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Abstract
We analyze the convergence rate of the random reshuffling (RR) method, which is
a randomized first-order incremental algorithm for minimizing a finite sum of con-
vex component functions. RR proceeds in cycles, picking a uniformly random order
(permutation) and processing the component functions one at a time according to this
order, i.e., at each cycle, each component function is sampled without replacement
from the collection. Though RR has been numerically observed to outperform its
with-replacement counterpart stochastic gradient descent (SGD), characterization of
its convergence rate has been a long standing open question. In this paper, we answer
this question by providing various convergence rate results for RR and variants when
the sum function is strongly convex. We first focus on quadratic component functions
and show that the expected distance of the iterates generated by RR with stepsize
αk = Θ(1/ks) for s ∈ (0, 1] converges to zero at rate O(1/ks) (with s = 1 requiring
adjusting the stepsize to the strong convexity constant). Our main result shows that
when the component functions are quadratics or smooth (with a Lipschitz assump-
tion on the Hessian matrices), RR with iterate averaging and a diminishing stepsize
αk = Θ(1/ks) for s ∈ (1/2, 1) converges at rate Θ(1/k2s) with probability one in
the suboptimality of the objective value, thus improving upon the Ω(1/k) rate of
SGD. Our analysis draws on the theory of Polyak–Ruppert averaging and relies on
decoupling the dependent cycle gradient error into an independent term over cycles
and another term dominated by α2

k . This allows us to apply law of large numbers
to an appropriately weighted version of the cycle gradient errors, where the weights
depend on the stepsize. We also provide high probability convergence rate estimates
that shows decay rate of different terms and allows us to propose a modification of
RR with convergence rate O( 1

k2
).
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1 Introduction: first-order incremental methods

We consider the following unconstrained optimization problem where the objective
function is the sum of a large number of component functions:

min f (x) :=
m∑

i=1

fi (x) s.t. x ∈ R
n, (1)

with fi : Rn → R. This problem arises in many contexts and applications includ-
ing regression or more generally parameter estimation problems (where fi (x) is the
loss function representing the error between the output and the prediction of a para-
metric model) [2,3,5,12], minimization of an expected value of a function (where
the expectation is taken over a finite probability distribution or approximated by an
m-sample average) [11,38], machine learning [38,41,42], or distributed optimization
over networks [27,28,33].

One widely studied approach for solving problem (1) is the deterministic incremen-
tal gradient (IG) method [4–6]. IG method is similar to the standard gradient method
with the key difference that at each iteration, the decision vector is updated incremen-
tally by taking sequential steps along the gradient of the component functions fi in a
cyclic order. Hence, we can view each outer iteration k as a cycle ofm inner iterations:
starting from initial point x00 ∈ R

n , for each k ≥ 0, we update the iterate xki as

xki := xki−1 − αk∇ fi (x
k
i−1), i = 1, 2, . . . ,m, (2)

where αk > 0 is a stepsize with the convention that xk+1
0 = xkm .

Intuitively, it is clear that slow progress can be obtained if the functions that are
processed consecutively have gradients close to zero. Indeed, the performance of IG
is known to be pretty sensitive to the order functions are processed [6, Example 2.1.3]
where an order σ is defined as a permutation of {1, 2, . . . ,m}. In some special cases
when the component functions have a particular symmetry structure, there may be
a favorable order σ to process the component functions which can lead to better
performance than other choices of the order (see e.g. [6, Example 2.1.6]). IG iterations
with respect to an order σ are of the form:

xki := xki−1 − αk∇ fσ(i)(x
k
i−1), i = 1, 2, . . . ,m. (3)

However, in general a favorable order is not known in advance, and a commonapproach
is choosing the indices of functions to process as independent and uniformly distributed
samples from the set {1, 2, . . . ,m}. This way no particular order is favored, making the
method less vulnerable to particularly bad orders. This approach amounts to at each
iteration sampling the function indices with replacement from the set {1, 2, . . . ,m}
and is called the Stochastic Gradient Descent (SGD) method, a.k.a. Robbins-Monro
algorithm [37]. SGD is strongly related to the classical field of stochastic approx-
imation [25]. Recently it has received a lot of attention due to its applicability to
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large-scale problems and became popular especially in machine learning applications
(see e.g. [8,9,11,43]).

An alternative popular approach that works well in practice is following a mixed
approach between SGD and IG, sampling the functions randomly but not allowing
repetitions, that is sampling the component functions at each iteration without-
replacement, or equivalently picking a random order at each cycle. Specifically, at
each cycle k, we draw a permutation σk of {1, 2, . . . ,m} independently and uniformly
at random over the set of all permutations

Γ = {
σ : σ is a permutation of {1, 2, . . . ,m}}, (4)

and process the functions with this order:

xki := xki−1 − αk∇ fσk (i)(x
k
i−1), i = 1, 2, . . . ,m, (5)

where αk > 0 is a stepsize. We set xk+1
0 = xkm as before and refer to {xk0 } as the outer

iterates. This method is called the Random Reshuffling (RR) method [6, Section 2.1]
and will be the focus of this paper.

2 Motivation and summary of contributions

Without-replacement sampling schemes are often easier to implement efficiently com-
pared to with-replacement sampling schemes, guarantee that every point in the data
set is touched at least once, and often have better practical performance than their
with-replacement counterparts [4,6,7,9,18,20,34,35]. For instance, Bottou [7] empiri-
cally compares SGD and RR methods and finds that RR converges with a rate close to
∼ 1/k2 whereas SGD is much slower achieving its min–max lower bound of Ω(1/k)
for strongly convex objective functions [1,30]. This discrepancy in rate between RR
and SGD is not only observed for large m but also for small m (as we illustrate in
Example 1), and understanding it theoretically has been a long-standing open prob-
lem [4,6,35].

To our knowledge, the only existing theoretical analysis for RR is given by a recent
paper of Recht and Ré [34] which focuses on least mean squared optimization and
formulates a conjecture that would prove that the expected convergence rate of RR
is faster than that of SGD. Given N arbitrary positive-definite matrices of dimension
n × n, the conjecture says that products of any K matrices chosen from this set
of N matrices satisfy a non-commutative arithmetic-geometric mean inequality for
every positive integer N and every K ≤ N . This conjecture has been proven only
in some special cases (for N = 2 [34], for N = 3 [23] and when N is a multiple
of 3 and K = 3 [44]). Recht and Ré also analyze a special case of (1) (that arises
when fi (x) = (aTi x − yi )2 where ai is a column vector that is randomly generated
according to a random model and yi is a scalar) and show that after a fixed amount
of iterations, the upper bounds on the expected mean square error using without-
replacement sampling is smaller than that of with-replacement sampling with high
probability on most models of ai (probabilities are taken with respect to the random
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data generation model). Despite these advances, there has been a lack of convergence
theory for RR that characterizes its convergence rate and explains its fast performance.
Analyzing algorithms based on without-replacement sampling such as RR is more
difficult than with-replacement based approaches such as SGD. The reason is that
the underlying independence assumption for the with-replacement sampling allows
a tractable analysis with classical martingale convergence theory [26,31], whereas
without-replacement sampling introduces correlations and dependencies among the
sampled gradients and iterates that are harder to analyze [34]. The aim of our paper is
to fill this theoretical gap for the case when the objective function f in (1) is strongly
convex and develop a novel algorithm that can accelerate the convergence further.
We next summarize our contributions.

Wefirst consider the casewhen the component functions are quadratics. Building on
the recent convergence rate results for the cyclic IG [21, Theorem 3.1], we first present
a key result (Theorem1) that provides an upper bound for the distance from the optimal
solution of the iterates generated by an incremental method that processes component
functions with an arbitrary fixed order and uses a stepsizeΘ(1/ks) for s ∈ (0, 1]. This
upper bound decays at rate O(1/ks) and depends on the strong convexity constant of
the sum function and an order dependent parameter given by a weighted average of
Hessian matrices where the weights are given by the sum of the component gradients
processed up to that point according to the given order. We use this result to show that
the distance to the optimal solution of the iterates generated by RR algorithm with
stepsize Θ(1/ks), for all s ∈ (0, 1], converges to 0 at rate O(1/ks) in expectation
(where the expectation is over the random sequence of iterates). Moreover, we show
that achieving the rate O(1/k) involves adapting the stepsize to the strong convexity
constant of the sum function.

We then consider the q-suffix averages of the iterates generated by RR for some
q ∈ (0, 1] (which is obtained by averaging the last qk iterates at iteration k) and
show that with a stepsize αk = R/(k + 1)s for s ∈ (1/2, 1) and R > 0, they
converge almost surely at rateO(1/ks) to the optimal solution. We provide an explicit
characterization of the asymptotic rate constant in terms of the averaging parameter
q, the stepsize parameters R and s and the Hessian matrices and the gradients of
the component functions at the optimal solution (parts (i) and (ii) of Theorem 3).
Using strong convexity, this implies an almost sure convergence rate Θ(1/k2s) in the
suboptimality of the objective value. Our analysis views RR as a gradient descent
method with random gradient errors. Since the permutations arising in each cycle
of the RR algorithm are sampled independently, by conditioning on the last iterate
from the prior cycle, we eliminate the cross-dependencies of the cumulative gradient
error among the cycles in our approach. A key step in our proof is to decouple the
cycle gradient error into a O(αk) term independent over cycles and another term that
scales as O(α2

k ). This allows us to use strong law of large numbers for a properly
weighted average of the cycle error gradient sequence (where the weights depend
on the stepsize) and show almost sure convergence of the q-suffix averaged iterates.
Another key component of our analysis is to adapt the Polyak–Ruppert averaging
techniques developed for SGD [26,31] to RR.

We also provide a high probability convergence rate estimate for the distance of
q-suffix averages to the optimal solution that consists of two terms, with the first term
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corresponding to a 1/ks decay of a “bias” term (where bias is defined as the expected
value of the cycle gradient errors of RR which may be non-zero) and the second term
representing a 1/k decay for 0 < q < 1 (and log k/k decay for q = 1); see part (iii) of
Theorem3 . These results are obtained bymartingale concentration techniques.We use
the characterization of the bias to estimate it with a term that can be computed during
the RR iterations. We show that subtracting the estimated bias from the averaged RR
iterates accelerates the convergence rate further, leaving only the second error term of
1/k decay in the iterates (part (iv) of Theorem 3). Based on this result, we propose
a new algorithm which we call the De-biased Random Reshuffling (DRR) method
that can accelerate the asymptotic convergence rate of RR in the suboptimality of the
function values from O(1/k2s) to O(1/k2).

