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Abstract

We consider coordinate descent (CD) methods with exact line search on convex
quadratic problems. Our main focus is to study the performance of the CD method
that use random permutations in each epoch and compare it to the performance of the
CD methods that use deterministic orders and random sampling with replacement. We
focus on a class of convex quadratic problems with a diagonally dominant Hessian
matrix, for which we show that using random permutations instead of random with-
replacement sampling improves the performance of the CD method in the worst-case.
Furthermore, we prove that as the Hessian matrix becomes more diagonally dominant,
the performance improvement attained by using random permutations increases. We
also show that for this problem class, using any fixed deterministic order yields a
superior performance than using random permutations. We present detailed theoret-
ical analyses with respect to three different convergence criteria that are used in the
literature and support our theoretical results with numerical experiments.
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1 Introduction

We consider coordinate descent (CD) methods for solving unconstrained optimization
problems of the form

min f(x), (1

xeR"

where f : R” — R is smooth and convex. CD methods have a long history in opti-
mization [5,13,18] and have been used in many applications [10,16,20,22,24]. They
have seen a resurgence of recent interest because of their scalability and desirable
empirical performance in machine learning and large-scale data analysis [3,26,31].

CD methods are iterative algorithms that perform (approximate) global minimiza-
tions with respect to a single coordinate (or several coordinates in the case of block
CD) at each iteration. Specifically, at iteration k, an index iy € {1, 2, ..., n} is chosen
and the decision variable is updated to approximately minimize the objective func-
tion in the ix-th coordinate direction (or at least to produce a significant decrease in
the objective) [2,3]. The steps of this method are summarized in Algorithm 1, where
e = [0,...,0,1,0,...,0]7 is the i-th standard basis vector (with the i-th entry
equal to one). At each iteration k, ix-th coordinate of x is selected and a step is taken
along the negative gradient direction in this coordinate. The counter k = ¢n 4+ j keeps
track of the total number of iterations consisting of outer iterations indexed by £ and
inner iterations indexed by the counter j. Each outer iteration is called a “cycle” or an
“epoch” of the algorithm.

Algorithm 1 Coordinate Descent (CD)

Choose initial point x0 € R”
fort=0,1,2,... do
for j=0,1,2,...,n—1do
Setk =4n+j
Choose index iy, =i(¢, j) € {1,2,..., n}
Choose stefsize ar >0
A ok — g [V f (@), where [V (R, = ] Vf ()

end for
end for

CD methods use various schemes, both deterministic and stochastic, for choosing
the coordinate i to be updated at iteration k. Prominent schemes include the following.

— Cyclic CD (CCD): The index i (¢, j) is chosen in a cyclic fashion over the elements
in the set {1, 2, ..., n} satisfying i (¢, j) = j + 1.

— Cyclic CD with a given order 7 (CCD-mr): A permutation 7 of the set {1, 2, ..., n}
is selected. Then, the index i (¢, j) is chosen as the (j + 1)-th element of 7 for
every epoch £. (CCD corresponds to the special case of 7 = (1,2, ...,n).)

— Randomized CD (RCD): The index i (¢, j) is chosen randomly with replacement
fromtheset {1, 2, ..., n} with uniform probabilities (each index has the same prob-
ability of being chosen). This method is also known as the stochastic CD method.
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— Random Permutations Cyclic CD (RPCD): At the beginning of each epoch ¢, a
permutation of {1, 2, ..., n} is chosen, denoted by m;, uniformly at random over
all permutations. Then, the index i (¢, j) is chosen as the (j 4 1)-th element of ;.
Each permutation 7y is independent of the permutations used at all previous and
later epochs. This approach amounts to sampling indices from the set {1, 2, ..., n}
without replacement for each epoch.

While our focus in this paper will be on CD methods with the aforementioned selec-
tion rules, we note that several other variants of CD methods have been studied in the
literature, including the Gauss—Southwell rule [17], in which iy is selected in a greedy
fashion to maximize [V f (xk )1i, and versions of RCD [15], in which iy is selected
from a non-uniform distribution that may depend on the component-wise Lipschitz
constants of f.

We are interested in the relative convergence behavior of these different variants of
CD. While there have been some recent works that study and compare performances
of CCD and RCD (for example, [1,9,15,23,27,28,30]); with the exception of a few
recent papers (which focus on special quadratic problems, see [12,32]), there is limited
understanding of the effects of random permutations in CD methods.

In this paper, we study convergence rate properties of RPCD for a special class
of quadratic optimization problems with a diagonally dominant Hessian matrix, and
compare its performance to that of RCD and CCD. Interest in RPCD is motivated by
both empirical observations and practical implementation: In many machine learn-
ing applications, RPCD is observed numerically to outperform its with-replacement
sampling counterpart RCD [14,21]. Moreover, without-replacement sampling-based
algorithms (such as RPCD and random reshuffling [4,8]) are often easier to implement
efficiently than their with-replacement counterparts (such as RCD and stochastic gra-
dient descent) [12,21] as it requires sequential data access, in contrast to the random
data access required by with-replacement sampling (see e.g. [7,25]).

We start by surveying briefly the existing results on the effects of random per-
mutations for CD methods [12,19,28,32]. Among these, Oswald and Zhou [19]
studies the effects of random permutations on the convergence rate of the succes-
sive over-relaxation (SOR) method (that is used to solve linear systems) and presents
a convergence rate on the expected function value of the iterates generated by the SOR
method. The CD method, when applied to quadratic minimization problems, is equiv-
alent to the SOR method (applied to the linear system that represents the first-order
optimality condition of the quadratic problem) when the relaxation parameter is cho-
sen as w = 1. Therefore, the convergence rate results in [19] readily extend for RPCD,
when applied to quadratic problems. Sun and Ye [28] construct a quadratic problem,
for which CCD requires O(n?) times more iterations compared to RCD in order to
achieve an e-optimal solution (that is, a point x¥ that satisfies E f xky — f&x™) <e).
For this problem, they also show that the distance of the iterates (to the optimal solu-
tion) for CCD decays O(n?) times slower than the distance of the expected iterates
for RPCD and RCD. Lee and Wright [12] consider the same problem and present that
the expected function values of RPCD and RCD decay with similar rates, while the
asymptotic convergence rate of RPCD is shown to be slightly better than for RCD. In
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a following paper [32], the results in [12] are generalized to a larger class of quadratic
problems through a more elaborate analysis.

Our main results provide convergence rate comparisons with respect to various
criteria between RPCD, RCD, and CCD for a class of strongly convex quadratic
optimization problems with a diagonally dominant Hessian matrix. In particular, we
first provide an exact worst-case convergence rate comparison between RPCD, RCD,
and CCD in terms of the distance of the expected iterates to the optimal solution,
as a function of a parameter that represents the extent of diagonal dominance of
the Hessian matrix. Our results show that, on this problem, CCD is always faster than
RPCD, which in turn is always faster than RCD. Furthermore, we show that the relative
convergence rate of RPCD to RCD goes to infinity as the Hessian matrix becomes
more diagonally dominant. On the other extreme, as the Hessian matrix becomes less
diagonally dominant, the ratio of convergence rates converges to a valuein [3/2, e—1),
with the upper bound e — 1 achieved in the limit as n — o0. Our second set of results
compares the convergence rates of RPCD and RCD with respect to two other criteria
that are widely used in the literature: the expected distance of the iterates to the solution
and the expected function values of the iterates. For these criteria, we show that RPCD
is faster than RCD in terms of the tightest upper bounds we obtain, and the amount of
improvement increases as the matrices become more diagonally dominant.

