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Abstract—Machine learning techniques have recently received
interest as a means of improving MRI reconstruction. In physics-
driven machine learning approaches, the known forward en-
coding model is used for enforcing data consistency in an
unrolled iterative regularized least squares reconstruction. A
neural network, which may or may not share weights across
different unrolled iterations, is used as the regularizer prior. In
this study, we aim to compare several neural network archi-
tectures, namely U-Net, ResNet and DenseNet for such physics-
driven reconstruction. The performance of these architectures
are evaluated on the publicly available fastMRI knee database.
Comparisons are made for uniform and random undersampling
masks. The results indicate that a DenseNet regularization unit
performs as well as the other strategies for both uniform and
random undersampling patterns, even though it has considerably
fewer trainable parameters.

Index Terms—recurrent neural networks, MRI reconstruction,
deep learning, parallel imaging

I. INTRODUCTION

Magnetic resonance imaging (MRI) provides a noninvasive
and radiation-free diagnostic tool in medical imaging. Due
to the inherently lengthy process of data acquisition in MRI,
accelerated MRI reconstruction has been an active area of re-
search for many years. Parallel imaging [1, 2] and compressed
sensing [3, 4] are widely used techniques for accelerated MRI
reconstruction. During the image reconstruction from sparse
measurements, various regularizers such as wavelets or total
variation based priors are generally applied [5, 6].

Recently, deep learning (DL) has emerged as an alternative
method for accelerated MRI reconstruction [7-9]. Several
approaches use end-to-end training for mapping the undersam-
pled image data with artifacts to artifact-free reconstruction
[10]. However, these approaches do not exploit the information
from the MRI encoding model. Alternative strategies either
use reconstruction in the sensor domain [8, 11] or ensures
data consistency with acquired measurements for solving an
inverse problem to recover the desired image [9].

A principled strategy for solving imaging inverse problems
using priors that utilize deep learning is based on the principle
of unrolling, which turns an iterative algorithm into a deep
neural network [12]. Such unrolled networks are referred to
as “physics-driven” in the context of DL-MRI reconstruction
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[9, 13, 14]. The unrolled network consists of several steps
each having a regularization and data consistency unit. Various
different implementation strategies have been used for physics-
driven DL-MRI reconstruction. In [9], a variational network
(VN) is proposed to learn the entire reconstruction model and
parameters. In this technique, the unrolled network combines
a regularizer which employs a variational neural network and
data consistency that uses proximal gradient descent at each
step. The network parameters are not shared among the blocks
in the VN algorithm, thus number of trainable parameters
increases with the number of unrolled steps. Model based
deep learning method (MoDL) is another method to learn the
unrolled network reconstruction problem [14]. Unlike the VN
algorithm, parameters are shared across the iterations of the
unrolled networks in MoDL, thus the number of parameters
does not increase as number of unrolled step increases. This
feature is particularly important for medical imaging applica-
tions, where large datasets are not always readily available.
Similar to VN algorithm, in MoDL technique each unrolled
step in the network contains a regularizer block which employs
a residual network (ResNet) [15] and a data consistency block
that employs a conjugate gradient method, which is another
difference from [9] that uses proximal gradient method.

In this work, we studied different neural network archi-
tectures for unrolled networks in physics-driven DL-MRI
reconstruction. We utilized the known forward encoding model
in data consistency blocks, which are implemented with an un-
rolled conjugate gradient approach [14]. Three different neural
networks, namely ResNet [15], U-Net [16] and DenseNet [17],
which have substantially different number of trainable network
parameters were used as the regularizer prior. Network pa-
rameters were shared among the unrolled iterations to reduce
the number of unknown parameters within the network. These
methods were trained and tested on the publicly available
fastMRI knee datasets [18].

II. MATERIALS AND METHODS

A. Data Modelling

Let x denote the image to be recovered, and y be the
acquired undersampled noisy data. The forward model for this
system is given as

y =Ex+n, (1
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Fig. 1: a) The iterative scheme of a reconstruction problem. b) The recurrent neural network architecture with each step consisting of a regularization (R) and
a data consistency (DC) unit. ¢) The DenseNet architecture with dense blocks (DB) containing convolutional layers (CL), and skip connections to improve the
flow of information across blocks. d) The ResNet architecture consisting of residual blocks (RB) that contain convolutional layers (CL), and skip connections.

where E : CM*N — CP is the encoding operator, including
a partial Fourier matrix and the sensitivities of the receiver
coil array [2], and n € CPF is the measurement noise. When
P > M - N, x can be estimated from y using a least squares
approach [19]. However, in general, the system may be ill-
conditioned and a least squares approach may lead to noise
amplification. Thus, regularizers are generally applied during
the recovery of x, as in the following objective function:

argmin [ly — Ex||3 + R(x), )

where R(x) is a regularization term, and the first term ensures
data consistency with measurements.

