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ABSTRACT

This study aims to improve upon Self-consistent Robust Artificial-neural-networks for k-space Interpolation
(sRAKI), which is a deep learning-based parallel imaging technique for accelerated MRI reconstruction. The
proposed technique, called SRAKI-RNN, combines the calibration and reconstruction phases of sSRAKI into a
single step that jointly learns the self-consistency rule and performs iterative reconstruction using recurrent neural
networks (RNN). Similar to SRAKI, sRAKI-RNN supports arbitrary undersampling patterns and is a database-
free technique that is trained on autocalibrating signal (ACS) data from the same scan. Densely connected blocks
are used in each iteration of the RNN to improve the convergence during the learning phase. SRAKI-RNN was
evaluated on targeted right coronary artery (RCA) MRI. The results indicate that SRAKI-RNN further improves
the noise resilience of SRAKI in a shorter running time and also considerably outperforms its linear counterpart,
SPIRiT, in suppressing reconstruction noise.
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1. INTRODUCTION

Coronary MRI provides a non-invasive and radiation-free tool in diagnosis of coronary artery disease (CAD),! the
leading cause of death in the United States.? Coronary MRI is typically acquired with electrocardiogram (ECG)
triggering during diastolic quiescence and in free-breathing, leading to long scan durations and necessitating
accelerated imaging.®® Parallel imaging,% " compressed sensing® '? and their combinations'' ' are some of the
methods that have been used for accelerated coronary MRI. Recently, numerous research studies have focused
on deep learning-based techniques for accelerated MRI in general.'®2? These techniques mostly depend on large
databases of fully-sampled datasets for training neural networks that perform nonlinear end-to-end mapping
from undersampled data to fully-sampled target data. However, in some MRI applications such as whole heart
coronary MRI,3% 32 reference fully-sampled data cannot be acquired due to impractically long scan times. Robust
artificial-neural-networks for k-space interpolation (RAKI)!® is a machine learning-based technique, which trains
convolutional neural networks (CNN) on scan-specific autocalibrating signal (ACS) data, and thus addresses this
issue. This scan-specificity feature of RAKI also ensures that inter-scan or inter-individual variability of training
data does not adversely affect the generalizability of learning for reconstruction.??

RAKI, which was originally designed for uniform undersampling, has been recently extended with an approach
called self-consistent RAKI (sRAKI) to support arbitrary undersampling patterns for applications that benefit
from random undersampling such as coronary MRI.?*36 The notion of self-consistency in sRAKI is similar to
that proposed in SPIRiT.?” However, in sRAKI, a nonlinear mapping using CNNs is learnt as the self-consistency
rule instead of the linear convolutions in SPIRIT. Similar to SPIRIiT, sRAKI also performs the calibration and
reconstruction in separate phases, which can degrade efficiency of reconstruction. In this study, we sought to
combine these two steps by using recurrent neural networks (RNN)?23:2426:38 with multiple densely connected
neural network blocks.?® The new technique, called sSRAKI-RNN is evaluated in coronary MRI and compared
to SPIRIT and sRAKI for various acceleration rates.
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2. MATERIALS AND METHODS

Let x denote the full k-space data across all coils and y be the corresponding acquired undersampled noisy data
from a multi-coil MRI system with n. coils. The forward model for this system is formulated as:

where D is the undersampling operator and n represents acquisition noise. The following objective function
is optimized to estimate the full k-space data x from measurements y by using the self-consistency notion of
SPIRiT:*7

arg min [y — Dx][3 + 8l|x — G(x)]3, (2)

where G(-) represents the self-consistency interpolation function. The first term in objective function (2) ensures
that the reconstructed data remains consistent with the acquired portion of data. The second term enforces the
self-consistency rule of G(-) on the reconstructed data and f is a weight term. SPIRIT assumes a linear self-
consistency rule,?” whereas sSRAKI generalizes the interpolating function G(-) to a nonlinear mapping that can
be learned by CNNs.?436 In both approaches, the self-consistency rule is determined by training on ACS data
prior to reconstruction. Subsequently, the objective function in (2) can be optimized iteratively by alternating
between enforcing data consistency and self-consistency.?7

