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CONVERGENCE RATE OF INCREMENTAL GRADIENT AND
INCREMENTAL NEWTON METHODS∗
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Abstract. The incremental gradient (IG) method is a prominent algorithm for minimizing
a finite sum of smooth convex functions and is used in many contexts including large-scale data
processing applications and distributed optimization over networks. It is a first-order method that
processes the functions one at a time based on their gradient information. The incremental Newton
method, on the other hand, is a second-order variant which additionally exploits the curvature
information of the underlying functions and can therefore be faster. In this paper, we focus on the
case when the objective function is strongly convex and present new convergence rate estimates for
the incremental gradient and incremental Newton methods under constant and diminishing step sizes.
For a decaying step-size rule αk = R/ks with s ∈ (0, 1] and R > 0, we show that the distance of the
IG iterates to the optimal solution converges at a rate O(1/ks) (which translates into a O(1/k2s) rate

in the suboptimality of the objective value). For s > 1/2, this improves the previous O(1/
√
k) results

in distances obtained for the case when functions are nonsmooth under the additional assumption
that the functions are smooth. We show that to achieve the fastest O(1/k) rate with a step size
αk = R/k, IG needs a step-size parameter R to be a function of the strong convexity constant
whereas the incremental Newton method does not. The results are based on viewing the IG method
as a gradient descent method with gradient errors, developing upper bounds for the gradient error
to derive inequalities that relate distances of the consecutive iterates to the optimal solution and
finally applying Chung’s lemmas from the stochastic approximation literature to these inequalities
to determine their asymptotic behavior. In addition, we construct examples to show tightness of our
rate results in terms of their dependency in k.
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1. Introduction. We consider the following additive cost optimization problem

(1.1) min
m∑
i=1

fi(x) s.t. x ∈ Rn,

where the objective function is the sum of a large number of convex component func-
tions fi : Rn → R. Such problems arise in a number of settings including distrib-
uted optimization across m agents, where the component function fi corresponds
to the local objective function of agent i [10, 30, 31, 39], and statistical estimation
problems, where each fi represents the loss function associated with one of the data
blocks [5, 9, 43, 45]. Our goal is to exploit the additive structure of problem (1.1) and
solve it using incremental methods which involve sequential processing of component
functions.

We first consider the incremental gradient (IG) method for solving problem (1.1).
The IG method is similar to the standard gradient method with the key difference that
at each iteration, the decision vector is updated incrementally by taking sequential
steps along the gradient of the component functions fi in a cyclic order. Hence, we
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INCREMENTAL GRADIENT AND INCREMENTAL NEWTON 2543

can view each outer iteration k as a cycle of m inner iterations: starting from an
initial point x1

1 ∈ Rn, for each k ≥ 1 we update the iterate xki as

(1.2) xki+1 := xki − αk∇fi(xki ), i = 1, 2, . . . ,m,

where αk > 0 is a step size. We set xk+1
1 = xkm+1 and refer to {xk1} as the outer

iterates. When the component functions are not smooth, we can replace gradients
with subgradients and the corresponding method is called the incremental subgradient
method. Using the update relation (1.2), for each k ≥ 1, we can write down the relation
between the outer iterates as

(1.3) xk+1
1 = xk1 − αk

m∑
i=1

∇fi(xki ),

where
∑m
i=1∇fi(xki ) is the aggregated component gradients and serve as an approxi-

mation to the full gradient ∇f(xk1) with the difference that it is evaluated at different
inner iterates.

IG is a prominent algorithm with a long history that has appeared in many
contexts. In the artificial intelligence literature, it has been used in training neural
networks since the 1980s and is known as the online backpropagation algorithm [5,
23, 48]. When the component functions are quadratics, IG reduces to the well-known
Kaczmarz method for solving linear systems [6].

Due to the simplicity and long history of the IG method, its global convergence has
been studied under various conditions (see [5] for a survey). However, characterizing
its convergence rate has been the subject of more recent work. Among the papers
relevant to our work, Kohonen [21] focused on quadratic component functions with
constant step size, αk = α > 0 for all k, and showed that the iterates may converge
to a limit cycle (subsequence of inner iterates converge to different limits close to
optimal). The papers [2, 3, 7, 14, 15, 23, 24, 25, 46] focused on diminishing step size
and showed convergence of the algorithm and its variants under different assumptions.
The papers [44] and [28] studied IG with a constant step size and under different
assumptions on the component functions, and showed that the iterates converge to a
neighborhood of the optimal solution (where the size of the neighborhood is a function
of the step size). Nedić and Bertsekas [29] focused on the convergence analysis of
IG under different assumptions on the step size. Most closely related to our paper
is a convergence rate result provided by Nedić and Bertsekas [28], which under a
strong-convexity-type condition on the sum function f(x) =

∑m
i=1 fi(x), but without

assuming differentiability of the component functions, shows that the distance of the
iterates generated by the incremental subgradient method converges at rate O( 1√

k
)

to the optimal solution with a properly selected diminishing step size.1

Luo [23] considered a special case of problem (1.1) in dimension one when there
are two convex quadratic component functions with an identical nonzero curvature
and showed that IG iterates converge in this particular case at rate O( 1

k ) to the
optimal solution. Motivated by this example, in this paper we show that Nédic and
Bertsekas’s O( 1√

k
) result can be improved when the component functions are smooth.

In particular, when the component functions are quadratics and the sum function f(x)
is strongly convex, we first prove that the distances of the iterates generated by the
IG method converge at rate O( 1

k ) (which translates into O( 1
k2 ) in function values by

1Given sequences {ak} and {bk}, we write ak = O(bk) if |ak| ≤ bk for any k large enough, where
O(·) is also known as Landau’s symbol.
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the smoothness and strong convexity of f). Then, we generalize this result to twice
continuously differentiable component functions under some assumptions. Achieving
this rate with IG requires using a diminishing step size that adapts to the strong
convexity constant c of the sum function, i.e., a step size that takes the form R/k,
where R > 1/c.2 We then consider alternative “robust” step sizes αk = Θ( 1

ks ) for
s ∈ (0, 1), which does not require knowledge of the strong convexity constant, and
show that the IG method with these step sizes achieves a rate O( 1

ks ) in distances
(which translates into O( 1

k2s ) in function values). We also provide lower bounds
showing that these rates cannot be improved using IG in terms of their dependency
on k. We note however that our lower bounds are based on the construction of specific
examples and are limited in the sense that they do not show the tightness of our IG
analysis with respect to the dimension n and the number of component functions m.

Our results play a key role in the recently obtained convergence results for the
random reshuffling (RR) method [17]. The random reshuffling method is a stochastic
variant of IG where the order of visit to the functions is selected as a random per-
mutation of {1, 2, . . . ,m} at the beginning of each cycle instead of the deterministic
fixed order {1, 2, . . . ,m} of IG (hence the name RR refers to the random reshuffling
of the order). Providing convergence rate results for the random reshuffling method
has been a long-standing open question; see [40] and [41, section 5]. Fundamental to
the analysis in [17], which provides the first asymptotic convergence rate results for
RR methods with decaying step sizes under some technical assumptions on the ob-
jective function f , is the fast convergence rate results introduced in this paper, which
applies to any order of visit to the component functions. In addition to providing
the iteration complexity O( 1

k ), our rate estimates also highlight the dependency on
strong convexity and Lipschitz constant of the sum function.

