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Abstract—Myocardial 77 mapping is a quantitative MRI
technique that has found great clinical utility in the detection
of various heart disease. These acquisitions typically require
three breath-holds, leading to long scan durations and patient
discomfort. Simultaneous multi-slice (SMS) imaging has been
shown to reduce the scan time of myocardial 77 mapping to a
single breath-hold without sacrificing coverage, albeit at reduced
precision. In this work, we propose a new reconstruction strategy
for SMS imaging that combines the advantages of two different
k-space interpolation strategies, while allowing for regularization,
in order to improve the precision of accelerated myocardial 7}
mapping.

Index Terms—magnetic resonance imaging, parallel imaging,
accelerated MRI

I. INTRODUCTION

Magnetic resonance imaging (MRI) offers various soft tis-
sue contrasts by using different magnetization relaxation pro-
cesses (e.g. T} and 75 relaxation). Such relaxation processes
can be quantified in a pixel-wise manner to provide protocol-
independent information [1, 2]. Among such quantitative MRI
methods, 77 mapping has found great clinical utility in cardiac
MRI in the management of various cardiomyopathies [3].

In myocardial 77 mapping, for a given slice, multiple
images are acquired with different 7 weights, which are
used to estimate the quantitative relaxation parameters using
a parametric model [4]. Typical clinical applications require
three slices covering the myocardium, where each slice is
acquired in a separate breath-hold [4]. Multiple breath-holds
lengthen the scan time due to rest periods between each breath-
held acquisition. Furthermore, they are often challenging for
patients, who have difficulty breath-holding.

Simultaneous multi-slice (SMS) or multiband (MB) imaging
is an image acceleration technique, where multiple slices are
excited and acquired at the same time [5]. The information
from these multiple slices are resolved using the redundancies
among the multiple sensors in the receiver coil arrays used in
MRI. An advantage of SMS/MB imaging is that there is no
inherent SNR loss due to the acceleration gained by exciting
multiple slices simultaneously [6, 7]. However, there is SNR
loss based on the geometry of the receiver coil array, as it is
used in the reconstruction. This loss can be further reduced
using a technique called controlled aliasing while exciting the
slices [6]. We have previously shown that SMS/MB imaging
can be used in myocardial 77 mapping to image three slices in

a single breath-hold, significantly reducing the scan time [8].
However, this study had used a linear reconstruction algorithm
without any regularization, leading to a reduced precision
compared to imaging each slice independently [8].

In this work, we sought to develop a regularized SMS/MB
reconstruction method that exploits two types of interpolation
strategies in k-space, while allowing for further reduction of
noise. The proposed method is compared to various existing
techniques, and is shown to improve precision without com-
promising accuracy.

II. METHODS
A. Related Works

Slice-GRAPPA: Generalized Autocalibrating Partially Par-
allel Acquisitions (GRAPPA) is a k-space interpolation tech-
nique that uses information from multiple receiver coils [9].
For k-space data that is uniformly sub-sampled in-plane,
GRAPPA estimates missing k-space points using linear shift-
invariant convolutional kernels applied to acquired data points
in a small neighborhood across all coils [9]. The weights of
the convolutional kernels are determined from a fully sampled
low-resolution calibration data, referred to as autocalibration
signal (ACS).

Slice-GRAPPA extends GRAPPA reconstruction to
SMS/MB imaging [10]. In slice-GRAPPA, different sets of
GRAPPA kernels are applied to the SMS/MB data, which
contains contribution from all slices, to synthesize individual
k-spaces for each slice. Similar to GRAPPA, kernel weights
are calculated from individual ACS data for each slice. The
slice-GRAPPA equation can be written as follows [10]:
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where k; ¢ is the k-space data of the 5™ coil of he s slice,
xkMB is the SMS/MB k-space data of the ¢ coil, B, and B,
are specified by the kernel sizes, N, is the number of coils,
and w;”sbc’ are the pre-calibrated weights at locations b, by
mapping from coil ¢ of the SMS/MB data to the ;" coil of
slice s. Note that slice-GRAPPA generates an entirely new k-

space for each coil of a particular slice whereas in conventional



GRAPPA only the unacquired k-space points are synthesized.
While slice-GRAPPA is efficient in removing aliasing artifacts,
it is a linear method that suffers from noise amplification based
on the coil geometry [11].

SMS/MB imaging can also be used in conjunction with
in-plane acceleration to achieve higher acceleration rates.
In this case, a typical approach is to use slice-GRAPPA to
synthesize sub-sampled data for each slice, which is then
reconstructed using conventional GRAPPA [8, 10].

