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Flagellated bacteria swim in circles near a rigid wall
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The rotation of bacterial flagella driven by rotary motors enables the cell to swim through fluid. Bacteria
run and reorient by changing the rotational direction of the motor for survival. Fluid environmental conditions
also change the course of swimming; for example, cells near a solid boundary draw circular trajectories rather
than straight runs. We present a bacterium model with a single flagellum that is attached to the cell body and
investigate the effect of the solid wall on bacterial locomotion. The cell body of the bacterium is considered to
be a rigid body and is linked via a rotary motor to the elastic flagellum which is modeled by the Kirchhoff rod
theory. The hydrodynamic interaction of the cell near a solid boundary is described using the regularized Stokes
formulation combined with the image system. We show that the trajectories of the bacteria near a solid boundary
are influenced by the rotation rate of the motor, the shape of the cell body, helical geometry, and elastic properties

of the flagellum.
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I. INTRODUCTION

Flagellated microorganisms are propelled by rotating their
flagellar motors that are embedded in the cell membrane.
The rotation of each motor is transmitted to the flagellar
filament via a flexible hook, resulting in the rotation of the
flagellum so that the cells can swim [1-9]. Flagellated bacteria
run forward or backward by a unidirectional rotation of the
motors; however, they can reorient by changing the rotational
direction of the motor or by transforming the flagellar forms
to survive in a fluid-filled environment.

In the absence of any environmental obstacles such as
rigid walls, multi-flagellated bacteria such as Escherichia
coli run approximately straight when all flagella form a left-
handed helical bundle while keeping all motors spinning
counterclockwise (CCW). However, E. coli cells take clock-
wise circular trajectories when they swim near rigid surfaces
[10-12]. It has been observed that bacteria swim toward the
rigid surface to be entrapped nearby, which is crucial for the
initiation of biofilm formation [13—-15]. The trajectory drawn
by the cell entrapped near the surface was found to be circular,
as is commonly observed under the microscope [11,12,16].
It is also reported that a single-flagellated bacterium Vibrio
alginolyticus swims in circles near a surface [17,18].
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Bacterial swimming near a no-slip planar wall was ana-
lyzed as early as 1965 by Reynolds [19], who considered
the swimmer as an infinite waving sheet. Ramia et al. [7]
employed the boundary element method to describe the hy-
drodynamics of bacteria near a planar wall, showing that when
it swims close to a solid boundary, the swimmer exhibits a
circular motion. Lauga et al. [20] investigated experimentally
and numerically the motion of an E. coli bacterium near a
solid wall by employing resistive force theory. They also
found a circular clockwise rotation of bacteria with a good
agreement in experimental and computational results. Both
computational models in Refs. [7,20] take the form of a
spherical shape of the cell body, whereas a very common
shape of the cell body is a prolate spheroid. Giacché et al. [16]
further investigated the hydrodynamic trapping mechanism
focusing on the correlation between the radii of circular
trajectories and the separation gap from the surface as the
aspect ratio of the cell body and the flagellar geometry are
varied. Shum et al. [21] investigated the near-wall bacterial
locomotion under various geometrical conditions of the cell
body and the flagellum and found an optimal condition for
power efficiency. However, their flagellum is modeled as a
rigidly rotating body although actual flagella exhibit elastic
properties such as polymorphic transformations [5,22-24].

In this paper we use a comprehensive model for a freely
swimming monotrichous bacterium including a cell body and
a flexible helical flagellum equipped with a motor to investi-
gate the swimming motion of a single-flagellated bacterium
near a solid planar wall and to explore the dependence of its
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FIG. 1. A schematic view of a single-flagellated bacterium near a rigid planar wall located at z = 0. The flagellum of the cell is represented
by a space curve X and its associated orthonormal triad {D', D?, D*}. The surface of the spheroidal cell body is represented by two Lagrangian
descriptions: X, as a massless boundary and Y}, as a massive boundary. The distance between the center of mass of the cell body and the wall
is denoted by /(z), and the inclination angle between the major axis of the cell body (—E;) from the z = 0 plane is denoted by 6(¢) at time ¢.

swimming pattern on various physical parameters such as the
shape of the cell body, the helical geometry, and the elastic
properties of the flagellum and the rotational frequency of
the motor. Here a single flagellum can also be interpreted
as a flagellar bundle in E. coli bacteria when they take a
forward run.

The mathematical model of a single-flagellated bacterium
for the present study consists of a cell body and a helical
flagellum that share a motor at a junction. We describe the
elastic flagellar filament as a space curve associated with
orthonormal triads that measure the amount of bending and
twisting along the rod, which is based on the Kirchhoff rod
theory [25-27]. The penalty idea [28] is used to model the
cell body as a rigid body that can translate and rotate as a
whole. Unlike the general mathematical models used in pre-
vious studies [7,20,21], we do not impose the time evolution
(velocity or position) of the rigidly rotating flagellum; instead,
we rotate the motor only of which the torque is propagated
along the flagellum, eventually resulting in the rotation of
the whole flagellum. The cell body naturally counterrotates
to balance the torque generated at the motor.

In order to investigate the hydrodynamic interaction of
the cell near a solid boundary, we employ the method of
image system of the regularized Stokes formulation which
was introduced by Cortez et al. [29,30]. Whereas the method
proposed in Refs. [29,30] computes the linear velocity of fluid
with no-slip boundary given external force and torque, our
model further requires one to compute the angular velocity to
rotate the triads of the flagella. We provide the explicit form
of the angular velocity, which is obtained by taking the curl of
the linear velocity and its detailed computational recipe.

II. MATHEMATICAL MODEL

A mathematical model of a single-flagellated bacterium
consists of a spheroidal cell body and a helical flagellum,

whose one end is attached to the cell membrane. See Fig. 1
for the schematic diagram of a cell in the presence of the solid
planar wall. The flagellum is a long-thin filament and thus can
be described with Kirchhoff rod theory [25]. The cell body can
be described as a rigid body using the penalty method [28,31],
and the hydrodynamic interaction of the bacterium can be
described by the regularized Stokes formulation [26,29,30].

The Kirchhoff rod representation for the flagellum is a
space curve X(s, #) together with its associated orthonormal
triad {D'(s, ), D*(s, 1), D3(s, )} along the curve, in which
the curve describes the centerline of the flagellum and the
triad measures the amount of bending and twisting of the
flagellum. Here ¢ is time and s is a Lagrangian coordinate with
0 < s < L, where L is the length of the helical flagellum. The
initial shape of the helical centerline X(s, 0) is described as
follows [32]:

X(s, 0) = (r(s) cos(as), r(s) sin(as), 5), (1)

where « is the wave number and the helical radius r(s) is a
variable function defined as

rs) =ro(l —e ™) for 0<s<L, )

where k is a constant that determines how rapidly the helix
reaches its maximal radius. The helical radius increases grad-
ually to be ry for the helical flagellum. For the orthonormal
triad, the vector D*(s, 0) is initially defined as a unit tangent
vector to the curve X(s, 0), and the other two vectors, D! (s, 0)
and D?(s, 0), are normal and binormal vectors. Note that the
initial configuration of the helical flagellum is at rest, and
its deformation causes elastic restoring force to the reference
configuration.