The goal of our current paper is to focus on the smoothness assumptions typically
considered in the recent literature and show that under these assumptions, IG admits
better O(1/k2s) bounds with respect to the existing literature. We note that the
performance bounds in function values we provide for IG in this paper hide constants
that depend linearly on m, which is expected since these are worst-case bounds, i.e.,
they apply to all possible orders. We also show in the paper that these bounds are
tight for incremental methods. This is in contrast with stochastic incremental gradi-
ent methods such as stochastic gradient descent (SGD), which sample the component
functions randomly and admit performance guarantees in expectation with leading
constants that are independent of m (see [36] and [17] for an asymptotic theory of
SGD and RR). If gradients of the component functions can be accessed in a ran-
dom fashion, there are also variance-reduced stochastic gradient methods that require
more (O(m)) memory but can converge linearly in expectation [13, 22]. Neverthe-
less, in many applications in distributed optimization, random access to component
functions cannot be implemented because of communication constraints between the
nodes, yet IG methods with an order consistent with the underlying network topology
are applicable. As an example, consider a set of sensors arranged as a ring network,
each collecting decentralized data, which therefore has access to a locally known cost
function. The natural order to process the component functions in this example is a
cyclic order whereby each sensor after local processing with his component function

2We note that a consequence of a paper by Hazan and Kale [19] is that when each of the
component functions is strongly convex, IG with iterate averaging and step size αk = R/k, where
R is the multiplicative inverse of the strong convexity constant, converges at rate O(log k/k) in the
suboptimality of the function value. However, the rate we obtain in this paper with a similar step
size corresponds to O(1/k2) in the suboptimality of the objective value, which is much faster.
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passes the iterate to the neighboring sensor [8]. There are also many other examples
beyond sensor networks that necessitate decentralized computation where stochastic
incremental methods are impractical but the deterministic incremental gradient is
applicable. Examples include but are not limited to multiagent control and coordi-
nation [32], learning [37], decentralized regression [42], estimation [20], and sparse
optimization [49].

We next consider an incremental Newton (IN) method, introduced in [16] for
solving problem (1.1), which scales the gradients of the component functions with an
estimate of the Hessian of the sum function f(x): starting from initial point x1

1 ∈ Rn,
initial step size α1 > 0, and initial Hessian estimate H1

0 = In, for each k ≥ 1, the IN
method updates the iterate xki as

(1.4) xki+1 := xki − αk(H̄k
i )−1∇fi(xki ),

where

(1.5) Hk
i := Hk

i−1 +∇2fi(x
k
i ), H̄k

i = Hk
i /k,

with the convention that xk+1
1 = xkm+1 and Hk+1

0 = Hk
m. For IN, we provide rate

estimates which do not depend on the Lipschitz constant. We show that the IN
method, unlike IG, converges with rate O( 1

k ) without using a step size that adapts to
the strong convexity constant.

Notation. For nonnegative sequences {ak} and {bk}, we write ak ≥ Ω(bk) if
there exists a real constant h > 0 and a finite integer k0 such that ak ≥ hbk for every
k ≥ k0. The norm ‖ · ‖ denotes the Euclidean norm for vectors and the spectral
norm for matrices. We also write ak ≥ Ω̃(bk) if there exists a real constant h > 0
and infinitely many k such that ak ≥ hbk is true.3 The matrix In denotes the n× n
identity. The sets R+ and N+ denote the positive real numbers and positive integers,
respectively. We refer to twice continuously differentiable functions on Rn as smooth
functions.

2. Preliminaries. We introduce the following lemma, known as Chung’s lemma,
which we will make use of in our rate analysis. The proof of part (i) of this lemma
can be found in [35, section 2.2]. For the proof of part (ii), we refer the reader
to [12, Lemma 4].

Lemma 2.1. Let {uk} be a sequence of nonnegative numbers. Assume there exists
k0 such that

uk+1 ≤
(

1− a

ks

)
uk +

d

ks+t
∀k ≥ k0,

where 0 < s ≤ 1, d > 0, a > 0, and t > 0 are given real numbers. Then we have the
following.

(i) If s = 1, then

lim sup
k→∞

ktuk ≤ d

a− t
for a > t,

lim sup
k→∞

ka

log k
uk <∞ for a = t,

lim sup
k→∞

kauk <∞ for a < t.

3The Ω̃ function defined here was introduced by Littlewood and Hardy in 1914. It is a weaker
alternative to the Ω function and satisfies ak ≥ Ω(bk) =⇒ ak ≥ Ω̃(bk) but not vice versa.
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(ii) If 0 < s < 1, then4

lim sup
k→∞

ktuk ≤
d

a
.

3. Convergence rate analysis for IG.

3.1. Rate for quadratic functions. We first analyze the convergence behavior
when the component functions are quadratic functions before proceeding to the more
general case when functions are twice continuously differentiable. Let fi(x) : Rn → R
be a quadratic function of the form

(3.1) fi(x) =
1

2
xTPix− qTi x+ ri, i = 1, 2, . . . ,m,

where Pi is a symmetric n× n square matrix, qi ∈ Rn is a column vector, and ri is a
real scalar. The gradient and the Hessian of f are given by

(3.2) ∇fi(x) = Pix− qi, ∇2fi(x) = Pi.

The sum f is also a quadratic which we next assume to be strongly convex.

Assumption 3.1. The sum function f(x) is strongly convex on Rn, i.e., there exists
a constant c > 0 such that the function f(x)− c

2‖x‖
2 is convex on Rn.

Under this assumption, the optimal solution to problem (1.1) is unique, and we
denote it by x∗. In the particular case when each fi is a quadratic function given by
(3.2), the Hessian matrix of the sum satisfies

(3.3) P := ∇2f(x) =

m∑
i=1

Pi � cIn � 0,

and the optimal solution is

(3.4) x∗ = P−1
m∑
i=1

qi.

For this case, the inner iterations of IG become

xki+1 = (In − αkPi)xki + αkqi, i = 1, 2, . . . ,m.

Therefore, the outer iterations are given by

xk+1
1 =

m∏
i=1

(In − αkPi)xk1 + αk

m∑
i=1

m∏
j=i+1

(In − αkPj)qi(3.5)

=
(
In − αkP +O(α3

k)
)
xk1 + αk

m∑
i=1

qi + α2
kT (αk) +O(α3

k)(3.6)

=
(
In − αkP

)
xk1 + αk

m∑
i=1

qi + α2
kE(αk),(3.7)

4Part (ii) of Lemma 2.1 is still correct when uk is allowed to take negative values. However, this
will not be needed in our analysis.
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where

T (αk) =
∑

1≤i<j≤m

Pj(Pix
k
1 − qi) =

∑
1≤i<j≤m

Pj∇fi(xk1),(3.8)

E(αk) = T (αk) +O(αk) +O(αkx
k
1).(3.9)

Subtracting x∗ from both sides of (3.6) and using the identity (3.4),

xk+1
1 − x∗ =

(
In − αkP +O(α3

k)
)
(xk1 − x∗) + α2

kT (αk) +O(α3
k).(3.10)

Similarly, (3.7) and (3.4) lead to

xk+1
1 − x∗ =

(
In − αkP

)
(xk1 − x∗) + α2

kE(αk).

Taking norms of both sides of the last expression, defining

distk = ‖xk1 − x∗‖

as the distance to the optimal solution, and using the lower bound (3.3) on the
eigenvalues of P , we obtain

distk+1 ≤
∥∥In − αkP∥∥distk + α2

k‖E(αk)‖
≤ (1− αkc)distk + α2

k‖E(αk)‖ (if αk‖P‖ ≤ 1)(3.11)

≤ (1− αkc)distk + α2
kM∞ (if αk‖P‖ ≤ 1),(3.12)

where

(3.13) M∞ := sup
k≥1
‖E(αk)‖.

The next theorem analyzes this recursion and the behavior of ‖E(αk)‖ as k goes
to infinity in order to establish convergence rate estimates for IG with quadratic
component functions for different step-size rules. For this purpose, we introduce

(3.14) M := lim sup
k→∞

‖E(αk)‖,

which will be studied in the next theorem.