The organization of the paper is as follows. In Sect. 2, we discuss the CCD, RCD,
and RPCD algorithms in more detail and describe the three criteria that are used for
analyzing convergence throughout the paper. In Sect. 3, we survey known results on
the convergence rate of RPCD. We analyze the convergence rates of CCD, RCD, and
RPCD with respect to the first convergence criterion in Sect. 4.1 and the behavior of
RCD and RPCD with respect to the second and third convergence criteria in Sect. 4.2.
We validate our theoretical results via numerical experiments in Sect. 5 and present
conclusions in Sect. 6.

2 Preliminaries

To study performance of different CD methods, we focus on the special case of problem
(1) when f is a strongly convex quadratic function:!

1 7
fx) = 7% Ax, )
where A is a positive definite matrix. We denote its extreme eigenvalues by
= Amin(A) >0, L :=Amax(A), 3)

and note that u is the modulus of convexity for f, while L is the Lipschitz constant
for V f. The problem (1) has a unique solution x* = 0 with optimal value f(x*) = 0.

! The results can be generalized for quadratic functions of the form f(x) = %xTAx — b7 x; however, for
simplicity and compatibility with the earlier results in the literature, we consider the case b = 0.
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In the remainder of this section, we derive explicit formulas for the iterates of
different variants of CD applied to (1) (in terms of matrix operators representing
each epoch) and then introduce different convergence criteria for these variants. We
show how asymptotic convergence rates can be characterized in terms of the spectral
properties of A and the matrix operators for each epoch.

2.1 CD methods

In this section, we describe the variants of the CD method (in particular, CCD, CCD-r,
RCD, and RPCD) when applied to the quadratic problem in (2). The CD method (cf.
Algorithm 1) with exact line search has the following update rule at each iteration

1
M=o — —(Axie,, &
1737%

where the update coordinate iy is determined according to one of the schemes men-
tioned above.

For the CCD algorithm, each coordinate is processed in a round-robin fashion using
the standard cyclic order (1, 2, ..., n). Denoting by D the diagonal part of A and by
—N the strictly lower triangular part of A, that is,

A=D—-N-NT,

the evolution of the iterates over an epoch (of n consecutive iterations) can be written
as -
+ [ : —1 5T
x((JCD)n = Bcep anCD’ with Bccp = (D — N)" 'N*, 5)

where £ denotes the epoch counter. Note that the update rule in (5) is equivalent to one
iteration of the Gauss-Seidel method applied to the first-order optimality condition of
(1), which is the linear system Ax = 0 (see Section 1.4 of [31] for details).

For the CCD-r algorithm, we let P, denote the permutation matrix corresponding
to order 7 and split the permuted Hessian matrix as follows:

Ay =PTAP, = Dy — Ny — NI, (6)

where —N;; is a strictly lower triangular matrix and D is a diagonal matrix. Then,
similar to (5), we have

e+1 ) B
xéC_FD-)yr; = Bcep-n xénCD_n, with  Bcep-x = (Dy — Ny) IN;. (7

Note that Bcep and Boep-» are not symmetric matrices as the first column of both
matrices are zero, whereas the first row contains nonzero entries.

For the RCD algorithm, the indices i; are chosen independently at random at each
iteration k. Denoting by xﬁCD the k-th iterate generated by RCD, the update rule for
RCD over a single iteration can be written as
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k+1 k . 1 T
Xgep = BrReD-k Xgeps  With Brep-k =1 — —eikeikA. ®)

Irik
The expectation of Brcp-x With respect to the random variable iy is denoted as follows:
Brep = Eg BReD-£ )

where we note that Brcp is a symmetric matrix, by symmetry of A and uniform
distribution of iy.

For the RPCD algorithm, each coordinate is processed exactly once in each epoch
according to a uniformly and independently chosen order. Recalling that r; denotes
the permutation of coordinates used in epoch ¢ and using the iteration matrix corre-
sponding to CCD-mr¢ [see (7)], epoch £ of RPCD can be written as

(t+1n Y4 . T
Xgpcp = BRPCD-¢ XRpcps  With  Brpcp-¢ = Pr, Beep-r, Py, - (10)

We introduce the following notation for the expected value of Brpcp-¢ With respect
to permutation 7y:
Brpcp = E¢Brpcp-¢s (11)

where we note that Brpcp 1S a symmetric matrix since 7y is chosen uniformly at
random over all permutations (see Lemma 1).

2.2 Convergence rate criteria

We next discuss how to measure and compare the convergence rates of different
variants of CD. Three different improvement sequences have been used to measure
the performance of CD methods in the literature:

(i) A (xéD) = HIExéD —x*|], (Distance of expected iterates)
2

(ii) 9y (xéD) =E ’ ‘xéD —x*, (Expected distance of iterates)

(i) T3xlp) = Ef(xkp) — F(x). (Expected function value)

(seee.g.[1,9,15,22,27,28,31]). While these three measures can be related to each other
(Jensen’s inequality yields Ilz < 7, and strong convexity enables lower and upper
bounding 73 between constant positive multiples of Z5), we will provide different
analyses for each of the measures to obtain the tightest estimates.

In the above definitions, expectations can be removed for deterministic algorithms
such as CCD. By Jensen’s inequality, we have that 77 (xf,) < Z»(x&p) for all k. For
a strongly convex function f, Z3 can be lower and upper bounded between constant
positive multiples of 7.

To study convergence rate of CCD, RCD, and RPCD with respect to improvement
sequence 71, we use the operators derived in the previous section that represent one
iterate or one epoch. The iteration matrices of CCD and RPCD are defined over
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an epoch (see (5) for CCD, (10) and (11) for RPCD). Therefore, using the generic
subscript “CD” to represent the cases Bcp = Bccp for CCD and Bep = Brpcp for
RPCD, we have the following update rule

(€+Dn ¢
Eexep " = Bep x¢p,

where E; denotes the expectation with respect to the random variables in epoch £ given
xé’f). Note that the random variables in each epoch are independent and identically
distributed across different epochs for RPCD (and RCD). Therefore, by using the law
of iterated expectations, we obtain

+Dn _ pe 0
Exep = Bep X

where £ here denotes the expectation with respect to all random variables arising
in the algorithm. Hence, the worst-case convergence rate with respect to Z can be
expressed as

1/¢ 1/¢
[[Exc|[\ ™ _ [1Bep <l P
sup (W = Ssup W = BCD . (12)

x0eRn xOeRn

When Bcp is a symmetric matrix (as in RPCD), we have ||BéD||1/Z = p(Bcp).

