal is to feeding wrong data into the sensory channel to

compromising the sensor readings to destabilize components

or processes which are relied on the sensor data. The third is

detecting the misusing of the sensory channel for a purpose

different than what they are designed to do [2], [6], [7]. In

sensory channel misuse, the attacker exploits a sensor or the

sensory channel as an auxiliary interface to inject data into

the system. An attacker can gain some level of control over

the system by using Electromagnetic Interference (EMI) to

inject data into analog sensors [6]. In [2], the authors showed

an already implanted Malware could be activated by sending

an activation code through a sensory channel. Uluagac et al.

also showed sensory channels could have enough bandwidth

to transmit Malware.

211

2019 Seventh International Symposium on Computing and Networking (CANDAR)

2379-1896/19/$31.00 ©2019 IEEE
DOI 10.1109/CANDAR.2019.00035



Fig. 1. A pulse P with the L(P ) = 7 and H(P ) = 181.

III. ENCODING/DECODING SCHEMES

In order to design the attack model, we have been able

to utilize the sensory channels as an end point and design a

Malware that is able to formally define the encoding/decoding

of a bit of control command into the sensor’s signal. In this

case, the assumption is that the attacker is able to conduct

reconnaissance techniques and utilize the discovery tools to

learn the critical control commands that are appropriate for

the system under attack. Based on the collected information

and the existing command-and-control path, the Malware is

able to encode control commands as a sequence of bits (1s

and 0s) from the received signals form the sensor.

In order to formally define the encoding/decoding function

into the signal, we looked at the concept of a Discrete-Signal

(DS). A DS is defined as a finite sequence of m consecutive

sample signal values, Vs, with the height of H(DS) and length

of L(DS) as follow:

DS = 〈V1, . . . , Vm〉 (1)

L(DS) = |DS| = m (2)

H(DS) = Max(V1, . . . , Vm) (3)

where H(DS) is the sample with the highest value and L(DS)
is the length of the DS samples list. A DS is called a rising

discrete-signal DSr if:

∀Vs,Vs+1 ∈ DSr : Vs − Vs+1 < −α (4)

where Vs and Vs+1 are two consecutive sample values in the

sample list and α is a threshold removing the signal noises. On

the other hand, a DS is recognized as a falling discrete-signal

DSf if:

∀Vs,Vs+1
∈ DSf : Vs − Vs+1 > α (5)

Further, we have define a pulse P as depicted in Figure

1 as a DS that is obtained by the concatenation of: (i) a

rising discrete-signal DSr, (ii) a sequence of samples Sb not

containing any rising or falling discrete-signal, and (iii) a

falling discrete-signal DSf . Therefore, a pulse is defined as

follows:

P = DSr · Sb ·DSf (6)

where ”·” is the concatenation operator. Further, 4 different

encoding schemes is defined given the constants C, bl and bu
as below:

SL1 In the encoded phase, a bit 1 (0) is encoded by generating

a pulse with a length L(P ) randomly chosen in the range

(C, bu] ([bl, C)). While, in the decoded phase, a pulse P
is decoded as 1 (0) if L(P ) > C (L(P ) < C).

SL0 In the encoded phase, a bit 0 (1) is encoded by generating

a pulse with a length L(P ) randomly chosen in the range

(C, bu] ([bl, C)). While, in the decoded phase, a pulse P
is decoded as 0 (1) if L(P ) > C (L(P ) < C).

SH1 In the encoded phase, a bit 1 (0) is encoded by generating

a pulse with a height H(P ) randomly chosen in the range

(C, bu] ([bl, C)). While, in the decoded phase, a pulse P
is decoded as 1 (0) if H(P ) > C (H(P ) < C).

SH0 In the encoded phase, a bit 1 (0) is encoded by generating

a pulse with a height H(P ) randomly chosen in the range

(C, bu] ([bl, C)). While, in the decoded phase, a pulse P
is decoded as 1 (0) if H(P ) > C (H(P ) < C).