Theorem 3.2. Let each fi(x) = 1
2x

T
i Pix− qTi x+ ri be a quadratic function as in

(3.1) for i = 1, 2, . . . ,m. Suppose Assumption 3.1 holds. Consider the iterates {xk1}
generated by the IG method with step size αk = R/ks, where R > 0 and s ∈ [0, 1].
Then, we have the following.

(i) If 0 < s ≤ 1, then

(3.15) M =

∥∥∥∥ ∑
1≤i<j≤m

Pj∇fi(x∗)
∥∥∥∥,

where M is defined by (3.14).
(ii) If s = 1, then

lim sup
k→∞

kdistk ≤ R2M

Rc− 1
for R > 1/c,

lim sup
k→∞

k

log k
distk <∞ for R = 1/c,

lim sup
k→∞

kRcdistk <∞ for R < 1/c,

where M is given by (3.15).
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(iii) If 0 < s < 1, then

lim sup
k→∞

ksdistk ≤
RM

c
,

where M is given by (3.15).
(iv) If s = 0 and R ≤ 1

‖P‖ , then

distk+1 ≤ (1− cα)kdist1 +
αM∞
c

∀k ≥ 1,(3.16)

where the step size α = αk = R is a constant and M∞ is defined by (3.13).

Proof. We first prove parts (i), (ii), and (iii). Assume 0 < s ≤ 1. Plugging the
expression for the step size into (3.10), taking norms of both sides and using the
inequality ‖P‖ ≥ c, we obtain

(3.17) distk+1 ≤
(

1− Rc

ks
+O

(
1

k3s

))
distk +

R2

k2s
‖T (αk)‖+O

(
1

k3s

)
.

We define

M∗ :=

∥∥∥∥ ∑
1≤i<j≤m

Pj∇fi(x∗)
∥∥∥∥.

We see from (3.8) and (3.9) that if IG is globally convergent, i.e., if distk = ‖xk1−x∗‖ →
0, then E(αk) converges as k → ∞ and in particular, by the definition of (3.14),
we have M = limk→∞E(αk) = limk→∞ T (αk) = M∗, which would imply part (i).
Therefore, for the proof of part (i), it suffices to show that distk → 0. It is easy to
see from (3.8) that

‖T (αk)‖ ≤M∗ +

∥∥∥∥ ∑
1≤i<j≤m

Pj
(
∇fi(xk1)−∇fi(x∗)

)∥∥∥∥
= M∗ +

∥∥∥∥ ∑
1≤i<j≤m

PjPi(x
k
1 − x∗)

∥∥∥∥
≤M∗ + h1distk(3.18)

for a positive constant h1 that depends only on {Li}mi=1, where we used the triangle
inequality and the fact that ‖Pi‖ ≤ Li in the last step. Then, from (3.17),

distk+1 ≤
(

1− Rc

ks
+
R2h1

k2s
+O

(
1

k3s

))
distk +

R2M∗
k2s

+O
(

1

k3s

)
.

Finally, applying Lemma 2.1 with a choice of 0 < a < Rc, t = s, and d > R2M∗ and
letting a → Rc and d → R2M∗ shows the rate estimates for distk given in parts (ii)
and (iii). In particular, these rate estimates also imply that distk → 0 as desired and
proves part (i). To prove part (iv), assume s = 0 and R ≤ 1

‖P‖ . Then, the step size
αk = α = R is a constant and by (3.11), for all k ≥ 1,

distk+1 ≤ (1− αc)distk + α2M∞.

From this relation, by induction we obtain, for all k ≥ 1,

distk+1 ≤ (1− cα)kdist1 + α2M∞

k−1∑
j=0

(1− cα)j .

As the geometric sum satisfies
∑k−1
j=0 (1−cα)j ≤ 1

cα for all k ≥ 1, this proves part (iv).
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Remark 3.3. Part (ii) of Theorem 3.2 shows that for the step-size rule αk = R/k
with R > 1/c, we have distk = O(1/k). Choosing R to satisfy this inequality requires
the estimation or the knowledge of a lower bound for c. The following example
illustrates that the convergence can be slower when R is not properly adjusted to c
and the necessary condition R > 1/c in our analysis cannot be omitted to achieve
the rate results we report in Theorem 3.2. Similar issues with 1/k-decay step sizes
are also widely noted in the analysis of the stochastic gradient descent method in the
stochastic approximation literature; see, e.g., [1, 12, 27, 33].

Example 3.4. Let fi(x) = x2/20 for i = 1, 2, x ∈ R. Then, we have m = 2,
c = 1/5, and x∗ = 0. Take R = 1, which corresponds to the step size 1/k. The IG
iterations are

xk+1
1 =

(
1− 1

10k

)2

xk1 .

If x1
1 = 1, a simple analysis similar to [33] shows xk1 = distk > Ω( 1

k1/5
).

Remark 3.5. Under the setting of Theorem 3.2, in the special case when x∗ is a
global minimizer for each of the component functions, we have ∇fi(x∗) = 0 for each
i = 1, 2, . . . ,m. This implies that M = 0 and for step size R/k with R > 1/c, by
Theorem 3.2, we have lim supk→∞ kdistk = 0, i.e., distk = o(1/k). In this special case,
this rate result obtained from Theorem 3.2 can be refined further with an alternative
analysis as follows: we can assume without loss of generality that x∗ = 0 (the more
general case can be treated similarly by shifting the coordinates and considering the
functions fi(x − x∗) and f(x − x∗)). Then, this implies that qi = 0 for all i, and
therefore from (3.5) we have

distj+1 =

∥∥∥∥ m∏
i=1

(
In −

R

k
Pi

)∥∥∥∥distj =

∥∥∥∥In − R

j
P +O(1/j2)

∥∥∥∥distj

≤
(

1− Rc

j
+O(1/j2)

)
distj ≤

(
1− δ

j

)
distj ,

where the last inequality holds for any 1 < δ < Rc and j large enough. As

k∏
j=2

(
1− δ

j

)
≈

k∏
j=2

(
1− 1

j

)δ
= 1/kδ,

it follows that distk = O(1/kδ) for any 1 < δ < Rc. This estimate on distk is more
precise than distk = o(1/k), which we obtained from Theorem 3.2.

Remark 3.6. The constant M appearing in the upper bounds in Theorem 3.2
depend on the Lipschitz constant L and the number of component functions m. To
illustrate this dependency, consider the simple example (also studied in [4, Exam-
ple 1.5.6]) with

(3.19) fi(x) =

{
F1(x) := (x−1)2

2 , i = 1, 2, . . . , m2 ,

F2(x) := (x+1)2

2 , i = m
2 + 1, m2 + 2, . . . ,m,

where m ≥ 2 is even. This is a least square problem consisting of m/2 copies of two
functions (x−1)2/2 and (x+1)2/2 in dimension one with the Hessian matrices Pj = 1
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for all j, ‖P‖ = L = c = m, x∗ = 0, and ∇fi(x∗) = −1 if i ≤ m/2 and ∇fi(x∗) = +1
if i > m/2. After a straightforward computation using the formula (3.15), we obtain

(3.20) M =
1

4
Lm.

Taking the limit superior of both sides of (3.11) would lead to

(3.21) lim sup
k→∞

distk ≤ α
M

c
= α

m

4
if α ≤ 1

‖P‖
=

1

m
,

where we plugged in (3.20) for M . For this particular example, Bertsekas [4, Exam-
ple 1.5.6] showed that IG iterates converge to a limit cycle satisfying limk→∞ distk =
αm4 , which matches our upper bound in (3.21). This shows that our analysis is tight
for some quadratic functions and one would not be able to remove the m dependency
in the constant M in general because of such worst-case examples. Studying the cycle
gradient errors ek defined in (3.31) for this example would also explain why the factor
m in the upper bound for ek is needed.5 We also note that if the functions are
selected according to a permutation Γ of {1, 2, . . . ,m} instead of the deterministic
cyclic order, then Theorem 3.2 yields performance bounds with a constant M that
will depend on Γ, highlighting the performance with respect to the specific order Γ
chosen. For instance, for this particular example, if the odd numbered component
functions are processed first, and then the even numbered functions are processed
second, this would correspond to the choice of Γ = {1, 3, . . . ,m − 1, 2, 4, . . . ,m} in
which case the constant M defined in Theorem 3.2 will become

(3.22) M =

∥∥∥∥ ∑
1≤i<j≤m

PΓ(j)∇fΓ(i)(x
∗)

∥∥∥∥ =
L

2
.