The cell body is built as a hollow spheroid which is
represented by two Lagrangian descriptions: one is a massless
surface denoted by Xy (g, r, t) which interacts directly with
the surrounding fluid, and the other is a massive one denoted
by Yu(g, r,t) which carries all of the mass, where (g, r)
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designates points on a rectangle I". These two descriptions are
supposed to be the same body and thus linked by a system of
stiff springs with O rest length. The massive surface Yy (g, r, 1)
has no direct interaction with the fluid and moves as a rigid
body in a vacuum, with the only forces and torques applied
on the body being the forces generated from the springs that
connect the massless description to the massive description of
the rigid body. Mathematical formulation for the dynamics of
the two descriptions Xy, (q, r, t) and Yy (g, r, t) for the rigid cell
body will be described in detail below.

We now state a coupled system of fluid-structure inter-
action equations for a swimming bacterium in a viscous
incompressible fluid as follows:

0=-Vp+uAu+g, 0=V-u, 3)

oF oN X
O:f—i-a—, O=n+—+|— xF), “)
N

Fb(Q7 r’t)ZKb[Yb(qv rvt)_Xb(Q7 r’t)]v (5)
L
g(x,1) = / [—£(s, )Ws[x — X(s. )] ds
0
1 L
5V xf [—n(s, Ds[x — X(s. )] ds
0

+ /Fb(q, r,)vs[x — Xp(g, . t)]dgdr, (6)

KGO X, LD yxqn 0,
ot ot
)
BDi(s,t) ; .
T =w(X(s,1),t) xD'(s,1), i=1,2,3. (8)

Equation (3) is the incompressible Stokes equations where
w is the fluid viscosity. The unknown variables as functions
of the fixed Cartesian coordinates x and the time ¢ are the
fluid velocity u, fluid pressure p, and external fluid force
density g. Equation (4) expresses the equations for force and
torque balances where F(s,¢) and N(s, ¢) are the force and
moment, respectively, transmitted across a section of the rod
at the Lagrangian coordinate s at time ¢, and f(s, ) and n(s, t)
are the applied force and torque densities, respectively. The
force and moment generated from the elastic flagellum can be
expanded in the basis of the orthonormal triad and written as

3 3
F=) FD\, N=) ND, ©)
i=1 i=1

with the following constitutive relations:

. 0X
Fi=bi| D" — — 83 ),
as

E)) U ,
Ni=a = D —o) i=123 (10)
N

where §3; is the Kronecker delta and (i, j, k) is any cyclic per-
mutation of (1,2,3). The constitutive relations can be derived
from a variational argument of the elastic energy potential for

the unconstrained version of the Kirchhoff rod [25]:

3

1 r ) T :
E= 2/0 {Z“( T Q)
3 . oX 2

+ ;b, (D - 53,> ]ds. (11
Here the coefficients a; and a, are the bending moduli, a3 is
the twist modulus of the rod, b; and b, are the shear moduli,
and b3 is the stretching modulus. The strain twist vector
(€21, €2,, 23) indicates the intrinsic property of the elastic rod
in which x = v/Qf 4+ Q3 is the intrinsic curvature and Q3
is the intrinsic twist of the rod of which the negative values
determine a left-handed helix and positive values determine a
right-handed helix. The flagellum in this work is assumed to
be left-handed.

In Eq. (5), Fy, is the restoring force acting on the massless
boundary Xj. Since the massless and massive descriptions
are supposed to represent the same body, when a pair of
corresponding boundary points moves apart, a restoring force
F}, comes into play to constrain them to stay close for a suffi-
ciently large penalty constant Ky,. According to Newton’s third
law, the negative force density —F; acts upon the massive
rigid body Yy; see Egs. (15) and (16) below.

Equation (6) is the interaction equation between the force
densities of the bacterium and fluid, in which the fluid force
density g, exerted by the bacterium boundary, consists of three
terms; the first two terms represent the force and torque from
the elastic flagellum, and the last term represents the force

from the surface of the cell body. The blob (cutoff) function
Y is defined as

158*

Ys(r) = W’

(12)
where § is the regularization parameter and r =x — X
(or r =x — Xp) for a point x in the fluid and a point X
(or X}) on the cell [26,33]. The blob function ¥ is a radially
symmetric bell-shaped curve with infinite support, spreading
most of the force and moment within a ball with the radius &
and the center at the boundary point X (or Xp) and satisfying
J[fg: ¥s(r)dr = 1. Equations (7) and (8) are the no-slip
conditions for the linear and angular velocities of the cell,
respectively, where w = %V x u(x,t) is the fluid angular
velocity.

In order to describe the translation and rotation of the rigid
cell body Yy (q, r, 1), we let Y., (¢) be the center of mass of the
cell body, and {E;(r), E>(¢), E3(¢)} be the orthonormal basis
for the coordinate system fixed to the body with its origin at
the center of mass. Note that E;(¢) is in the direction of a
major axis of the spheroidal cell body and points toward the
motor point at the pole. Then the massive boundary can be
written as

Yo(q, 1) = Yem (1) + E()C(g, 1), 13)

where £(¢) is a 3 x 3 matrix of which the ith column is the 3x 1
vector E;(r), and C(q, r) is a 3 x 1 vector which represents
the coordinates fixed to the cell body in this system and thus
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is independent of time. Equations of motion for the rigid cell
body Yy (g, r, t) are now given by

Den _ Vem () (14)
dt - cm E)
MdVCm = —// Fy(q, 1, t)dgdr, (15)
dt r
dL
;;==/1}Yaany—Ymmm]x[—Fa%rJndqdn
(16)
Q) =EN I @)L, (17)
aE_ o E i=1,2,3 18
W — (t) X i(t)a 1=1,2,35. ( )

Equations (14) and (15) describe the translational motion of
the center of mass, where V.,(¢) is the velocity of the center
of mass, and M is the total mass of the hollow cell body, which
can be computed by M = [[.m(q, r)dqdr, where m(q, r) is
the mass density of the cell body. Equations (16) and (18)
describe the rotational motion of the cell body about the center
of mass, where L(r) and 2(z) are the angular momentum
and the angular velocity of the cell body, respectively. The
initial moment of inertial tensor, [y, can be computed by Iy =
[J-m(q, r)(C"CI; — CC")dqdr, where I is 3 x 3 identity
matrix. In summary, the cell body translates and rotates at the
cost of the resultant forces and moments from the deviation of
two Lagrangian descriptions for the cell body.

Finally, we complete this section by showing how we
embed the filament into the cell body and how we rotate the
motor. To do that, we first adopt two constraints: one is to
attach the bottom end of the flagellum (representing the motor
point) to the north pole of the cell body, and the other is to
align the two directions of the flagellum at the motor point and
the cell body. To achieve this, we define the feedback force
and moment densities as follows:

fn() = K1 [Y (1) — X(0,1)], (19)

N, (1) = Ko[Es (1) x D*(0,1)], (20)

where K; and K are large constants, and X(0, 7) and Y;'()
represent the motor point of the flagellum and the north pole
of the cell body, respectively. The force density f.,(z) acts
on the motor point X(0, ¢), and the negative force density
—fn(t) acts on Y}'(r) and affects the total force and torque
on the cell body. Similarly, the moment density ny,(#) and its
negative value are applied to X(0, #) and Y}'(¢), respectively.
By the feedback mechanism with sufficiently large values of
K and K>, X(0, t) stays close to Y}'(¢), and the tangent vector
D?(0, 1) at the motor point is aligned closely with the direction
E; () of the cell body.

