
JID:YACHA AID:1332 /FLA [m3L; v1.260; Prn:19/08/2019; 14:07] P.1 (1-69)

Appl. Comput. Harmon. Anal. ••• (••••) •••–•••

Contents lists available at ScienceDirect

Applied and Computational Harmonic Analysis

www.elsevier.com/locate/acha

The diffusion geometry of fibre bundles: Horizontal diffusion maps

Tingran Gao

Committee on Computational and Applied Mathematics, Department of Statistics, University of Chicago, 
5747 S Ellis Avenue Jones 316, Chicago, IL 60637-1441, United States of America

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 September 2018
Received in revised form 31 March 
2019
Accepted 2 August 2019
Available online xxxx
Communicated by Amit Singer

MSC:
58J65
58A30
62-07

Keywords:
Diffusion geometry
Manifold learning
Laplacian
Fibre bundles

Kernel-based nonlinear dimensionality reduction methods, such as Local Linear 
Embedding (LLE) and Laplacian Eigenmaps, rely heavily upon pairwise distances 
or similarity scores, with which one can construct and study a weighted graph 
associated with the data set. When each individual data object carries additional 
structural details, however, the correspondence relations between these structures 
provide extra information that can be leveraged for studying the data set using the 
graph. Based on this observation, we generalize Diffusion Maps (DM) in manifold 
learning and introduce the framework of Horizontal Diffusion Maps (HDM). We 
model a data set with pairwise structural correspondences as a fibre bundle equipped 
with a connection. We demonstrate the advantage of incorporating such additional 
information and study the asymptotic behavior of HDM on general fibre bundles. In 
a broader context, HDM reveals the sub-Riemannian structure of high-dimensional 
data sets, and provides a nonparametric learning framework for data sets with 
structural correspondences.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Acquiring complex, massive, and often high-dimensional data sets has become a common practice in 

many fields of science. While inspiring and stimulating, these data sets can be challenging to analyze or 

understand efficiently. To gain insight despite the volume and dimension of the data, methods from a wide 

range of science fields have been brought into the picture, rooted in statistical inference, machine learning, 

signal processing, to mention just a few. Among the exploding research interests and directions in data 

science, the relation between the graph Laplacian [1] and the manifold Laplacian [2] has emerged as a useful 

guiding principle. Specifically, the field of non-linear dimensionality reduction has witnessed the emergence 

of a variety of kernel-based spectral techniques, such as Locally Linear Embedding (LLE) [3], ISOMAP [4], 

Hessian Eigenmaps [5], Local Tangent Space Alignment (LTSA) [6], Diffusion Maps [7], Orientable Diffusion 

Maps (ODM) [8], Vector Diffusion Maps (VDM) [9], and Schrödinger Eigenmaps [10]. The general practice 
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Fig. 1. An optimal structural correspondence between two lemur teeth illustrated by pushing forward a texture on the left tooth 
onto the right tooth. This correspondence leads to the Continuous Procrustes Distance [20] between shape pairs. HDM utilizes 
the abundant geometric information in such correspondences.

of these methods is to treat each object (images, texts, shapes, etc.) in the data set as a vertex of a graph, 

and two “similar” vertices are connected through an edge weighted by their similarity score. The graph is 

then embedded into a Euclidean space of relatively low dimensionality using the eigenvectors of the graph 

Laplacian (or its variant) associated with the similarity graph. Built with varying flexibility, these methods 

provide valuable tools for organizing complex networks and data sets by “learning” the global geometry 

from the local connectivity and weights.

In reality, graph-based data analysis is known to fall short of their expressiveness in capturing multiplex, 

heterogeneous, and time-varying pairwise relations commonly encountered in data science problems. Social 

network analysis has long been aware of the importance of preserving the “additional information,” such 

as structural, compositional, and affiliation attributes, for avoiding potential loss of accuracy due to the 

over-simplified abstraction of complex social relations into simple nodes and edges in graph models [11–14]. 

Recent technological advancement has also fostered an increasing trend of extending the graph-based analysis 

to networks of multiple types of connections, or networks of networks [15,16], that encode multi-modal 

pairwise relations as multilayer complex systems supported on a set of shared vertices [17–19]. These new 

developments essentially follow the same methodology of enriching the graph representation with structures 

beyond simple vertices/edges and scalar weights on them.