Note that this constant is O(m) times smaller than the constant in (3.20) obtained
for the standard cyclic order Γ∗ := {1, 2, . . . ,m}. In fact, it can be shown that the
standard cyclic order Γ∗ corresponds to the worst-case scenario that maximizes M in
(3.22) over all choices of permutations Γ. This is inline with the well-known fact that
the performance of IG is quite sensitive to the choice of σ in practice (see, e.g., [40]).
To our knowledge, our analysis is the first that can give performance bounds for
IG that highlights the dependency on the order chosen. This is in contrast with
the stochastic gradient descent (SGD) method, which is a stochastic variant of IG
that samples the component functions randomly with replacement. Because SGD
randomizes the choice of the index i over {1, 2, . . . ,m}, the running time of SGD
will be the same over this example if we remove the duplicate functions in (3.19)
and minimize the objective F1(x) + F2(x) instead with two component functions.
Therefore, for this example, we see that the running time of SGD is independent
of m in expectation whereas our upper bounds for IG will grow linearly with m.
Beyond this example, under the assumptions of this paper, SGD with a decaying

5We note that similar scaling in m of the upper bounds for the distance to the optimizer and
the cycle gradient error also arises in the study of some other deterministic methods such as the
incremental aggregated gradient (IAG) method with strongly convex objectives and its proximal
variants (see, e.g., [18, equation (3.11)] and [47]). On a related note, if the component functions
are selected randomly without replacement instead, we show in work subsequent to this paper that
one can improve the upper bounds by a factor of O(m) if we consider the expected distance of the
iterates to the optimizer (which is a weaker notion of convergence than the deterministic convergence
considered in this paper); see [17, Remark 1].
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step size has a slower convergence rate of O(1/k) in function values compared to the
O(1/k2s) rate of IG; however, for SGD the constants appearing in the convergence
rate are independent of m (see, e.g., [11, 27]) whereas for IG the constants depend
linearly on m. Therefore, when m is very large and k is small to moderate, we expect
SGD to perform better than IG (although SGD guarantees are in a weaker notion of
convergence (in expectation) as opposed to deterministic convergence guarantees for
IG), which is also inline with practice [4, 6]. A similar observation can be made for the
RR method (a stochastic variant of IG where the component functions are sampled
randomly without replacement) showing that RR converges at a rate O(1/k2s) in
expectation for 0 < s < 1 in such a way that the constant in front of 1/k2s does not
depend on m (see [17, Example 3.2 and Theorem 2]).

3.2. Rate for smooth component functions. In addition to Assumption 3.1
on the strong convexity of f , we adopt the following assumptions that have appeared
in a number of papers in the literature for analyzing incremental methods including
[2, 16, 26].

Assumption 3.7. The functions fi are twice continuously differentiable on Rn for
each i = 1, 2, . . . ,m.

Assumption 3.8. The iterates {xk1 , xk2 , . . . , xkm}k≥1 are uniformly bounded, i.e.,
there exists a nonempty compact Euclidean ball X ⊂ Rn that contains all the iterates.6

A consequence of these two assumptions is that the first and second derivatives
of f on the compact set X are continuous, and hence are bounded. In other words,
there exists a constant G such that

(3.23) max
1≤i≤m

sup
x∈X
‖∇fi(x)‖ ≤ G

and there exists constants Li := maxz∈X ‖∇2fi(z)‖ ≥ 0 such that

‖∇fi(x)−∇fi(y)‖ ≤ Li‖x− y‖ for all x ∈ X , i = 1, 2, . . . ,m.(3.24)

From the triangle inequality, f has also Lipschitz gradients on X with constant

L =

m∑
i=1

Li.(3.25)

Another consequence is that an optimal solution to the problem (1.1), which we
denote by x∗, exists and is unique by the strong convexity of f . Furthermore, these
two assumptions are sufficient for global convergence of both the incremental Newton
and the incremental gradient methods to x∗ (see [4, 16] for a more general convergence
theory). In this paper, we are interested in the rate of convergence.

3.2.1. Analyzing IG as a gradient descent with errors. We can rewrite
the inner iterations (1.2) more compactly as

(3.26) xk+1
1 = xk1 − αk

(
∇f(xk1)− ek

)
, k ≥ 1, i = 1, 2, . . . ,m,

where the term

(3.27) ek =
m∑
i=1

(
∇fi(xk1)−∇fi(xki )

)
6We note that Assumption 3.8 is not restrictive, because for strongly convex f , it can be shown

(see [44, 46]) that the iterates are contained in a bounded set of the form {x : f(x) ≤ ρ1} +
{x : ‖x‖ ≤ ρ2} for some ρ2 > 0 and ρ1 > f(x11).
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can be viewed as the gradient error. If Assumption 3.7 holds, we can substitute

∇f(xk1) = Ak(xk1 − x∗)

into (3.26), where Ak =
∫ 1

0
∇2f(x∗ + τ(xk − x∗))dτ is the average of the Hessian

matrices on the line segment [xk1 , x
∗], to obtain

(3.28) xk+1
1 − x∗ = (In − αkAk)(xk1 − x∗) + αke

k, k ≥ 1, i = 1, 2, . . . ,m.

Taking norms of both sides, this implies that

(3.29) distk+1 ≤ ‖In − αkAk‖distk + αk‖ek‖.

These relations show that the evolution of the distance to the optimal solution is con-
trolled by the decay of the step size αk and the gradient error ‖ek‖. This motivates
deriving tight upper bounds for the gradient error. Note also that under Assump-
tions 3.1, 3.7, and 3.8, the Hessian of f and the averaged Hessian matrix Ak admit
the bounds

(3.30) cIn � ∇2f(x), Ak � LIn, x ∈ X

(see also (3.25)). The gradient error consists of the difference of gradients evaluated
at different inner steps (see (3.27)). This error can be controlled by the Lipschitz-ness
of the gradients as follows: for any k ≥ 1,

‖ek‖ ≤
m∑
i=2

Li‖xk1 − xki ‖ ≤
m∑
i=2

Li

i−1∑
j=1

‖xkj − xkj+1‖

≤
m∑
i=2

Liαk

i−1∑
j=1

‖∇fj(xkj )‖

≤ αk
∼
M.(3.31)

Here,

(3.32)
∼
M := LGm,

where L is a Lipschitz constant for the gradient of f as in (3.25) and G is an upper
bound on the gradients as in (3.23). Finally, plugging this into (3.29) and using the
bounds (3.30) on the eigenvalues of Ak,

distk+1 ≤ max(‖1− αkc‖, ‖1− αkL‖)distk + α2
k

∼
M

≤ (1− αkc)distk + α2
k

∼
M if αkL ≤ 1.(3.33)

This is the analogue of the recursion (3.12) obtained for quadratics with the only
difference that the constants M∞ and ‖P‖ are replaced by their analogues

∼
M and L,

respectively. Then, a reasoning along the lines of the proof of Theorem 3.2 yields the
following convergence result, which generalizes Theorem 3.2 from quadratic functions
to smooth functions just by modifying the constants properly (by replacing M and
M∞ with

∼
M and replacing ‖P‖ with L). We skip the proof for the sake of brevity.