Hence, (12) yields a per-epoch worst-case convergence rate of p(Brpcp) for RPCD.
When Bcp is asymmetric (which is the case for CCD), we have by Gelfand’s formula
. ¢ 11/t .
limy_s oo ||BCD|| = p(Bcp). Thus, p(Bccp) represents an asymptotic worst-case
convergence rate measure for CCD.
For RCD, a similar derivation involving a single iteration (rather than one epoch)
yields from (8) and (9) that

k+1 k
Exxgep = BreD X¢ep-

Similar reasoning to the above yields a per-iteration worst-case convergence rate of
p(Brep), or equivalently a per-epoch rate of p (Brcp)”, for RCD. (Note that, because
Brcp is symmetric, we have p(Brcp) = ||Brepll-)

In our analysis of convergence rate of RCD with respect to improvement sequence
1,, it follows from (8) that

2
E Hx{gal)H = (xkep)TE [(BRCD-k)TBRCD-k] X§ep
T )P

< HE [(BRCD-k) BRCD-k]H HxRCDH

For RPCD, we have similarly from (10) that
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+1n
E ‘ ARPCD

= (xfhep) T E [(BRPCD-e)TBRPCD-e] X

2
< H]E I:(BRPCD-Z)TBRPCD-Z]H Hxlgrfl’CDH .

The matrices [E [(BRCD-k) r BRCD-k] and E [(BRPCD-({)T BRPCD-K] are both symmetric.
Convergence rates be obtained from p (E [(Brcp«)” Brep-«]) and p(E[(Breep-¢)”
Brpcp-¢]) (or equivalently from the norms of these matrices), the first being a per-
iteration convergence rate for RCD under criterion 75, and the second being a per-epoch
rate for RPCD under the same criterion. Results along these lines appear in Sect. 4.2.

Finally, in our analysis of convergence rate of RCD with respect to Z3, iteration (8)
yields

Ef (xken) = (tkep) T Ex [(BRCD-k)TABRCD-k] Xkep

= (A" 2xf o) TEx [A_1/2(BRCD-k)TABRCD—kA_l/Z] A2k

2
< HEk[ ~12(Brep-k)T ABrepkA™ 1/2]HHA1/2x CDH .

A similar analysis applied to the RPCD update formula (10) yields

2
Ef (xgpep’) < HIE [A "2 (Brecp-¢)" ABrpcp-eA” 1/2]H HAI/ZX PCDH :

We will show that the matrices in these two bounds are symmetric. Thus, our conver-
gence rate characterizations for RCD and RPCD with respect to Z3 (see Sect. 4.2) will
involve the norms (equivalently, the spectral radii) of these two matrices.

Remark 1 Note that for improvement sequence Z;, the asymptotic worst-case con-
vergence rate of the algorithm can be simply computed as the spectral radius of the
expected iteration matrix. Furthermore, this bound is tight in the sense that there canbe
no smaller contraction rate c1, for which an inequality of the type Z; (x D) < c1 i (x9)
asymptotically holds for all x° € R”". Therefore, in Sect. 4.1, we compare the worst-
case convergence rates of CCD, RCD and RPCD with respect to Z; through a tight
analysis (in Proposition 2). We analyze the ratio of the convergence rates of RCD
and RPCD in Proposition 1. On the other hand, for improvement sequences 7, and
73, we consider per-iteration and per-epoch upper bounds that are not necessarily
asymptotically tight. Using a similar argument to (12), we can formulate the worst-
case contraction factors for 7> and 73, but they would involve computation of powers
of matrices (e.g., E [(B k)TBCD k] and E [A_I/Z(B k)TABCD " _1/2]), which
does not admit a closed form characterization. Hence, in Sect 4.2, we compare the con-
vergence rates of RCD and RPCD based on per-iteration and per-epoch improvement
rates, as has been done previously in the literature [12,28,32].
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3 Prior work on CD methods with random permutations

In this section, we survey the known results on the performance of RPCD. There are
several recent works that study the effects of random permutations in the convergence
behavior of CD methods [12,19,28,32]. To unify the randomization parameters (in
RCD and RPCD) and the component-wise Lipschitz constants in different papers, we
(without loss of generality) make the following assumption throughout the rest of the
paper

A;i =1, forall ie{l,2,...,n}. (13)

This can always be satisfied by scaling the optimization variable, i.e., by setting x =
D~'/2% in (2) and minimizing over ¥ € R” (see e.g. [9,32]).

Recently, Oswald and Zhou [19] analyzed the effects of random permutations for
the successive over-relaxation (SOR) method, which is equivalent to the CD method
with exact line search for a particular choice of algorithm parameter. They consider
quadratic problems whose Hessian matrix is positive semidefinite and present con-
vergence guarantees for SOR iterations with random permutations, which implies the
following guarantee on the performance of RPCD.

Theorem 1 [19, Theorem 4] Let f be a quadratic function of the form (2), where the
Hessian matrix A has unit diagonals. Then, for any solution x*, the RPCD algorithm
enjoys the following guarantee

12
Ef (ihep) = f (") = (1 - ﬁ) (ra9-ram). a4

Theorem 1 provides a convergence rate guarantee on the performance of RPCD

for general quadratic functions. Under the same assumptions in Theorem 1, the best
known upper bound on the performance of RCD is given by [15, Theorem 5]:

1 2
E | 5 |[skeo ||+ s eshen - 0]

k
= (1) Gl

This shows that the the upper bound on the performance of RCD per-epoch is approx-

2 0
+ 7)) = f(X*)) . 15)

n
imately (1 — n(lz—f:m) ~1— 12+_Mu’ whereas it follows from (14) that the upper bound
on the performance of RPCD can be as large as 1 — ﬁ since L < tr(A) = n.

These bounds suggest that RPCD may require ()(n?) times more iterations than RCD
to guarantee an e-optimal solution. However, empirical results show that RPCD often
outperforms RCD in machine learning applications [6,21]. Furthermore, it has been
conjectured that the expected performance of RPCD should be no worse than the
expected performance of RCD [21] (see also [11,33] for related work on this conjec-
ture). This motivates to derive tight bounds for the convergence rate of RPCD and
compare them with the known bounds on the convergence rate of RCD.
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A similar phenomenon has been observed for CCD in comparison to RCD. In
particular, the tightest known convergence rate results on the performance of CCD
(see [1,27,28]) suggest that CCD may require O(n?) times more iterations than RCD
to guarantee an e-optimal solution. To understand this gap in the convergence rate
bounds, Sun and Ye [28] focused on the quadratic problem in (2) with the following
permutation invariant” Hessian matrix

A=81+(1-8117, where 8¢ (0,n/(n—1)). (16)

In particular, the authors considered a worst-case initialization and the case when §
is close to 0, for which L = O(n).? For this problem, they showed that CCD with
the worst-case initialization indeed requires On?) times more iterations than RCD to
return an e-optimal solution. They also provided rate comparisons between RPCD and
CCD without providing a comparison between RPCD and RCD, which is presented
in the following theorem.