Finally, in Theorem 4 we show that our results in Theorem 3 extend to the more
general casewhen component functions are smooth (twice continuously differentiable)
under a Lipschitz assumption on the Hessian, which allows us to control the second
order term in a Taylor expansion of the gradient.

Outline The outline of the paper is as follows. In Sect. 3, we introduce our approach
for analyzing RR, present Polyak–Ruppert averaging and give a motivating example.
Section 4 focuses on the case when component functions are quadratics. We first
present a convergence rate estimate for IG with a fixed arbitrary order. We then focus
on RR and study convergence of averaged iterates to the optimal solution. Section 5
extends our results to smooth functions. Section 6 proposes theDRRalgorithm that can
accelerate RR further. Finally, we conclude with a summary of our work in Sect. 7.
Some of the technical lemmas required in the details of the proofs are deferred to
Sects. A, B and C of the Appendix.

NotationWe study the point-wise dominance of stochastic sequences by deterministic
sequences and use the following notation. Let xk = xk(ω) be a stochastic real-valued
sequence (whereω can be thought as the source of randomness) and yk be a real-valued
deterministic sequence. We write xk = O(yk) ⇐⇒ ∃h > 0, ∃k0 such that |xk | ≤
h|yk | ∀k ≥ k0, for all ω, where h and k0 are independent of ω (Note that the require-
ment is that this inequality holds for all ω, not just for almost all ω). When xk is
non-negative for every ω, given another deterministic positive sequence zk , we also
introduce the inequality version of this definition: xk ≤ yk + o(zk) ⇐⇒ ∀ε >

0, ∃k0(ε) such that z−1
k |xk(ω) − yk | ≤ ε, ∀k ≥ k0(ε),∀ω where k0 depends on

ε but is independent of ω. When xk is deterministic, these definitions reduce to the
standard definitions of O(·) and o(·) for deterministic sequences. For random xk , the
only difference is that we require the constants to be independent of the choice of
ω. For example, if xk is uniformly distributed over [0, 10], we write xk = O(1).
Throughout the paper, ‖ · ‖ denotes the 2-norm for vectors or matrices, depending on
the context. We also define the O(·) notation beyond scalars for matrix- and vector-
valued sequences analogously: Given a sequence of matrix-valued random variables
Xk(ω) ∈ R

n×p where ω is the source of randomness, n, p ≥ 1 are arbitrary fixed
integers and a deterministic real-valued sequence yk , we say ‖Xk(ω)‖ = O(yk) if and
only if there exists h > 0 and k0 such that ‖Xk(ω)‖ ≤ h|yk | for all k ≥ k0, for all ω,

where h and k0 are independent of ω. Note that when when n = 1 or p = 1, ‖ · ‖ is
equivalent to the Euclidean norm.
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3 Preliminaries

Weconsider solving problem (1)withRRmethodwith iterations given in (5). Through-
out we assume the following:

Assumption 1 The sum function f (x) = ∑m
i=1 fi (x) is strongly convex, i.e., there

exists a constant c > 0 such that the function f (x) − c
2‖x‖2 is convex on R

n .1

Note that this assumption is on the sum function f , it does not require the con-
vexity of the individual component functions fi . A consequence of this assumption
is that there exists a unique optimal solution to (1) which we denote by x∗. Another
consequence is that the Hessian at the optimal solution is invertible since

H∗ := ∇2 f (x∗) � cIn � 0, (6)

where In is the n × n identity matrix.
To analyze RR, we view it as a gradient method with random gradient errors and

rewrite the outer iterations (5) as

xk0 − xk+1
0

αk
= ∇ f (xk0 ) + Ek, (7)

where

Ek :=
m∑

i=1

(
∇ fσk (i)(x

k
i−1) − ∇ fσk (i)(x

k
0 )

)
(8)

is the cumulative gradient errors associated with the cycle k. This approach is similar
to the analysis of SGD, where one writes each (inner) iteration as a gradient method
with error. The key difference that simplifies the analysis of SGD is the fact that the
iteration gradient errors at the current iterate are independent (because of independent
identically distributed (i.i.d.) sampling of component function indices) allowing use
of martingale central limit theorems to obtain convergence and rate results (see e.g.
[13,17,25,31]). In contrast, for RR, not only are the iteration gradient errors dependent
(because of sampling a random order at cycle k coupling indices σk(i) and σk( j) for
i �= j), but also the cycle gradient errors Ek1 and Ek2 for cycles k1 �= k2 are dependent
as they both depend on the history of the iterates.2 Nevertheless, the analysis of RR is
facilitated considerably by the fact that each cycle of RR is based on i.i.d. permutations.
Therefore, by conditioning to the last iterate from the previous cycle, the analysis of the
cumulative gradient errors Ek can be simplified - as noted from the proof of Theorem 2
below.

A key idea in our analysis is to use a recent upper bound for the convergence rate
of cyclic incremental gradient method which applies to arbitrary fixed deterministic

1 Such functions arise naturally in support vector machines and other regularized learning algorithms or
regression problems (see e.g. [32,36,38]).
2 There is some literature that analyzes SGD under correlated noise [25, Ch. 6], but the noise needs to have
a special structure (such as a mixing property) which does not seem to be applicable to the analysis of RR.
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order (see Theorem 1). This bound implies an almost sure upper bound (in fact one
that holds for all sample paths) on the distance of the outer iterates xk0 generated by
RR from the optimal solution x∗ (see Sect. 4.1). Crucially, this result implies an upper
bound in expected distance which is asymptotically m times smaller than the almost
sure guarantees on the distance of the iterates.

In analyzing RR, we will also consider the average of the outer iterate sequence

given by x̄k :=
∑k−1

j=0 x
j
0

k . We also consider averaging only the most recent iterates, i.e.
at iteration k, averaging the last qk iterates for some constant q ∈ (0, 1]:

x̄q,k :=
∑k−1

j=(1−q)k x
j
0

qk
, 0 < q ≤ 1.

The generated sequence is referred to as the q-suffix average of the sequence xk0 . For
q = 1, we have x̄1, j = x̄ j and it is easy to see that we can compute this quantity based
on the recursion

x̄ j =
(
1 − 1

j

)
x̄ j−1 + 1

j
x j−1
0 for j = 1, 2, . . . , k. (9)

Note that this requires storing only a vector of length n. For 0 < q < 1 fixed, it can
be verified after a straightforward computation that the q-suffix average satisfies the
identity

x̄q,k = x̄1,k − (1 − q)x̄1,(1−q)k

q
= x̄k − (1 − q)x̄(1−q)k

q
.

Therefore, based on this identity, one can still use the recursion (9) to compute x̄q,k .
Alternatively, x̄q,k can be computed from the following recursion

ȳ j =
(
1 − 1

j

)
ȳ j−1 + 1

j
x (1−q)k+ j−1
0 , for j = 1, 2, . . . , qk, (10)

with initialization ȳ0 = 0 where it can be checked that x̄q,k = ȳqk . Hence, q-suffix
averages can be computed efficiently in an online manner during the iterations, requir-
ing only a memory of length n which is the dimension of the underlying optimization
problem (1).

For SGD, it was shown that q-suffix averaging with 0 < q < 1 leads to better
performance then averaging (which corresponds to the q = 1 case by definition),
improving the convergence rate in the suboptimality of the function value from log k/k
to 1/k [32,40]. This is in line with our results in Sect. 4 which show faster rate for the
0 < q < 1 case. The parameter q can be thought as a measure of how much memory
one uses during the averaging process. We define the q-suffix average of the stepsize
in a similar way:

ᾱq,k =
∑k−1

j=(1−q)k α j

qk
, 0 < q ≤ 1. (11)
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We note that the q-suffix average of the stepsize can be computed in an online manner
by a similar approach to the computation of x̄q,k described above.

We will obtain our strongest convergence results (in the almost sure sense and with
a similar m dependence as the expected guarantees) for averaged iterate sequences
with “large step sizes”, a technique known as Polyak–Ruppert averaging, which has
been used in achieving optimal rates for SGD in a robust manner as explained next.

3.1 Polyak–Ruppert averaging

SGD has a long history going back to the seminal paper of Robbins andMonro [37]. It
has been analyzed under different assumptions extensively in the stochastic approxi-
mation literature (see e.g. [25]). For stochastic convex optimization, it has been shown
that SGD has a min–max lower bound of Ω(1/k) [1,30]. One way of achieving this
optimal 1/k rate is to use a stepsize αk = R/k where R is a positive scalar adjusted
properly to the strong convexity constant of the objective function [13,17,25] but this
requires the knowledge or the estimate of an accurate lower bound on the strong con-
vexity constant. If a lower bound is not known or cannot be estimated accurately, the
convergence can be potentially slow [29, Section 2.1]. Polyak–Ruppert averaging is
a technique that allows to get the optimal ∼ 1/k rate in an asymptotically efficient
manner without the need to adjust to the strong convexity constant. It relies on using
a larger stepsize αk = R/ks [with R an arbitrary positive constant and s ∈ (1/2, 1)]
that decays slower thanΘ(1/k) but then taking the time average of the iterates to filter
out the undesired oscillations arising due to the larger steps [25,29,31].3 We will later
show that the same technique allows us to get almost sure guarantees for the averaged
iterates without the need to tune the stepsize to the strong convexity constant (see
Theorems 3 and 4).

3.2 Amotivating example

Before presenting our convergence analysis, we consider a simple example that high-
lights the difference in convergence mechanisms of SGD and RR and gives intuition
on why RR is faster than SGD asymptotically.