The above concept is represented in Figure 2-(a) with a

sequence of pulses representing 11010010 bit-sequence that

are transmitted through the sensory channel, utilizing L(P ), a

constant value C = 10 as an encoding parameter, and SL1 as

the encoding schema. In our model, any P with more than

ten samples length L(P ) are recognized by the implanted

Malware as a 1 and the P with the length less than ten are

interpreted as a 0. The second encoding/decoding schema is

represented in Figure 2-(b) which is based on the H(P ), a

constant value C = 2500 as an encoding parameters, and SH1

as the encoding function. A pulse with the height of more than

2500 is interpreted as a 1 otherwise 0. With these two encoding

schemes, the decoding logic in the Malware is able to interpret

the values less than or greater than C as either 1 or 0.

As demonstrated in the above examples, it is possible to

construct different encoding schemes based on the different

constant C. This will result in a vast amount of possible

encoding combinations for every bit-sequence. This provides

flexibility for the attacker in selecting an appropriate encoding

function based on the infrastructure and the situation at hand

and the implented Malware only requires to detect the pulses

and have information about the constant C. However, it will be

challenging for a defense system to defend against these types

of attacks, since the encoding parameters are unknown. The

next section provides an overview and the detail explanation

of the proposed intrusion detection system (IDS) framework

for detecting the one-bit per pulse in the sensory channel.

IV. INTRUSION DETECTION SYSTEM (IDS)

The proposed IDS framework resides on the devices that

are connected to the sensory channels to actively monitor the

signals for detection. Figure 3 depicts an overview of the

control logic of the proposed framework. It is composed of two

main modules: the ”novelty detection module” and the ”Attack

signature matching module.” The first module is designed to

recognize behaviors that deviate from the normal (acceptable)

behaviors of the device. While the second module recognizes
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Fig. 2. a) Encoding 11010010 bit sequence with different pulse length (L(P )) with C=10. b) Encoding 11010010 bit sequence with different pulse height
(H(DS)) with C=2500.

Fig. 3. Sensory Chanel Intrusion Detection System

specific attacks already known. In the case that IDS identifies

an unknown behavior, with the novelty detection module, it

will directly raise an alert, otherwise, it will delegate the task

to the attack signature matching module. The attack signature

matching module performs an accurate analysis and it can

potentially discriminate known attack behaviors similar to the

normal behavior of the device. In particular, the signature

matching module allows the system to continuously improve

its detection with the continuous consolidated knowledge

about known attacks. This architecture is suitable for the

detection of unknown and known attacks.

Both of the two modules are based on machine learning

techniques: a semi-supervised approach for the novelty detec-

tion module and a fully supervised for the signature matching

module. The Figure 3 shows how each of the two modules is

trained and used.

In the training phase, the module learns how to differentiate

between the normal behavior of the signal and when under

attack. In this phase, data is collected based on the sensory

channel’s signal characteristics, i.e. transaction, frequency, and

amplitude during the normal operation and under the attack.

Then the sampling signals are transformed from a continuous

signal into a discrete signal so that a window shifting algorithm

can be used for feature extraction of the signal. Further, the

Fourier and/or Wavelet [8] transformations are applied to

clean and prepare the data for the semi-supervised classifi-

cation model. It is important to notice that for the novelty

detection module only the normal behaviors are needed while

for the signature matching module the attack behavior are also

needed.

In the Detection phase the trained model is utilized to detect

the attack in the sensory channel according to Figure 3 and

create an alarm to notify the control technicians.

The rest of this section is dedicated to describing the details

of the proposed framework.

A. Signal Sampling and Feature Extraction

In Figure 3 module (3) is responsible for sampling signals

and feature extraction. The signal sampling task transforms

a continuous signal into a discrete signal, i.e. a sequence

of sample signal values. Given the discrete signal, we use a

window shifting algorithm that at each iteration shifts of ρs
time units a windows of length ρl. For each iteration t a vector

xt of ρl elements containing all the signal value is generated.

This vector is the main input that our classification model will

process. Before performing any classification task, the signal

represented by the vector feature vt has to be cleaned and

transformed. To clean the signal we use the wavelet procedure

and as a transformation we use the Fast Fourier Transformation

(FFT) that changes the signal in the time domain to the

frequency domain. The final output after these two procedures

is a vector of new features that can be passed through standard

classifiers.

