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Abstract—Parallel imaging is a widely-used acceleration tech-
nique for magnetic resonance imaging (MRI). Conventional linear
reconstruction approaches in parallel imaging suffer from noise
amplification. Recently, a non-linear method that utilizes subject-
specific convolutional neural networks for k-space reconstruc-
tion, Robust Artificial-neural-networks for k-space Interpolation
(RAKI) was proposed and shown to improve noise resilience over
linear methods. However, the linear convolutions still provide
a sufficient baseline image quality and interpretability. In this
paper, we sought to utilize a residual network architecture
to combine the benefits of both the linear and non-linear
RAKI reconstructions. This hybrid method, called residual RAKI
(rRAKI) offers significant improvement in image quality com-
pared to linear method, and improves upon RAKI in highly-
accelerated simultaneous multi-slice imaging. Furthermore, it
establishes an interpretable view for the use of CNNs in parallel
imaging, as the CNN component in the residual network removes
the noise amplification arising from the linear part.

I. INTRODUCTION

Long scan times remain a challenge in magnetic resonance
imaging (MRI). Several methods exist for accelerating MRI
scans by undersampling the acquisitions beyond Nyquist rate,
and reconstructing these using additional information. Parallel
imaging is the most commonly used accelerated MRI method
[1]–[3]. These methods use differences in the profiles of
multiple receiver coils for reconstruction [1]. These differences
are estimated from scan-specific calibration data [2], [3], after
which the reconstruction is performed either as an inverse
problem in image domain [2] or an interpolation problem in
k-space [3].

These reconstruction strategies are linear in nature. There-
fore, at higher undersampling rates or low signal-to-noise
ratio (SNR) regimes, they suffer from noise amplification [2],
[3]. Thus, several alternative strategies have been proposed.
More recently, machine learning (ML) techniques have been
explored to improve the reconstruction quality with several
promising studies [5]–[17]. However, these methods require
large databases of training data, containing fully-sampled
images. Such training data is not always available practice,
especially when spatio-temporal resolution is important, such
as in cardiac MRI. Furthermore, the training datasets may
not include sufficiently many pathologies of interest. Conse-
quently, database-trained deep learning methods incur risks

in generalizability for diagnosis [18], which may hinder their
clinical application.

An alternative line of work in ML reconstruction for MRI
is scan-specific reconstruction. The first method of this type,
Robust Artificial-neural-networks for k-space Interpolation
(RAKI) [19] interpolates undersampled k-space using con-
volutional neural networks (CNNs) trained on scan-specific
ACS data. Thus RAKI extends the use of linear convolutional
kernels for k-space interpolation in the traditional GRAPPA
method [3] to non-linear CNNs with significant gains in noise
reduction [19]. The scan-specificity of RAKI comes with
benefits in offering robustness to biases in training datasets,
such as under-representation of rare pathological features [18],
as well as not requiring fully-sampled data for training. This
method was also extended to simultaneous multi-slice (SMS)
imaging [20] and arbitrary undersampling patterns [21], [22].

Even with the improvements provided by RAKI methods,
the source of the improvement is not easy to identify. As inter-
pretable algorithms for ML increasingly become important to
reduce the “black-box” stigma associated with such tools [23],
[24], it is imperative to provide more interpretable methods in
the RAKI framework to facilitate their clinical translation.

In this paper, we combine the advantages of linear GRAPPA
and non-linear RAKI reconstructions in an interpretable man-
ner, while maintaining the scan-specificity of RAKI. This new
method, called residual RAKI (rRAKI), uses a residual CNN
that includes a skip connection incorporating a linear convo-
lution in parallel with a multi-layer CNN. Thus, the linear
skip connection implements a linear interpolation similar to
GRAPPA, while the multi-layer non-linear CNN estimates
the imperfections that arise from the linear component, such
as noise amplification. All components in this residual CNN
are trained on scan-specific ACS data. Experiments in brain
imaging show that rRAKI has noticeable advantages over
linear methods in terms of noise resilience and artifact re-
moval. It also produces sharper images compared to RAKI in
a challenging highly-accelerated SMS imaging scenario.