Example 1 Consider the component functions

f1(x) = 1

2
(x − 1)2, f2(x) = 1

2
(x + 1)2 + x2

2
, (12)

with f (x) = f1(x)+ f2(x) = 3
2 x

2+1 and x∗ = 0. The outer RR iterates {xk0 } satisfy

xk+1
0 = xk0 − αk

(
∇ fσk (1)(x

k
0 ) + fσk (2)(x

k
1 )

)
= xk0 − αk(∇ f (xk0 ) + Ek), (13)

3 IG shows similar properties to SGD in terms of the robustness of the stepsize rules αk = R/ks . The
convergence rate (in k) is only robust to the strong convexity constant of the objective for s < 1 but not for
s = 1 [29, Section 2.1].
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where the cycle gradient errors are given by

Ek =
{∇ f2(xk1 ) − ∇ f2(xk0 ) with probability 1/2, for σk = {1, 2},

∇ f1(xk1 ) − ∇ f1(xk0 ) with probability 1/2, for σk = {2, 1}. (14)

Plugging in the identities ∇ f1(x) = x − 1, ∇ f2(x) = 2x + 1 obtained from (13) and
the inner update formula (5), we obtain

Ek = αkμ(σk) − 2αk x
k
0 , (15)

where μ(σk) = −∇2 fσk (2)(x
∗)∇ fσk (1)(x

∗) satisfying

μ(σk) =
{+2 with probability 1/2, for σk = {1, 2},

−1 with probability 1/2, for σk = {2, 1}.

In contrast, SGD starting from an initial point y0 leads to the iterations

y j+1 = y j − α j∇ fi j (y
j ) = y j − α j

2
(∇ f (y j ) + e j ), (16)

where i j is an independent and identically distributed (i.i.d.) random variable with a
uniform distribution over the index set {1, 2} and the gradient error e j is given by

e j =
{−2 − y j with probability 1/2, for i j = 1,

2 + y j with probability 1/2, for i j = 2.
(17)

We consider a stepsize of αk = R
ks with s = 0.75 for both algorithms. Note that for

this example, RR is globally convergent to the optimal solution x∗ = 0with probability
one, therefore x j

0 → 0.4 By a similar argument, it can be shown that SGD is also
convergent to the optimal solution x∗ = 0 in mean-square, i.e. E‖y j‖2 → 0 (see also
e.g. [25]). Then, it follows from (17) and (15) that the cumulative gradient error of SGD
for any cycle k (defined as the cumulative sum

∑km−1
j=(k−1)m e j )) has zero expectation

and Θ(1) variance whereas the gradient errors in RR are Ek = O(αk) with a typically
non-zero expectation satisfying E(Ek) = αk(1 − 2xk0 ) and an asymptotically smaller
varianceO(α2

k ) compared to SGD. In other words, the cycle gradient errors go to zero
with probability one for RR whereas the gradient errors in SGD are typically bounded
away from zero with a positive probability. Informally, this leads to a more accurate
direction of descent for RR and is the main reason behind the faster convergence we
demonstrate for RR compared to SGD in our analysis.

4 To see this, note that theRR iterations for this example are given by xk+1
0 = (1− 3

2αk+2α2k )xk0−α2kμ(σk )

which implies, after taking norms of both sides and using the fact that ‖μ(σk )‖ ≤ 2, distk+1 ≤ (1− 3
2αk +

2α2k )distk +2α2k . Then, by invoking classical results for the asymptotic behavior of non-negative sequences
(see e.g. [6, Appendix A.4.3], we get distk+1 → 0. Theorem 1 also shows global convergence of RR on
this example.
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We also observe that the cycle gradient error Ek given by (15) consists of the
sum of two terms: The first term is O(αk) and is independent over the cycles as
the permutations σk are independent and identically distributed whereas the second
term is of smaller (second) order as x j

0 → 0. We will show later in Lemma 4 that
such a decomposition can be obtained more generally when component functions
are quadratics or they are smooth functions and will be a key step in the proof of
Theorem 3.

Figure 1 compares the RR and SGD algorithms with averaging in terms of the
histogram of the error (distance of the averaged iterates to the optimal solution x∗). In
other words, we compare the approximation errors x̄k − x∗ and ȳk − x∗ where where
ȳk :=

∑mk−1
j=0 y j

mk is the averaged SGD iterates after k cycles (or equivalently mk inner
iterations). For a fair comparison, both algorithms are run with the same parameters
using k = 500 cycles over 10,000 sample paths created for the Example 1 where
s = 0.75. The left panel in Fig. 1 compares the histograms of x̄k − x∗ and ȳk − x∗ and
shows that the approximation error x̄k −x∗ for RR is typically much smaller compared
to that of SGD suggesting RR has a faster convergence rate. The top panel on the right
illustrates that the scaled approximation error ks(x̄k − x∗) is concentrated around its
mean (marked by the red line) suggesting O(1/ks) convergence rate almost surely
for the averaged RR iterates. On the other hand, the bottom panel on the right shows
that the distribution of k1/2(ȳk − x∗) is approximately a standard normal distribution
as predicted by the theory [31], illustrating the O(1/k1/2) convergence rate of the
averaged SGD iterates to the optimal solution x∗ in distribution. In Sect. 4, we will
develop the first convergence theory for RR, establishing the O(1/ks) convergence
rate we observe in the numerical experiments and show that ks(x̄k − x∗) converges
almost surely to a point for which we provide an explicit formula.

-0.1 -0.05 0 0.05 0.1
0

500

1000

1500

2000
RR
SGD

-2 -1 0 1 2
0

500

1000

-2 -1 0 1 2
0

500

1000

Fig. 1 Left panel: Comparison of the histogram of the approximation error x̄k − x∗ of the averaged iterates
for RR and SGD after k = 500 cycles over 10,000 sample paths created for the Example 1 with s = 0.75.
Each sample path contains 1000 gradient computations for both RR and SGD. Right, top panel: Histogram
of the scaled approximation error ks (x̄k − x∗) for RR iterates which is concentrated around the vertical line
in red. Right, bottom panel: Histogram of the scaled approximation error k1/2(x̄k − x∗) for SGD which
has the shape of a standard normal distribution. The vertical blue line passing through the origin is the axis
of symmetry for this distribution indicating that this distribution is centered
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4 Quadratic component functions

We first consider quadratic component functions which allows an elegant analysis
without the need to approximate higher order terms. We will show in Sect. 5 that
the same line of analysis extends to smooth component function under a Lipschitz
assumption on the Hessian matrices. Let fi : Rn → R be a quadratic function of the
form

fi (x) = 1

2
xT Pi x − qTi x + ri , i = 1, 2, . . . ,m, (18)

where Pi is a symmetric n × n matrix, qi ∈ R
n is a column vector and ri is a scalar.

Note that fi has Lipschitz gradients, i.e.,

‖∇ fi (y) − ∇ fi (z)‖ ≤ Li‖y − z‖, ∀y, z ∈ R
n,

where Li = ‖Pi‖. It follows from the triangle inequality that f has Lipschitz gradients
with Lipschitz constant at most

L :=
m∑

i=1

Li . (19)

Moreover,Assumption 1 implies that theHessianmatrix of the sumsatisfies∇2 f (x) =∑m
i=1 ∇2 fi (x) = ∑m

i=1 Pi ≥ cIn > 0. Therefore, the solution x∗ to (1) is unique.

4.1 Convergence rate

Our convergence analysis of RR builds on a recent upper bound for convergence rate
of (deterministic) cyclic IGmethod (see [21, Theorem 3.1]), which applies to any fixed
permutation σ of {1, 2, . . . ,m}. This result implies an upper bound (for all sample
paths) on the distance to the optimal solution of the iterates generated by RR which
is presented next. For our analysis throughout this paper, we introduce the Lyapunov
function

distk := ‖xk0 − x∗‖, (20)

which is the distance of the iterates to the optimal solution. Note that this quantity is
deterministic for the IG method with a fixed order σ , whereas it is random for the RR
method as the order σ is selected randomly for RR.

Theorem 1 [21, Theorem3.1]LetAssumption1hold. Let fi (x)be aquadratic function
of the form fi (x) = 1

2 x
T Pi x−qTi x+ri where Pi is a symmetric n×n matrix, qi ∈ R

n is
a column vector and ri is a scalar for i = 1, 2, . . . ,m. Suppose Assumption 1 holds.
Consider the iterates {xk0 } generated by the iterations (5) with a fixed order σ and
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stepsize αk = R/(k + 1)s where R > 0 and s ∈ (1/2, 1). Then5,

distk ≤ R‖μ(σ)‖
c

1

ks
+ o

(
1

ks

)
if 1/2 < s < 1, (21)

distk ≤ R2‖μ(σ)‖
Rc − 1

1

k
+ o

(
1

k

)
if s = 1 and Rc > 1, (22)

where c is the strong convexity constant of the sum function f (x) and

μ(σ) = −
∑

1≤i< j≤m

Pσ( j)∇ fσ(i)(x
∗). (23)

This theorem provides an upper bound on the rate with a rate constant μ(σ) that
depends on the order σ . Note that the best rate that IG with a fixed order σ can attain
in terms of upper bounds isO(1/k) and requires a stepsize R/(k+1)with R > 1/c (see
also [21, Theorem 3.4] for the lower bound of Ω(1/k) for IG under some conditions).
We next provide some upper bounds on μ(σ). We define

G∗ : = sup
1≤i≤m

‖∇ fi (x
∗)‖, (24)

MΓ : = sup
σ∈Γ

‖μ(σ)‖. (25)

Using Li = ‖Pi‖ for each i , it follows from the triangle inequality that

‖μ(σ)‖≤MΓ ≤ sup
σ∈Γ

∑

1≤i< j≤m

Lσ( j)‖∇ fσ(i)(x
∗)‖= sup

σ∈Γ

m∑

j=2

Lσ( j)

j−1∑

i=1

‖∇ fσ(i)(x
∗)‖

≤ sup
σ∈Γ

m∑

j=2

Lσ( j)( j − 1)G∗

≤ (m − 1)G∗ sup
σ∈Γ

m∑

j=2

Lσ( j) ≤ L(m − 1)G∗, (26)

where we used the definitions of the Lipschitz constant L and the gradient bound G∗
from (19) and (24) respectively. By replacing μ(σ) by MΓ in Theorem 1 one can
get an upper bound on the worst-case convergence rate that applies to any choice of
fixed order σ . Using a similar argument along the lines of the proof of Theorem 1 on
the convergence rate of IG, it is straightforward to show that RR never performs any
slower than this worst-case convergence rate which is the subject of the next result.

