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ABSTRACT
Coronary MRI is a non-invasive radiation-free imaging tool
for the diagnosis of coronary artery disease. One of its limita-
tions is the long scan time, due to the need for high resolution
imaging in the presence of respiratory and cardiac motions.
Machine learning (ML) methods have been recently utilized
to accelerate MRI. In particular, a scan-specific ML tech-
nique, called Robust Artifical-neural-network for k-space
Interpolation (RAKI) has shown promise in cardiac MRI.
However, it requires uniform undersampling. In this study, we
sought to extend this approach to arbitrary sampling patterns,
using coil self-consistency. This technique, called SPIRiT-
RAKI, utilizes scan-specific convolutional neural networks to
nonlinearly enforce coil self-consistency. Additionally, regu-
larization terms can also be incorporated. SPIRiT-RAKI was
used to accelerate right coronary MRI. Reconstructions were
compared to SPIRiT for different undersampling patterns
and acceleration rates. Results show SPIRiT-RAKI reduces
residual aliasing and blurring artifacts compared to SPIRiT.

Index Terms— Coronary MRI, accelerated imaging, par-
allel imaging, compressed sensing, machine learning, image
reconstruction, neural networks, deep learning

1. INTRODUCTION

Coronary artery disease (CAD) is the number one cause of
death in the United States [1]. While invasive methods are
considered to be the gold standard for its diagnosis [2], several
non-invasive imaging modalities have also been proposed [3,
4]. Coronary MRI is a radiation-free non-invasive method for
the assessment of CAD [4]. Despite several advances over
the past decade, coronary MRI is still challenging due to its
lengthy acquisition time and low signal-to-noise ratio (SNR).

Multiple accelerated MRI approaches have been used to
accelerate coronary MRI. These include non-Cartesian trajec-
tories [5], parallel imaging [6, 7], compressed sensing [8] or
their combinations [9, 10]. Coronary MRI can be performed
using whole-heart or targeted acquisitions. The former is easy
to prescribe, however acquisition of a large volume necessi-
tates long acquisitions. On the other hand, the limited cover-

age of the latter leads to a shorter acquisition, but also lim-
ited SNR, which in turn limits the acceleration rates that can
be achieved. Thus, more efforts have focused on whole-heart
coronary MRI, where acceleration rates of up to six have been
reported [9]. However, targeted coronary MRI is attractive,
since its nominal acquisition time, assuming 100% navigator
gating efficiency is approximately two minutes. Thus, an ac-
celeration rate of five can bring this acquisition into a breath-
hold duration, reducing the total scan time more than ten-fold
by removing inefficient respiratory motion compensation.

Recently, machine learning (ML) methods have been
proposed for improving image reconstruction in accelerated
MRI [11–19]. One such technique that has shown promise
in cardiac MRI is a method called Robust Artificial-neural-
networks for k-space Interpolation (RAKI) [19]. This ap-
proach uses scan-specific convolutional neural networks
(CNN) to nonlinearly interpolate the missing data in k-
space, extending the linear convolutional kernels of GRAPPA
[20]. These CNNs can be calibrated using scan-specific auto-
calibration signal (ACS), which can, for instance be acquired
as a a small fully-sampled central k-space region within
the same scan. This alleviates the need for large training
databases that is used in most ML methods.

RAKI was originally designed for uniform undersampling
patterns that are typically used in parallel imaging [19]. How-
ever, previous work has shown the benefit of random under-
sampling in high-resolution three-dimensional (3D) applica-
tions, including coronary MRI, in conjunction with regular-
ized reconstruction [9]. For such patterns, k-space interpola-
tion exploiting redundancies in the multi-coil data can be per-
formed via a self-consistency approach, as proposed in itera-
tive self-consistent parallel imaging reconstruction (SPIRiT)
[21]. SPIRiT calibrates linear convolutional kernels on ACS
data to impose consistency among coils. Then an objective
function is minimized iteratively to yield the desired recon-
structed data by enforcing this self-consistency, as well as
consistency with the acquired k-space measurements, and op-
tionally performing image regularization.

In this study, we utilize the notion of self-consistency
of SPIRiT to extend RAKI to arbitrary undersampling pat-



terns for accelerating targeted coronary MRI. In accordance
with SPIRiT, additional priors and regularization terms can
be incorporated to this formulation as well. Our technique,
called SPIRiT-RAKI is evaluated on targeted coronary MRI
datasets, and compared to SPIRiT for various undersampling
patterns and acceleration rates.