An alternative approach is to unroll iterations in an RNN?23:24:26:38 with multiple CNN blocks each imple-
menting the unrolled version of this iterative approach. For the n'® unrolled iteration, the self-consistency and
data-consistency operations are applied as follows:

z, = G(x,),
_ T T (3)
Xpn+1 = (I—-D*D)z, + D'y,

where x,, is the reconstructed k-space data at iteration n, z, is the output of self-consistency unit and I is
the identity operator. Thus, the second equation in (3) enforces data-consistency with acquired data y. This
approach, called SRAKI-RNN, eliminates the need for a separate calibration of CNNs in sRAKI to specify
the self-consistency rule G(-). Instead, SRAKI-RNN trains an end-to-end network to concurrently learn the
self-consistency rule and implement the iterative scheme of reconstruction in SRAKI. Hence, the reconstruction
phase of sSRAKI-RNN is a single forward propagation step in training neural networks . In addition, since the
CNN parameters are shared across iterations, the training phase can be efficiently performed using the ACS
data, as in sSRAKI, maintaining scan-specificity.

2.1 Implementation Details

In this study, an RNN architecture unrolled for 5 iterations was employed to perform an end-to-end k-space
reconstruction (Figure 1). Each iteration consists of a single self-consistency (SC) and data-consistency (DC)
unit, connected to each other. For the self-consistency unit, 3 blocks of densely connected CNNs?? followed by a
single convolutional layer were employed with 2 outer skip connections (see Figure 1) to further facilitate the flow
of information across blocks. Each dense block (DB) consisted of 3 convolutional layers with a growth factor of
8 channels. All layers in the dense blocks were followed by rectifier linear units (ReLU) as activation functions.
The kernel size of all convolutional layers was 3 x 3.

To generate training data, ACS region was retrospectively undersampled in k, — k. plane using a single
Poisson-disc pattern with a rate identical to the rest of data. The undersampled and full ACS data pairs were
later used to train the network. To reduce the training computational complexity, 3D data were first inverse-
Fourier transformed along readout direction, k.. The resultant 2D slices were then fed to the network in batch
sizes of 32. The real and imaginary components of complex k-space data were concatenated before feeding them
into the network, which led to 2n. input and output channels. The network was trained by minimizing an MSE
loss function using Adam optimizer with a learning rate of 0.001, iterated over 500 epochs. To standardize the
hyper-parameters such as the learning rate, the k-space was scaled such that the maximum absolute value was 1.
For comparison purposes, SPIRIT using a conjugate gradient reconstruction®” and sRAKI with the parameters
as previously described?* 3¢ were also implemented.
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Figure 1. (a) The recurrent network architecture of SRAKI-RNN unrolled for n iterations to simultaneously apply self-
consistency (SC) and data consistency (DC) and perform the iterative reconstruction. (b) A single SC unit with 3 dense
blocks (DB), a single convolutional layer (CL) at the output, along with two skip connections to facilitate information
flow through network. (c) A closer view of the DB.

2.2 In Vivo Coronary MRI

Targeted right coronary artery (RCA) MRI was acquired on a 28-year old male subject using a 3T Siemens Mag-
netom Prisma (Siemens Healthineers, Erlangen, Germany) system with a 30-channel receiver body coil-array and
an ECG-triggered GRE sequence with imaging parameters: TR/TE=3.4/1.5ms, flip angle=20°, bandwidth=601
Hz/pixel, field-of-view (FOV)=300 x 300 x 48mm3, resolution=1 x 1 x 3mm?, navigator window=5mm. Ta-
preparation and a spectrally-selective fat saturation were utilized for improved contrast. The 3D k-space data
was exported and retrospectively undersampled with a Poisson disc pattern at acceleration rates 2, 3, 4, and 5
with a fully-sampled 36 x 10 ACS region in k, — k. plane. The images reconstructed using SPIRiT, sRAKI and
sRAKI-RNN were quantitatively assessed by normalized mean square error (NMSE) and structural similarity
index (SSIM) metrics with respect to the reference fully-sampled image. Final images were obtained using root
sum-squares combination of all coil images. All algorithms were implemented in Python, and processed on a
workstation with an Intel E5-2640V3 CPU (2.6GHz and 256GB memory), and an NVIDIA Tesla V100 GPU
with 32GB memory.

3. RESULTS

Figure 2 depicts a representative slice from the targeted RCA MRI dataset that was retrospectively undersampled
at rates 2, 3, 4 and 5, and reconstructed using techniques SPIRIT, sRAKI and sRAKI-RNN. All techniques
successfully remove aliasing artifacts and allow visualization of the RCA at all rates. Nonetheless, reconstruction
noise is amplified by SPIRiT, especially at higher rates. Both sRAKI and sRAKI-RNN demonstrate desirable
noise properties, with SRAKI-RNN being superior in suppressing reconstruction noise at all rates.