5 The original result in [21, Theorem 3.1] was stated for σ = {1, 2, . . . ,m} but here we translate this
result into an arbitrary permutation σ of {1, 2, . . . ,m} by noting that processing the set of functions
{ f1, f2, . . . , fm } with order σ is equivalent to processing the permuted functions { fσ1 , fσ2 , . . . , fσm }
with order {1, 2, . . . ,m}.
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Corollary 1 Under the setting of Theorem 1, if σ is sampled uniformly at each cycle
instead of being kept fixed, then

distk ≤ RMΓ

c

1

ks
+ o

(
1

ks

)
if 1/2 < s < 1, (27)

distk ≤ R2MΓ

Rc − 1

1

k
+ o

(
1

k

)
if s = 1 and Rc > 1, (28)

with probability one where MΓ is deterministic and is defined by (25).

Corollary 1 provides a simple worst-case upper bound on the rate, however the
rate constant MΓ = supσ∈Γ ‖μ(σ)‖ is pessimistic and can be thought as a worst-case
performancemeasure that holds for every sample path. Oneway to get better constants
is to consider convergence in expectation, a weaker notion of convergence compared
to almost sure convergence. In the next theorem, we show that MΓ can be improved
to a typically much smaller constant ‖μ̄‖ where

μ̄ := E
(
μ(σ1)

) =
∑

σ∈Γ μ(σ)

|Γ | (29)

can be thought as a measure of average performance over the choice of random per-
mutations.

Theorem 2 Let fi (x) be a quadratic function of the form fi (x) = 1
2 x

T Pi x−qTi x+ri ,
where Pi is a symmetric n×n matrix, qi ∈ R

n is a column vector and ri is a scalar for
i = 1, 2, . . . ,m. Suppose Assumption 1 holds. Consider the iterates {xk0 } generated
by the RR iterations (5) and stepsize αk = R/(k + 1)s where R > 0 and s ∈ (0, 1].
Then,

E (distk) ≤ R‖μ̄‖
c

1

ks
+ o

(
1

ks

)
if 1/2 < s < 1, (30)

E (distk) ≤ R2‖μ̄‖
Rc − 1

1

k
+ o

(
1

k

)
if s = 1 and Rc > 1, (31)

where the expectation is taken over the sequence of iterates, μ̄ is defined by (29).

Remark 1 A consequence of Lemma 3 proved in the Appendix is that

μ̄ = 1

2

m∑

i=1

Pi∇ fi (x
∗), (32)

where μ̄ is defined by (29). By the triangle inequality, ‖μ̄‖ ≤ ∑m
i=1 LiG∗ = LG∗

whereG∗ is defined by (24). This upper bound ism−1 times smaller than the previous
upper bound on MΓ in (26).
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It is also natural to ask what would happen to the rate constants and to the rate
if one would take stepsize αk = Θ(1/ks) and apply (Polyak–Ruppert) averaging
to the RR iterates, especially given the fact that O(1/ks) stepsize used in averaging
does not require adjustment of the parameter R to the strong convexity level. More
generally, one could consider q-suffix averaging. In the next section, we show that for
the averaged RR iterates, similar upper bounds in (30) hold not only in expectation
but also in probability. Another benefit of averaging is that it allows us to estimate and
subtract the bias term in the iterations to get a more accurate estimation of the optimal
solution as we discuss later in part (iii) of Theorem 3 and in Sect. 6.

4.2 Convergence rate with averaging

The following theorem characterizes the rate of convergence of the averages of iterates
generated by RR. Part (i) and (ii) of this theorem show that q-suffix averages of
the RR iterates converge at rate 1/ks to the optimal solution almost surely with a
stepsize Θ(1/ks) for s ∈ (1/2, 1). By gradient Lipschitzness, this translates into a
rate of Θ(1/k2s) for the suboptimality of the objective value. The result is based
on decoupling the cycle gradient errors Ek into a Θ(αk) term independent over the
cycles and another O(α2

k ) term that becomes negligible in the limit. Part (iii) is a
high-probability convergence rate estimate for the approximation error x̄q,k − x∗. The
approximation error consists of two terms, the first term bq,k which we call the “bias”
term is deterministic and decays like ∼ 1/ks . It comes from the expected value of
the independent part of the gradient cycle errors which may be different than zero.
The second part is on the order of 1/k for 0 < q < 1 (and log k/k when q = 1) and
it is based on the Azuma–Hoeffding inequality for martingale concentration. Finally,
part (iv) is on estimating the bias term bq,k with another quantity b̂q,k . It shows that
by subtracting the estimated bias from the averaged iterates, we can approximate
the optimal solution x∗ up to an O(1/k) error in distances or equivalently up to an
O(1/k2) error in the suboptimality of the objective value. In Sect. 6, this result will be
fundamental for Algorithm 1 that accelerates the convergence of RR from Θ(1/k2s)
to O(1/k2) with high probability in the suboptimality of the objective value.

Theorem 3 Let fi (x) be a quadratic function of the form

fi (x) = 1

2
xT Pi x − qTi x + ri ,

where Pi is a symmetric n × n matrix, qi ∈ R
n is a column vector and ri is a scalar

for i = 1, 2, . . . ,m. Consider the q-suffix averages x̄q,k of the RR iterates generated
by the iterations (5) with stepsize αk = R

(k+1)s where R > 0 and s ∈ ( 12 , 1). Suppose
that Assumption 1 holds. Then the following statements are true:

(i) For any 0 < q ≤ 1, the q-suffix averaged stepsize ᾱq,k defined in (11) satisfies

ᾱq,k = aq(s)

ks
+ O

(
1

k

)
where aq(s) = 1 − (1 − q)1−s

q(1 − s)
R. (33)
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(ii) For any 0 < q ≤ 1, we have

lim
k→∞

x̄q,k − x∗

ᾱq,k
= −H−1∗ μ̄ a.s., (34)

where μ̄ is given by (32), i.e., the normalized error (x̄q,k − x∗)/ᾱq,k converges to
the constant vector −H−1∗ μ̄ almost surely where H∗ = ∑m

i=1 Pi is the Hessian
matrix at the optimal solution and μ̄ is given by (32). Then, from part (i),

lim
k→∞ ks(x̄q,k − x∗) = −aq(s)H

−1∗ μ̄ a.s. (35)

Hence, the q-suffix averaged iterates x̄q,k converge to the optimal solution x∗
with rate 1/ks almost surely.

(iii) We have

x̄q,k − x∗ = bq,k + 1

k
eq,k +

{
O( log k

k

)
if q = 1

O ( 1
k

)
if 0 < q < 1,

where ‖eq,k‖ ≤ B
√
log(1/δ) with probability 1 − δ for a deterministic constant

B = O(1),

bq,k = −ᾱq,k H
−1∗ μ̄ (36)

is deterministic, μ̄ is given by (32) and ᾱq,k is the averaged stepsize defined in
(11). The constants hidden by O(·) depend only on G∗, L,m, R, c, q and s.

(iv) Let

b̂q,k = −ᾱq,k

[ m∑

i=1

Pσk (i)

]−1 m∑

i=1

Pσk (i)∇ fσk (i)(x
k
i−1)/2, (37)

where ᾱq,k is the averaged stepsize defined in (11). Then, b̂q,k = bq,k + O(α2
k ).

It follows from part (ii) that

(x̄q,k − b̂q,k) − x∗ = 1

k
eq,k +

{
O( log k

k

)
if q = 1

O( 1
k

)
if 0 < q < 1.

where ‖eq,k‖ ≤ B
√
log(1/δ) with probability 1 − δ for a constant B = O(1).

Proof (i) As the stepsize sequence is monotonically decreasing, we have the bounds

∫ k

(1−q)k

R

(x + 2)s
dx≤

k∑

j=(1−q)k

α j =
k∑

j=(1−q)k

R

(k + 1)s
≤ R+

∫ k−1

(1−q)k

R

(x+1)s
dx .
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Dividing each term by qk, after a straightforward integration we obtain

ᾱq,k = k1−s − (
(1 − q)k + 1

)1−s + O(1)

(1 − s)qk
R = aq(s)

ks
+ O

(
1

k

)
,

which completes the proof.
(ii) Taking the q-suffix averages of both sides of (7), we obtain

Iq,k :=
∑k−1

j=(1−q)k (x j
0 − x j+1

0 )α−1
j

qk
=

∑k−1
j=(1−q)k ∇ f (x j

0 ) + E j

qk
. (38)

As f is a quadratic, the first order Taylor series for the gradient of f is exact:

∇ f (x j
0 ) = H∗(x j

0 − x∗). (39)

Therefore, (38) becomes Iq,k =
∑k−1

j=(1−q)k H∗(x j
0−x∗)+E j

qk which is equivalent to

Iq,k = H∗(x̄q,k − x∗) +
∑k−1

j=(1−q)k E j

qk
= H∗(x̄q,k − x∗) + ᾱq,kYq,k, (40)

where Yq,k is defined as

Yq,k := 1

ᾱq,k

∑k−1
j=(1−q)k E j

qk
=

∑k−1
j=(1−q)k E j

∑k−1
j=(1−q)k α j

(41)

and can be interpreted as the (q-suffix) averaged gradient error sequence E j

normalized by the (q-suffix) averaged stepsize sequenceα j . Since H∗ is invertible
by the strong convexity of f (see (6)), we can rewrite (40) as

x̄q,k − x∗ = −H−1∗ ᾱq,kYq,k + H−1∗ Iq,k

= −H−1∗ ᾱq,kYq,k +
⎧
⎨

⎩
O ( 1

k

)
if 0 < q < 1

O
(
log k
k

)
if q = 1,

(42)

where we used the inequality ‖H−1∗ ‖ ≤ 1/c implied by (6) and Lemma 2 from
the appendix to provide an upper bound for the second term in the first equality.
Note that, as a consequence of Lemma2,O(·) notation above hides a constant that
depends only on the parameters G∗, L, c,m, R, s, q and also dist0 when q = 1.
Then, dividing both sides of (42) by ᾱq,k , taking limits as k goes to infinity, using
part (i) on the asymptotic behavior of ᾱq,k and the fact that Yq,k → μ̄ a.s. from
Lemma 4, we obtain the claimed result.