Theorem 2 [28, Proposition 3.4] Let Kccp(€), Krep(€) and Krpep(€) be the mini-
mum number of epochs for CCD, RCD and RPCD (respectively) to achieve (expected)
relative error

IEGr¢p) — x|
0 — x|

for initial point x° € R" (for CCD, the expectation operator can be ignored). There
exists a quadratic problem, whose Hessian matrix A satisfies (16) for some § around
zero, such that

Kcep(e) n* _n?

Krep(e) — 272 207
Kcep(e) _ nnt 1) n(n+2)
KRPCD(G) - 27‘[2 20 '

(17a)

(17b)

Theorem 2 shows that the worst-case performance (in improvement sequence Z)
of RPCD and RCD is O(n?) times faster than that of CCD. In a follow-up work,
Lee and Wright [12] considered the same problem as [28] [see (16)] for the small §
case and presented asymptotic and non-asymptotic analyses of RPCD with respect to
improvement sequence 73, presented in the following theorem.

Theorem 3 [12, Theorem 3.3] Consider the quadratic problem (2) with the Hessian
matrix A given by (16), where § € (0, 0.4) and n > 10. For any x% € R", RPCD has
the following non-asymptotic convergence guarantee

Ef(xfbep) — f(x*) < (1 — 28 + 485 Ry, (18)

2 Aisa permutation invariant matrix if PAPT = A, for any permutation matrix P.

3 Since A has two eigenvalues: § +n(1 — §) with multiplicity 1 and § with multiplicity n — 1, the Lipschitz
constant becomes L = § +n(1 —4§),for§ < l;andas§ — 0, L — n.
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where Ry is a constant depending on xo and §. Furthermore, RPCD iterates enjoy an
asymptotic convergence rate of

. n w1 28 2 5 3

lim (Ef(xRPCD) - fx )) =1-20——+2+0 <—> + O(@7). (19)

{—00 n n

Theorem 3 shows that for the particular class of quadratic problems whose Hessian
matrix satisfies (16), the convergence rate (in improvement sequence Z3) of RPCD is
faster than that of RCD in (15) in terms of the best known upper bounds (note that
the convergence rate of RCD is approximately 1 — 2§/(1 4 ) for this case, see (15)).
This is the first theoretical evidence that supports the empirical results showing RPCD
often outperforms RCD [21]. In a follow-up work [32], Lee and Wright generalize the
results of Theorem 3 to quadratic problems, whose Hessian matrix satisfies

A=681+(1—8uu’, where 8¢ O,n/(n—1)), (20)

where u € R” is a vector with elements of size O(1) (this generalizes (16) that
corresponds to # = 1). The conclusions are similar to [12], but the analysis is different
because A is no longer a permutation-invariant matrix.

4 Performance of RPCD versus RCD on a class of diagonally dominant
matrices

As described in the previous section, the existing works [12,28] analyze the perfor-
mance of RPCD for quadratic problems, whose Hessian satisfies (16) for small §. Here,
we consider the other extreme, i.e., the § > 1 case, and provide tight convergence rate
comparisons between RPCD, RCD and CCD with respect to all there improvement
sequences defined in Sect. 2.2. In deriving convergence rate guarantees, we do not
resort to the tools that are used in the earlier works on RPCD [12,28,32]. Instead, we
present a novel analysis based on Perron—Frobenius theory that enables us to compute
convergence rate bounds for all three criteria. For notational simplicity, we introduce
the reformulation « = § — 1, which yields

A=(+a) —all’, where « € (0, 1/(n —1)). 2n

It is simple to check that A has one eigenvalue at 1 — (n — 1)« with the corresponding
eigenvector 1 and other n — 1 eigenvalues equal to 1 4. In particular, as & goes to zero,
the condition number of A gets smaller and in the limit A is the identity matrix. On
the other hand, as @« — ﬁ, the matrix gets ill-conditioned. Therefore, the parameter

[::maxm

: o ain—1) €0, 1) (22)

is a measure of diagonal dominance. In the remainder of this section, we analyze the
performance of RPCD, RCD and CCD in improvement sequence Z; and the perfor-
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mance of RPCD and RCD in improvement sequences Z> and Z3 with respect to this
diagonal dominance measure.

4.1 Convergence rates of RPCD, RCD and CCD in improvement sequence 74

In this section, we compare convergence rates of RPCD, RCD and CCD, where
improvement sequence 7 (x¥) = HExk - x*H is chosen as the convergence crite-
rion (as in Theorem 2). As we highlighted in Sect. 2.2, we first compute the expected
iteration matrices of the RPCD and RCD algorithms, and show that they are sym-
metric. Then, we compute their spectral radii to conclude the per-epoch worst-case
convergence rate of RPCD and RCD, and analyze their ratio in Proposition 1. We also
show that the asymptotic worst-case convergence rate of CCD is faster than that of
RPCD and RCD in Proposition 2.

We begin our discussion by writing the expected RPCD iterates [see (10) and (11)]
as follows

Eexgpcp = Breep Xep- (23)

Note that since the Hessian matrix A is permutation invariant, the iteration matrix of
the CCD-mr algorithm for any cyclic order 7 is equal to the iteration matrix of the
standart CCD algorithm, i.e., Bccp = Bccep-r» for all orders w. Therefore, we have
Brpcp = Er [Py BccpPl1 = Ep[PBcep P11, where we drop the subscript 7 from
the matrices for notational simplicity. In order to obtain a formula for Brpcp, we first
reformulate the CCD iteration matrix in (5) as follows

Bececp=U—-N)"'NT=1—-(-N)"'U-N-N)y=1-T""4,

where I' = I — N. Using this reformulation, the expected iteration matrix of RPCD
can computed as follows

Brecp = Ep [PBCCDPT] =Ep [P(I - r—lA)PT] =1 —Ep [PF“PT] A,

where we used the fact that PPT = I and APT = PT A. For the case the Hessian
matrix A satisfies (21), ' ~! can be explicitly computed as

' = toeplitz(c, r), (24)

where toeplitz(c, r) denotes the Toeplitz matrix with the first column ¢ and the first
row r, which are given by

c=[la a(l+a) a(l+a)?, ..., a(l+a)2]", r=[1,0,0,...,0].

In order to compute Ep [PI"~'PT], we use the following lemma, which states that
expectation over all permutations separately averages the diagonal and off-diagonal
entries of the permuted matrix.
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Lemma 1 [12, Lemma 3.1] Given any matrix Q € R"*" and permutation matrix P
selected uniformly at random from the set of all permutations, we have

Ep[POP =11 + 0117,
where

1701 — trace(Q)
2= nn-—1)

trace(Q)
1=—— -

and T (25)

Letting Q = 'l in Lemma 1, we observe that the matrix Ep[PT "1 PT] has
diagonals equal to one and all the off-diagonal entries equal to each other:

Ep[PT'PT1 =1 —y)I +y117, (26)

where y can be found as the average of the off-diagonal entries of I"~!. The following
lemma (whose proof is given in “Appendix A”) provides an explicit expression for y .