II. METHODS

A. Background on k-space Interpolation and RAKI

GRAPPA [3] is one of the most clinically-used k-space
interpolation methods for parallel imaging. In GRAPPA, a



set of linear shift-invariant convolution kernels are estimated
from ACS data. Let R be the acceleration rate with uniform
undersampling and nc be the number of coils. Let s(kx, ky, i)
denote the k-space point at position (kx, ky) in coil i. For
notational convenience, let

N (kx, ky) = {(kx − bx∆kx, ky −Rby∆ky, i) :

bx ∈ {−Bx, . . . , Bx},
by ∈ {−By, . . . By},
i ∈ {1, . . . , nc}} (1)

denote a neighborhood of sampled points around the k-space
location (kx, ky) across all coils, where Bx and By are pre-
specified integer-valued kernel sizes. We define s̃N (kx,ky)

be the column vector whose entries are elements s(a, b, c)
with (a, b, c) ∈ N (kx, ky). With this notation, GRAPPA
estimates the missing points in a uniformly undersampled k-
space acquisition by interpolating the acquired points in its
vicinity as:

s(kx, ky −m∆ky, i) = gm,is̃N (kx,ky), (2)

where gm,i is a row vector that contains the corresponding
linear convolutional weights for estimating the mth skipped
line in coil i. The GRAPPA convolution kernel is obtained by
solving a linear least squares problem, where the calibration
points in the ACS region are used as regressors and regressand
in Eq. (2).

GRAPPA suffers from noise amplification at high acceler-
ation rates similar to other linear parallel imaging approaches
[2]. RAKI extends this idea of linear convolutions to per-
forming non-linear interpolation using CNNs [19]. This non-
linear interpolation strategy was shown to improve upon the
noise amplification associated with GRAPPA [19]. Similar to
GRAPPA, the CNNs in RAKI are trained from the ACS data.
For processing, complex k-space data is mapped to real field,
leading to a total of 2nc input channels from nc coils. This
affects the way the neighborhood is defined in Eq. (1), as i
now ranges over 1 to 2nc. We will use Ñ to denote this new
definition over the real field, and define s̃Ñ (kx,ky)

analogously.
Additionally let

U(kx, ky, j) = {(kx,ky −m∆ky, j) :

m ∈ {1, . . . R− 1}} (3)

denote the R − 1 missing phase encoding points adjacent
to (kx, ky) in channel j. Let s̃U(kx,ky,j) denote the column
vector whose entries are elements s(a, b, c) with (a, b, c) ∈
U(kx, ky, j). Then RAKI interpolation estimates the missing
k-space points using acquired data via CNNs as:

s̃U(kx,ky,j) = fj
(
s̃Ñ (kx,ky)

)
(4)

where fj(·) denotes the CNN that uses acquired data to
estimate skipped points in channel j. A three-layer CNN was
used in [19] for this process. The first two layers consisted
of convolutions and point-wise non-linear activation via the
rectified linear unit, ReLU(x) = max(x, 0), while the last

Fig. 1. The proposed residual network architecture used in rRAKI. The input
to the network is all the sampled k-space data across all coils, while the output
is all missing lines for a given coil, leading to R−1 output channels. A linear
k-space convolution is implemented via the residual connection, denoted by
Gj . A 3-layer network is used for estimating the artifacts arising from this
linear part. The architecture of this network is similar to that in RAKI [19], and
is denoted by Fj . The final reconstruction combines these two components,
Gj + Fj .

layer of the network only contained convolutions to generate
the final estimation.