Theorem 3.9. Let fi(x) : Rn → R, i = 1, 2, . . . ,m, be component functions sat-
isfying Assumptions 3.1 and 3.7. Consider the iterates {xk1 , xk2 , . . . , xkm}k≥1 obtained
by the IG iterations (1.2) with a decaying step size αk = R/ks, where R > 0 and
s ∈ [0, 1]. Suppose that Assumption 3.8 is also satisfied. Then, we have the following.
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(i) If s = 1, then

lim sup
k→∞

kdistk ≤ R2 ∼M

Rc− 1
for R > 1/c,

lim sup
k→∞

k

log k
distk <∞ for R = 1/c,

lim sup
k→∞

kRcdistk <∞ for R < 1/c,

where
∼
M is given by (3.32).

(ii) If 0 < s < 1, then

lim sup
k→∞

ksdistk ≤
R
∼
M

c
,

where
∼
M is given by (3.32).

(iii) If s = 0 and R ≤ 1
L , then

distk+1 ≤ (1− cα)kdist1 +
α
∼
M

c
∀k ≥ 1,(3.34)

where the step size α = αk = R is a constant and
∼
M is given by (3.32).

Remark 3.10. Under the conditions of Theorem 3.2, the quadratic functions fi
have Lipschitz continuous gradients with constants Li = ‖Pi‖. Thus, for 0 < s ≤ 1,

M ≤
∑

1≤i≤m

m∑
j=i+1

Lj ‖∇fi(x∗)‖ ≤
∑

1≤i≤m

L ‖∇fi(x∗)‖ ≤
∼
M= LGm

by the definitions of L and
∼
M from (3.25) and (3.32), where M satisfies (3.15). This

shows how the constants M and
∼
M that arise in Theorems 3.2 and 3.9 are related.

In particular, the upper bounds obtained are smaller in the quadratic case.

Under a strong convexity-type condition and subgradient boundedness, Nedić
and Bertsekas consider the IG method with constant step size and show that when
fi are convex but not necessarily smooth or differentiable, for any given ε > 0, it
suffices to have O(log( 1

ε )/ε2) cycles of IG for convergence to the ε-neighborhood
{x ∈ Rn : ‖x− x∗‖ ≤ ε} of an optimal solution x∗ [28, Proposition 2.4]. The following
corollary of Theorem 3.9 shows that this result can be improved to O(log( 1

ε )/ε) when
the component functions are smooth and strongly convex.

Corollary 3.11. Let fi(x) : Rn → R, i = 1, 2, . . . ,m, be component functions
satisfying Assumptions 3.1 and 3.7. Consider the iterates {xk1 , xk2 , . . . , xkm}k≥1 ob-

tained by the IG iterations (1.2) with constant step size α = εc/(2
∼
M), where

∼
M is

defined by (3.32). Suppose that Assumption 3.8 is also satisfied. Then, IG requires at
most

(3.35) O
( ∼
M

c2
log(1/ε)

ε

)
cycles to guarantee convergence to an ε-neighborhood of the optimal solution x∗.
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Proof. Given such ε > 0 and step size α, we note that cα < 1 and α
∼
M/c = ε/2.

Furthermore, by Theorem 3.9, the inequality (3.16) holds with M∞ replaced by
∼
M .

Therefore, there exists a constant K such that

(3.36) (1− cα)kdist1 ≤ exp(−cαk)dist1 <
ε

2
∀k ≥ K,

so that distk+1 < ε for all k ≥ K, i.e., the iterates lie inside an ε-neighborhood of
the optimizer after K cycles. By taking the log of both sides in (3.36) and using
log(1−z) ≈ z for z around zero, straightforward calculations show that this condition
is satisfied for K satisfying (3.35).

Remark 3.12. When s = 0, the step size αk = α is a constant and there exists sim-
ple examples (with two quadratics in dimension one) which necessitate Ω

(
log(1/ε)/ε

)
cycles to reach to an ε-neighborhood of an optimal solution (see [23, Proposition 2.2]).
Therefore, it can be argued that the dependency on ε of the iteration complexity in
Corollary 3.11 cannot be improved further when we restrict ourselves to smooth and
strongly convex functions.

For decaying step sizes of the form αk = R/ks with s ∈ (0, 1], Theorem 3.9 shows
that distk = O(1/ks) (as long as R > 1/c when s = 1). The next lemma shows
that there exist quadratic examples that satisfy distk = Ω(1/ks). This shows that
our convergence analysis for the step-size rule αk = R/ks in Theorem 3.9 is tight
in the sense that the exponent s in the sublinear convergence rate 1/ks cannot be
improved.7 In fact, the simple example given in the proof of part (ii) of Theorem 3.14
provides a lower bound for s ∈ (0, 1] via an analysis similar to the proof of part (ii)
of Theorem 3.14, which leads to the following lemma.

Lemma 3.13. Consider the iterates {xk1} generated by the IG method with decay-
ing step size α = R/ks, where s ∈ (0, 1]. There exist quadratic component functions
{fi}mi=1 such that the sum function f is strongly convex and the resulting IG iterates
satisfy distk = Ω(1/ks).

This lower bound in distances to the optimal solution in Lemma 3.13 is based on
an example in dimension one. However, one can also construct similar examples in
higher dimensions. In Appendix B, we provide an alternative example in dimension
two to illustrate this fact.

3.3. Comparison of IG with GD, SGD, and RR. We recall that the con-
vergence rates we provide for IG methods hide constants that depend linearly on m.
This is expected as these results are worst-case deterministic bounds that are applica-
ble to any order to process the component functions. Furthermore, Remark 3.6 shows
that this dependency on m is not improvable in general for IG methods. This is in
contrast to SGD and RR methods which sample the functions randomly admitting
O(1/k) and O(1/k2) asymptotic convergence guarantees in expectation with leading
constants that are independent of m [17, 36]. The GD method on the other hand en-
joys linear convergence for strongly convex objectives. However, its running time also
scales with m linearly as computing the gradient of the objective f requires computing
the gradients of all the m component functions. Summarizing these observations, the
performance of IG, GD, SGD, and RR methods depends on the value of m and the
target accuracy ε required in function values to solve problem (1.1). In particular, if

7We note that for the special case in which s ∈ (1/2, 1], Luo gives a first heuristic analysis which
suggests that one would expect to have distk = Ω(1/ks) for least square problems (see [23, Remark 2,
after the proof of Theorem 3.1]).
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the target accuracy ε is extremely small and m is small to moderate, GD or IG can
clearly outperform SGD. On the other hand, for applications where m is very large
and low-to-medium target accuracy ε is enough, SGD and RR can be better than GD
or IG.

If we compare the O(m/k2) performance of IG to O(1/k) performance of SGD,
for small m IG can outperform SGD, but when m is large (which is the more inter-
esting scenario for the problem (1.1)), SGD will typically perform better than IG for
moderate values of k.

3.4. Lower bounds. Consider the following set of quadratic functions which
are strongly convex with parameter c and have Lipschitz gradients with constant L:

Cc,L =
∞⋃
n=1

{
f̄(x) =

1

2
xTPx− qTx+ r

∣∣∣∣
P symmetric, cIn � P � LIn;x, q ∈ Rn; r ∈ R

}
.