B. Novelty detection and Attack Signature Matching Modules

Once the features are cleaned and transformed, our proce-

dure uses standard supervised and semi-supervised classifica-

tion models (see Figure 3 modules 4 and 5) to discriminate

between attacks and good behaviors.

Supervised Classification Models for Attack Signature
Matching Module: The supervised classification models are

trained by using labeled examples from the misused signals

and the normal behaviors. In this paper, we consider several

classification models such as support vector machine (SVM),
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classification tree and random forest. To estimate the hyper-

parameter parameters we use a standard procedure consisting

of a nesting cross-folding procedure combined with the F1-

score.

Semi-Supervised Classification Model for Novelty Detec-
tion Model Supervised classification models, since trained

with attacks and good behavior examples, are able to recognize

well attacks similar to to the ones used in the training.

However, they do not usually perform well in the case of

new and unknown attacks. In the experiment section, we show

that the classification models trained with only one type of

attack have low accuracy in detecting different attacks. Our

experiment shows that even a small variation in a misused

signal makes the supervised classifier unable to detect the

attack. Therefore, an attacker can avoid detection by creating a

misused signal different from the training signals. To address

this problem, the IDS framework uses a semi-supervised

classification model, to solve the novelty detection problem.

Novelty detection is the problem to train a classifier that will

discriminate normal situations from novel one. The novelty

detection training procedure uses only examples representing

normal situations. In our specific problem, normal situations

are represented by the channel normal behavior and novel

situation should be the misused signal. Therefore, our training

dataset, Xtr = {x1
t r, . . . , x

n
t r}, contains only feature vectors

associated with normal behavior.

In this paper, we use a different algorithm that can be used

as novelty models including Gaussian mixture [9], isolation

forest [10], and one-class support vector machine (one-class

SVM) [11] by often manually setting different hyperparame-

ters. Differently from the supervised classification model, in

the novelty detection does not exist a standard procedure to

estimate the hyperparameters. This because the training set

contains only one class.

V. CASE STUDY

The selected case study for this paper is based on authors’s

previous work [12]. As described in Section 2, the first

Malware planted on the sensory channel utilizes the IR-toy

to manipulate the Kobuki’s IR sensor and inject pulses into

the sensory channel. The Malware sends commands to the IR-

toy to emit or not emit IR-light for a specific amount of time

according to SL0, SL1, SH0, and SH1. As a result, the injected

control command is able to disable the emergency flush in

the control logic of the PLC. This is possible by sending the

value (0X0001), which means the ON command, to the output

address (0X000A) of the PLC. Following the injection, the

second Malware, that is planted in the laptop, decodes the

injected command, utilizing the existing vulnerabilities in the

Modbus protocol that is able to disable the emergency flush

so the control technicians are not able to enable this feature.

This is considered a serious safety issue.

A. Data Collection and IDS Experimental Settings

To test the performance of the proposed IDS, the mea-

surement data from the robot’s sensory channel is collected

Attack
Encoding

Generated
Signals

H0 240
H1 240
L0 336
L1 351

TABLE I
NUMBER OF OF ATTACKS

ρl ρs Attack Sam-
ples

Normal
Samples

650 650 1159 1116
650 325 2322 2234
650 162 4660 4482
325 325 2326 2236
325 162 4668 4486
325 81 9342 8976
162 162 4672 4488
162 81 9350 8980
162 40 18943 18190
81 81 9354 8982
81 40 18951 18194
81 20 37907 36390

TABLE II
NUMBER OF NORMAL AND ATTACK EXAMPLES FOR EACH WINDOWS

LENGTH AND WINDOWS SHIFTING

with regards to the following two situations: 1- sensor under

normal circumstances, i.e., moving around on the floor. The

data collection process consists of measurement data from the

different types of floors, i.e. carpet, different types of woods:

floor, grass, cement, etc, 2- sensor under attack, which total of

1,167 attack signals for four different encoding and 6 different

commands was collected.