A variety of functions have been conventionally used for
the regularization term such as sparsity or low-rank based
priors depending on the problem of interest [3, 20, 21]. More
recently, neural networks have emerged as an alternative for
the regularization term that can learn a fully data-driven prior.
The objective function (2) can be optimized via a variable
splitting approach with quadratic penalty as follows:

argmin [[y — Ex|[3 + pllx — 23 + R(z), )

where p is the parameter of the quadratic penalty. By alternat-
ing the minimization over variables x and z, the optimization
problem of Equation (3) can be iteratively solved as:

i—1)

2 = arg mzinu||x(i*1) — 2|3+ R(z) (4a)

x = argmin |y — Ex[3 + plx— 203 @b)
where x(©) is the initial image, often corresponding to the
zero-filled undersampled k-space data, z(" is an intermediate
variable and x(¥) is the output image at iteration i. Equation
(4a) can be implicitly solved using a neural network archi-
tecture with convolutional kernels to find the solution at each
iteration. Equation (4b) has a closed form solution as:

where I is the identity matrix and ()7 is the conjugate
transpose operator. Given the size of multi-coil MRI data,
it is computationally more efficient to find the solution of
Equation (4b) using iterative algorithms such as conjugate
gradient [14], which eliminate the need for a matrix inversion.
Conventionally, Equations (4a) and (4b), often referred to as
regularization and data consistency units, are alternately solved
until a stopping criterion was met, as shown in Figure la.
However, with neural networks substituting the regularization
unit, the recursive scheme of Figure la is unrolled into a
recurrent neural network architecture with a fixed number of
iterations [12], as in Figure 1b. The regularization units in the
recurrent neural network architecture can generally be trained
with different parameters, which can be redundant in practice.
Therefore, for improved efficiency, the trainable parameters
can be shared across the regularization units [13, 14].

B. Implementation Details

The recurrent neural network architecture was unrolled for
5 iterations to perform an end-to-end image reconstruction as
shown in Figure 1b. In each iteration, the input is refined
by a regularization unit, and then a data consistency (DC)
operator is applied to ensure the iteration output image remains
consistent with the acquired data. The data consistency unit
employs the conjugate gradient method with 10 iterations
[14]. For the regularization unit, three different neural network
architectures, U-Net, ResNet and DenseNet, were utilized, .

For the DenseNet architecture, 3 blocks of densely con-
nected CNNs were employed with outer skip connections to
further facilitate the flow of information through the network
as shown in Figure 1c. Each dense block (DB) consisted of 4
convolutional layers with a growth factor of 12 channels. The
ResNet regularization unit was designed to have 4 residual
blocks with the skip connections as shown in Figure 1d. Each
residual block consisted of 2 convolutional layers each having
64 channels. For the U-Net architecture, we have employed
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Fig. 2: A representative test slice reconstructed using the physics-driven DL-MRI method with the three neural network architectures, U-Net, ResNet and
DenseNet, as regularization prior. Similar visual improvements were observed across the networks for both uniform and random undersampling masks.

a similar structure proposed in [18]. The total number of
trainable parameterts for U-Net, ResNet and DenseNet were
3,540,065; 296,193; and 41,213, respectively.

All layers in the three architectures had a kernel size of
3 x 3, except the last layer that used a kernel size of 1 x 1
and was used to map the number of output channels to 2 as
real and imaginary components of the reconstructed image. A
zero-padding strategy was used at each convolutional layer to
maintain input size. In addition, all layers were followed by
rectifier linear units (ReLLU) as activation functions except the
last layer.

The magnitude of all k-space data were normalized between
0 and 1 as a preprocessing step, to ensure that the network
parameters are learned for a standard range of data. The
network was trained using an Adam optimizer with a learning
rate of 1073 by minimizing a normalized mean square error
(NMSE) loss with a batch size of 2 for ResNet and DenseNet
and a batch size of 1 for U-Net over 100 epochs. The batch
sizes were kept small due to GPU memory limitations.