Theorem 3.2 and Remark 3.10 shows that when IG is applied to quadratic functions
f̄i : Rn → R with a sum f̄ ∈ Cc,L using a step size αk = R/k, where R > 1/c, it
results in

lim sup
k→∞

kdistk ≤
M

Rc− 1
≤

∼
M

Rc− 1
=

LGm

Rc− 1
.

In other words, distk = O(1/k). A natural question is whether one could improve this
rate by choosing an alternative step size. For instance, would it be possible to obtain
distk = o(1/k) uniformly (for every m and {f̄i}mi=1 with a sum f̄ ∈ Cc,L)? The next
result gives a negative answer to this question, showing that no matter which fixed
deterministic step size we choose (that depends only on the problem parameters c, L,
and iteration number k), there exist simple quadratic functions that result in iterates
{xk1} satisfying distk ≥ Ω̃(1/k). The proof is based on explicit construction of some
quadratic examples.

Theorem 3.14. Consider the following IG iterations applied to quadratic compo-
nent functions f̄i : Rn → R, where f̄ =

(∑m
i=1 f̄i

)
∈ Cc,L:

xki+1 = xki − σ(c, L, k)∇f̄i(xki ), k ≥ 1, i = 1, 2, . . . ,m,

where the step-size sequence αk = σ(c, L, k) : R3
+ → R+ is a fixed deterministic

sequence where the function σ determines the step size and depends only on c, L, and
k. Suppose that for every choice of m, n and such {f̄i : Rn → R}mi=1, we have

(3.37) lim sup
k→∞

kdistk ≤ b̄

for some b̄ > 0 which depends only on L, G, m, c and the function σ = σ(c, L, k)
defined above. Then, the following statements are true.

(i) The step-size sequence satisfies lim supk→∞ kαk ≥ b, where b = 1
2L .

(ii) There exist positive integers m̃, ñ and functions {f̃i : Rñ → R}m̃i=1 such that

f̃ =
(∑m̃

i=1 f̃i
)
∈ Cc,L and the iterates {xk1} generated by the IG iterations

(1.3) with component functions fi = f̃i satisfy

distk ≥ Ω̃(1/k).
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Proof.
(i) We follow a similar approach to the analysis in [38, Appendix A]. Consider

the simple example f̄(x) = f̄1(x) = L
2 x

2 ∈ Cc,L with only one component
function in dimension one (m = n = 1) or a similar alternative example
f̄(x) = L

2

(
x(1)2 + x(2)2

)
∈ Cc,L with two component functions f̄1(x) =

L
2 x(1)2 and f̄2(x) = L

2 x(2)2 in dimension two (n = m = 2), where x(`)
denotes the `th coordinate of the vector x. In any of these two examples, IG
becomes the classical gradient descent (GD) method leading to the iterations

xk+1
1 =

∏k
j=1(1− αjL)x1

1. Since x∗ = 0, this implies

distk+1 =

∣∣∣∣ k∏
j=1

(1− αjL)

∣∣∣∣dist1.

By assumption (3.37), we need at least

(3.38)

∣∣∣∣ k∏
j=1

(1− αjL)

∣∣∣∣ ≤ b̄

k
+ o

(
1

k

)
≤ 2b̄

k
for k large

and αk → 0 (otherwise simple examples show the global convergence may not
be obtained from an arbitrary initial point). By taking the natural logarithm
of both sides, this is equivalent to requiring

k∑
j=1

− ln |1− αjL| ≥ log k − log(2b̄) for k large.

Using 2z ≥ − ln(1− z) for 0 ≤ z ≤ 1
2 , it follows that

(3.39)

k∑
j=1

αj ≥ b log k − log(2b̄)

2L

when k is large enough with b = 1
2L . Assume there exists δ such that

lim supk→∞ kαk < δ < b = 1
2L . Then, by definition of the limit superior,

we have αk ≤ δ
k for any k large enough. By summing this inequality over the

iterations k, we obtain
∑k
j=1 αj ≤ δ log(k) + b2 for a constant b2 and for any

k large enough. By (3.39), we also have δ ≥ b. This contradicts our earlier
assumption that δ < b. Therefore, no such δ exists, i.e., lim supk→∞ kαk ≥ b.
This completes the proof.

(ii) Consider the following simple example with two quadratics f̄ = f̄1 + f̄2 with
f̄1(x) = L

2 (x − 1)2 and f̄2(x) = L
2 (x + 1)2 in dimension one (m = 2, n = 1).

Then, applying IG with an initial point x1
1 ∈ R results in the iterates {xk1 , xk2}

with

xk2 = xk1 − ᾱk(xk1 − 1),(3.40)

xk+1
1 = (1− ᾱk)2xk1 − (ᾱk)2,(3.41)

xk+1
2 = (1− ᾱk)2xk2 + (ᾱk)2,(3.42)

where ᾱk = αkL is the normalized step size. Define yk = xk1 + xk2 . By
summing up (3.41) and (3.42), we see that

(3.43) yk+1 = (1− ᾱk)2yk =
k∏
j=1

(1− ᾱj)2y1.
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By the necessary condition (3.38), we also have

(3.44) 0 ≤ |yk| ≤ O(1/k2).

Finally, plugging yk = xk1 + xk2 into (3.40), we obtain

xk1 =
yk

2
+ ᾱk

(xk1 − 1)

2
.

As αk = Ω̃(1/k) by part (i) and xk1 is converging to x∗ = 0, it follows from
(3.44) and the triangle inequality that

|xk1 | = distk ≥ ᾱk
|xk1 − 1|

2
− |y

k|
2

= Ω̃(1/k).

This completes the proof.

4. Convergence rate analysis for IN. To analyze the gradient errors intro-
duced in the IN iterations (1.4) and (1.5), we rewrite the outer IN iterations us-
ing [16, equation (2.12)] as

(4.1) xk+1
1 = xk1 − αk(H̄k

m)−1(∇f(xk1) + ekg),

where

(4.2) ekg =

m∑
j=1

(
∇fj(xkj )−∇fj(xk1) +

1

αkk
∇2fj(x

k
j )(xk1 − xkj )

)
is the gradient error and

(4.3) H̄k
m =

H1
0 +

∑k
i=1

∑m
j=1∇2fj(x

i
j)

k
=

∑k
i=1∇2f(xi1)

k
+ ekh

is an averaged Hessian up to an error term

(4.4) ekh :=
H1

0 +
∑k
i=1

∑m
j=1

(
∇2fj(x

i
j)−∇2fj(x

i
1)
)

k
.

We let αk = R/k and introduce the norm

(4.5) ‖z‖∗ :=
(
zTH∗z

)1/2
, z ∈ Rn, where H∗ := ∇2f(x∗),

which is a norm that arises frequently in the analysis of self-concordant functions and
Newton’s method [34]. The next theorem shows that unlike IG, IN can achieve the
O(1/k) rate without requiring knowing or estimating the strong convexity constant
of f . Furthermore, the constants arising in IN when considered in the ∗-norm do not
have the Lipschitz constant L unlike the previous rate estimates we obtained for IG
in the Euclidean norm.

Theorem 4.1. Let fi be convex component functions on Rn satisfying Assump-
tions 3.1 and 3.7 for i = 1, 2, . . . ,m. Consider the iterates {xk1 , . . . , xkm} generated by
the IN method with step size αk = R/k, where R > 1. Suppose also that Assump-
tion 3.8 holds. Then, we have

(4.6) lim sup
k→∞

k‖xk1 − x∗‖∗ ≤
BR(R+ 1)

R− 1
,

where ‖ · ‖∗ and H∗ are defined by (4.5) and B =
∑m
i=1 ‖H

−1/2
∗ ∇fi(x∗)‖ ≤ G/

√
c,

where G is defined by (3.23).
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The proof of this theorem is given in Appendix A. The main idea is to change
variables y = H

1/2
∗ x and analyze the corresponding iterates yk1 = H

1/2
∗ xk1 . By this

change of variables, it can be shown that {yk1} follows a similar recursion to the IN
iterates {xk1} converging to y∗ = H

1/2
∗ x∗. Then, one can analyze how fast the sequence

‖yk1−y∗‖ = ‖xk1−x∗‖∗ decays to zero by exploiting the fact that y-coordinates have the
advantage that the local strong convexity constant and the local Lipschitz constant of
f around y∗ are both equal to one due to the normalization obtained by this change
of variable.