The motor of the flagellum, represented by X(0, ¢), rotates
at any given frequency  about the tangent vector D3(0, t).
This can be done by defining the orthonormal triad at the

motor point X(0, ¢) as follows:
D'(0,7) = R[D*(0,)ID}, (0,1), i=1,2, @21

where R[D?(0, ¢)] represents a rotational matrix to transform
the unit vector (0,0,1) to the unit vector D3(0, ¢). The two

orthonormal vectors Dinm(t), i =1, 2, represent the vectors,
which are rotated at frequency w from the two standard basis
(1,0,0) and (0,1,0), respectively:

D! (1) = (cosQmwt), sinQrwt), 0),
D2 (t) = (- sinQrwt), cosrwt), 0).

The twist generated by the rotary motor is transmitted along
the flagellum to its free end, leading to the rotation of the
helical filament, and the resultant countertorque at the rotating
motor automatically appears to balance the torque so that the
cell body counterrotates. See Ref. [31] for a more detailed
description of mathematical formulation.

III. THE METHOD OF REGULARIZED IMAGE SYSTEM

In this section, we present the regularized Stokes for-
mulation combined with the image system to compute the
linear and angular velocities of fluid with a rigid wall. We
consider an infinite plane wall (z = 0) at which the fluid
velocity vanishes. In the presence of the external fluid force
g resulting from the forces and toques of the immersed
boundary (flagellum and cell body), the solution (the linear
velocity) of Eq. (3) may not be zero on the wall. The idea of
the method of image system is to define various fundamental
solutions (kernels) such as stokeslet, potential dipole, rotlet,
doublet, and quadrupole and rotlet doublet and to apply them
to appropriate forces and torques at the image points of the
immersed boundary so that the flow at the wall is at rest. The
image system method was introduced by Cortez et al. [29,30]
in order to apply the no-slip wall conditions for the linear
velocity. Here we summarize both the linear and angular ve-
locities in the image system and provide numerical schemes.
The detailed derivation of the mathematical formulation will
be described in the Appendix.

Given a point force fy and a point torque ng applied at a
boundary point Xy, we rewrite the Stokes equation in terms of
the regularized force and torque as follows:

0=—Vp+pAu+foys(x —Xo) + 1V x mois (x — Xo).
(22)

We then utilize the fundamental solutions (kernels) of the
image system for the regularized Stokes equations with a point
force and torque applied to the fluid, and obtain the linear
fluid velocity at an arbitrary point X, vanishing at the wall,
as follows:

u(x) = u"(x) + u)" (x), (23)
where
pu™(x) = S[fo] — S™[fy] + A*P[b] + 24 Dles, b]
—2h(Ry[m] — Ry[m]), (24)

A 1 1 .
pu(x) = ERw [no] — ER;," [ng]
— (DIp, €3] + Dles, p] + HP[p])

+(Rylal — RglaD
h2
+ h(Jyng, €3] — Jp[ng, e3]) — 3Q[no], (25)
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FIG. 2. Schematic geometry with the wall at z = 0. Velocity is
evaluated at x with the point force and torque centered at X;. The
image point Xi™ is introduced by the relation X; = Xi™ + 2/,e;.

where £ is the distance from the wall to the point X, e3 =
(0, 0, 1), b= Z(f() . e3)e3 — f(), m = f() X e3, P=nyXes,
and q = ny — (ny - e3)es. Here S is the regularized stokeslet,
P is the regularized potential dipole, D is the regularized
stokeslet doublet, R is the regularized rotlet, 7 is the reg-
ularized rotlet doublet, and Q is the regularized quadrupole.
The rotlet R is regularized using the blob function

382

¢s5(r) = W,

(26)

and the other kernels are regularized using ¥ in Eq. (12). In
what follows, the angular fluid velocity at the point x can be

J

Np

obtained by
WX) =1V xu™ + 1V x ul™ = wi" + wim. (27)

We leave out here and describe in the Appendix the explicit
forms of fundamental solutions and the detailed derivations
of the linear and angular velocities in the image system; in-
stead, we here introduce the computational recipe to compute
the solutions. For numerical computations, we discretize the
immersed boundary (flagellum and cell body) by letting X,
k = 1,...,Np, be the discretized material points, where N}, is
the number of points, and letting f; and n; be corresponding
point forces and torques applied at the boundary point X;. For
the notational simplicity, we substitute f; and n; for the point
forces and torques, —fy As and —n;As, respectively, where
As is the mesh width of the flagellum. Then the external fluid
force g in the regularized Stokes equations (3) can be written
as

N[, 1 Nb
g= D fs(x =X+ 3V x Y ms(x—Xo.  (28)
k=1 k=1

In the image system, we introduce an image point X}:“ =
(x,y, —hy) of X = (x,y, ), where hy is the distance from
the wall (b > 0), and define rj =x—X;, rp =x— X},
rp = |x — Xg|, and 7 = |x — X}"|, where X is any point in
space. See Fig. 2 for the geometric diagram. Note that X; =
X}(m + 2hye3 and that 7} = r; when x is on the wall. Then the
linear fluid velocity at any point X in the image system can be
computed by

pu(x) = pu™(x) + pu)™ (), (29)

where ul™(x) is the velocity of the image system of the
regularized stokeslet:

pu(x) =) ({fkm(ris) + (B TG H 7)) — (EcH (ro) + (B - r)reH (ro) + b {=beDY () — (g - ri)reDS (1)}

k=1

+ 2hk{(bk ey (1) + (1 - e3)beHo (1) + (by - rp)es[Hs (1) — Ha(rx)]

DY (ry)
2

+ (g - e3)(by - rp)ry

} + 2h H3 (i ) (my, X rk))»

and u™(x) is the velocity of the image system of the regularized rotlet:

Np

. 1 1
pu™(x) = Z <§Q(”Z)(nk X Tp) — EQ(”k)(nk X Ty) + by [PkD‘,p(Vk) + (px - I‘k)l‘kDf(Vk)]

k=1

— {[(px - T0)es + (€5 - TOPKIH3 (r) + (€3 - 1 )Py - 1)1 DY |

— Iy [prHs(ry) + (ry - €3)(y X 1) Hy ()] — Ha(r)(Qx X 1) + hi Hy(r) (e x l’k)>,

where the constant vectors are defined as by = 2 (f; - e3) e3 — fi, m; = f; x e3, pr = n; x e3, and qx = n; — (ng - e3) e3. The

functions used here shall be summarized below.