We propose in this paper Horizontal Diffusion Maps (HDM), a novel graph-based framework for analyzing 

complex data sets with non-scalar or functional pairwise relations, with a focus on data sets in which 

similarity scores between samples can be obtained from “correspondence relations” between sophisticated 

individual structures carried within each sample. We distinguish data objects, which constitute the vertices 

of the graph, from the data points sampled from each data object that represent the internal structure of the 

data object. Just like manifold learning assumes that data lie approximately on a smooth manifold, we view 

the data objects as approximately sampled from a smooth base manifold, and the data points as samples 

on the fibres of a fibre bundle over the base manifold; data points on the same data object are assumed to 

come from the same fibre. One such example is the biological shape data in geometric morphometrics (see 

Fig. 1 and Section 6), where each individual shape is a data object and each point on the shape in a data 

object; similar examples can be found e.g. in image analysis, where images are data objects and pixels on 

each image are data points. In many of these instances, the data acquired is too noisy, has huge degrees of 

freedom, or contains un-ordered (as opposed to sequential) features. Computing pairwise similarity between 

data objects typically requires optimizing some functional over the space of admissible pairwise structural 

correspondences, and the “optimal correspondence” is used to assign a distance or similarity score between 

the two data objects under comparison. Fig. 1 illustrates two objects from a data set of anatomical surfaces, 

discretized as triangular meshes; an “optimal correspondence” between the pair is a diffeomorphism between 

the two meshes that minimizes an energy functional whose minimum defines a distance between disk-type 

surfaces. Often the optimal correspondence encodes substantial information missing from the distance, which 

is merely a scalar condensed from the diffeomorphism. The HDM framework aims to mine this hidden 
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information from pairwise structural correspondences. For a data set consisting of data objects, data points, 

and pairwise structural correspondences, horizontal diffusion maps provide a two-level data representation 

that first “synchronizes” the data objects with respect to “denoised” structure correspondences by embedding 

the data points into a Euclidean space, and then, building on top of the first-level embedding for the 

data points, embed the data objects into another Euclidean space as the second level. As the second-level 

embedding for the data objects leverages the rich structural information at the level of data points, they 

are expected to be semantically more meaningful than the spectral representation obtained from standard 

diffusion maps which can not take advantage of the individual structural information; the synchronized 

spectral representation of the data points at the first level also adds to the interpretative power of HDM, 

enabling detailed domain-specific analysis for the data objects that is often beyond the scope of standard 

diffusion maps.

In the remainder of this section we relate HDM to other recent work in diffusion geometry, summarize 

our main theoretical contribution, and then describe the organization of the paper.

1.1. Related work

The Diffusion Map (DM) framework [7,21–24,8,9] proposes a probabilistic interpretation for graph-

Laplacian-based dimensionality reduction algorithms. Under the assumption that the discrete graph is 

appropriately sampled from a smooth manifold, it assigns transition probabilities from a vertex to each of 

its neighbors (vertices connected to it) according to the edge weights, thus defining a graph random walk the 

continuous limit of which is a diffusion process [25,26] over the underlying manifold. The eigenvalues and 

eigenvectors of the graph Laplacian, which converge to those of the manifold Laplacian under appropriate 

assumptions [27,28], then reveal intrinsic information about the smooth manifold. More precisely, [29] proves 

that these eigenvectors embed the manifold into an infinite dimensional ℓ2 space, in such a way that the 

ℓ2 distance between embedded points equals to the diffusion distance [7] between the sample points on the 

manifold. Appropriate truncation of these sequences leads to an embedding of the smooth manifold into a 

finite dimensional Euclidean space, with small metric distortion.