5. Conclusion. We analyzed the convergence rate of the IG and IN algorithms
when the component functions are smooth and the sum of the component functions
is strongly convex. This covers the interesting case of many regression problems
including the `2 regularized linear and nonlinear regression problems. For IG, we show
that the distance of the iterates converges at rate O(1/ks) to the optimal solution with
a diminishing step size of the form αk = O(1/ks) for s ∈ (0, 1]. This improves the
previously known O(1/

√
k) rate (when s ∈ (1/2, 1]) and translates into convergence

at rate O(1/k2s) of the suboptimality of the function value. For constant step size,

we also improve the existing iteration complexity results for IG from O( log(1/ε)
ε2 ) to

O( log(1/ε)
ε ) to reach an ε-neighborhood of an optimal solution. In addition, we show

that our analysis with this choice of step size is tight in the sense that the exponent
s of the sublinear convergence rates cannot be improved.

Achieving the fastest O(1/k) rate in distances with IG for the step size αk = R/k
requires a good knowledge or approximation of the strong convexity constant of the
sum function f in order to be able to tune the parameter R. However, we showed
that IN as a second-order method can achieve this fast rate without the knowledge
of the strong convexity constant. Furthermore, the results we obtain in this paper
yield performance guarantees for IG when the component functions are selected with
respect to any fixed permutation Γ of {1, 2, . . . ,m} (see Remark 3.10).

The RR method we analyze in a subsequent work [17] is based on selecting a
random permutation Γ of {1, 2, . . . ,m} for each cycle where we develop convergence
guarantees for the distance to the optimizer both in expectation and with probability
one (with respect to random permutations encountered during the iterations). In ex-
pectation results in [17], we build on the main results of this paper and show after a
detailed analysis that some terms appearing in the upper bounds for a fixed permuta-
tion Γ cancel out when we take expectation over all choices of Γ, leading to different
constants in the upper bounds for the RR method compared to the IG method. The
analysis in [17] in expectation also studies an alternative recursion for the distk se-
quence (as opposed to the recursions studied in Theorems 3.2 and 3.9) to get the best
constants. Furthermore, since RR is a stochastic variant of IG, analyzing RR iter-
ates with probability one requires several tools from stochastic approximation theory
and probability theory such as martingale convergence theorems and concentration
inequalities (see [17] for the details) in contrast to the deterministic proof techniques
used in this work.

Appendix A. Proof of Theorem 4.1.

Proof. By a change of variable let y = H
1/2
∗ x and define f̂(y) = f(x) for y ∈ Rn.

Consider the IN iterates in the y-coordinates. By the chain rule, we have

∇f(x) = H
1/2
∗ ∇f̂(y), ∇2f(x) = H

1/2
∗ ∇2f̂(y)H

1/2
∗ .(A.1)
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Using these identities, the IN iterations (1.4) and (1.5) become

(A.2) yki+1 := yki − αk(D̄k
i )−1∇f̂i(yki ), i = 1, 2, . . . ,m,

where D̄k
i = Dk

i /k with

(A.3) yki = H
1/2
∗ xki , Dk

i := Dk
i−1 +∇2f̂i(y

k
i ) = H

−1/2
∗ Hk

i H
−1/2
∗ .

Furthermore, it is known that the IN method is globally convergent under these
assumptions (see [16]), i.e., xk1 → x∗, although studying the rate of convergence is
the subject of this theorem. More generally, due to the cyclic structure, we have also
xki → x∗ for each i = 1, 2, . . . ,m. Then, from the Hessian update formula (1.5), it
follows that H̄k

i → H∗ for each i = 1, 2, . . . ,m fixed and

(A.4) D̄k
i → ∇2f̂(y∗) = H

−1/2
∗ H∗H

−1/2
∗ = In, i = 1, 2, . . . ,m,

where we used the second change of variable identity from (A.1) to calculate ∇2f̂(y∗).
Comparing the IN iterations (1.4) in the x-coordinates and the IN iterations (A.2) in
the y-coordinates, we see that they have exactly the same form: the only differences
are that in the latter the gradients and the Hessian matrices are taken with respect
to y (instead of x) and f is replaced with f̂ . Therefore, inequalities (4.1) and (4.2)

hold if we replace f with f̂ and xij with yij , leading to

yk+1
1 = yk1 − αk(D̄k)−1(∇f̂(yk1 ) + eky), where D̄k := D̄k

m,(A.5)

and the gradient error becomes

(A.6) eky =
m∑
j=1

(
∇f̂j(ykj )−∇f̂j(yk1 ) +

1

R
∇2f̂j(y

k
j )(yk1 − ykj )

)
,

where we set αk = R/k. Setting ∇f̂(yk1 ) = Yk(yk1 − y∗) in (A.5) with an averaged
Hessian

(A.7) Yk =

∫ 1

0

∇2f̂(y∗ + τ(yk1 − y∗))dτ,

where y∗ = H
1/2
∗ x∗, and using the triangle inequality we obtain

(A.8) ‖yk+1
1 − y∗‖ ≤

∥∥∥∥(In − R

k
D̄−1
k Yk

)
(yk1 − y∗)

∥∥∥∥︸ ︷︷ ︸
:= mk

+
R

k
‖(D̄k)−1eky‖︸ ︷︷ ︸

:= nk

.

The remainder of the proof consists of estimating the terms mk and nk on the right-
hand side separately in the following three steps, and this will imply the desired
convergence rate of the left-hand side ‖yk+1

1 − y∗‖ = ‖xk+1
1 − x∗‖∗.

Step 1 (bounding mk). We first observe that

(A.9) m2
k =

∥∥∥∥(In − R

k
D̄−1
k Yk

)
(yk1 − y∗)

∥∥∥∥2

= (yk1 − y∗)TSk(yk1 − y∗),

where

(A.10) Sk = In −
R

k
Zk, Zk = YkD̄

−1
k + D̄−1

k Yk −
R

k
YkD̄

−2
k Yk.
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From (A.4), we have D̄k = D̄k
m → In. Furthermore, as yk1 converges to y∗ by the

global convergence property of IN, Yk defined in (A.7) converges to ∇2
yf(y∗) = In as

well. Therefore, we have Zk = 2In + o(1) in (A.10), which leads to

Sk =

(
1− 2R

k

)
In + o

(
1

k

)
.

Then, for every ε ∈ (0, 1), there exists a finite k1 = k1(ε) such that for k ≥ k1(ε),

Sk �
(

1− 2R(1− ε)
k

)
In,

and therefore

m2
k = (yk1 − y∗)TSk(yk1 − y∗) ≤

(
1− 2R(1− ε)

k

)
‖yk1 − y∗‖2

for k ≥ k1(ε). By taking the square roots of both sides, for k ≥ max{k1, 2R}, we
obtain

(A.11) mk ≤
(

1− R(1− ε)
k

)
‖yk1 − y∗‖,

where we used (1− z)1/2 ≤ 1− z/2 for z ∈ [0, 1] with z = 2R(1−ε)
k .