123



Why random reshuffling beats stochastic gradient descent

(iii) By parts (i) and (iii) of Lemma 4 from the appendix that relates the gradient error
sequence E j to a sequence of i.i.d. variables μ(σ j ), for 0 < q ≤ 1,

Yq,k =
∑k−1

j=(1−q)k E j
∑k−1

j=(1−q)k α j
=

∑k−1
i=(1−q)k α jμ(σ j ) + O(α2

j )∑k−1
j=(1−q)k α j

. (43)

We first give a proof for q = 1, the proof for the remaining q ∈ (0, 1) case will
be similar. Assume q = 1. Plugging q = 1 and (43) into (42), we obtain

x̄1,k − x∗ = O
(
log k

k

)
− H−1∗ ᾱ1,kY1,k

= O
(
log k

k

)
− H−1∗

(∑k−1
j=0 α j

(
μ(σ j ) − μ̄

)

k
+

∑k−1
j=0 α j μ̄+O(α2

j )

k

)

= b1,k + O
(
log k

k

)
− H−1∗

∑k−1
j=0 α j (μ(σ j ) − μ̄)

k
− H−1∗

k−1∑

j=0

O(α2
j )

k

= b1,k + O
(
log k

k

)
− H−1∗

∑k−1
j=0 α j (μ(σ j ) − μ̄)

k
, (44)

where b1,k is defined by (36) and we used in the last step the fact that for s > 1/2

∞∑

j=0

α2
j =

∞∑

j=1

R2

j2s
= R2ζ(2s) < ∞, (45)

where ζ(·) is the Riemann-Zeta function. We now study the asymptotic behavior
of the last summation term in (44) by introducing the process S1,k = ∑k−1

j=0 Z j ,
where Z j := α j (μ(σ j ) − μ̄) and k ≥ 0 with the convention that S1,0 = 0.
Equipped with this definition, (44) becomes

x̄1,k − x∗ = b1,k + O
(
log k

k

)
+ e1,k, e1,k := −H−1∗

S1,k
k

. (46)

The random variables Z j are independent, centered and have an identical distri-
bution up to the scaling factor α j . Therefore, S1,k is a sum of centered random
variables satisfying:

‖S1,k − S1,k−1‖ = ∥∥αk−1
(
μ(σk−1) − μ̄

)∥∥ ≤ γk−1 := αk−1LmG∗, (47)

where we used (75) in the last inequality (see also Lemma 3). Then, by the
Azuma–Hoeffding inequality, for every t > 0,

P

(∥∥ S1,k
k

∥∥ >
t

k

)
≤ 2 exp

(
− t2

2
∑k−1

j=0 γ 2
j

)
= 2 exp

(
− t2

β

)
,
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where β = 2
∑∞

j=0 γ 2
j < ∞ as α j is square-summable (see (45)). Note that β

depends only on G∗, L,m and the stepsize parameters R and s. It is easy to see
that selecting t ≥ tδ = √

β log(2/δ) makes the right-hand side ≤ δ. Therefore
for any δ > 0, with probability at least 1 − δ,

∥∥ S1,k
k

∥∥ ≤
√

β log(2/δ)

k
, (48)

which if inserted into the expression (46) completes the proof for the q = 1 case.
For 0 < q < 1 case, the same line of reasoning applies except that we replace
b1,k with bq,k and we can improve theO(log k/k) term in the expression (46) to
O(1/k), this is justified by (42). Then, this leads to

x̄q,k − x∗ = bq,k + O
(
1

k

)
+ eq,k, eq,k := −H−1∗

Sq,k

qk
, (49)

where Sq,k := ∑k−1
j=(1−q)k Z j = S1,k − S1,(1−q)k is the q-suffix cumulative sum

(cumulative sum of the last qk terms) of the sequence Zk . Then using (48), with
probability at least 1 − δ,

∥∥ Sq,k

k

∥∥ ≤ ‖ S1,k
k

∥∥ + ‖ S1,(1−q)k

k

∥∥ ≤ 2tδ
k

. (50)

Plugging this high probability bound into (49), we conclude.
(iv) By Lemma 1, we have max

1≤i<m
‖xki−1 − x∗‖ = O(αk). Therefore,

‖∇ fσk (i)(x
k
i−1) − ∇ fσk (i)(x

∗)‖ = O(αk), (51)

for any i = 1, 2, . . . ,m. As a consequence,

b̂q,k = −ᾱq,k H
−1∗

m∑

i=1

Pσk (i)

(
∇ fσk (i)(x

∗) + O(αk)

)

= −ᾱq,k H
−1∗

m∑

j=1

Pj∇ f j (x
∗) + O(α2

k ) = bq,k + O(α2
k ),

where in the second equality we use the fact that ᾱq,k = O(1/ks) = O(αk)

implied by part (i). ��

5 Extension to smooth component functions

Extending our results to more general smooth functions requires obtaining similar
bounds for the cycle gradient errors which depend on the gradients and Hessian matri-
ces of the component functions along the inner iterates. In order to be able to control
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the change of gradients and Hessian matrices along the iterates, we introduce the
following assumption which has also been used to analyze SGD [26].

Assumption 2 The functions fi are convex on R
n and have Lipschitz continuous

second derivatives, i.e. there exists a constant Ui such that

‖∇2 fi (x) − ∇2 fi (y)‖ ≤ Ui‖x − y‖, ∀x,∀y ∈ R
n,

for i = 1, 2, . . . ,m.

Under this assumption, by the triangle inequality, ∇2 f (·) is also Lipschitz with
constant U := ∑m

i=1Ui . When the component functions are quadratics, we have
the special case with U = Ui = 0. We will now see how this assumption makes
it possible to control the change of gradients of the component functions. Smooth
functions f with Lipschitz Hessians are quadratic-like in the sense that the first-order
Taylor approximation to the gradient of f is almost affine (with a quadratic term
controlled by the parameter U ) satisfying

∇ f (x) = ∇ f (x∗) + H∗(x − x∗) + η, ‖η‖ ≤ U

2
‖x − x∗‖2, ∀x, (52)

(see e.g. [19, Section 1.3]) The analysis of Theorem 3 (and Lemma 4 it builds
upon) considers the U = 0 case [see e.g. (39) and (51)] applying a first-order
Taylor approximation to the gradient of the component functions at x = xk0 where
‖x − x∗‖ = ‖xk0 − x∗‖ = O(αk) by Lemma 1. Therefore, when U �= 0, an extra
correction term η = O(α2

k ) needs to be added to the analysis. However, we show in the
next theorem that this correction term does not cause a slow down in the convergence
rate (in terms of dependency in k) compared to the quadratic case because the q-suffix
averages of this O(α2

k ) correction term decays like O(1/k).6

We will also need one more technical assumption that appeared in a number of
papers in the literature for analyzing incremental methods to rule out the case that
the iterates diverge to infinity. In particular, this assumption is also made in [21,
Assumption 3.4] for generalizing Theorem 1 on the rate of deterministic IG from
quadratic functions to general smooth functions.

Assumption 3 Iterates {xkj } j,k generated are uniformly bounded, i.e. there exists a

non-empty closed Euclidean ball X ⊂ R
n that contains all the iterates a.s.7

Equipped with these two assumptions, all the results of Theorem 3 extend naturally
with minor modifications. In particular, Pi (which is a constant Hessian matrix in the
setting of Theorem 3) needs to be replaced by ∇2 fi (x∗) or ∇2 fi (xki−1) depending on
the context.

6 This is due to the fact that the sequence α2k is summable when s > 1/2.
7 Note that if this assumption holds and if fi is three-times continuously differentiable on the compact set
X , then the third-order derivatives are bounded and Assumption 2 holds.
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Theorem 4 Consider the RR iterations given by (5) with stepsize αk = R
(k+1)s where

R > 0 and s ∈ ( 12 , 1). Suppose that Assumptions 1, 2 and 3 hold. Then the following
statements are true:

(i) For any 0 < q ≤ 1, limk→∞ ks(x̄q,k − x∗) = −aq(s)H−1∗ v̄ a.s. where H∗ =
∇2 f (x∗) is the Hessian matrix at the optimal solution, aq(s) is defined by (33)
and

v̄ := 1

2

m∑

i=1

∇2 fi (x
∗)∇ fi (x

∗). (53)

(ii) We have

x̄q,k − x∗ = rq,k + 1

k
êq,k +

{
O( log k

k

)
if q = 1,

O( 1
k

)
if 0 < q < 1,

where ‖êq,k‖ ≤ B̂
√
log(1/δ) with probability 1 − δ for a deterministic constant

B̂ = O(1) and
rq,k = −ᾱq,k H

−1∗ v̄ (54)

is deterministic. The constants hiddenbyO(·)dependonly onG∗, L,m, R, c, q, s
and U.

(iii) Let

r̂q,k = −ᾱq,k

[ m∑

i=1

∇2 fσk (i)(x
k
i−1)

]−1 m∑

i=1

∇2 fσk (i)(x
k
i−1)∇ fσk (i)(x

k
i−1)/2.

Then, r̂q,k = rq,k + O(α2
k ). It follows from part (ii) that

(x̄q,k − r̂q,k) − x∗ = 1

k
êq,k +

{
O( log k

k

)
if q = 1,

O( 1
k

)
if 0 < q < 1.

where ‖êq,k‖ ≤ B̂
√
log(1/δ) with probability 1 − δ for a deterministic constant

B̂ = O(1).

Proof The proof techniques of Theorem 3 applies directly except that the Taylor
approximation for the gradients of the component functions will have an extra term
compared to the proof of Theorem 3 (see also (52)). Also, instead of Lemmas 2 and 4
that apply to only quadratic functions, their extensions Lemmas 6 and 7 given in the
appendix are used in the proof. For the sake of completeness, besides these changes,
we also give an overview of the main modifications required for each part of the proof:

(i) The expression (39) for the gradient should be modified to include an extra error
term η j of the form

∇ f (x j
0 ) = H∗(x j

0 − x∗) + η j , ‖η j‖ ≤ U

2
‖x j

0 − x∗‖2. (55)
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By Lemma 5,
∑

j η j ≤ U
2 ‖‖x j

0 − x∗‖2 = O(α2
j ) therefore the sequence η j is

summable and if averaged decays likeO(1/k)without degrading the convergence
rate except possibly the constants hidden by O(·).