The previous models [29,30] utilize only the linear velocity for the no-slip boundary wall given in Eq. (29). However, our
model additionally requires the angular velocity to rotate the orthonormal triad {D}, D7, D}} along the flagellum through Eq. (8).
(For the derivation of the angular velocity in a free space, see Refs. [25,34].) The angular velocity obtained by taking curl on the

linear velocity u(x) has the following formula:

uwW(x) = pwy" (X) + 2w, (x), (30)
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where the angular velocity w'™(x) of the regularized image system for Stokelet is

Np

. 1 . 1 1
W (x) = SV X% pu(x) =y (zQ(V;)(fk X Tp) — 5 Q0 x i) + h¢Hay (r) (b X 1)

k=1

+ Iy [Dg (re) — Ha(ri)](by - 1) (€3 x 13) + I Q(ridmy + hy{ [ Ha(rie) + 2H3(rie) Jmy — Hy(rie) (my - l'k)l‘k}),

and the angular velocity wi™(x) of the regularized image system for rotlet is

Np

) 1 . 1 1 1 1
PW(X) = SV x (%) = ) (—ZD}”(r,f)nk = DY (D@ TN + DY (romg + 2D () - rior

k=1

1
+ 5[H4(rk) — DY (r)][(rx - €3)(Px X 1) + (1 - pr)(es X 1]

1 1
— heHy(ri)(Pre X i) — 5["/%114(’%) + 2H3(r) |qk + §H4(Vk)(rk Qg )Tk

h
- ?k{[r;st(Vk) + 3Hy(ri)| (k- €3)ny — Hy(ro)[(ny - e3)ry + pr X 1] — Hs(ri)(xy - €3)(rg - m)ry |

2

We now provide the definition of functions used in the
above formula. Let Gy and By be the regularized Green’s
function and biharmonic function, respectively, satisfying
AGy(r) = s(r) and ABy(r) = Gy(r). Then the functions
H,, H,, O, D'{’, and Dz‘/’ are defined as

H(r)—ﬂ—G _M (31)
BT T Y T 8 (2 + 2
rB, — B 1
¥ ¥
H. = = , 32
2(r) r3 8 (82 + r2)3/2 (32)
G, 587 +2r2
¥
S 7 e A 33
Qo) r 8 (82 + r2)3/2 (33)
G, —108* 4+ 7r28% + 2%

DV =—L —yy = , 34
1 () r Vs 87 (8% + r2)7/2 4
rGy, — G, —218% — 6r?

DYy = —L ¥ = L 39
r3 8 (82 + r2)7/2

For a more slowly decaying blob function ¢; in Eq. (26),
we can find the regularized Green’s function Gy satisfying
AGy(r) = ¢5(r) and the regularized biharmonic function By
satisfying ABy(r) = G (r). Then the dipole functions Df and
Dg’ and Hi, H,, and Hs are defined as

G, ~282 4 r?
Dliry=—= —gy= ———— 36
1 () r 2 47 (82 + r2)5/2 (36)
rG! — G -3
¢ _ ¢ [
D5 (r) = 3 T An (82 £ 2y (37
v G, H —35?
¢ ¥ 1
Hr=—"-Y -1 i H=—1"—"___ (38
3(r) . . . + H, 87 (52 1 12 (38)
oy O D8O m s
YT Ty T2 T e T T 8 (4
(39

h
+ 7"{[2H4(rk) + r2Hs(ro) | — Hs(r)(xy - nk)rk}>,

H) — 10562
Hs(r)= —

r 8w + 807 “0)

IV. RESULTS AND DISCUSSION

In this section, we investigate the hydrodynamics of a
single-flagellated bacterium when it is placed near a planar
wall z = 0. See Fig. 1 for a schematic diagram of our com-
putational model in which A(z) is the distance of the center of
mass of the cell body from the wall, and 6(¢) is the inclination
angle of the major axis of the cell body from z = 0 at time
t. Our model swimmer initially lies in parallel to the wall
with 8(0) = 0. However, the initial distance A(0) varies with

TABLE I. Computational and physical parameters.

Parameters Symbol Value
Fluid viscosity u 107% g/(umss)
Regularization parameter 8 3As
Time step At 1.0 x 1078 s
Mesh width for flagellum As 0.04 um
Helical radius of filament 70 0.1989 um
Helical pitch of filament Po 1.25 um
Linear length of filament L 3.75 um
Intrinsic curvature of filament K 2.5133 um™!
Intrinsic twist of filament Q3 2.5133 um™!
Bending modulus of filament a, a 0.04 gum? /s>
Twist modulus of filament as 0.04 gum?/s?
Shear modulus by, by 2.0 gum/s’
Stretch modulus bs 2.0 gum/s’
Rotation rate of motor w 500 Hz
Spherical cell body diameter 2A 1.0 um
Cell body density m 107'2 g/um?
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FIG. 3. Comparisons between the image system method (solid lines with circles) and the target point method when dw = 1.04 (solid),
1.56 (dashed), 2.0§ (dash-dotted), and 2.56 (dotted) in terms of the forward swimming speed V,(¢) (a), distance from the wall A(z) (b),
inclination angle 6(¢) (c), and distance from the center of mass of the cell body in the image system method to those of the target point

method (d).

different simulations. Table I shows the computational and
physical parameters used in this work.

A. Comparison of the image system method
with target point method

We first verify the efficiency of the image system method
by comparing it with the target point method. In the target
point method, we impose the no-slip condition on the plane
z = 0 by laying out an array of target points. Let W(r, s) be the
target points tethered on the plane z = 0 and X,,(r, s, t) be the
corresponding moving boundary points. A no-slip condition
on the wall is imposed by applying to the moving boundary
Xy (1, s, t) the following force:

Fo,(r,s,t) = co[W(r,s) — Xy, (7, 5, 1)], 41

where ¢y is a large constant and X, (r, s,?) moves at the
local fluid velocity. This provides a feedback mechanism for
computing the boundary force needed to enforce the mov-
ing boundary points to stay close to the target points. For
comparisons, we choose a square with a side length of 7.2 um
on z = 0, and distribute (N + 1)? target points uniformly on
the square. The mesh size of the square domain in each
direction is chosen as N = 24, 30, 40, and 60, and thus the
corresponding mesh widths are dw =2.5§ um, 2.06 um,

1.58 pm, and 1.08 um, respectively, where § is the regu-
larization parameter used in Eq. (12). The model bacterium,
which has a spherical cell body with radius 0.3 um, and
a helical flagellum with radius ryp = 0.1194 um, pitch py =
0.75 pum, and linear length L = 2.25 pum, is placed in parallel
to the wall with initial distance &(0) = 0.45 um. The motor
rotates CCW at a rate of 500 Hz. The time step used for this
test is Az = 1.25 x 1078 s, and the other parameters are the
same as in Table L.

Figure 3 compares the simulation results obtained by the
regularized image system method (solid lines with circles) and
by the target point method with four different mesh widths
dw = 1.06 (solid lines), 1.55 (dashed lines), 2.0 (dash-
dotted lines), and 2.5 § (dotted lines). We compare the forward
swimming speed V¢(¢) [Fig. 3(a)], the distance from the wall
h(t) [Fig. 3(b)], the inclination angle 6(¢) [Fig. 3(c)], and the
distance between the cell centers of Y&, in the target point
method and Y™ in the image system method [Fig. 3(d)]. The
forward-directional swimming speed is defined as V,(t) =
—Vem(t) - E3(¢). Figure 3 shows that as we increase the
number of target points and thus refine the mesh of the square,
the difference between the results of the image system method
and the target point method gets smaller.

The main reason for the discrepancy between the image
system and target point methods is the following. While the
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TABLE II. Computational times.