The injected signals were generated for a constant C between

ten and twenty for the length patterns (L0 and L1).

The selection of C ∈ [10−20] enables us to create misused

signals that are in the normal signal range and also do not

cause big changes in the normal Kobuki behavior. For the

height patterns (H0 and H1), it was hard to force the IR sensor

to generate a vast range of amplitudes. But we managed to

create misused signals that can use 1800, 2000, and 2500 as

the C without causing drastic changes in the Kobuki normal

operation. In Table V-A we provide a summary of all attack

signal that we collected.

After the signal collection, we used the time shifting

windows algorithm to collect different feature vectors about

normal behaviors and attacks. We consider 4 kinds of window

size ρl i.e. 650, 325, 162 and 81 sample values. The 650

windows length is determined according to the largest time

interval that we use to send a Malware command through the

kabuki sensory channel. For each window size ρl we consider

different windows shift ρs, i.e. ρl, ρl/2, ρl/4.

In table II are provided the total number of attacks and

normal behavior for each windows length ρl and windows

size ρs.

For each of the cases reported in Table II, we used the

following four transformation pipelines:

• No Transformation The original samples generated by

the windows shifting algorithm are directly taken in input

by the classifier model.

• Fourier Fourier transformation is the unique transforma-

tion applied before the classification.
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• Wavelet Wavelet transformation is the unique transfor-

mation applied before the classification.

• Wavelet + Fourier The examples are first cleaned from

the noise with the Wavelet transformation and after the

Fourier transformation is applied.

In the case of the wavelet, we consider all the 4 different

wavelets described in Section IV-A. For each pipeline, we

consider different classifier models. We use as supervised

classifiers SVM with several kernels (linear, polynomial, and

RBF), Decision Tree and Random Forest. While as semi-

supervised classifiers we use Gaussian Mixture Model, Iso-

lation Forest, and one-class SVM. The procedures to estimate

all the hyperparameters are reported in Section IV-B.

To test all the pipeline transformations combined with all

the classification models over the different dataset reported in

table II we use a 10-folds cross folding procedure. The 10-

folds cross folding procedure creates for each fold a training

set (90% of the original size) and a test set (10% of the original

size). To measure the performance we use the recall [13] that

is the percentage of correctly classified element in a specific

class, e.g. attack or normal behavior. For each fold and each of

the two classes, attack or normal behavior, we computed the

recall. We finally average all the results among all the folds.

In the case of the semi-supervised classification model for the

novelty detection problem, for each fold from the train set, we

remove all the examples representing an attack.

B. Result Analysis

In this section, we discuss all the results obtained by each

experiment described in the above section. More specifically

we discuss:

• Results for supervised classification models.

• Performance of supervised classification models in the

presence of unknown or new attacks.

• Performance of semi-supervised classification model for

the novelty detection problem.

• Sensibility to the variation of windows size and windows

shifting.

More we briefly discuss the time performance of our approach

and we finally conclude with the final discussion.

1) Results for supervised classification model: In Table III

are reported the classification results only for the SVM

classifier with the RBF kernel for all the transformation

pipelines. This because the SVM classifier with RBF in all

the pipelines achieves always the best performance w.r.t. the

other classifiers. The result in Table III refers to a windows

length ρl = 650 and a windows shifting ρs = 162. In addition,

in the case of the wavelet, we report only the best result of

recall among all the wavelet functions.

The main result that we can observe in Table III is that in

the supervised classification the prepossessing of the examples

with Fourier and/or wavelet is not necessary. In fact, not using

any of those transformations brings the best results. Moreover,

it is possible to see according to the recalls values that

supervised classification provides an almost perfect separation
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Fig. 4. Recall for Two-Class SVM.
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Fig. 5. Recall for One-Class SVM.

between attack and normal behavior (more than 0.996 recall

for each class).
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Transformation
Normal
Detection
Recall

Attack
Detection
Recall

Total
Weighted
Recall

H1

Detection
Recall

H0

Detection
Recall

L1

Detection
Recall

L0

Detection
Recall

No 0.993 0.997 0.996 1.0 1.0 0.999 1.0
Fourier 0.993 0.997 0.996 1.0 1.0 0.999 1.0
Best Wavelet 0.991 0.996 0.994 1.0 1.0 0.996 1.0
Best Wavelet +
Fourier

0.989 0.994 0.993 1.0 1.0 0.992 1.0

TABLE III
DETECTION RESULT FOR TWO-CLASS SVM TRAINED WITH SAMPLES FROM NORMAL AND ALL ATTACK SCHEMA DATASETS (ρl = 650 & ρs = 162).