(ii) The same proof applies by invoking Lemma 7 in lieu of Lemma 4.
(iii) Instead of Lemma 1, we use Lemma 5. The expression (51) on the difference of

gradients needs to be adjusted as

‖∇ fσk (i)(x
k
i−1)−∇ fσk (i)(x

∗)−∇2 fσk (i)(x
∗)(xki−1−x∗)‖ ≤ U

2
‖xki −x∗‖2. (56)

The right-hand side is still O(α2
k ) by an application of Lemma 5 therefore the

rest of the proof applies. ��

6 An RR algorithmwith bias removal

Part (iii) of Theorem 4 (see also part (iii) of Theorem 3) shows that if the estimate of
the bias term r̂q,k given by (54) is subtracted from the q-suffix averaged RS iterates,
then the distance to the optimal solution of the q-suffix averaged iterates becomes
on the order of O(1/k) for 0 < q < 1 and on the order of O(log k/k) for q = 1
with high probability. By strong convexity, this translates into a rate of Õ(1/k2) in
the suboptimality of the objective values (where Õ ignores the logarithmic terms
in k appearing when q = 1). We call this “subtraction operation”, bias removal.
Algorithm 1 describes the De-biased Random Reshuffling (DRR) method with bias
removal. In a practical implementation, the number of cycles can be fixed in advance
to a certain number K , and the estimation of the bias can be done only once at the
last (K -th) cycle (see Step (ii) of Algorithm 1) and then can be subtracted from the
averaged iterates.

The bias removal of the DRR algorithm requires an n × n matrix inversion which
requires ≈ n3 arithmetic operations (if there is more structure on the Hessian of fi
such as low-rankness or sparsity this could be improved to ≈ n2), but accelerates
the convergence with high-probability. For small or moderate n, this could be done
efficiently and incrementally processing the functions one at a time; however for
large n this may be impractical or infeasible limiting the applicability of this method.
Nevertheless, the expensive matrix inversion step does not need to be done at every
cycle, it suffices to do it only once at the end of the last cycle. Figure 2 compares the
performance of SGD, RR and DRR methods in terms of the histogram of the distance
to the optimal solution (left panel) and suboptimality of the objective function (right
panel) on a randomly generated quadratic example with a dense Hessian matrix with
parameters m = 50, n = 20.8 For a fair comparison, we run all the algorithms with

8 The quadratic functions fi (x) have the form fi (x) = xT Ai x + qTi x + ri . The matrices Ai are chosen

randomly satisfying Ai = 1
n Ri R

T
i +λI where I is the n×n identity matrix, R is a randommatrix with each

entry uniform on the interval [−50, 50] and λ is a regularization parameter to make the problem strongly
convex. We set λ = 5. The vectors qi are random, each component is uniformly distributed on the interval
[−50, 50] and ci is uniform on the interval [−1, 1].
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Algorithm 1 De-biased Random Reshuffling (DRR)

Input: Initial point x00 ∈ R
n , number of cycles K ∈ N, suffix averaging parameter q ∈ (0, 1], stepsize

parameters R > 0 and s ∈ (1/2, 1).
Initialization: x̄1,0 = 0 ∈ R

n , v̂0 = 0 ∈ R
n , ᾱ1,0 = 0 ∈ R, Ĥ0 = 0 ∈ R

n×n .

1. For each cycle k = 0, 1, 2, . . . , K − 1:

(a) Inner iteration.
(i) Pick a permutation σk of {1, . . . ,m} uniformly at random.

(i i) For i = 1, 2, . . . ,m:
Compute xki by: xki = xki−1 − αk∇ fσk (i)(x

k
i−1), αk = R

(k+1)s .

// Precompute for the bias estimation only for the last cycle
If k = K − 1, compute v̂i and Ĥi by :

v̂i = v̂i−1 + ∇2 fσk (i)(x
k
i−1)∇ fσk (i)(x

k
i−1)/2, Ĥi = Ĥi−1 + ∇2 fσk (i)(x

k
i−1)

(i i i) Set outer iterate: xk+1
0 = xkm .

(b) Update the simple average of the iterates and the stepsize:

x̄1,k+1 = k

k + 1
x̄1,k + 1

k + 1
xk0 , ᾱ1,k+1 = k

k + 1
ᾱ1,k + 1

k + 1
αk

2. If q ∈ (0, 1), compute q-suffix averages from the simple averages:

x̄q,K = x̄1,K − qx̄1,(1−q)K

1 − q
, ᾱq,K = ᾱ1,K − qᾱ1,(1−q)K

1 − q
.

3. Estimate the bias by the formula (37) : b̂q,K = −ᾱq,K Ĥ−1
m v̂m in the last cycle.

Output: x̄q,K − b̂q,K .

the same amount of CPU time.9 In particular, in Fig. 2 we run DRR for 0.5 seconds
including the bias correction step, and run RR and SGD for the same amount of
time. For both SGD and RR, we use a decaying stepsize αk = R/ks with s = 0.75
and report the averaged iterates. We tune R to the dataset similar to the standard
implementations of SGD methods [10] and set it to R = 1

310
−3. All the algorithms

are initialized to zero. The panel on the top and left-hand side of Fig. 2 shows the
histograms of the distance to minimizer of the last iterate for RR, SGD and De-
biased RR methods over 500 sample paths where the y-axis denotes the distance to
minimizer of the last iterate and the x-axis denotes the number of occurences over
500 sample paths. We observe from this histogram that SGD is performing the worst.
On the bottom, left panel, we remove SGD from the picture and compare only RR
and DRR in terms of the histograms of the distance to minimizer. The red line and
the blue lines illustrate the mean values obtained from the histograms of DRR and
RR methods respectively. We see that for the DRR, the histogram is shifted slightly
to the left; i.e. DRR has smaller error on average. On the right-hand side of Fig. 2,
we plot the histograms of the suboptimality for RR, DRR and SGD methods instead
where the y-axis denotes the suboptimality in function values of the last iterate and the
x-axis denotes the number of occurences. We see a similar behavior. We observe that

9 We note that all experiments were performed on a Macbook Pro with an 3.1 GHz Intel Core i7 processor
and 16 GB of RAM, using Matlab R2017a running on the operating system Mac OS Sierra v10.12.5.
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Fig. 2 Comparison of RR,Debiased-RR (DRR) and SGDwhen component functions are randomquadratics
with m = 50, n = 20 and with simulation time 0.5 s over 500 sample paths. Top, left: Histograms of distk
for RR, DRR and SGD. Bottom, left: Histograms of distk for RR and DRR only (without SGD). Top, right:
Histograms of the suboptimality in objective value for RR, DRR and SGD. Bottom, right: Histograms of
the suboptimality in objective value for RR and DRR only (without SGD)

SGD is consistently performing the worst, whereas DRR has better suboptimality on
average (averaging over sample paths). Figure 3 repeats the experiment with a longer
time budget of 5 s otherwise keeping all the experimental setup the same including
the stepsize, averaging parameter, initialization and the objective function. We see a
clearer separation between the histograms of the RR method and the DRR method.
We see qualitatively similar results when we run the algorithms for different amount
of times and for different values of the stepsize decay parameter s. These results show
that the asymptotic performance would get better if one removes the bias term and
typically we need more cycles for the bias correction term to be effective. The results
also illustrate the results of Theorem 3 and 4 on the biasedness of the RR iterations in
the sense that asymptotically an improvement can be obtained by subtracting the bias.

Next, we compare RR and DRR methods to another method SAGA [14] which is
a de-biased method that improves on the theory behind variance reduction methods
such as SAG [39] and SVRG [24]. SAGA method can achieve linear convergence in
expected suboptimality when the objective is strongly convex. For many structured
problems such as logistic regression and linear regression, SAGA can be implemented
efficiently requiring O(n) memory [14,22], however in general, it requires O(mn)

memory to solve the problem (1) (as it stores historical gradients of all the component
functions), which is impractical when m is very large [14,22]. This is in constrast
with SGD and RR which requires only O(n) memory to operate, therefore can scale
better to large m in general to solve the problem (1). In the left panel of Fig. 4, we
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Fig. 3 Comparison of RR, De-biased-RR (DRR) and SGD. The simulation framework and parameters are
the same as those in Fig. 2 except that the simulation time is 5 s instead for each path

compare the expected suboptimality for the DRR, RR and SAGA methods over 500
sample paths with the same experimental setup for RR and DRR methods including
the objective, the stepsize choice and the averaging with parameter s = 0.75. We first
run RR and SAGA methods and plot expected optimality E f (xk0 ) − f (x∗) versus the
number of cycles k. Both RR and SAGA methods have access to the same number of
stochastic gradient evaluations for every k which make them directly comparable as
the gradient computations determine the running time. We then run the DRR method
(including the de-biasing step at the last cycle), giving it the same amount of running
time with the other methods for a fair comparison. For the SAGA algorithm we use
the recommended stepsize from [14] for strongly convex objectives. The y-axis of
Fig. 4 is the expected suboptimality in a logarithmic scale whereas the x-axis is the
number of cycles. We see on this example that RR and De-biased RR has a fast
progress in the beginning compared to SAGA but when the number of cycles grows,
SAGA eventually outperforms RR and DRR. If the accuracy desired is not too high
(say if being ε = 10−2 of the optimum value f (x∗) is good enough, in this example
f (x∗) ≈ −3.9872), RR and DRR can be good choices; however for higher accuracy
requirements (say ε = 10−4 or smaller), SAGA is a better choice. These numerical
findings are consistent with the fact that SGD-like algorithms have the fastest progress
in the beginning when the iterates are far away from the optimum, and they slow
down later with a sublinear convergence rate due to the decaying stepsize needed
for guaranteeing convergence [6]. On the right panel of Fig. 4, we compare RR and
DRR only (removing the SAGA algorithm) to focus on the differences between them;
otherwise keeping the experimental setup exactly the same as before. We start seeing
a consistent improvement in performance with the DRR method after k = 300 cycles
and the amount of improvement increases when the number of cycles increases. This is
expected as our results regarding the explicit computation of the bias has an asymptotic
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(a) Comparison of RR, DRR and SAGA (b) Comparison of RR and DRR

Fig. 4 Comparison of RR, De-biased RR (DRR) and SAGA methods in terms of performance. The y-axis
is the expected suboptimality in function value after k cycles, and x-axis is the number of cycles k. a
Comparison of RR, DRR and SAGA methods. b Comparison of RR and DRR only

nature (see part (iii) of Theorem 3) and our bias estimation gets more accurate as the
number of iterations grows.