B. Proposed Residual RAKI (rRAKI)
Figure 1 depicts the proposed residual network architecture

[25] used in rRAKI. The input to the network is all sampled
data across all channels. The rRAKI network for channel j
estimates all the missing lines for that channel. The network
itself consists of a a multi-layered CNN Fj , along with a
residual connection that implements a linear reconstruction
using shift-invariant convolutions in k-space, denoted by Gj .
The multi-layered network, Fj non-linearly estimates the
residual artifacts arising from the linear reconstruction for that
particular scan and compensates for these. Similar to [19], a
3-layered CNN was employed in this study. Thus, the rRAKI
reconstruction can be summarized as:

s̃U(kx,ky,j) = Fj

(
s̃Ñ (kx,ky)

)
+Gj

(
s̃Ñ (kx,ky)

)
(5)

In our implementation, Fj and GJ are trained jointly. Thus,
our goal is to enforce the baseline properties of the linear part.
Let yj denote the target points in ACS region, and ysource
denote the source points in the ACS region [3], [19]. The
training loss for channel j network is given by

min
θj

||yj − Fj(ysource;θj)−Gj(ysource;θj)||22

s. t. ||yj −Gj(ysource;θj)||22 < δ (6)

where || · ||2 denotes the `2 norm; δ is a scalar that limits
the linear reconstruction error. The equivalent unconstrained
problem using Lagrangian multipliers is given as

min
θj

||yj − Fj(ysource;θj)−Gj(ysource;θj)||22

+ λ||yj −Gj(ysource;θj)||22 (7)

where λ is a Lagrangian multiplier.



Fig. 2. 3T brain imaging reconstruction results of MPRAGE data (0.7mm
isotropic) at R = 4, 5, 6, using GRAPPA, RAKI, rRAKI. GRAPPA suffers
from noise amplification at high acceleration rates. Both RAKI and rRAKI
demonstrate improvements in noise resilience. The G term in rRAKI is close
to linear reconstruction (GRAPPA) result, while the F term estimates coil
geometry-based noise amplification. No noticeable blurring artifacts were
observed in rRAKI reconstruction at this high resolution.

C. In Vivo Imaging Experiments

Brain imaging was performed using a 3T Siemens Mag-
netom Prisma (Siemens Healthcare, Erlangen, Germany) sys-
temwith a 32-channel receiver head coil-array. A T1-weighted
3D-MPRAGE sequence was acquired in a healthy subject
(male, 41 years) with the following parameters: FOV =
224×224×179mm3, resolution = 0.7×0.7×0.7mm3, matrix
size = 320×320, TR/TE = 2400 ms/2.2 ms, flip angle = 8◦,
bandwidth = 210 Hz/pixel, inversion time = 1000 ms, ACS
lines = 40, with iPAT = 2 and 5. Furthermore, the R = 2
acquisition was also retrospectively undersampled to R = 4
and 6. The k-space data was inverse Fourier transformed along
the slice direction, and a central slice was processed.

SMS fMRI acquisition was performed using the Human

Connectome Project protocol [26] at 3T with the following
parameters: resolution = 2× 2× 2mm3, using blipped-CAIPI
encoding [27] with a field-of-view/3 shift between adjacent
multiband slices. Images were acquired using a multiband
rate of 16 (MB16) with echo time = 37ms, repetition time =
1000ms. Calibration data containing the individual slices was
acquired prior to the fMRI image series at the same resolution.
Fully-sampled slices obtained from individual scans were
concatenated along the readout direction in image domain to
build the subject-specific ACS data used for training of the
CNN [28], [29].

For all acquisitions, fully-sampled references were not avail-
able, thus reconstructions were assessed qualitatively.

D. Implementation Details

Network parameters in [19] were used for RAKI and
the Fj(·) of rRAKI in reconstructions of 3T imaging. For
SMS imaging, the network parameters employed in [29] were
adopted for both RAKI and Fj(·) of rRAKI. Gj(·) and the
first layer of Fj(·) were designed to have the same kernel size.
GRAPPA kernel size has been chosen as 5 by 4. According
to our experiments, bigger kernels did not improve the final
results. In this study, λ was set to 1. Adam optimizer [30] was
used for CNN training. For all reconstructions, the final images
were generated using the root-sum-of-squares combination of
individual coil images. RAKI and rRAKI were implemented
using python 3.6.2 and TensorFlow 1.3.0, supported by CUDA
8.0 and CuDNN 7.0.5. Python environment was created by
Anaconda 3.8.3. GRAPPA was implemented using Matlab
R2016b (MathWorks Inc., Natick, MA).