2) Performance of Supervised Classification Models in the
Presence of Unknown or New Attacks.: In this analysis, we

want to verify if supervised classification models can detect

new or unknown kinds of attacks, i.e. kind of attacks not

present in the training set. In fact, in this experiment, we keep

in the training only one kind of encoding schema for the attack

and we test the model with all the kinds of attacks. In Table IV

the column ”Trained With Attack Encoding Schema” indicates

which kind of attack is the only one present in the training set.

Differently from the Table III, in Table IV we report the recall

for each specific kind of attack (see the last four columns).

Unfortunately, as we can see from the Table IV, in the case of

the encoding schemes H0 and H1, the recalls of lo and l1 are

approximately close to zero. This means that we supervised

classification model is not always able to detect unknown or

new kinds of attacks. For this motivation, we adopt a semi-

supervised classification approach.

3) Performance of Semi-supervised Classification Model for
the Novelty Detection Problem.: In Table V, we report the

results for the one-class SVM with the hyperparameter esti-

mation procedure defined in Section IV-B for all the pipelines.

This procedure in term of recall outperforms all the other semi-

supervised approaches that we use. For this motivation report

only these results. Differently, from the supervised classifica-

tion models, the Fourier pipeline significantly improves the

performance of the semi-supervised classification model, and

make in term of performance the semi-supervised equal to the

supervised one. Moreover, It is important to notice that in the

training set of the semi-supervised classification models are

not present any attack example. Therefore, if the recalls of all

the kind of attacks are greater or equal than 0.982, at least

in the case with the Fourier transformation, it means that the

semi-supervised classification Model is also robust to new or

unknown attacks. This makes the Fourier pipeline and the one-

class SVM with our hyperparameter estimation preferable to

all the other models presented.

4) Sensibility to the Variation of Windows Size and Windows
Shifting.: The window length ρl and the windows shifting

ρs parameter can impact on the performance of both super-

vised and semi-supervised classification models. Above was

shown that in the best case situation for supervised and semi-

supervised classification models are the SVN with the RBF

kernel and the one-class SVM with RBF kernel and Fourier

transformation, respectively. These are the models we consider

to show the sensibility analysis about ρl and ρs. In Figure 4.a

and Figure 4.b in the case of the supervised classification

model, we show for each window length ρl and each windows

shifting ρs in the values of the recall for normal behavior and

attack, respectively. In Figure 5.a and Figure 5.b similar results

are reported in the case of the semi-supervised classification

model. As we can see from the above figure changing the

windows shifting ρs does not change significantly the recall

values. While the change of the length of the window ρl can

substantially modify the recall especially in the case of the

semi-supervised classification model, i.e., the one one-class

SVM with RBF kernel and Fourier transformation. Therefore

it is really important to use the largest as possible windows

length that the IDs has to consider. In addition, note that the

window length has to be similar to the maximum time interval

to send a Malware command. Of course, the strategy to avoid

the IDS detection of the attacker communicating with the

Malware is to enlarge as much as possible this time interval.