C. In Vivo MRI Dataset

Knee MRI data were obtained from the New York Univer-
sity (NYU) fastMRI initiative database [18]. Coronal proton
density weighted data acquired from 10 subjects were utilized
for training and testing. The fully sampled raw data were
acquired with a 15-channel knee coil. The following imaging
parameters were reported for coronal proton-weighted data;
TR = 2750 ms, TE = 27 ms, echo-train length = 4, matrix
size = 320 x 288, in-plane resolution = 0.49 x 0.44 mm?,
slice thickness = 3 mm. In the training, fully-sampled data
from 10 subjects, corresponding to 381 slices were utilized.
Each raw k-space data was of size 640 x 368 x 15 where
the first two dimensions are the oversampled matrix sizes and
the last dimension denotes the number of coils. The testing
was performed on 100 slices collected from 10 new subjects.
The fully sampled raw data were undersampled retrospectively
using random and uniform sampling patterns provided by
NYU with an acceleration rate of 4. The center of kspace was
fully sampled with 24 lines of autocalibrated signal (ACS).

The coil sensititivity maps were estimated using ESPIRIT [22]
using a 24 x 24 ACS region of the k-space. The reference and
undersampled input images were obtained through SENSE-
1 combination [2]. All the training and testing results were
compared with the fully-sampled reference.

Experimental results were quantitatively evaluated using
normalized mean square error (NMSE) and structural similar-
ity index (SSIM). Statistical group analysis for these metrics
over the 100 slices was performed using analysis of variance
(ANOVA) method, comparing the three networks under uni-
form and random sampling scenarios. All experiments were
performed using Tensorflow in Python, and processed on
a workstation with an Intel E5-2640V3 CPU (2.6GHz and
256GB memory), and an NVIDIA Tesla V100 GPU with
32GB memory.

III. RESULTS

Figure 2 shows a representative test slice reconstructed
using the physics-driven DL-MRI method with the three
neural network architectures, U-Net, ResNet and DenseNet,
as regularization prior. All three networks exhibit similar
visual improvement over the input image for both random
and uniform undersampling cases. Stronger aliasing artifacts
are present for the uniform undersampling, which is also the
more clinically utilized protocol [2]. Even though DenseNet
has substantially fewer parameters, it still performs as well as
the other neural networks for regularizing the reconstruction.
The quantitative evaluation of the results for the test slice in
Figure 2 is tabulated in Table 1. All three networks used in this
study have shown comparable performances in both random
and uniform undersampling scenarios.

Figure 3 summarizes the NMSE and SSIM metrics over the
100 test slices using the three neural network architectures.
Experiments are presented for both random and uniform un-
dersampling masks. The bar plots indicate similar performance
among the networks, with the random sampling results slightly
outperforming the uniform ones. This observation is con-
firmed with the ANOVA tests, which indicate no statistically



significant differences among the three networks for both
undersampling scenarios and both metrics (P > 0.05).

IV. DISCUSSION

In this study, we used unrolled recursive neural networks
for solving a physics-driven DL-MRI reconstruction problem.
Each unrolled network consisted of a data consistency unit and
regularizer unit, which was implemented using a CNN. We
compared three neural network architectures, U-Net, ResNet
and DenseNet, as the regularization module of this recurrent
neural network design. The comparisons were made for both
random and uniform undersampling masks on knee MRI data
[18]. The results indicate that all three network architectures
successfully remove the aliasing artifacts for both random
and uniform undersampling masks. The reconstruction of
uniformly undersampled data is typically more difficult since
the aliasing artifacts are stronger, and may remain in the
reconstructed images. Nonetheless, all three networks were
able to remove these artifacts in this study.

The DenseNet architecture had the fewest number of train-
able parameters among the three architectures (approximately
85 and 7 times fewer compared to the U-Net and ResNet,
respectively). Despite fewer trainable parameters, DenseNet
results were similar to the other techniques in terms of both
visual and quantitative assessment. The fewer number of
parameters is advantageous, since it can reduce the risks of
overfitting by reducing the degrees of freedom in training.
Furthermore, a neural network with fewer number of trainable
parameters requires smaller amount of data for training, which
may be critical in medical imaging applications, where raw k-
space data for training may be limited.

V. CONCLUSION

A DenseNet architecture is as effective as ResNet and U-Net
architectures as the regularization prior for a physics-driven
DL-MRI reconstruction approach. The DenseNet architecture
has considerably fewer trainable parameters, which in turn
reduces the risks of overfitting, as well as the required amount

NRMSE
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Random Uniform
U-Net | ResNet | DenseNet | U-Net | ResNet | DenseNet
NMSE | 0.048 0.046 0.047 0.047 0.052 0.052
SSIM 0.955 0.956 0.956 0.956 0.951 0.951

TABLE I: The NMSE and SSIM metric values for the test slice in Figure 2
undersampled with random and uniform patterns and reconstructed with the
three neural network architectures, namely U-Net, ResNet and DenseNet.

of data for training, which may be crucial in many MRI
applications with scarce training data.
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