Slice-SPIRIT: Iterative Self-consistent Parallel Imaging Re-
construction (SPIRIT) is another reconstruction technique that
relies on k-space interpolation that jointly enforces consistency
with acquired data, and consistency among the data from
multiple coils [12]. Using ACS data, SPIRIiT estimates a
convolutional kernel, denoted by the matrix G, which includes
contribution from all points, both acquired and missing, across
all coils around a given k-space point. Then the SPIRiT
reconstruction solves

argmin |[Por — y[[5 + 4| Gk — k][5, 2)

where y is the acquired k-space data, k is the k-space data
across all coils, Po is a sub-sampling operator that samples
the k-space data at locations specified by €2, and p is a weight
term. Note the first /5 term in the objective function enforces
consistency with the acquired data, while the second /5 term
essentially states that the effect of the SPIRIT convolution on
k-space data should enforce self-consistency across multiple
coils. The main advantages of the SPIRiT formulation is
its ability to work with arbitrary sub-sampling patterns, and
not just uniform ones like GRAPPA, as well as the ease of

incorporating additional regularizers (e.g. based on sparsity or
low-rank properties) in the objective function [12].

SPIRIT has recently been extended to SMS by enforcing
self-consistency for individual slices [13, 14]. This technique,
called SMS-L1-SPIRIT, solves an objective function of the
form:
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where K/ p is the acquired MB data across all coils in k-space,
K; 1s the k-space data across all coils of the it slice, Pq is a
sub-sampling operator as previously defined, W is a regularizer,
which was taken as the time-domain finite difference of each
coil image in [13].

B. Slice MB-SPIRiT/GRAPPA

In this work, we seek to use the advantages of slice-
GRAPPA in removing aliasing artifacts, and of SPIRIT in en-
forcing self-consistency and enabling the use of regularization.
Thus, our proposed method, called MB-SPIRiT/GRAPPA,
combines these two k-space reconstruction strategies, by solv-
ing the following objective function:
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Fig. 1. A visual schematic of the objective function in Equation (4) for the proposed slice MB-SPIRiT/GRAPPA method. a) Data consistency term, enforces
consistency with acquired k-space data, b) Slice-specific GRAPPA kernels provide a noisy but reliable estimate of the individual k-space slices, c¢) Further
reduction in noise is achieved by introducing coil self-consistency terms, as in the SPIRIT framework. An MB factor of n = 3 is shown, and the regularization

term is not depicted.



where Pg is a sub-sampling operator as previously defined,
kg is the acquired MB data across all coils in k-space,
k; is the k-space data across all coils of the i" slice, Gygp
is the slice-GRAPPA operator as in Section II-A, Gj is the
SPIRIT self-consistency operator for the i" slice, ¥ is a
regularizer, u, B; and o; are weight terms. Finally, E; is an
operator that takes the inverse Fourier transform of all coil k-
spaces in the i™ slice, and combines these images into one
image using coil sensitivity maps, which is referred to as
the SENSE-1 combination [11]. A schematic description of
the data consistency (first term), slice-GRAPPA consistency
(second term) and SPIRIT coil self-consistency (third term) in
Eq. 4 are depicted in Figure 1.

The objective function in Eq. 4 was solved using Alternating
Direction Method of Multipliers (ADMM) with the following
sub problems. At iteration ¢, the first sub problem is solved
with respect to {K1,- -, Kn}:
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where {zgtfl)} are the (t — 1)™ iteration auxiliary variables,
z; introduced for constraining E;k;, and {\;} are the dual
variables. The update for {z;} is given as

n . )\(tfl) 2 o
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and the dual variables {\;} are updated as:
AP =AY 4 p(Ei) - 2 ®). (7)

C. Imaging Experiments

Imaging was performed at 3T in a healthy subject with
no contraindications to MRI. The study was approved by
our institutional review board, and written informed consent
was acquired before the study. SMS/MB imaging was ac-
quired in a single breath-hold by using an electrocardiogram
(ECG)-triggered saturation pulse-prepared heart rate indepen-
dent inversion recovery (SAPPHIRE) sequence with Gradient
Recalled Echo (GRE) imaging [8]. 3 slices were simultane-
ously imaged using MB excitation, where controlled aliasing
(CAIPIRINHA) was utilized with 27/3 phase increments to
reduce noise amplification [6]. In addition to MB excitation,
an in-plane acceleration rate of 2 was utilized to acquire
15 images with different 77 weightings in a single breath-
hold. Other relevant imaging parameters include: field-of-view
(FOV) = 320 x 320 mm?, resolution = 2 x 2.1 mm?, slice

thickness = 10 mm. A separate free-breathing scan of three
slices was acquired as calibration/ACS data for reconstruction
with the same parameters but lower resolution = 2 x 5 mm?.

For each of the three slices quantitative 77 maps were
generated using parameter fitting [8]. Quantitative analysis was
performed for each of the 16 segments of the myocardium
[15] using manually drawn regions of interest (ROIs). For each
segment, the mean value in the ROI is reported as the estimated
Ty value, whereas the standard deviation in the ROI is reported
as the spatial variability of the 77 maps. This spatial variability
is used as a surrogate for precision, since healthy people are
not expected to have much variation in their native myocardial
Ty values beyond noise effects [3, 8].