Fortunately, during the entire duration of an attack (i.e., the

Malware command is sent through the sensory channel ) the

signal through the sensory channel is drastically modified and

the kabuki is not able to understand the environment (e.g.,

obstacle). This means that for large time interval the robot is

clearly faulty, then there is a limit to the size of the attack

time interval.
5) Time Performance: We conducted another experiment

to evaluate the models time performance for both supervise

and semi-supervised models. We implemented the models in

a python script and ran them on a Raspberry Pi. Since most

industrial field devices are using mid-range processors, we

chose Raspberry Pi 3 as a platform to have the same processing

power. The average time from the moment the signal is passed

to the transformation procedure until the SVM reports the

result is about 0.19 seconds. The maximum reported time was

0.28 seconds which it can be an acceptable time for a python

script running on a mid-range processor.
6) Final Discussion: In these experimental results, we ob-

serve that one-class SVM with our hyperparameter estimation

procedure outperforms all the other models. This is especially

true in its ability to detect new or unknown attacks. To achieve

this result the one-class SVM has to be paired with the Fourier

transformation. Moreover, we realize that the use of wavelet

transformation to clean the signal from the noise does not bring

effective improvement both with the supervised and semi-

supervised procedures. In addition, we observe that once the

model is trained the (one-class SVM and SVM) the inference

time is really fast and it can be developed on lower power

consumption and a limited platform like the Raspberry Pi,

and used in real-time.

VI. CONCLUSION AND FUTURE WORK

Advanced Persistent Threat (APT) is a sophisticated and

coordinated Malware that is designed to impact the targeted
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Transfo-
rmation

Trained
with Attack
Encoding
Schema

Normal
Detection
Recall

Attack Detec-
tion Recall

Total
Weighted
Recall

H1

Detection
Recall

H0

Detection
Recall

L1

Detection
Recall

L0

Detection
Recall

No H1 0.998 0.997 0.998 1.0 0.0 0.0
No H0 1.0 1.0 1.0 1.0 0.0 0.0
No L1 0.0 .995 0.992 0.993 1.0 1.0 1.0
No L0 0.997 0.996 0.996 0.785 0.998 0.988
Fourier H1 0.998 0.997 0.998 1.0 0.0 0.0
Fourier H0 1.0 1.0 1.0 1.0 0.0 0.0
Fourier L1 0.995 0.992 0.993 1.0 1.0 1.0
Fourier L0 0.997 0.996 0.996 0.785 0.998 0.988
Wavelet H1 0.997 0.996 0.997 0.933 0.0 0.0
Wavelet H0 0.999 0.998 0.998 0.999 0.0 0.0
Wavelet L1 0.996 0.994 0.995 1.0 1.0 0.999
Wavelet L0 0.996 0.994 0.995 0.894 0.718 0.979
Wavelet +
Fourier

H1 0.999 0.998 0.999 1.0 0.001 0.005

Wavelet +
Fourier

H0 1.0 1.0 1.0 1.0 0.0 0.0

Wavelet +
Fourier

L1 0.993 0.989 0.992 0.995 1.0 1.0

Wavelet +
Fourier

L0 0.996 0.994 0.996 0.767 0.942 0.978

TABLE IV
DETECTION RESULT FOR TWO-CLASS SVM TRAINED WITH SAMPLES FROM NORMAL AND ONE ATTACK SCHEMA (ρl = 650 & ρs = 162).

Transformation Normal
Detection
Recall

Attack De-
tection Re-
call

H1 Recall H0 Recall L1 Recall L0 Recall

No 0.990 0.539 0.5 0.5 0.527 0.607
Fourier 0.990 0.994 0.997 1.0 0.982 1.0
Best Wavelet 0.990 0.514 0.413 0.428 0.547 0.611
Best Wavelet + Fourier 0.991 0.962 0.877 1.0 0.958 1.0

TABLE V
DETECTION RESULT FOR ONE-CLASS SVM TRAINED WITH NORMAL SIGNAL SAMPLES (ρl = 650 & ρs = 162).

system by gaining access to the targeted system and taking

over the control of the system. In this paper, we have

demonstrated that the sensory channels have the potential

to be misused as a control-and-command path to coordinate

Cyber-attacks.

In order to protect the ICS from these types of Cyber-attacks,

an Intrusion Detection System (IDS) is proposed to actively

monitor the sensory channels and conduct signal sampling

and feature extraction so that the classification models can use

these data to differentiate between the normal and modified

signal pulses. The results obtained based on our experiments

have shown that the one-class SVM paired with Fourier

transformation was able to detect new or Zero-day attacks.
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