2. MATERIALS AND METHODS

2.1. SPIRiT-RAKI Calibration and Reconstruction

RAKI trains a CNN using ACS data to learn a nonlinear map-
ping function from acquired data points to missing data [19].
Since RAKI is designed for a uniform undersampling pattern
only, it uses dilated convolutional kernels in training to match
the uniform spacing in the undersampling phase. In contrast,
for SPIRiT-RAKI, such dilation does not apply and is not
needed for arbitrary undersampling patterns. Furthermore,
the mapping in [19] is from acquired points in all coils to
missing data in one coil, necessitating the training of many
CNNs. In contrast, in SPIRiT-RAKI, since self-consistency
is being imposed, the output of the mapping is the k-space
across all coils instead of only missing lines in a single coil.
This modification significantly reduces the number of un-
knowns for calibration and consequently the running time for
both calibration and reconstruction

A 4-layer CNN architecture was employed for coil self-
consistency (Fig. 1). The CNN has 2nc input and output
channels, where nc is the number of coils. The factor of 2 is
due to complex k-space being mapped to the real field. Since
targeted coronary MRI is a 3D acquisition, which can be un-
dersampled in both ky and kz phase encoding directions, a 3D
CNN was used in this study. All layers except the output layer
included rectifier linear units (ReLU), which forms the non-
linear component of the mapping learned by the CNN. The
network was then trained on ACS data with a mean square er-
ror objective function, which was minimized using an ADAM
optimizer. Further details on CNN and training parameters
are provided in Section 2.2. After calibration of the CNN on
ACS data, reconstruction was performed by minimizing:

‖y −Dx‖22 + β‖x−G(x)‖22 + γ‖WEx‖1 (1)

where x is the desired k-space data across all coils, y is
the noisy acquired data, D is the undersampling operator,
G(·) represents the CNN nonlinear operations to enforce
self-consistency, E is an operator that transforms k-space
into image domain first and then combines coil images into
a SENSE Rate-1 image, and W transforms this image into a
sparsity domain, which a wavelet transform in this study. The
objective function in (1) was minimized using variable split-
ting for the regularization term and a quadratic penalty [22].
The `2 terms were minimized using gradient descent, which
was implemented using the formulation of the ADAM opti-
mizer. Note G(·) is implicitly defined through the CNN, thus

Fig. 1: The 4-layer CNN architecture to enforce self-consistency
among all coils.

the derivative of this term was calculated using backpropaga-
tion. Furthermore, in this setting, we are only interested in the
derivative with respect to the input, and not with respect to the
CNN parameters. The remaining `1 term was implemented
using a proximal operator.

2.2. Implementation details

The parameters for the CNN and training were as follows:
The kernel size of the first and fourth layers were 5 × 5 × 5,
whereas it was 3× 3× 3 for the second and third layers. The
first, second and third layers had 32, 16 and 32 output chan-
nels, respectively. All layers included a bias term. Tikhonov
regularization was used for training to avoid over-fitting, and
the regularization parameter was set to 0.001 for all layers.
In addition, a default learning rate of 0.001 was used for the
ADAM optimizer in the training phase.

For the minimization of (1), the learning rate in ADAM
was set to 1 for the gradient descent. β and the quadratic
penalty term was optimized empirically. The threshold for
the proximal operator corresponded to 0.001 of the largest
wavelet coefficient. Additionally, SPIRiT was implemented
for comparison based on the online code [21], where the ker-
nel size was set to 5 × 5 × 3. The thresholding parameter
was set to 0.001 of the largest wavelet coefficient. The max-
imum number of iterations was set to 50 for both methods in
all cases except for the non-regularized SPIRiT, where this
number was finely tuned to 75.