Method Mesh width (dw) Grid size (N) Wall time (s)

Target point method 2.56 252 26.6255
2.06 312 44.3190
1.56 412 87.9813
1.08 612 356.0195

Image system method - - 18.5712

no-slip boundary condition is exactly prescribed on the whole
plane z = 0 in the former method, it is only approximately
true on the part (square) of the plane z = 0 in the latter one.
Note that the size of the target domain on the wall here is large
enough to resolve the motion of the model bacterium, and
hence a larger target domain does not significantly improve
the discrepancy. However, the error of the approximated no-
slip condition would be decreased by increasing the constant
co in Eq. (41) or by decreasing the mesh width dw as shown
in Fig. 3. All these cases require us either to decrease the time
step At due to the stability condition or to increase the number
of the target points, which would make the computation
for a realistic bacterial model impossible. Since, instead of
adding more target points, the method of image system adds
some additional regularized solutions at the given immersed
boundary points as explained in the previous section, it is
computationally much more efficient to make a no-slip planar
wall. Table II shows the computation times from the two meth-
ods. In both methods, we used OpenMP parallelization with
16 nodes, and the wall time is measured for 20 000 iterations.
For the comparable case of dw = §, the computational time
of the target point method takes 19 times more than that of the
image system method for the same number of iterations.

B. Stable circular motion of a model organism
with a spherical cell body

It has been experimentally and numerically observed that
flagellated bacteria change their trajectories from straight to
circular near a solid surface [11,12,16-18,20,21]. A hydro-
dynamic attraction toward the wall occurs due to the image
singularities located on the other side of the surface [35];
however, when the bacteria are too close to the wall, the wall
repels the bacteria to give a stable height #*. This proximity
may enhance the chance of the cell’s adhesion to the surface,
which may facilitate biofilm formation [13-15]. In the ab-
sence of solid surfaces, the CCW rotation of the left-handed
flagellum driven by the CCW rotation of the motor generates
the thrust that is opposed by the viscous drag on the cell and
leads to a straight forward run. At the same time, the motor
rotation exerts a countertorque on the cell body to balance the
torque which induces CW rotation of the cell body. Near a
solid surface, the balance between the opposite torques on the
cell body and on the rotating flagellum and its hydrodynamic
interaction with the solid surface deviates the swimming path
from a straight line to a CW circle when viewed from above
the surface [20].

In order to explore the characteristic swimming patterns of
bacteria near the surface z = 0, We first consider a bacterium

which is composed of a spherical cell body with diameter
2A = 1.0 pum and a left-handed helical flagellum with he-
lical radius rop = 0.1989 pm, helical pitch py = 1.25 um,
and number of wavelength N, = 3. This model organism is
initially positioned in parallel to the wall with various initial
heights 2(0) from 0.55 to 1.0 um. The flagellar motor turns
CCW at the rate of w = 500 Hz at all times. Figure 4 shows
time evolution of a bacterial movement when the initial height
is set as A(0) = 1.0 um; see Movie 1 in the Supplemental
Material [36]. Two aspects of the motion are displayed: one
viewed from the side [Fig. 4(a)] and the other viewed toward
the wall from above [Fig. 4(b)]. It is shown that the model
organism swims toward the wall to eventually stay at almost
a constant height and to draw a CW circular trajectory with
an approximately constant radius. Note that the cell body is
observed to rotate CW at the rate of approximately 41 Hz, and
that a cell with a right-handed flagellum turning its motor CW
swims in a CCW circle (data not shown).

Figure 5 shows that there is a limiting stable circular
motion of the bacterium near a surface independent of the
initial height 2(0) as long as it is within a certain range. As the
initial height /4(0) varies from 0.55 to 1.0 wm, the bacterium
goes to a stable state of the swimming pattern in which height
h(t) [Fig. 5(a)], inclination angle 6(¢) [Fig. 5(b)], forward
swimming speed Vy(¢) [Fig. 5(c)], and radius R(¢) of the
circular trajectory [Fig. 5(d)] converge approximately to A* =
0.5529 pm, 2.99°, 50.32 um/s, and 7.46 pum, respectively.
The radius of curvature R(t) of the circular trajectory is
defined as the reciprocal of the local curvature of a circular
trajectory at time 7. Note that the positive inclination angle
0 in Fig. 5(b)] indicates that the cell body points away from
the wall, which is needed to balance the attractive effect of
near-wall swimming bacteria and the lift force on the cell body
[21]. Note also that if bacteria are placed far enough away
from the wall, they stay away from the trapping zone, which
we define by the region near the wall in which bacteria swim
without escaping.

We now investigate the dependence of the swimming
patterns of bacteria near a wall on various physical and
geometrical parameters of our bacterium model. We first vary
the motor frequency, w, from 300 to 700 Hz to compare height
h(t) (a), inclination angle 6(¢) (b), forward swimming speed
V¢(t) (c), and radius R(t) of the circular trajectory (d); see
Fig. 6. We fix the initial height at 2(0) = 0.6 wm; however,
we have found that the limiting values in the stable state
are independent of the initial height 4#(0) (not shown here).
Figure 6 demonstrates that the cell reaches a stable motion
with a circular trajectory; however, the limiting values of
some swimming properties change depending on the rotation
rate of the motor. As the motor frequency w increases, the
limiting values of A(z), 6(¢), and V,(¢) increase as well. In
particular, the limiting height and the forward swimming
speed increase almost proportionally to the rotation rate. The
radii R(¢) of circular trajectories increase during the transient
time as the motor frequency increases; however, they converge
to approximately the same constant radius.

Unlike the previous models of the flagellum used in
Refs. [7,20,21], which is a helical rigid body rotated by impos-
ing its dynamics (velocity or position), our flagellum model is
an elastic body which rotates through the torque propagated
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FIG. 4. Motion of a bacterium viewed from side (a) and viewed toward the wall (b). The cell, initially positioned in parallel to the wall
(z = 0) with height £(0) = 1.0 wm, swims toward the wall and follows a circular trajectory.

from the rotating motor. In order to demonstrate the difference
of the swimming patterns of bacteria near a wall depending
on the elastic property of the flagellum, Fig. 7 shows the
limiting values of steady circular trajectories resulting from
the changes in the bending modulus a; = a, (left panels) and
the twist modulus as (right panels). As the bending modulus
increases from 0.005 to 0.16 gum?®/s?, the limiting values
of height 4* and the forward swimming speed V;‘ decrease,
while the radius R* of the circular trajectories increases; see
Figs. 7(a)-7(c). When the twist modulus increases from 0.005
to 0.16 gum?/s?, the limiting value V* increases; however, 7*
and R* decrease slightly; see Figs. 7(f)-7(h).

The different elastic stiffness of the flagellum does not
only affect the three limiting values, but it also induces the

change of the geometrical properties of the flexible flagellum.
The lower two rows of Fig. 7 depict the measured values of
the helical pitch [Figs. 7(d) and 7(i)] and the helical radius
[Figs. 7(e) and 7(j)] of the rotating flagellum together with
those of the initial flagellum in the equilibrium state (dashed
lines). As the bending modulus increases, the helical pitch
increases to the equilibrium value, while the helical radius is
almost fixed. The increment of the twist modulus, however, in-
creases the helical radius up to the equilibrium value with the
helical pitch being almost fixed. The bending energy comes
into play when the curvature of the moving helix deviates
from its intrinsic curvature, which results mostly in the change
of helical pitch, whereas the twist energy is related to the
intrinsic twist of flagellum and thus the helical radius. We have
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FIG. 5. Time evolution of height A(¢) (a), inclination angle 6(t) (b), forward swimming speed V;(¢) (c), and radius R(¢) of a circular

trajectory (d) for various initial heights 4(0).

found that when the two moduli increase to 0.16 gum?/s?, the
helical pitch and radius of the rotating flagellum deviate from
its intrinsic values by as much as 0.5%.