Lemma2 Forany a € (0,1/(n — 1)), we have

_(l+a)"'—an—1

an(n — 1)

)

where y denotes the off-diagonal entries of Ep[PT ~'PT] in (26).

Using Lemma 2, it follows from the definition of A in (21) and Eq. (26) that
Brpcp =1 —Ep[PT™'PTIA = ((n — )y — B)I + p117,

where
B=a—y+tayn-2).

Since Brpcp is a symmetric matrix, then by (12), it suffices to compute the spec-
tral radius of Brpcp to obtain the worst-case performance of RPCD with respect to
improvement sequence Zj. To this end, we note that for any ¢ € (0,1/(n — 1)),
Brpcp > 0 since Brpcp = Ep[P BCCDPT] and Bcep > 0 with at least one strictly
positive entry in both the diagonal and off-diagonal parts [see also (47) for an explicit
formula of Bcep]. Then, by the Perron—Frobenius Theorem [29, Lemma 2.8], we have

n
p(Brpcp) = Z[BRPCD]ij, foralli € [n]
j=1

=n—-Dya+p)
=m—-—D@—y+aymn-—1)
=1—-[0—a(mm—1)A+yxr-1)].
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Substituting the formula for y from Lemma 2 above, we obtain the spectral radius of
the RPCD iteration matrix as follows

p(Brpcp) =1 — (1 —a(n —1))

A+a)"—1
on -

(27)
where ¢t = a(n — 1) denotes the diagonal dominance factor [as defined in (22)].
For the RCD algorithm, on the other hand, we have [by (8) and (9)] the following
expected iterates

k+1 k
Exxgcp = Brep *jep,  Where Brep =1 — - A.

Since A is a symmetric matrix, then by (12), the per-epoch worst-case asymptotic rate
of RCD with respect to improvement sequence Z; can be found as

1 " 1—t\"
p(Brcp)" = (1 - —)»min(A)> = (1 - —) .
n n

In Proposition 1, we compare the performance of RPCD and RCD with respect to
improvement sequence Z;. To this end, we define

_ —log p(Brecp)

t’ - )
s == log p(Brcp)"

(28)

(where log denotes the natural logarithm), which is equal to the ratio between the
number of epochs required to guarantee |IEx£” - x*|| < € for RCD and RPCD
algorithms. In particular s (¢, n) > 1implies RPCD has a faster worst-case convergence
rate than RCD. In the following theorem, we show that RPCD is faster than RCD for
any ¢ € (0, 1) and n > 2, and quantify the rate of improvement.

Proposition 1 The following statements are true:

(1) The function s(t, n) is strictly decreasing in t over (0, 1).
(i) lim;_.qs(t,n) = oo.
(iii) Let g(n) := limy_1s(t,n). We have g(n) € [3/2,e¢ — 1), for any n > 2.
Furthermore, g(n) is strictly increasing in n > 2 satisfying

g(2)=3/2 and lim g(n) =e— 1.
n— oo

A consequence of Proposition 1 is that RPCD is faster than RCD in the worst-case,
for every t € (0, 1) by a factor s(¢, n) > 1. Furthermore, the amount of acceleration
s(t,n) goes to infinity as « — O for any »n fixed. This shows that as the matrix A
becomes more and more well-conditioned (as « — 0), the amount of speed-up s(t, n)
we obtain with RPCD with respect to RCD goes to infinity. This is consistent with
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0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Fig.1 Plot of s(¢, n) and 5(¢, n) versus ¢ € (0, 1) for different values of n

the observation that cyclic orders work well for diagonal-like matrices that are well-
conditioned (see e.g. [29]). Proposition 1 is illustrated in Fig. 1 (left panel), where we
plot the parameter s(¢, n) as a function of ¢ for different values of n.

We next compare the convergence rate of CCD with respect to RPCD and RCD. To
this end, as we discuss in Sect. 2.2 [cf. (12)], we use p(Bccp) as the asymptotic per
epoch worst-case convergence rate of CCD, whereas for comparison to RCD, we use a
per-epoch rate of p (Brcp)”. Note that as discussed in (23), Bccp = Beep-» forall ,
and hence p (Bccp) = p(Bccep-r ) forall w. Although, explicit calculation of p (Bcep)
appears to be challenging, we prove that the known upper bounds [9, Theorem 4.12]
on p(Bccp) is tighter than p (Brpcp), Which together with Proposition 1 imply the
following result.

Proposition2 Let f be a quadratic function of the form (2), whose Hessian matrix
given by (21). Then, the expected iteration matrices of CCD, RPCD and RCD satisfy

p(Bcep) < p(Breep) < p(Brep)”, (29)

foranya € (0,1/(n — 1)) andn > 2.

4.2 Convergence rates of RPCD and RCD in improvement sequences 7, & 73

In this section, we compare the rate of RPCD and RCD with respect to improvement
sequences 7, and Z3. When the Hessian matrix A satisfies (21), the smallest eigenvalue
of A can be found as follows

u=1—-t=1—a@—1). 30)

Plugging this value in the convergence guarantee of RCD in (15), we can obtain a
convergence guarantee on both improvement sequences Z, and Z3 as the left hand-
side of (15) upper bounds both 27, and Z3. However, for the particular problem class
we consider in this paper, we derive a tighter convergence rate guarantee for RCD in
the next proposition, whose proof is deferred to “Appendix D” (Figs. 2, 3).
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Number of epochs () Number of epochs (¢)

Fig.2 Tightness of the bounds in Proposition 3 whenn = 1000 and o« = % left figure for (31) and right
figure for (32)

10° , , , : 10° ' ' ' :

* Actual * Actual
— Theory —Theory

a % 100
*H :‘—;

I 10%f 102
il %
_ =10

-5 6 ®es,
10 0 10 20 30 40 50 10 0 10 20 30 40 50
Number of epochs (¢) Number of epochs ()
0.9

Fig.3 Tightness of the bounds in Proposition 4 when n = 1000 and & =
figure for (34)

: left figure for (33) and right

n—1-

Proposition3 Ler f be a quadratic function of the form (2), whose Hessian matrix
given by (21). Then, RCD iterations satisfy

k

2 p?
Ellxkep — x*II* < (1 - + — 20 — x*12, 31)

and

E (e — 169) = (1= 2) (16 - 7). (32

Remark 2 We observe that the upper bound in (31) is smaller (tighter) than the upper
bound in (15) for any @ € (0, 1/(n — 1)) because

2 2 2 212 2u(l — 2u(1 — p?
o ok 2wdow  2ed o)
n n n n n n(l+p)
2u
<1l-—),
n(l+ p)
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where the inequalities are due to the factthat u = 1 —a(n — 1) € (0, 1).