D. Reconstruction

The acquired raw data with 3-fold SMS/MB and 2-fold
in-plane accelerations were exported from the scanner to be
processed offline. The slice-GRAPPA kernel, Gnp, and the
SPIRIT kernels, {G1, G2, G3} were calibrated using the ACS
data. A 5 x 5 kernel was used the former, and 7 x 7 kernel for
the latter. The proposed technique was implemented with the
following parameters: = 107% and B; = fo = 3 = 1073,
Reconstructions were performed both without regularization
(01 o3 = 0) and with regularization (o7 = 09 =
o3 = 1073). The regularizer was based on a locally low-rank
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Fig. 2. T71 maps of the three slices covering the heart, reconstructed using
slice-GRAPPA (top), SMS-SPIRIT (second row) and the proposed slice MB-
SPIRiT/GRAPPA without and with LLR regularization (third and fourth rows
respectively). Among the non-regularized methods, visually improved spatial
variability in the myocardium is observed using the proposed approach. Use of
LLR regularization in the proposed method further leads to a modest reduction
in spatial variability.



(LLR) constraint, which was shown to be effective in MR
parameter mapping [16], as follows:

U(x) = BRI, ®)
k

where B! is an operator that extracts a b x b block, whose
top-left corner is at pixel k, from each 73-weighted image in
the series, vectorizes these, and stacks them up into a b2 x nr,
matrix, where b = 8 and np, = 15 in this study; and || - ||.
is the nuclear norm. Eq. 6 was solved using singular value
thresholding, where the thresholding parameter (i.e. o;/p) was
set to 0.04 times the ¢, norm of the SENSE-1 image for the
slice. All parameters (i, 5; and o;) were empirically tuned.

For comparison, the slice-GRAPPA reconstruction followed
by in-plane GRAPPA reconstruction as in [8] was imple-
mented. In addition to the slice-GRAPPA kernel described
previously, a 5 x 4 kernel for in-plane GRAPPA was utilized.
Furthermore, SMS-SPIRIT was also implemented [13, 14]
by setting 4 = 0 in Eq. 4, also with a 7 x 7 kernel size.
All methods were implemented in MATLAB (Mathworks,
Natick, MA). The run-time per iteration was 10 seconds for
non-regularized SMS-SPIRIT and proposed method, and 30
seconds for the regularized versions.

III. RESULTS

Figure 2 shows the 77 maps of the three slices, cor-
responding to the apex (left), midventricular (middle) and
base (right) of the heart, reconstructed using slice-GRAPPA
(top), SMS-SPIRIT (second row) and the proposed slice MB-
SPIRIT/GRAPPA without and with regularization (third and
fourth rows respectively). Visually improved spatial variability

Slice-GRAPPA SMS-SPIRIT

T, Time (ms)

Spatial
Variability (ms)

is observed with the proposed approach in the myocardium,
especially in the septal region, and in the blood pools. Further
gain is achieved with the regularized reconstruction.

Figure 3 shows bullseye representation of the 16 myocardial
segments, for myocardial 7; times and spatial variabilities
(in ms) of the different reconstruction methods. All methods
yield similar 77 values (< 1.5% difference), indicating no
bias in reconstruction. Among the non-regularized methods,
the proposed slice MB-SPIRiT/GRAPPA technique shows the
least spatial variability (167 ms), followed by SMS-SPIRiT
(176 ms), and slice-GRAPPA (184 ms). A further reduction in
spatial variability is achieved when using the proposed method
with LLR regularization (157 ms).

IV. CONCLUSION

In this work, we proposed and evaluated a joint SPIRiT
and slice-GRAPPA type reconstruction for SMS/MB imag-
ing. The proposed MB-SPIRiT/GRAPPA reconstruction shows
improved spatial variability compared to slice-GRAPPA and
SMS-SPIRIT. Additionally, this method allows incorporation
of regularizers for further reduction of reconstruction noise.
Since our focus in this study was on the effective use of coil
information, we used a previously established regularizer with
a low weight as a proof-of-concept. Further optimization of
the regularizer will be explored in future research. Further
validation of the performance of the proposed method in a
larger cohort will also be studied in future work.
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Fig. 3. Bullseye representation of myocardial 77 times and 77 spatial variability for slice-GRAPPA, SMS-SPIRIT, and the proposed slice MB-SPIRiT/GRAPPA
without and with LLR regularization. Among non-regularized methods, slice MB-SPIRiT/GRAPPA shows the least spatial variability while maintaining
comparable 7 times. Slice MB-SPIRiT/GRAPPA with LLR regularization exhibits lower spatial variability compared to its corresponding non-regularized
implementation. Mean 73 times and 77 spatial variability of the apical (A), midvenctricular (M) and basal (B) slices are also shown.
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