Last, we investigate how the geometrical parameters of
the bacterium model affect its swimming course near a solid
surface. We vary one geometrical parameter among cell body
diameter 2A, helical radius ry, helical pitch py, and number
of helical turns N, = L/py along the flagellum, while the
other geometrical parameters are fixed at default values: 24 =
1.0 um, rg = 0.1989 pum, py = 1.25 um, and N, = 3. The
other physical parameter values are the same as in Table I, and
the motor frequency is fixed at w = 500 Hz. Figure 8 shows
the limiting values of steady circular swimming resulting
from the changes in each of four geometrical parameters; 2A
[Fig. 8(a)], ro [Fig. 8(b)], po [Fig. 8(c)], and N, [Fig. 8(d)].
For each case of parameter change, we display the limiting
values of the separation gap h* — A, forward swimming speed
V¥, and radius R* of the circular trajectory.

" Figure 8(a) demonstrates that, as the diameter 2A of the
cell body increases, the separation gap h* — A, which is the
minimum distance between the surface of the cell body and
the bottom wall, decreases; i.e., a bacterium which has a larger
cell body swims closer to the wall. Moreover, it shows that the
larger the diameter of the cell body is, the slower the bacteria

swim. This is because the viscous drag increases with the size
of the cell body [20], which consequently decreases the swim-
ming speed. Although the swimming speed and the separation
gap change depending on the cell body size, the radii of the
circular trajectories are almost the same independent of the
cell body size.

Figure 8(b) shows that as the helical radius ry increases, the
limiting value of the separation gap h* — A increases slightly
and the swimming velocity V7 increases largely, whereas
the limiting radius R* of the circular trajectory decreases. It
has been reported that a bacterium with a flagellum with a
larger helical radius swims faster but follows a smaller circular
trajectory [20].

As we increase the helical pitch py or the number of
helical turns N,, the flagellar contour length also increases in
either case, and the limiting values of the swimming speed
V; and the radius R* of circular trajectories also increase;
see Figs. 8(c) and 8(d). However, the limiting values of the
separation gap h* — A are approximately the same regardless
of increasing py and N, . The simulation results in this section
are qualitatively well matched with the results in Ref. [20].
Note, however, that if the contour length of the flagellum is
too short, the cell may leave the trapping zone and stay away
from the wall, as discussed in the next section.
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FIG. 6. Time evolution of the height A(t) (a), the inclination angle 6(¢) (b), the forward swimming speed V/(¢) (c), and the radius R(¢) of
the circular trajectory (d) for various motor frequencies @ from 300 to 700 Hz. There is a limiting stable swimming pattern in each case. As
we increase the motor frequency, the limiting values of a(t), 6(¢), and V,(¢) all increase. The limiting value of radius R(¢) is independent of

the frequency w.

C. Circular motions of a bacterium with an ellipsoidal cell body

In this section, we replace the spherical cell body by a
prolate spheroid with various aspect ratios A/B, where 2A and
2B are the lengths of the major and minor axes, respectively, to
investigate how the shape of the cell body alters the swimming
motion of the bacterium near a solid wall. It is known that
as single-flagellated cells grow, their cell bodies elongate the
major axis without extending the minor axis and thus the
aspect ratio A/B increases [21]. Figure 9 shows trajectories
of bacteria with five different aspect ratios A/B = 1, 1.3, 1.4,
1.6, and 1.8, while keeping 2B = 1.0 um; see Movie 2 in the
Supplemental Material [36]. The other parameter values are
the same as in Table I. As the aspect ratio A/B of the cell
body increases, the limiting radius R* of the circular trajectory
increases, illustrating that a longer cell body draws a larger
circular path, which is well matched with the results in Shum
et al. [21]. We have also found that each bacterium with a
spheroidal cell body converges to a stable swimming state
independent of the initial height.

Figure 10 displays the limiting values of the forward
swimming speed V! [Fig. 10(a)], height »* [Fig. 10(b)],
inclination angle 6* [Fig. 10(c)], and radius R* of the circular
trajectory (d) as functions of the cell body ratio A/B. As
the length A of the major axis of the cell body increases,
the forward swimming speed V/ first increases and then

decreases, attaining the maximum speed around A/B = 1.3.
In contrast, height 4*, inclination angle 6*, and radius R*
increase monotonically with the increasing aspect ratio. These
results are also consistent with the results in the previous
studies [11,21].

We can expect from these simulations that as the cell body
increases further its aspect ratio, the bacterium swims in a
circle with a larger radius and farther away from the wall with
the cell body pointing further to the free space, and it may
eventually escape from the trapping zone and swim freely
without any interaction with the wall. Thus we categorize
the behavior of the flagellated bacteria near a solid wall into
two modes, entrapment and escape. Entrapment mode is the
motion when the cell stays near the wall and swims in a
circular manner, whereas escape mode is the motion when
the cell swims away from the wall and becomes eventually
unaffected by the wall. In order to investigate the cell’s modes
of motility, we consider bacteria with various flagellar lengths
and aspect ratios of the cell body. We vary the length of
the helical flagellum by varying the number of helical turns,
N,., from 1.0 to 3.0, with the fixed helical pitch and radius
assigned to 1.25 and 0.1989 pm, respectively. The aspect
ratio of the cell body A/B is also changed from 1.2 to 1.9
with the increment of 0.1, with the minor axis being fixed at
B = 0.5 pm. The cells are initially positioned near the wall
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at a height of #(0) = 1.5 um, and the motor frequency is
o = 500 Hz.

Figure 11 shows the critical values of the number of helical
turns (N,) as the aspect ratio of the cell body changes. We
find that for each aspect ratio, there exists a critical value of
the number of helical turns (&,) that separates escaping cells
from entrapped cells. The circles in blue represent the cases
where the cell draws a stable circular trajectory and is en-
trapped near the wall, while the crosses in red represent the
cases where the cell escapes and moves away from the wall.
The solid line in black is an interpolated curve that separates
escape zone (shaded area) from entrapment zone (white area).
This curve implies that the critical number of helical turns
increases almost quadratically as the cell body’s aspect ratio
increases. Overall, bacteria with a shorter flagellum and a
longer cell body are prone to escape from the wall [21]. See
Movie 3 in the Supplemental Material [36] for two modes of
motility, escape and entrapment.

V. SUMMARY AND CONCLUSIONS

We have presented a comprehensive model for a swimming
bacterium which is made of a cell body and a flagellum which
are linked by sharing the same motor point that is embedded

in the cell membrane. The cell body is a rigid body in the
shape of either a sphere or a spheroid of which the dynamics
is described by the penalty method. The elastic flagellum
is described by the Kirchhoff rod theory as a space curve
together with orthonormal triads along the rod. In our model,
the rotary motor is the only driving force that results in the
rotation of the flagellum that pushes the cell in motion and
the counterrotation of the cell body to balance torque. The
hydrodynamic interaction between the fluid and the cell is
represented by the regularized Stokes formulation. In addi-
tion, the linear and angular fluid velocities in the Stokes flow
are modified to account for the effect of the rigid wall using
the method of an image system. In this work, the flagellum
can represent a single flagellum for monotrichous bacteria or
a flagellar bundle for peritrichous bacteria.