We next analyze the performance of RPCD in the following proposition and show
that the convergence rate guarantee of RPCD is tighter than the convergence rate
guarantee of RCD in Proposition 3. The proof of Proposition 4 is given in “Appendix

Proposition4 Let f be a quadratic function of the form (2), whose Hessian matrix
given by (21). Then, RPCD iterations satisfy

4
2u ((14+a)" —1 w2 A+ —1
E n TV 1=t - Ld S A 0_ %2
I xgpep—x" |l S( . < " )+ . 2@ 12) [lx” —x™]7,
(33)

and

L+a) — 1)\
Ef(xRPCD) - f(x*) < (1 - % (%)) (f(xo) — f(x*)) . (34)

We next compare the convergence rates we derive for the RCD and RPCD
algorithms. In particular, we consider the convergence rate of both algorithms in
improvement sequence 7, since we obtain tighter upper bounds for it. Comparing
the convergence rate bounds for RCD and RPCD in (31) and (33), respectively, we
can observe that RPCD is faster (in terms of the best known rate guarantees) than RCD

by a factor of
(te)'-1 (I+a)> 1
—log (1 3 () + 1 (S )
2 2

—nlog(l—#%—%)

S(t,n) =

’

which is plotted in Fig. 1 (right panel) in the interval ¢t € (0, 1) for different values
of n. We observe from this figure that the convergence rate bound for RPCD is better
than than the one for RCD for all ¢+ € (0, 1) and n > 2. Furthermore, the difference
in convergence rate bounds increases as ¢ gets smaller, i.e., as the Hessian matrix
becomes more diagonally dominant. We can also show that 5(#, n) behaves similar to
s(t,n) ast — 1, where the limiting values can be found in Proposition 1.

5 Numerical experiments

Here we compare the performance of CCD, RPCD, and RCD for the quadratic problem
(2) with Hessian matrix (21). In Fig. 4, we use a worst-case initialization XV =1,

for n € {1000, 10,000} and o € [29‘1, 050, 0_99} We observe that CCD is the
faster than RPCD, which is faster than RCD. This behavior is in accordance with
the theoretical results in Propositions 2—4. Furthermore, as « decreases, we can see
that the ratio between the convergence rates of RPCD and RCD increases, consistent

with Proposition 1 (see also Fig. 1). We can also observe from the right column in
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. 10° RIS .
Ei ...... Ei _____ Ei
o~ ~ S~ 0l 0 N\0. e
| | ‘10 ..........
= 44200 = =
£ 10%"—ccp £ —ccp ~ & —cco
2 - - RPCD| 2 -~ RPCD ~ B -~ RPCD|
s RCD . *= 4g-100 {L-~RCD A 107 RCD
0 50 100 0 50 100 0 50 100
Number of epochs (¢) Number of epochs (¢) Number of epochs (¢)
_ 100K - e
jzj/ e, i&i ________ *&
= = =1
| | ‘10
< 44200 - —
£ 10" —ccp & —ccp N & —ccp
) --rPCD| \ . 2 - - RPCD)| N ) - - RPCD
bt RCD N = 100 |[~RCD hat RCD
. 10 10°
0 50 100 0 50 100 0 50 100
Number of epochs (¢) Number of epochs () Number of epochs (¢)
Fig. 4 CCD vs RPCD vs RCD with worst-case initialization for n = 1000 (top row) and n = 10,000
(bottom row): o = % in the left column, @ = % in the middle column, and o« = % in the right
column
0 0 =
— 10 e — 10 - —~ —ccp
< . 0 e, | . RPCD|
= = = RCD
| | | 10
51020 cep N & —cco s
G -~ RPCD ) -~ RPCD) B
~ RCD . %= 407100 |-~RCD = S o
0 50 100 0 50 100 0 50 100
Number of epochs (¢) Number of epochs (¢) Number of epochs (¢)
0.01 0.50

Fig.5 CCD vs RPCD vs RCD with random initialization for n = 1000: « = (left figure), & = =5
(middle figure), and @ = % (right figure)

n—1

Fig. 4 that when « is close to 1/(n — 1), the ratio between the convergence rates of
RPCD and RCD is close to the theoretical limits obtained in Proposition 1 (see part
(iii), which shows that the ratio is in the interval [3/2, e — 1)). Figure 5 plots similar
results to Fig. 4, but for a random initialization rather than worst-case initialization.
Convergence rates depicted in Fig. 5 are similar to those of Fig. 4, due to the fact
that x*" becomes colinear with the vector of ones as £ increases (as 1 is the leading
eigenvector of the expected iteration matrix), so that the worst-case convergence rate
dictates the performance of the algorithms.

6 Conclusion

In this paper, we surveyed the known results on the performance of RPCD for special
cases of strongly convex quadratic objectives and add to these results by presenting
a class of convex quadratic problems with diagonally dominant Hessians. Using the
distance of the expected iterates to the optimal solution as the convergence criterion,
we compared the ratio between the performances of RPCD and RCD with respect to a
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parameter that represents the extent of diagonal dominance. We illustrated that as the
Hessian matrix becomes more diagonally dominant, this ratio goes to infinity, whereas
as it gets smaller it goes to a constant in the interval [3/2, e — 1). We also showed that
CCD outperforms both RPCD and RCD for this class of problems. When expected
distance of the iterates or expected function value of the iterates is used as the conver-
gence criterion, we presented that the worst-case convergence rate bounds derived for
RPCD are tighter compared to the ones for RCD. This is in accordance with our first
set of results, i.e., when distance of the expected iterates is used as the convergence
criterion. Computational experiments validate our theoretical results, which fill a gap
between the theoretical guarantees for RPCD and its empirical performance.

Acknowledgements Mert Giirbiizbalaban’s research is supported in part by the Grants NSF DMS-1723085
and NSF CCF-1814888.

A Proof of Lemma 2

Applying Lemma 1 with Q = I"'~!, where I"~! is defined in (24), we get

YR —1- e tay i o, 2 |
- nn—1) —;Z(1+a)/—m2J(l+Q)J
Jj=0 j=0
_(1+O[)”—1_1_(1+a)n—1+(1_|_a)n_1_a_(1+a)n_an_1
= n n an(n — 1) - an(n — 1) )

where the third equality follows by the following lemma. This completes the proof.