III. RESULTS

Figure 2 depicts the results of the 3T MPRAGE recon-
structions using GRAPPA, RAKI, rRAKI, as well as the
linear part of rRAKI, G(·) and the non-linear part of rRAKI,
F (·) scaled by a factor of 3 for improved visualization. All
three approaches successfully remove the aliasing artifacts.
For R = 4, RAKI and rRAKI have slightly lower noise
than GRAPPA. This advantage of RAKI and rRAKI in noise
resilience become more pronounced for acceleration rates of
5 and 6, where RAKI and rRAKI have visually lower noise
than GRAPPA. Furthermore, the linear, G(·) part of rRAKI
is very close to the GRAPPA results as desired. F (·) shows
satisfying ability to reduce the noise amplification from this
linear part, leading to the final rRAKI result, which matches
that of RAKI in terms of noise resilience.

Figure 3 presents 6 example slices out of 16 simultaneously
acquired ones for 3T SMS imaging. Both RAKI and rRAKI
show improved noise resilience over GRAPPA. However,
rRAKI shows advantages over both RAKI and GRAPPA, by
offering sharper images as well as fewer residual artifacts. An
SMS acceleration of 16 is a considerably high rate, which
leads to substantial noise amplification and residual artifacts
for linear reconstructions, including GRAPPA and the linear
G(·) component of rRAKI. Note the non-linear component,
F (·), captures more than just noise amplification in this case,



Fig. 3. Six slices from reconstructions of 3T Simultaneous Multi-Slice imaging fMRI data with multi-band acceleration rate = 16. rRAKI outperforms
GRAPPA in terms of noise amplification, while showing fewer blurring artifacts compared to RAKI. In addition to noise amplification, F component in
rRAKI also captures ghosting artifacts caused by imperfections in the EPI-based ACS data.

due to the imperfections of the EPI-based ACS data for this
application.

IV. DISCUSSION

In this work, we proposed an interpretable ML approach
for scan-specific accelerateed MRI reconstruction using CNNs.
Our method, rRAKI utilized a residual network architecture to
interpolate missing k-space lines using both linear and non-
linear components, both of which were trained on subject-
specific calibration, eliminating the need for a database of
images. Our proposed method provided better noise properties
than GRAPPA, and fewer blurring artifacts than RAKI.

Different to conventional residual network architectures
[25], our architecture featured a skip connection with a linear
convolution. This was important for our problem to include a
linear reconstruction method as a sub-component, but it also
required changes to conventional residual connections. How
the benefits of residual networks, such as accelerated con-
vergence and hypothesized easier optimization of the residual
mapping, extend to this case warrants further investigation.

In our work, we jointly trained the linear convolutional
component and the non-linear part. An alternative approach
would have been to fix the GRAPPA kernel following least
squares estimation, and use the explicit residual for training

at the output without a residual connection in the CNN.
However, in our experiments, this led to sub-par performance,
often converging to local minima, even when using a batch
normalization layer.

Although ML techniques demonstrated superiors outcomes
in MRI reconstruction both visually and quantitatively, in-
terpretability is still desirable for clinical adoption of ML
methods. rRAKI addresses two issues for clinical translation,
including scan-specificity and interpretability. For the former,
it avoids the risks caused by insufficient or biased inclusion
of rare pathologies in training databases, which may affect
other methods [18]. For the latter, the residual architecture
provides a linear reconstruction baseline, which matches the
linear GRAPPA method, while the non-linear CNN learns the
reconstruction residual to mitigate noise and artifacts arising
from the linear component. Such interpretability can also be
extended to other sampling patterns [21], [22].

V. CONCLUSION

The proposed residual RAKI method learns a linear re-
construction along with a CNN that removes the artifacts
arising from this linear portion for parallel imaging in a
scan-specific manner on limited calibration data, and provides
improvements upon existing k-space interpolation strategies.
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”sRAKI-RNN: accelerated MRI with scan-specific recurrent neural net-
works using densely connected blocks,” Proc. of Wavelets and Sparsity
XVIII, International Society for Optics and Photonics, vol. 11138, pp.
111381B, 2019.

[22] S. A. H. Hosseini, C. Zhang, S. Weingärtner, S. Moeller, M. Stuber, K.
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