The efficiency of our model has been verified by comparing
two simulation results done using the method of an image
system and the target point method. We have shown that as the
resolution (the number of the target points) of the planar wall
increases, the numerical solution of the target point method
approaches that of the image system method. However, the
target point method is computationally more expensive and
less efficient, while the method of an image system is naturally
more accurate and efficient.
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FIG. 8. Limiting values of steady circular swimming motions resulted from changes in four geometrical parameters; the diameter of the
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It is known that, whereas single- and multi-flagellated bac-
teria approximately swim straight during the running mode
in a free space, such bacteria change their swimming course
from straight to circular trajectories in the presence of a
solid surface nearby. Our simulations have showed that the
cell swimming near a solid surface is entrapped in a region
close to the surface and draws a stable circular trajectory
with limiting steady values of circular radius, height from the
surface, swimming speed, and inclination angle. We have also
found that, whereas these limiting values are independent of
the initial height of the cell, they change generally depending
on the rotation rate of the motor, size of the cell body, and
geometrical properties of the flagellum.

A very common shape of the cell body in flagellated
bacteria is a prolate spheroid; therefore, the aspect ratio of
the cell body plays a key role in determining swimming
patterns. Our simulations have showed that as the cell body

is elongated in the swimming direction, i.e., its aspect ratio
increases, the limiting values of the height, inclination angle,
and radius of the circle increase monotonically. However,
there is an optimal aspect ratio for the maximal swimming
speed, which is approximately obtained at A/B = 1.3. It is
worth mentioning that this optimal condition is met when the
length of the minor axis of the cell body is fixed. It may
change the condition as the length of the minor axis vary,
which requires a significant amount of computations.

In addition to the stable circular trajectory near a solid
wall, cells can also swim away from the wall depending on
the flagellar length and the aspect ratio of the cell body. Our
simulations have shown that the critical number of helical
turns, corresponding to the flagellar length, is quadratically
proportional to the aspect ratio of the cell body. In other
words, the cells can escape from the wall when the cell
body is elongated in the swimming direction or when the
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flagellar length becomes shorter, which would be considered
to be mutant cells. The wild-type microorganisms might have
optimal physical conditions which facilitate the migration and
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FIG. 11. Critical values of helical turns N, as the aspectratioA/B
of the cell body changes. The cell body ratio A/B is varied from
1.2 to 1.9 um, while the minor axis B of the spheroidal cell body
is fixed as B = 0.5 pum. The helical pitch and radius are fixed at
1.25 pm and 0.1989 pum, respectively. The motor frequency is set
at w = 500 Hz, and the initial height is given at £(0) = 1.5 um. The
circles in blue represent the case of entrapped cells, and the crosses
in red represent the case of escaping cells. The solid line in black
is an interpolated curve that separates the escape zone (shaded area)
from the entrapment zone (white area).

(b)
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FIG. 10. Limiting values of forward swimming speed V" (a), height 2* (b), inclination angle 6* (c), and radius R* of the circular trajectory

(d) as functions of the cell body ratio A/B, while keeping B = 0.5 um.
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adhesion of the cells to the surface to form biofilms and
microbial communities for their survival.
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APPENDIX

We derive the refined formula for the linear and angular
velocities at any point in fluid as fundamental solutions of the
regularized Stokes equations in the presence of a solid wall,
whichis z = 0.

Given a point force fy and a point torque ny at the point
Xy on the boundary, the regularized Stokes equations read as
follows:

—Vp+ pAu+ fos(x — Xo) + 2V x mos (x — Xo) = 0,
(A1)

V.u=0, (A2)

and the solution (the linear velocity) at any x in the free fluid
space is given by

pu(x) = Slfol + 3Ry [no], (A3)

where S[fy] is the regularized stokeslet due to the point force
fo at Xo and R[] is the regularized rotlet due to the point
torque ny at Xy, and they are defined as

Slfo]l = (k- V)VBy — £yGy = foH (r) + (fo - r)rHy (r),
(A4)

Rw[no] =Ny X VG,/, = (Il() X l')Q(}’), (AS)

where r = x — Xy, r = |r|, and, Gy and By, are the regular-
ized Green’s function and biharmonic function, respectively,
satisfying AGy, (r) = ¥s(r) and ABy (r) = Gy (r). Note that
since the blob function v (r) is radially symmetric, Gy (r)
and Gy, (r) are also radially symmetric, and thus we can write
Gy (r) = Gy (r) and By (r) = By/(r). In Egs. (A4) and (A5),
the functions H;, H,, and Q are defined as

m="r g, = 2rr (A6)
= VT 8 (82 + 2)302
B! —B 1
__ ¥ vo_

Hy(r) = r3 T8 (8% + r2)32’ (A7)

G 582 4 2r2

v

=—=—— A8
o) r 8 (82 + r2)3/2 (A8)

In order to account for the wall effect, we introduce
an image point X{" = (x,y, —h) of the boundary point

Xo = (x,y, h). Then we define r* =x — Xy, r=x — X})m,
r*=Ir*| =|x—Xgl,and r = |r| = |x — Xgn|; see Fig. 2.

In Eq. (Al), the body force acting on the fluid consists
of two contributions: force and torque. Accordingly, we can
divide the linear velocity u(x) into two parts and express it as

pu(x) = pul™(x) + pu)™ (x), (A9)

where u™(x) and u™(x) are two velocities for the image
system for a regularized stokeslet and a regularized rotlet, re-
spectively. Let us first define the regularized stokeslet, denoted
as —S™[f,], of strength —f, at the image point Xim  then the
velocity u™(x) for the image system of a regularized stokeslet
is given in Ref. [29] as

puy™ (x) = Sifo] — S™[fo] + h*P[b] + 2hDle3, b]
— 2h(Ry[m] — Ry[m]), (A10)

where b = 2 (fy - e3) e — fy and m = £, x e3. Here the regu-
larized potential dipole ‘P is obtained by applying the negative
Laplacian to the regularized stokeslet, —AS, for a force b
applied at Xy, and thus

P[b] = —(b- V)V(AB,) + bAG, = —(b - V)VG, + bgs

- G, -G (G
—(b- r)r(rd’r—3¢> — b<7¢ — ¢5>

=—(b- r)er — f)D‘f,

(A11)

where G, and By are the regularized Green’s function and
biharmonic function, respectively, satisfying AG4(r) = ¢s(r)
and ABy(r) = Gy(r). Then the regularized dipole functions,
D‘f and Df, can be derived as

G, —282 4 12
D)=L 5= —> s, Al2
(==t = (A12)
rG, — G, -3
¢ _ ¢ ¢ _
Dy = —" 53— = o a s AR (A13)

The regularized stokeslet doublet, D, is the directional
derivative of a regularized stokeslet, (f) - V)S, in the direction
of a constant vector b. For a regularized stokeslet of strength
a, the regularized stokeslet doublet D[4, b] is given by

D[a, bl = (b- V)S[a] = (b- V)[aH,(r) + (4 - r)rH,]

3 N . H
=(b-a)rH, +b@ -r)H, +a(b-r)—
p

- . H,
+ (b-r)@ -rr—=

r

(Al4)

Note that the constant vectors b and 4 are chosen to cancel the
velocity on the wall in the image system.