Lemma 3 For any real scalar n # 1 and integer k > 0, we have

k ) k+1 k+1 _ 1
Zjn] — (k+ 1) 77_ 1 _ (77( — 1)2)77.
= n n
Proof (Lemma 3) Consider the cumulative sums uy(n) := Z];‘:O nj = ”k;_lII. Itis
easy to see that Z];:o jnl = nuj.(n) where u) (1) is the derivative of uy (n). Differ-
entiating the right-hand side of the formula for u; yields the result. O

B Proof of Proposition 1

1) 2

Proof (Part (i)): Defining h(t,n) = %, where t € (0,1) andn > 1 is an
=T

integer, we have by the definition in (28) that s(z, n) = p1(¢, n)/pa(t, n), where

1—1t 1—1t
p1(t,n) = — log <1 — ——h(t, n)) and pa(t,n) = —nlog <1 — —) .
n n
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Throughout the rest of the proof, for simplicity, whenever the dependence of 4, p;
and py on 7 is clear, we will abbreviate them by h(z), p1(¢) and p>(t), respectively.
Similarly, whenever the dependence on ¢ is also clear, we will abbreviate them by #,
p1 and po, respectively. In order to prove statement (i) of Proposition 1, it suffices to
show that the partial derivative satisfies

0 (p1)p2 — p19:(02) -

ors(t,n) = 5 0,
1%
for all t € (0, 1). This holds if and only if
0 )
’Zl) < ’;’2)2) — 8 (logp) < & (log p2), (35)

forall z € (0, 1), where we used the fact that p; and p; are positive fort € (0, 1). We
can compute these partial derivatives in the right-hand side as follows

1 —1 1 h@®)+h @)@ —-1)
o (1 = —30 = — ,
; (log p1) o (p1) o (1 — %h(f)) ( " )

and similarly

1 —1 1
3 (log p2) = —d,(p2) = — ( 1,) :
P2 P2 \1——

n

Hence, in order to prove (35), it is sufficient to show that

1 1 1 1 _h@+h 0@ —1)
E(—l—%h(t))q(t)>5(1—ﬁ>’ where ¢ (1) := " ,

n

which, after inserting the formulas for p; and py, is equivalent to

< 1—t)< l—t) < 1—t¢ )( 1—t¢ )
—nlog(1——)(1-—)qt)> —log(1— —h)) (1 - —n@®)),
n n n n

(36)
for t+ € (0, 1). The main ingredients to prove this inequality is to approximate the
non-linear functions ¢ and & with piecewise linear functions, which are easier to deal
with, in other words, linearizing ¢ and & above leads to simpler expressions for the
derivatives of both sides of this inequality. In order to approximate g, we first write a
binomial expansion for 4 (¢) as follows

o - LS 0 )

n—1 i=1

This implies that ¢ (¢) is of the form ¢(7) = % + %t + Z;’;; cjtj, where ¢, > 0 and

cj > 0,forall j € {3,...,n — 1}. Therefore, the first and second derivatives of g are
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positive over ¢ € (0, 1) and ¢ is strictly convex. We then consider linearizations of
qg(t) att = 0 and r = 1, which are given by

1.2 h(1) —2(n — 1)(1 —
‘IO(f)=§+§t and q(r) = O (n )( f).
n

(Note that in the special case n = 2, g(¢) is linear so that go(tr) = ¢ (¢) for all ¢.
However, for n > 2, go # ¢1). In particular, it can be checked that go(f) = ¢ (f), for

A 6h()=Tn o .
r=1-— M. Since ¢(t) is convex,

qo(t), ift €[0,1),

q(1) = q(1) = max (qo(1), q1(1)) = 0. ifreli . (37)
The right-hand side of (36) is of the form
1 —
z(t) = — log (y(1)) y(1) = E(y(t)), where y(t)=1-— Tth(t),
E(y) = — log(y)y. (38)

As h is convex, we have the bounds

— 1—1r—
h(t) =0 —1t)h(©)+th(l) > h(t) and y(t) >y(t)=1———"nh(t), t€(,]1).
n
(39)
Using the facts that the function E(-) has a maximum of 1/e over the interval [0, 1]
and is strictly decreasing over the interval (1/e, 1], it follows from (39) that

EG@) if ye /el o1
EOO)y =20 =20:= {1/(ey(t)) " ;;o/i/e} : i[(é t]] 0

where ¢, is the largest ¢ € (0, 1) such that y(¢) = 1/e and admits the formula

120 —h(1) 1 [/2n—h(D\> 4 n
h=—c———+= /|l +t -
2 h(l)—n 2 h(l) —n eh(l)y—n
Combining the lower bound (37) on g (¢) and the upper bound (40) on z(¢), a sufficient
condition for (36) is to show that the following relaxed inequality holds

—nlog (1 — :> (1 - :) q(t) —z(@) >0, forall re (0,1). (41)
n n )=

The left-hand side is a piecewise continuously differentiable function (pieces defined
by the intervals [0, 7], (£, t,] and (t, 1])) and it is positive at = 0. The rest of the
proof is about showing that the left-hand side in (41) stays positive for ¢ € (0, 1),
this is achieved by computing and lower bounding the first order derivatives of the
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left-hand side. The details are skipped due to space considerations and follows from

standard calculus techniques. O

Proof (Part (ii)): Since lim;_, o+ p2(t) = —nlog(1 — 1/n), whereas lim,_, g+ p1(¢) =

—log(l — h(0)/n) = oo as h(0) = n, we obtain lim,_, ¢+ s(t,n) = lim,_

(p1(1)/p2(1)) = o0. o

Proof (Part (iii)): We observe that g(n) = lim,_, |- o1) lim,_, - p}—(t), since
p2() p5(1)

lim,_, - p1(¢) = lim,_, ;- p2(¢t) = 0. The derivatives of p; () and p>(¢) with respect
to t are given by

h(t) +h @)@ —1)
n—(1—=1t)h@)

n
n—>1—-1"

pr(t) = — and py(1) = —

Therefore, we obtain

h(O)+R () (1) n—1
=i h(l ! !
g = tim =00 _ M <1+ ) +-—1

t—1- n=—(=n n n—1 n

In order to show that g(n) is strictly increasing in n, consider the extension of g to

1

V4
the positive real line, i.e., consider the function g(z) = (1 + %) o7

— 1, where
z > 0. Taking its derivative with respect to z, we get

-/<>—<1o (1+l)——1 )<1+1)Z——1
S z z+1 b4 (z+ D%

Using the lower bounds log(1 + y) > 22Tyy fory>0and (1+1/y)Y >2fory > 1,
we obtain

>0,

, 2 1\ 1 ! 1
g(Z)22<2z+1 z+1> z+ D2 (@+D@E+1/2) @+ D2

for any z > 1. Consequently, g(n) is strictly increasing in n > 2. Furthermore, it
follows directly from the definition that g(2) = 3/2 and since lim,,_, 5o (1+1/n)" = e,
we get lim,,_, o, g(n) = e — 1. This completes the proof of part (iii). O

C Proof of Proposition 2

The proof of p(Brpcp) < p(Brep)” follows by Proposition 1, hence is omitted. Since
the off-diagonal entries of A are nonpositive and A is a positive definite matrix, then it
follows by [9, Theorem 4.12] that p(Bccp) < I 2 ,Whereu = 1—(n—1)«.

T+p
On the other hand, from (27), we have p(Brpcp) = 1 — u% Hence, in order

to show that p(Bccp) < p(Brpep), forall ¢ € (1,1/(n — 1)) and n > 2, it suffices
to show
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2 d4a)t—1 1 (+a) —1
> — >
1+ pu no 1_@ na

Since o € (1, 1/(n — 1)), it is sufficient to show that
—1
na > (1 — %) ((1+a)y —1). (42)

Using the Binomial expansion (1 + «)" = Z"_O ( )aJ we get

(-5 (-

=1 ™ j=1
AN n—lw1 n\
<X (el 1)
= N 2 av

()5 )

where the inequality follows since we omit the last term of the second sum and the last
equality follows by peeling out the first entry of the first sum. We can observe that

n n—1 n _(n+1—-j n-—1 n

(,-)‘ 2 (j—1>_< i 2 )(,-_1)
_<(n+1)(2—j))< n )<O
- 2 j-1) ="

forall j € {2, ..., n}. This proves (42), which concludes the proof.