2.3. In Vivo Coronary MRI

Targeted right coronary MRI was acquired on two healthy
subjects at 3T with a 30-channel body-coil using a T2-
prepared GRE sequence. Relevant imaging parameters were
FOV=300 × 300 × 60 mm3 and resolution=1 × 1 × 3mm3.
The data were retrospectively under-sampled, both uniformly
and randomly. For the uniform pattern, the data were under-
sampled at an acceleration rate of 2 × 2 along ky and kz
directions. ACS region was selected as the central 45 × 10
ky − kz lines. This led to an approximate net acceleration
rate of 4, using an elliptical mask in the ky − kz plane. For
these patterns, no sparsity regularization was utilized for con-
sistency with traditional parallel imaging methods. Random



Fig. 2: A representative slice from the right coronary MRI of
a healthy subject using SPIRiT and SPIRiT-RAKI with uniform
ky − kz undersampling rate of 4.

undersampling was implemented using variable-density sam-
pling with Gaussian weights. Two undersampling rates were
used; the first one matching the net uniform undersampling
rate, and the second one yielding a net undersampling rate
of 5 to assess the performance in applications where scan
duration is in the breath-held acquisition range.

3. RESULTS

Fig. 2 demonstrates a representative slice from the right coro-
nary MRI of a healthy subject using SPIRiT and SPIRiT-
RAKI with uniform ky − kz undersampling rate of 4. As de-
scribed in Section 2.3, no regularization was used for uniform
undersampling patterns to ensure similarity to traditional par-
allel imaging reconstructions. Both techniques are successful
in removing fold-over artifacts, although fewer blurring arti-
facts (see the right coronary artery area) and noise amplifi-
cation are observed for SPIRiT-RAKI. This observation also
holds in Fig. 3, where results are shown on another subject
for the same undersampling pattern and rate.

Results from random ky − kz undersampling are depicted
in Fig. 4 for the same subject in Fig. 3. The reconstruction
were performed with wavelet regularization for `1-SPIRiT
and `1-SPIRiT-RAKI for undersampling rates of 4 (top row)
and 5 (bottom row). Both results suffer from blurring arti-
facts, with more blurring visible for `1-SPIRiT.

For the 3D kernels and ACS region sizes used in this
study, SPIRiT-RAKI was approximately two times faster in
calibration/training than SPIRiT. However, it was %50 slower

Fig. 3: A slice from the right coronary MRI of another healthy sub-
ject using SPIRiT and SPIRiT-RAKI with uniform ky − kz under-
sampling rate of 4.

Fig. 4: The same slice from the dataset in Fig. 3 using `1-SPIRiT
and `1-SPIRiT-RAKI when random ky − kz undersampling rates of
4 and 5 are utilized.

in reconstruction compared to SPIRiT due to the need for
solving a non-linear gradient descent at each iteration.

4. DISCUSSION

We have proposed an MRI reconstruction technique, SPIRiT-
RAKI, which employs a CNN to nonlinearly enforce self-
consistency among multi-coil MRI data using k-space inter-
polation. The CNN is trained on scan-specific ACS data,
making this method independent of large training databases,
unlike most ML methods. This technique successfully ex-
tends the RAKI method [19] to arbitrary sampling patterns.
Its performance was shown in both uniform and random 3D
undersampling, with results indicating improvement over
SPIRiT, and at high acceleration rates for targeted coronary
MRI. Specifically, the 5-fold undersampled acquisition may
reduce the total duration of a targeted coronary MRI scan to
a breath-hold, which can in turn remove inefficiencies asso-
ciated with respiratory motion compensation procedures [4],
reducing the true scan time more than 10-fold.

Several modifications were made to the CNNs used in
[19]. First, the input-output relationship was changed. In the
CNNs used in RAKI, the mapping was from acquired zero-
filled k-space across all coils to the missing lines in one coil
for 2D uniform undersampling patterns. This required 2nc

CNNs, leading to long training times. In order to extend the
method to arbitrary undersampling patterns, the output was
changed to all of the k-space across all coils. This required
training of one large CNN, which also enabled inclusion of
an additional layer. Second, in order to enable undersampling
in both ky and kz , a 3D CNN was utilized. The kernel sizes
were chosen empirically for these convolutions. Therefore,
additional optimization may further improve the reconstruc-
tion performance, which will be explored in future work.

Wavelet regularization was used in this work for consis-
tency with [21]. However, previous data on coronary MRI



indicate that such regularization may result in blurring arti-
facts [23], which was also observed here. Hence, more ad-
vanced regularizers, which have proven effective in coronary
MRI [9, 23], can help reduce these remaining artifacts more.
This will be explored in future studies in order to improve the
reconstruction of coronary MRI quality further.

5. CONCLUSION

SPIRiT-RAKI reconstruction, which uses a scan-specific
CNN to enforce coil self-consistency in an iterative algorithm
that allows sparsity regularization, was proposed to accelerate
targeted coronary MRI.
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