7 Conclusion

We analyzed the random reshuffling (RR) method for minimizing a finite sum of
convex component functions. When the objective function is strongly convex and
the component functions are smooth, averaged RR iterates converge at rate ∼ 1/ks

to the optimal solution almost surely (which translates into a rate of 1/k2s in the
suboptimality of the objective value) for a diminishing stepsize αk = Θ(1/ks) with
s ∈ (1/2, 1). This is faster than SGD’s Ω( 1k ) rate. Viewing RR as a gradient descent
method with random gradient errors, this result builds on first showing that gradient
errors Ek satisfying Ek = O(αk) and then relating the gradient error sequence to an
i.i.d sequence to which martingale theory is applicable. Note that the gradient errors in
SGD are larger with a O(1) variance, which leads to a less accurate gradient descent
direction. Beyond RR and SGD comparison, these results also give insight into the
fast convergence properties of without-replacement sampling strategies compared to
with-replacement sampling strategies.

After characterizing the convergence rate of RR, we look into second-order terms
in the asymptotic expansion of the averaged RR iterates and obtain high probability
bounds. We use these bounds to develop a new method that can accelerate the con-
vergence rate of RR to O( 1

k2
) with high probability. Finally, we show that the O( 1

k2
)

rate can also be achieved in expectation (which is a weaker notion of convergence
with respect to convergence with high probability) for the s = 1 case by adjusting the
stepsize to the strong convexity constant of the objective properly.
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A Proof of Theorem 2

Proof By substituting the gradients of the component functions ∇ fi (x) = Pi x − qi
into the RR iterations given by (5), we obtain the recursion

xk+1
0 =

m∏

i=1

(In − αk Pσk (i))x
k
0 + αk

m∑

i=1

m∏

j=i+1

(In − αk Pσk ( j))qσk (i) (57)

=
(
In − αk P + O(α3

k )

)
xk0 + αk

m∑

i=1

qi − α2
k μ̂σk + O(α3

k ), (58)

where P := ∑m
i=1 Pi and

μ̂σk := −
∑

1≤i< j≤m

Pσk ( j)∇ fσk (i)(x
k
0 ). (59)

Since the component functions are quadratics, the optimal solution can be computed
explicitly and is given by x∗ = P−1 ∑m

i=1 qi . Then, it follows after a straightforward
computation that (58) is equivalent to

xk+1
0 − x∗ = (

I − αk P + O(α3
k )

)
(xk0 − x∗) − α2

k μ̂σk + O(α3
k ). (60)

We also have

‖μσk − μ̂σk‖ ≤
∑

1≤i< j≤m

‖Pσk ( j)‖‖∇ fσk (i)(x
k
0 ) − ∇ fσk (i)(x

∗)‖

≤
∑

1≤i< j≤m

Lσk ( j)Lσk (i)distk = O(distk),

where μσk is defined by (23) with σ = σk . Plugging this into (60),

xk+1
0 − x∗ = (

I − αk P + O(α2
k ) + O(α3

k )
)
(xk0 − x∗) − α2

kμσk + O(α3
k + α2

kdistk).

Taking norm squares of both sides, taking conditional expectations and using the fact
that μσk is bounded (see (26)), we obtain

Eσk

(
dist2k+1

∣∣∣∣x
k
0

)
= (xk0 − x∗)T

(
I−2αk P+O(α2

k )
)
(xk0 − x∗)+2α2

k 〈xk0 − x∗,−μ̄〉

+O
(
α3
kdistk + α2

kdist
2
k + α4

k

)
, (61)
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where Eσk denotes the expectation with respect to the random permutation σk and

μ̄ = Eσk

(
μσk

) = Eσ1

(
μσ1

)
.

It follows from Cauchy–Schwartz that for any β > 0,

α2
k

∥∥∥〈xk0 − x∗,−μ̄〉
∥∥∥ ≤ α2

kdistk‖μ̄‖ =
(√

βα
1/2
k distk

) α
3/2
k ‖μ̄‖√

β

≤ βαkdist2k
2

+ α3
k‖μ̄‖2
2β

,

and also

α3
kdistk = α2

k (αkdistk) ≤ α4
k

2
+ α2

kdist
2
k

2
.

Plugging these bounds back into (61), using the lower bound (6) on the Hessian
H∗ = P and invoking the tower property of the expectations:

E

(
dist2k+1

)
= (

1 − αk(2c − β) + O(α2
k )

)
E

(
dist2k

)
+ α3

k
‖μ̄‖2

β
+ O(α4

k ).

Plugging in αk = R/ks , it follows from Chung’s lemma [16, Lemma 4.2] that,

E

(
dist2k+1

)
≤

⎧
⎨

⎩

R2‖μ̄‖2
β(2c−β)

1
k2s

+ o
(

1
k2s

)
if 0 < s < 1 and 2c − β > 0,

R3‖μ̄‖2
β(R(2c−β)−2)

1
k2

+ o
(

1
k2

)
if s = 1 and R(2c − β) − 2 > 0.

(62)
Next we choose β to get the best upper bound above. This is done by choosing β = c
for 0 < s < 1 and choosing β = (Rc − 1)/R for s = 1 which yields

E

(
dist2k+1

)
≤

⎧
⎨

⎩

R2‖μ̄‖2
c2

1
k2s

+ o
(

1
k2s

)
if 0 < s < 1,

R4‖μ̄‖2
(Rc−1)2

1
k2

+ o
(

1
k2

)
if s = 1 and Rc − 1 > 0.

(63)

By Jensen’s inequality, we have E(distk) ≤ (
E

(
dist2k+1

))1/2
. Therefore, by taking

square roots of both sides above in (62) we conclude. ��

B Technical lemmas for the proof of Theorem 3

The first lemma is on characterizing what is the worst-case distance of the all the inner
iterates of RR to the optimal solution x∗. This quantity we want to upper bound is a
random variable, but the upper bounds we obtain are deterministic holding for every
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sample path. This lemma is based on Corollary 1 and uses the fact that the distance
between the inner iterates are on the order of the stepsize.

Lemma 1 Under the conditions of Theorem 3 we havemax0≤i<m‖xki − x∗‖ = O( 1
ks )

where O(·) hides a constant that depends only on G∗, L,m, c and R.

Proof By Corollary 1,

‖xk0 − x∗‖ = O
(
1

ks

)
, (64)

where O(·) hides a constant that depends only on G∗, L,m, R and c. We have also
for any 0 ≤ i < m and k ≥ 0,

‖xki − x∗‖ ≤ ‖xk0 − x∗‖ + ‖xki − xk0‖ = ‖xk0 − x∗‖ + iαk max
�=1,...,i

‖∇ fσk (�)(x
k
�−1)‖

≤ ‖xk0 − x∗‖ + (m − 1)
R

(k + 1)s

(
G∗ + max

�=1,...,i
‖∇ fσk (�)(x

k
�−1)

−∇ fσk (�)(x
∗)‖

)

≤ ‖xk0 − x∗‖ + (m − 1)
R

(k + 1)s

(
G∗ + L max

�=1,...,i
‖xk�−1 − x∗‖

)
,

where we used the L-Lipschitzness of the gradient of f where L is given by 19. Using
(64) and applying this inequality inductively for i = 0, 1, 2, . . . ,m − 1 we conclude.

��

The second lemma is on characterizing how fast on average the outer iterates move
(if normalized by the stepsize) after a cycle of the RR algorithm. This is clearly
related to the magnitude of the gradients seen by the iterates and is fundamental for
establishing the convergence rate of the averaged RR iterates in Theorem 3.

Lemma 2 Under the conditions of Theorem 3, consider the sequence

Iq,k =
∑k−1

j=(1−q)k (x j
0 − x j+1

0 )α−1
j

qk
, 0 < q ≤ 1. (65)

Then,

Iq,k =
{
O( log k

k

)
if q = 1,

O( 1
k

)
if 0 < q < 1.

In the former case, O(·) hides a constant that depends only on G∗, L,m, c, R, s, q
and dist0. In the latter case, the same dependency on the constants occurs except that
the dependency on dist0 can be removed.
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Proof It follows from integration by parts that for any � < k,

−
k−1∑

j=�

(x j
0 − x j+1

0 )α−1
j = α−1

k (xk0−x∗)−α−1
� (x�

0−x∗)−
k−1∑

j=�

(x j+1
0 −x∗)(α−1

j+1−α−1
j ).

(66)
Next, we investigate the asymptotic behavior of the terms on the right-hand side. A
consequence of Corollary 1 and the inequality 25 is that

α−1
k ‖xk0 − x∗‖ = (k + 1)s

R
‖xk0 − x∗‖ ≤ LmG∗

c
+ o(1) = O(1), (67)

and therefore

|α−1
k+1 − α−1

k |‖xk0 − x∗‖ = (k + 2)s − (k + 1)s

(k + 1)s
α−1
k ‖xk0 − x∗‖

=
( (

1 + 1

k + 1

)s

− 1

)
α−1
k ‖xk0 − x∗‖

≤ s

k + 1
α−1
k ‖xk0 − x∗‖ ≤ sLmG∗

c

1

k + 1

+ o

(
1

k + 1

)
= O

(
1

k + 1

)
,

where O(·) hides a constant that depends only on L,G∗, c,m and s. Then, setting
� = (1 − q)k in (66), it follows that

∥∥∥∥∥∥

k−1∑

j=�

(x j
0 − x j+1

0 )α−1
j

∥∥∥∥∥∥
≤ ‖α−1

k (xk0 − x∗)‖ + ‖α−1
(1−q)k(x

(1−q)k
0 − x∗)‖ (68)

+
k−1∑

j=(1−q)k

‖x j+1
0 − x∗‖|α−1

j+1 − α−1
j |.