D Proof of Proposition 3

RCD iterations can be written [by (8)] as follows

k+1
*RCD = (1 €ir€; A) XRCD>

where iy is drawn uniformly at random from the set {1, 2, ..., n}. Letting [E; denote
the expectation with respect to iy given x; and taking norm squares of both sides, we
obtain

Bl 12 = (k)T B [(1 _ ATe,-ke,{) (1 e e! A)] kep
n

1
= (xﬁCD)T (; Z (1 — ATeie —eje TA + ATe,e A)) XRCD

i=1
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- 24 A%\
(xRCD) I — .y + — ) xgep = QI “xRCD”

. 24 A2
withQ =1 — — + —,
n n

where we used the fact that A = AT and }"_, e;e]’ = I. Using this recursion and
noting that x* = 0, we get

Ellxgép — 217 < IQ1° 1 — x|, (43)

The eigenvalues of Q are of the form 1 — 2A/n 4+ A%/n, where A is an eigenvalue of

A. Since Q is symmetric and A has only two distinct eigenvalues that are equal to
u=((—am—1))and L =1+ «, we obtain

IOl = max{1 —2u/n + u*/n,1 =2L/n + L?/n}y =1 —2u/n+ u*/n. (44)

Using (44) in (43) concludes the proof of (31). The proof of (32) can be done by
following similar lines to the above proof as follows

f(x{?c']l)) = (xﬁCD)T Ex [(1 — ATeikeiTk) A (1 e A)] XRCD
= (hep) Bi [A = ATeq el A — Aciyel A+ AT eyl Aciel A] ko
= (x{iCD)T Ey [A — AeikeiiA] xﬁCD

kT A%\
= (Xgcp) <A - 7) XRceDp =

Al rek oy = (1= MY ek
I_n‘f(xRCD)_(l n)f(xRCD)’

where in the third equality, we use the fact that A= AT and eTAel = 1,foralli € [n],

and in the fourth equality, we use > ;_, e¢je; = I, respectively. This concludes the
proof.

E Proof of Proposition 4

RPCD iterations can be written (by (10)) as follows

+Dn _
Ygpcp = P nzBCCDP xRPCD

Considering improvement sequence Z,, this yields

+1
Eellxoen 117 =

ARPCD =(x RPCD) ]EP[PBCCDBCCDP ]xRPCD = ”S””xRPCD” )

where S = Ep[P BgCD Bcep PT. Using this recursion, we obtain

Ellxfhenl® < 181 xSpen |
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The contraction factor ||S|| can be computed by applying Lemma 1 with O =
Bl pBcep, which yields

S =Ep[PBlcpBcep Pl =11 4+ 0117, (45)
where
17 BL . Bccpl — trace(BL -, B trace(BL B
T = ccpPCCD ( CCD cCD) and 7 = ( CCD ccD) — 1.
nn—1) n
Since S is a symmetric matrix, we have ||S|| = p(S). Furthermore, we can observe

that BCTCDBCCD has strictly positive entries both in its diagonals and off-diagonals,
consequently we have S > 0. Then, by -Frobenius Theorem [29, Lemma 2.8], we
have

1
IS = p(S) =11 +nmy = ;lTSl. (46)

In order to compute (46), we first compute the matrix Bccp as follows

a(@+a) =+, if i>,

Beep =1 —T 1A= . 47
cep a(l + )1, it i< @D
Combining (46) and (47), we obtain
IS1 = L gy Bcepl = lIIB(:CDlH2 _ 2”: ((Bcep1)i)?
n cep n n = v
where ‘
(BeepD)i =1 — p(l + o). (48)
This yields

n

_1 -1 2 2i-n) _ 4 2 (4" -1
IS =37 (1= 2001 + @) 4+ p2( 4+ V) = 1 - 2 (EE 20

“ o
i=1
L (At
n a(a +2) ’
which proves (33).

We next prove the results regarding the function suboptimality in (34). To this end,
we consider the expected function sub-optimality (note that f(x*) = 0), which yields

0+1
]Elf(xl({;(—?]%n) = (xlgrléCD)TEP[PBCTCDPTAPBCCDPT])C%DCD
= (xlgrll)CD)TEP[PBgCDABCCDPT]xl%’CD

< |Ep[A™Y2PBLyABcep PT ATV AV 2 x g o 112
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= |Ep[A~"2PBLpABcep PT ATV £ (xibep)
= |Ep[PA™'2BLpABcecp AT 2 PTY|| £ (xbep)
= |G|l f(xRPCD

where G := Ep[PA™1/?BL ., ABccpA™!/?PT] and the equalities follow since A
and A~!/2 are symmetric permutation invariant matrices, i.e., PAPT = A and
PA~Y2pT = A—1/2 It can be shown that Al/zBCCDA 1/2isa non-negative matrix,
hence applying Lemma 1 to the matrix Q = A~/ 2BgCDABCCDA_l/ 2, it can be
shown (similar to the previous proof) that

1 1
IGIl = p(G) = =AY Beep A~ 217 = =1 — A2 1A%, (49)
n n

where A2 = yI — o117 withy = T+« and 0 = (y — /w)/n. This yields
A1 = (y —no)l = /1. Multiplying both sides of the above equality by r-1
from the left, we obtain

r-'A1 = Jie, (50)
where it follows from (24) that
1 1
14+« 14+«
o= l+a+a(l+a) _| a+w)?
l+a+a(l+a)+ - +a(l+a)? (14 a)!

Multiplying (50) from the left by A'/2, we get

1 m—1
AVPPIARL = JE(ye—o il 1), where Il = <"1 (1
o
Using (51) in (49), we obtain
l n
||G||=;Z(l—f(ycl—oncno) = ——Z(yc,—ancm)

i=1
/,L n
+ ;X;(m—oncul)z
1=
2/ TR
=1—%—<y—na>||c||1+;Z(yzc%—zyaucu]c,-+az||c||%)
i=1

2 W
= 1= == lelly + = (v?11el; = 2y llell} +no? licll) (52)
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where

(1+a)? —1 (1—|—ot)2”—2(1—|—oz)”—|—1
llell = ———— and |lc|[] = 5
ala +2) o

Modifying the terms in (52), we get

2p Iz
1GI1= 1= lell + = (v 1lell3 = yo llell} + o (10 = ) lell})
20 I 14— (1 —ar—1))
=1——||c||1+—(<1+a)|| cll3 - ||c||%)
n n n
2p M
=1——||c||1+—(1+a>||c||2—a||c||1)
n n
2 m (1+oe)2"—1 A+a)? —2(14+a)" +1
=1="=llelh + - -
a(a+2) o

_1__<%)
n ala +2) ’

which concludes the proof of Proposition 4.
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