A quantitative analysis is provided in Table 1 for the NMSE and SSIM metrics. These values, which are
consistent with the visual evaluation of Figure 2, further indicate that sSRAKI-RNN improves accelerated coronary
MRI reconstruction over SPIRIT and sRAKI.

4. DISCUSSION

We proposed an accelerated MRI reconstruction technique, SRAKI-RNN that uses an RNN with densely con-
nected blocks to enforce self-consistency among multi-coil MRI datasets and data-consistency with arbitrarily
undersampled data. sRAKI-RNN further improves the desirable noise properties of our previous technique,
sRAKI.?*36 In contrast to most deep learning-based accelerated MRI reconstruction methods that need large
amounts of data to train neural networks,'®2? sRAKI-RNN inherits the scan-specificity feature of the RAKI
and sRAKI methods. Consequently, SRAKI-RNN relies on ACS data from the same scan to train the neural
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Figure 2. A representative slice from a 3D right coronary artery MRI data of a healthy subject. The data were
retrospectively undersampled at rates 2, 3, 4 and 5 in the k, — k. plane and then reconstructed using techniques SPIRiT,
sRAKI and sRAKI-RNN (top, middle and bottom rows). The fully-sampled images are provided in the first column as
a reference for comparison. All techniques successfully remove aliasing artifacts, and the least reconstruction noise is
achieved by sRAKI-RNN. (RCA: right coronary artery; AO: aortic root)

network, which is particularly beneficial for applications where long scans impede acquiring fully-sampled data,
such as whole-heart imaging.3% 32

By using an unrolled RNN scheme with parameter sharing across iterations, sSRAKI-RNN combines the
calibration and reconstruction phases of sSRAKI into a single training phase. This compaction reduced the total
running time of SRAKI-RNN to approximately 60 seconds, which is twice faster than sRAKI. In addition, fewer
hyper-parameters (e.g. learning rate of gradient descent) are involved in the whole reconstruction process, which
further facilitates training. Another difference with sSRAKI is that sSRAKI-RNN utilizes a densely connected
neural network design for the self-consistency units. This configuration with outer skip connections considerably
improved convergence of training by facilitating the flow of information across blocks. We note that such a

Table 1. Quantitative NMSE (left) and SSIM (right) assessment of SPIRIT, sRAKI and sRAKI-RNN in reconstructing
a right coronary artery MRI dataset at acceleration rates 2, 3, 4 and 5. SRAKI-RNN achieves the least NMSE and the
highest SSIM values at all rates.

NMSE R2 R3 R4 R5 SSIM R2 R3 R4 R5

SPIRiT 0.0119 | 0.0205 | 0.0334 | 0.0449 SPIRIT 0.907 | 0.855 | 0.792 | 0.748

sRAKI 0.0090 | 0.0162 | 0.0215 | 0.0253 sRAKI 0.945 | 0.906 | 0.875 | 0.853
sRAKI-RNN | 0.0079 | 0.0145 | 0.0197 | 0.0238 sRAKI-RNN | 0.954 | 0.919 | 0.893 | 0.874




design for sRAKI leads the network to learn a trivial identity mapping for the self-consistency rule due to the
skip connections, since input and target data are identical in calibration phase of sSRAKI.

We have compared the performance of sSRAKI-RNN with SPIRIiT and sRAKI in a targeted RCA dataset.
Visual and quantitative evaluation of the results indicate that SRAKI-RNN considerably reduces amplification
of reconstruction noise in SPIRiT, particularly at higher acceleration rates. In addition, SRAKI-RNN improves
noise properties of SRAKI at all acceleration rates.

5. CONCLUSION

sRAKI-RNN is a deep learning-based accelerated MRI technique that supports reconstruction with arbitrary
undersampling patterns. It uses an unrolled RNN approach with parameter sharing across iterations besides the
densely connected configuration of units used to learn the k-space self-consistency rule of multi-coil MRI dataset.
Furthermore, these networks are trained on scan-specific calibration data without requiring large amounts of
data. sSRAKI-RNN outperforms SPIRIT and sRAKI in suppressing reconstruction noise with a shorter running
time.
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