= O(1) + ‖α−1
(1−q)k(x

(1−q)k
0 − x∗)‖ + O

( k−1∑

j=(1−q)k

1

j + 1

)
.

(69)

We also have

‖α−1
(1−q)k(x

(1−q)k
0 − x∗)‖ =

{
α−1
0 dist0 if q = 1,

O(1) if 0 < q < 1,
(70)
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where the second part follows from (67) with similar constants for the O(·) term. As
the sequence 1

j+1 is monotonically decreasing, for any k > 0 we have the bounds

k−1∑

j=(1−q)k

1

j+1
≤ 1

(1 − q)k+1
+
∫ k−1

(1−q)k

1

x + 1
dx ≤

⎧
⎨

⎩
1+log k if q = 1,

1+log
(

1
1−q

)
if 0<q<1.

(71)
Note that when q = 1 this bound grows with k logarithmically whereas for q < 1 it
does not grow with k. Then, combining (69), (70) and (71) we obtain

‖Iq,k‖ ≤
∥∥∑k−1

j=� (x j
0 − x j+1

0 )α−1
j

∥∥

qk
=

{
O( log k

k

)
if q = 1,

O( 1
k

)
if 0 < q < 1,

as desired which completes the proof. ��
Lemma 3 Let σ be a random permutation of {1, 2, . . . ,m} sampled uniformly over
the set of all permutations Γ defined by (4) and μ(σ) be the vector defined by (23)
that depends on σ . Then,

μ̄ = Eσ

(
μ(σ)

) = 1

2

m∑

i=1

Pi∇ fi (x
∗), (72)

where Eσ denotes the expectation with respect to the random permutation σ and μ̄ is
defined by (29).

Proof For any i �= �, the joint distribution of (σ (i), σ (�)) is uniform over the set of
all (ordered) pairs from {1, 2, . . . ,m}. Therefore, for any i �= �,

Eσ

[
Pσ(i)∇ fσ(�)(x

∗)
] =

m∑

i=1

m∑

i �= j, j=1

Pi∇ f j (x∗)
m(m − 1)

=
∑m

i=1 Pi
∑m

j=1 ∇ f j (x∗) − ∑m
j=1 Pj∇ f j (x∗)

m(m − 1)

= −
∑m

j=1 Pj∇ f j (x∗)
m(m − 1)

,

whereweused the fact that∇ f (x∗) = ∑m
j=1 ∇ f j (x∗) = 0 by thefirst order optimality

condition. Then, by taking the expectation of (74), we obtain

Eσ (μ(σ)) = −
m∑

i=1

i−1∑

�=0

E
[
Pσ(i)∇ fσ(�)(x

∗)
] =

m∑

i=1

i−1∑

�=0

∑m
j=1 Pj∇ f j (x∗)
m(m − 1)

=
∑m

j=1 Pj∇ f j (x∗)
2

,

which completes the proof. ��
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Lemma 4 Under the conditions of Theorem 3, the following statements are true:

(i) We have
Ek = αkμ(σk) + O(α2

k ), k ≥ 0, (73)

where Ek is the gradient error defined by (8),O(·) hides a constant that depends
only on G∗, L,m, R and c and

μ(σk) = −
m∑

i=1

Pσk (i)

i−1∑

�=1

∇ fσk (�)(x
∗) (74)

is a sequence of i.i.d. variables where the function μ(·) is defined by (23).

(ii) For any 0 < q ≤ 1, limk→∞ Yq,k = μ̄ a.s. where Yq,k =
∑k−1

i=(1−q)k E j
∑k−1

j=(1−q)k α j
.

(iii) It holds that
‖μ(σk)‖ ≤ LmG∗. (75)

Proof (i) As component functions are quadratics, (8) becomes

Ek =
m∑

i=1

Pσk (i)(x
k
i−1 − xk0 ) = −

m∑

i=1

Pσk (i)αk

i−1∑

�=1

∇ fσk (�)(x
k
�−1),

where we can substitute

∇ fσk (�)(x
k
�−1) = ∇ fσk (�)(x

∗) + Pσk (�)(x
k
�−1 − x∗). (76)

Then an application of Lemma 1 proves directly the desired result.
(ii) We introduce the normalized gradient error sequence Y j = E j/α j . By part (i),

Y j = μ(σ j )+O(α j )whereμ(σ j ) is a sequence of i.i.d. variables. By the strong
law of large numbers, we have

lim
k→∞

∑k−1
j=0 μ(σ j )

k
= Eμ(σ j ) = μ̄ a.s., (77)

where the last equality is by the definition of μ̄. Therefore,

lim
k→∞

∑k−1
j=0 Y j

k
= lim

k→∞

(∑k−1
j=0 μ(σ j )

k
+

∑k−1
j=0 O(α j )

k

)
= μ̄ a.s.,

where we used the fact that the second term is negligible as
∑k−1

j=0 α j/k =
O(k−s) → 0. As the average of the sequence Y j converges almost surely, one
can show that this implies almost sure convergence of a weighted average of
the sequence Y j as well as long as weights satisfy certain conditions as k →
∞. In particular, as the sequence {α j } is monotonically decreasing and is non-
summable, by [15, Theorem 1],
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lim
k→∞ Y1,k = lim

k→∞

∑k−1
j=0 α j Y j

∑k−1
j=0 α j

= lim
k→∞

∑k−1
j=0 E j

∑k−1
j=0 α j

= μ̄ a.s. (78)

This completes the proof for q = 1. For 0 < q < 1, by the definition of Yq,k , we
can write Y1,k = (1 − wk)Yq,k + wkY1,(1−q)k where the non-negative weights
wk satisfy

wk =
∑(1−q)k−1

j=0 α j
∑k−1

j=0 α j
→k→∞ (1 − q)1−s < 1.

As both Y1,k and Y1,(1−q)k go to μ̄ a.s. by (78), it follows that

lim
k→∞ Yq,k = lim

k→∞
Y1,k − wkY1,(1−q)k

1 − wk
= μ̄ a.s

as well for any 0 < q < 1. This completes the proof.
(iii) This is a direct consequence of the triangle inequality applied to the definition

(74) with Li = ‖Pi‖ and L = ∑m
i=1 Li . ��

C Techical Lemmas for the proof of Theorem 4

We first state a result which follows from adapting existing results from the literature
to our setting. It extends Corollary 1 from quadratics to smooth functions.

Corollary 2 Under the setting of Theorem 4, we have

distk ≤ RM

c

1

ks
+ o

(
1

ks

)
,

where the right-hand side is a deterministic sequence, M := LmG∗ and G∗ is defined
by (24).

Proof The result [21, Theorem 3.2] on the asymptotic convergence of incremental
gradient implies that all the iterates converge to the optimum, i.e. xki → x∗ for every
i fixed as k goes to infinity. Let Xε be the closed ε-ball around the optimum, i.e.
Xε := {x ∈ R

n : ‖x − x∗‖ ≤ ε}. Clearly, the iterates will be contained in this ball
when k is large enough, i.e. for every ε > 0 there exists k0 (that may depend on ε)
such that xki ∈ X for any k ≥ k0 and for all i = 1, 2, . . . ,m. By [21, Theorem 3.2],
we have also

lim sup
k→∞

ksdistk ≤ RMε

c
, (79)

where Mε := LmGε and Gε := max1≤i≤m supx∈Xε
‖∇ fi (x)‖ is the largest norm of

the gradients of the component functions on the compact setXε. If we let ε go to zero,
we can replace Gε with G∗ = max1≤i≤m ‖∇ fi (x∗)‖ and Mε with M in (79). This
completes the proof. ��

123



Why random reshuffling beats stochastic gradient descent

Building on this corollary, we obtain the following results.

Lemma 5 Under the conditions of Theorem 4, all the conclusions of Lemma 1 remain
valid.

Proof The proof of Lemma 1 applies identically except that instead of Corollary 1 we
use its extension Corollary 2. ��
Lemma 6 Under the conditions of Theorem 4, all the conclusions of Lemma 2 remain
valid.

Proof The proof of Lemma 2 applies identically with the only difference that the
bound on distk = ‖xk0 − x∗‖ is obtained from Corollary 2 instead of Corollary 1. ��
Lemma 7 Under the conditions of Theorem 4, the following statements are true:

(i) We have
Ek = αkv(σk) + O(α2

k ), k ≥ 0, (80)

where O(·) hides a constant that depends only on G∗, L,m, R, c and U and

v(σk) = −
m−1∑

i=0

∇2 fσk (i)(x
∗)

i−1∑

�=0

∇ fσk (�)(x
∗).

(ii) It holds that
‖v(σk)‖ ≤ LmG∗, (81)

where

v̄ := Ev(σk) =
m∑

i=1

∇2 fi (x
∗)∇ fi (x

∗)/2. (82)

(iii) For any 0 < q ≤ 1, limk→∞ Yq,k = v̄ with probability one where

Yq,k =
∑k−1

i=(1−q)k E j
∑k−1

j=(1−q)k α j
. (83)

Proof For part (i), first we express Ek using the Taylor expansion and the Hessian
Lipschitzness as

Ek =
m∑

i=1

(
∇2 fσk (i)(x

k
0 )

)
(xki−1 − xk0 ) + O(U‖xki−1 − xk0‖2)

= −
m∑

i=1

(
∇2 fσk (i)(x

k
0 )

)
(xki−1 − xk0 ) + O

(
α2
kU

∥∥∥∥
i−1∑

�=1

∇ fσk (�)(x
k
�−1)

∥∥∥∥

)
.

By Lemma 5, we have ‖xk� −x∗‖ = O(αk)with probability one. Then, by the gradient
and Hessian Lipschitzness we can substitute above
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∇ fσk (�)(x
k
�−1) = ∇ fσk (�)(x

∗) + O(αk), ∇2 fσk (�)(x
k
�−1) = ∇2 fσk (�)(x

∗) + O(αk),

which implies directly Eq. (80). The rest of the proof for parts (ii) and (iii) is similar
to the proof of Lemma 4 and is omitted. ��
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