The last term in Eq. (A10), which involves the difference
of two regularized rotlets, can be written as

Rym] —Ry[m] =m x [VGy — VGy]
G G
= (—w - —¢>(m X T)
r r
= —H3;(m x r), (A15)

where the regularized rotlet R4[m] is defined in the same
fashion as Ry [m] using the more slowly decaying blob
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function ¢;(r) in Eq. (26), and the function H3(r) is defined
as
G, G, —382
Hy(r)=—* — —*

r 8w(82 4 2y (A16)

Assuming that there are N, point forces f; acted at the im-
mersed boundary points X, we can derive the explicit formula
for the velocity u™(x) given in Eq. (29) for the image system
of the regularized stokeslet.

The image system for the regularized rotlet is known to
be an antisymmetric part of the image system for regularized
stokeslet doublet, which can be obtained by differentiating the
regularized stokeslet [30]. The explicit formula for the veloc-
ity ui™(x) for the image system of a regularized rotlet, which
also requires the regularized rotlet —R'i/‘/“ [no] of point torque

—ny at the image point Xim has the following form [29]:
pul™(x) = 1Ry [no] — 3R mo]

— (DIp, &1 + Dles, p] + hPIp))

+ (Rylql—Rglql) + A(Ty 0o, e3]—Ts[nog, €3])

2

h
- ?Q[no], (A7)

where p = ng X e3 and q = ng — (ng - e3)es.

In Eq. (A17), the regularized rotlet doublet J,[a, b] is
defined as the directional derivative of a rotlet of strength a
in the direction of a constant vector b. Thus, for a rotlet of
strength a:

Jyla, bl = (b- V)R, [a] = (b- V)[d x VGy]
B G// _ G/ G/ B
—(b-r)@ x r)(r"’—3"’) + Y@ x b).
r r
(A18)

We can similarly define the regularized rotlet doublet Jya, b]
as

e - ~ rG; — G’¢ G’¢, .
Jpla,b] = (b-r)(a x r)(r—3) + T(a x b).
(A19)

J

The regularized quadrupole Q[€] is obtained by applying the
negative curl to the dipole, —V x P, of strength ¢&:

Q€] = —V x P[e] = V x [@-0)rDf +&D?]

¢ /
[Dg - @}(é xr)=—2H;@xr), (A20)

where H, is defined as

¢ /
Ha(r) (o7) by 1552
YT T T 2 T 8+

In order to derive and simplify the formula for the linear
and angular velocities of the image system, we here introduce
some important identities. To do that, we first define the
following two functions:

(A21)

G, —108% + 7r28% + 2/*
DV (r)= L — s = , A22
v(r) . Vs S22 1 12 (A22)
rG! — G —218% — 672
Vo Y v o_
D (r) = 3 = ST (A23)

Then we can show the following identities by the direct
computations:

H! l)¢
2 =22 (A24)
r 2
Gi// H|
OQ=—=H,— —, (A25)
r r
G/ G/ H/ 1
Hy=—t 20 Mg = Ipt o, (a26)
r r r 2
G
Ho=-—Y _22_2_p¢_pv A27
4 2r 2 r 2 : ( )

Assuming that there are N, point torques n; acted at the
boundary points X;, we can derive the explicit formula for the
velocity u™(x) given in Eq. (29) from Eq. (A17) with the help
of the following two simplified equations:

Hj H,
DIp, e3] + Dles, p] = [(e3 - r)p + (p - r)es] — +Hy ) +2(e3-T)(p-r)r—

r

= [(e3 - 1)p+ (p - r)eslH; + (e3 - r)(p - r)rDY, (A28)
v oy (G G
Tyno, €3] — Tyno, €3] = (e3 - r)(mg x r)(DY — DY) + <T - T)(no X €3)
= —(r-e3)(ng X r)Hy — pH;. (A29)

The previous models in Refs. [29,30] have described and used only the linear velocity in the image system given in Eq. (29).
Here we provide the detailed formula for the angular velocity in the image system since our model requires the angular velocity
to rotate the orthonormal triad {D'(s, ¢), D*(s, 1), D3(s, t)} along the flagellum. (For the derivation of the angular velocity in a
free space, see Ref. [25].) Since the angular velocity can be computed by taking curl on the linear velocity, which is composed

of the image systems of the regularized stokeslet and rotlet, we can write
uw'™(x) = Mwism(x) + /Lwirm(x) = %V X /Luism(x) + %V X ,uuirm(x), (A30)

and we have to know only how to take curl on all the terms composing the linear velocity uif“(x). We state all the components
needed to compute the angular velocity from the image system of the regularized stokeslet u}™ (x) and regularized rotlet u,™ (x)
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as follows:

1 1 1 H (r* 1
EV x S[fo] = EV x [foHy (r*) + (fo - ¥ )r*Hy(r*)] = §|:H2(V*) - #}(fo xr') = EQ(”*)(fo x "),

1 . 1
_EV x S fo] = _EQ(fO X T),

2 2 AV
%V x (h*P[b]) = %V x[- bD? — (b rrDj] = %[@ — D?}(b x 1) = h> Hy(b x 1),
r
1 H| H;
EV x (2hDle3, b]) = hV x | (b -e3)rH, + b(es - r)H, + e3(b - r)T + (b-r)(e; - r)rT
H] Hy (H\'1 s
=hlH—-—"L)m+hn=2-— (b-r)(e3 x r) = hOm + h(D§ — H,)(b - r)(e3 x r),
r r r

r

%V x {—2h(Ry[m] — Ry[m])} = %V x [2hH;(m x r)] = h[(r*Hy + 2H;)m — Hy(m - r)r],

1 1 1 N N 1 . N 1Q'(r*)
3V X SRylmo] = 2V x[(mg xr)Q(r)] = Z[20() +r" @ (+)Imo — 7=

3 2 (g - r)r*

1 1 1 . 1 1
= —ZD'{’(r*)nO — ZD‘Z”(r*)(nO )t — 5V x Ry [no] = ZD;”nO + ZD;”(no -1)r,

1 1
5V X (=DIp, 5] = Dles, pl) = =7V x {[(es-T)p + (p-1)lesHs + (e3 - 1)(p - r)rDJ }

Lo
= —5(Df = Ha)l(es - r)(p x 1) + (P - 1)(e3 x 1],

1
FV (=hP[p]) = —hHi(r)(p x 1),

1 1 1 1
5V x (Rylal = Rylal) = =5V x [(q x 1)H3] = —E(r2H4 +2M3)q + SHi(q - T,

1 h
EV x h(Jy[ng, e3] — Jy[ng, e3]) = —§V x [(r - e3)(ng x r)Hy + pHs]

h
= —5{(1' -€3)(3Hy + r*Hs)ng — [(no - €3)Hy + (r - €3)(ng - 1)Hs ]t — (p X 1)Hy)},

1 h? h? h? )
EV X —?Q[no] = 7V x [(ng x r)Hy] = ?[(21'14 + r"Hs)ng — Hs(ng - r)r],
where Hs is defined as
H) —10582
Hs(r) = — (A31)

r 82+ 807

In the above equations, all the single variable functions are evaluated at » when there is no indication of the independent variable.
When we have N,, point forces f; and N, point torques n; centered at th¢ boundary points Xy, k = 1, ...,N;,, we can apply the
resulting fundamental solutions (kernels) to derive the angular velocity w'™(x), which is given in Eq. (30).
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