Step 2 (bounding nk). Similarly we can write

∇f̂j(ykj )−∇f̂j(yk1 ) = Yk,j(y
k
j − yk1 )

with an averaged Hessian satisfying
(A.12)

Yk,j =

∫ 1

0

∇2f̂j(y
k
1 + τ(ykj − yk1 ))dτ →

k→∞
∇2f̂j(y

∗) �
m∑
i=1

∇2f̂i(y
∗) = ∇2f̂(y∗) = In

as k → ∞ for all j = 1, 2, . . . ,m, where we used (A.4) in the last equality and the

fact that ∇2f̂i(y
∗) � 0, which is implied by the convexity of fi. Next, we decompose

the gradient error term (A.6) into two parts as

eky = eky,1 + eky,2

with

eky,1 =
m∑
j=1

Yk,j(y
k
j − yk1 ), eky,2 =

1

R

m∑
j=1

∇2f̂j(y
k
j )(yk1 − ykj ).

From the triangle inequality for nk defined in (A.8), we have

(A.13) nk ≤
2∑
`=1

nk,` with nk,` := ‖D̄−1
k eky,`‖.

We then estimate nk,` for ` = 1 and ` = 2:

nk,1 =

∥∥∥∥ m∑
j=1

D̄−1
k Yk,j(y

k
j − yk1 )

∥∥∥∥
=
R

k

∥∥∥∥ m∑
j=1

j−1∑
`=1

D̄−1
k Yk,j

(
D̄k
`

)−1∇f̂`(yk` )

∥∥∥∥.(A.14)
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From (A.4) and (A.12), for every `, j ∈ {1, 2, . . . ,m}, each summand above in the last
equality satisfies

lim
k→∞

D̄−1
k Yk,j

(
D̄k
`

)−1∇f̂`(yk` ) = ∇2f̂j(y
∗)∇f̂`(y∗)(A.15)

so that

lim
k→∞

knk,1 = R

∥∥∥∥ m∑
`=1

m∑
j=`+1

∇2f̂j(y
∗)∇f̂`(y∗)

∥∥∥∥
≤ R

m∑
`=1

∥∥∥∥ m∑
j=`+1

∇2f̂j(y
∗)

∥∥∥∥‖∇f̂`(y∗)‖ ≤ R m∑
`=1

‖∇2f̂(y∗)‖‖∇f̂`(y∗)‖

≤ RB,

where in the last step we used the fact that ∇2f̂(y∗) = In and the change of variable
formula (A.1) on gradients. Similarly,

nk,2 = ‖D̄−1
k eky,2‖ =

1

R

∥∥∥∥ m∑
j=1

D̄−1
k ∇

2f̂j(y
k
j )(ykj − yk1 )

∥∥∥∥
=

1

k

∥∥∥∥ m∑
j=1

D̄−1
k ∇

2f̂j(y
k
j )

j−1∑
`=1

(D̄k
` )−1∇f̂`(yk` )

∥∥∥∥.
Then, as ∇2f̂j(y

k
j )→ ∇2f̂j(y

∗), it follows similarly from (A.4) that

(A.16) lim
k→∞

knk,2 =

∥∥∥∥ m∑
j=1

j−1∑
`=1

∇2f̂(y∗)∇f̂(y∗)

∥∥∥∥ ≤ B.
Going back to the triangle inequality bound (A.13) on nk, we arrive at

lim
k→∞

knk ≤ lim sup
k→∞

knk,1 + lim sup
k→∞

knk,2

≤ RB +B = (R+ 1)B.

In other words, for any ε > 0, there exists k2 = k2(ε) such that

(A.17) nk ≤ (1 + ε)(R+ 1)B
1

k
∀k ≥ k2(ε).

Step 3 (deriving the rate). Let ε ∈ (0, R−1
2R ) so that Rε := R(1− ε) > 1. Then, it

follows from (A.8), (A.11), and (A.17) that for k ≥ max{k1(ε), 2R, k2(ε)},

‖yk+1
1 − y∗‖ ≤

(
1− Rε

k

)
‖yk1 − y∗‖+

(1 + ε)BR(R+ 1)

k2
.

Applying Lemma 2.1 with uk = ‖yk1 − y∗‖ = ‖xk1 − x∗‖∗, a = Rε > 1, and s = 1 leads
to

(A.18) lim sup
k→∞

k‖xk1 − x∗‖∗ ≤
(1 + ε)BR(R+ 1)

R(1− ε)− 1
.

Letting ε→ 0 completes the proof.
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Appendix B. An example in dimension two with distk = Ω(1/ks). Our
aim is to construct a set of component functions in dimension two such that if IG
is applied with step size αk = Θ(1/ks) with 0 < s ≤ 1, the resulting iterates satisfy
distk ≥ Ω(1/ks).

Consider the following least squares example in dimension two (n = 2) with m = 8
quadratics:

f̃i(x) =
1

2
(cTi x+ 1)2, i = 1, 2, . . . , 8,

where the vectors ci ∈ R2 are

c1 = c6 = −c2 = −c5 = [−1, 0]T ,(B.1)

c3 = c8 = −c4 = −c7 = [0,−1]T .(B.2)

It is easy to check that the sum f̃ :=
∑8
i=1 f̃i is strongly convex as

(B.3) ∇2f̃(x) =
8∑
i=1

cic
T
i = 4In � 0.

Starting from an initial point x̃1
1, the IG method with step size αk leads to the itera-

tions

(B.4) x̃ki+1 = (In − αkcicTi )x̃ki − αkci, i = 1, 2, . . . , 8,

which implies

x̃k+1
1 =

8∏
i=1

(In − αkcicTi )x̃k1 − αk
8∑
i=1

ci + α2
k

∑
1≤i<j≤8

(cTj ci)cj +O(α3
k),(B.5)

x̃k+1
1 =

8∏
i=1

(In − αkcicTi )x̃k1 +O(α3
k),(B.6)

where in the second step we used the fact that the terms with αk and α2
k above vanish

due to symmetry properties imposed by relations (B.1) and (B.2). The cyclic order
{1, 2, . . . , 8} is special in the sense that it takes advantage of the symmetry in the
problem leading to cancellations of the O(αk) and O

(
α2
k

)
terms in (B.5) leading to

smaller O
(
α3
k

)
additive error terms, whereas it can be checked that this is not the

case for the order {2, 3, . . . , 8, 1}. With this intuition in mind, we next show that
the sequence {x̃k2} converges to the optimal solution x∗ = 0 more slowly than the
sequence {x̃k1} does.

Using (B.3), the fact that x∗ = 0 for this specific example, and the triangle
inequality on (B.6),

distk+1 ≤
∥∥∥∥ 8∏
i=1

(
In − αkcicTi

)∥∥∥∥distk +O(α3
k)

≤
∣∣1− 4αk +O(α2

k)
∣∣distk + h3(αk)3

for some constant h3 > 0. As αk = Θ(1/ks), applying part (ii) of Lemma (2.1) with
t = 2s gives

(B.7) ‖x̃k1‖ = O(1/k2s).
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Then, for i = 1 the inner iteration (B.4) gives

(B.8) x̃k2 = x̃k1 − αk(cT1 x̃
k
1 + 1)c1.

As x̃k1 → 0, (cT1 x̃
k
1 + 1)c1 → c1. Then, it follows from (B.7) and (B.8) that dist(x̃k2) =

‖x̃k2‖ = Θ(αk) = Θ(1/ks). As the order is cyclic, if we apply IG to the functions
with an alternative order f1 = f̃2, f2 = f̃3, . . . , fm−1 = f̃m, and fm = f̃1 instead,
the resulting iterates are xk1 = x̃k2 , which satisfy dist(xk1) = dist(x̃k2) = Θ(1/ks). This
shows that there exists component functions where the convergence behavior is distk ≥
Ω(1/ks). Therefore, we do not expect to improve the rate results of Theorem 3.9 in
terms of dependency in k.
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