Under the manifold assumption, [8,9] recently observed that estimating random walks and diffusion 

processes on structures associated with the original manifold (as opposed to estimates of diffusion on the 

manifold itself) are able to handle a wider range of tasks, or obtain improved precision or robustness for tasks 

considered earlier. For instance, [8] constructed a random walk on the orientation bundle [30, §I.7] associated 

with the manifold, and translated the detection of orientability into an eigenvector problem, the solution 

of which reveals the existence of a global section on the orientation bundle; [9] introduced a random walk 

on the tangent bundle associated with the manifold, and proposed an algorithm that embeds the manifold 

into an l2 space using eigen-vector-fields instead of eigenvectors (and thus the name Vector Diffusion Maps 

(VDM)). Both [8] and [9] incorporate additional structures into the graph Laplacian framework: in [9] this is 

an extra orthogonal transformation (estimated from local tangent planes) attached to each weighted edge in 

the graph; in [8] the edge weights are overwritten with signs determined by this orthogonal transformation. 

These methods are successful, partly because they incorporate more local geometry (by estimating tangent 

planes) en route to dimensionality reduction. In [31] the VDM approach is used, analogously to [29], to 

embed the manifold into a finite dimensional Euclidean space. Although the VDM embedding does not 

reduce the dimensionality as much as standard diffusion embedding methods, it benefits from improved 

robustness to noise, as illustrated by the analysis of some notoriously noisy data sets [32,33].

This paper stems from the observation that it is possible to adopt the methodology of [8,9] to tackle 

problems in much broader contexts, where the local geometric information can be of a different type than 

tangent spaces. For instance, many data sets carries abundant structural details on each individual object 

in the data set, such as pixels in an image, vertices/faces on a triangular mesh, or a collection of persistent 

diagrams [34] representing a shape. Typically, kernel eigenmap methods begin by “abstracting away” these 
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details, encoding only pairwise similarities using a kernel function. The major advantage, like kernel methods 

in general, is the flexibility (no need to extract explicit features) and efficiency (most kernels are easy to 

compute); however, in some circumstances, the structural details may themselves be of interest. For example, 

in the geometry processing problem of analyzing large collections of 3D shapes, it is desirable to enable user 

exploration of shape variations across the collection, for which reducing each individual shape as a graph 

vertex completely ignores its spatial configuration. Furthermore, even when sticking to pairwise similarity 

scores significantly simplifies the data manipulation, the best way to score similarity (or to craft the kernel 

function) is not always clear. In practice, the similarity measure is often dictated by practical heuristics, 

which may be misguided for incompletely understood data.

Like ODM and VDM, HDM extends the diffusion map framework, but takes an essentially different path. 

In this paper, we are most interested in the scenario in which the sample points are themselves manifolds; 

the entire data set is thus modeled as a “manifold of manifolds.” To provide a mathematical model for 

such consideration, we first augment the manifold underlying diffusion maps, denoted as M , with extra 

dimensions. To each point x on M , this augmentation attaches an individual manifold, denoted as Fx; since 

pairwise correspondences exist between nearby individual manifolds, we assume that around each x ∈ M

there exists an open neighborhood U such that on U the augmented structure “looks like” U ×F , the product 

of U with a “universal template” manifold F . Intuitively, M plays the role of a “parametrization” for the 

collection of individual manifolds {Fx | x ∈ M}. Of course, the existence of such a universal template makes 

sense only if the Fx’s are compatible with each other in some appropriate sense (e.g. each Fx should at least 

be diffeomorphic to F ); however, such compatibility is not uncommon for many data sets of interest, as we 

shall see in Section 2. This picture of parameterizing a family of manifolds with an underlying manifold is 

reminiscent of the modern differential geometric concept of a fibre bundle, which played an important role in 

the development of geometry, topology, and mathematical physics in the past century. Therefore, we shall 

refer to this geometric object as the underlying fibre bundle of the data set. Adopting the terminology from 

differential geometry, we call M the base manifold, the universal template manifold F the fibre, and each 

Fx a fibre at x. The fibre bundle is itself a manifold, denoted as E and referred to as the total manifold. 

We emphasize here that the fibre bundle setting we consider in this paper is even more general and flexible 

than the principal bundle formulation in [35], which provided a unified theoretical framework for diffusion 

maps and its various extensions. Whereas the principal bundle framework [35] builds upon an explicitly 

specified Lie group and defines the fibre bundle as a quotient space of the group action, in the framework 

of HDM the fibre bundles are trivialized by local parallel-transports. This flexibility allows us to analyze 

data sets satisfying the fibre bundle assumption (see Section 2) but for which the structure group can not 

be identified a priori. We shall elaborate on this in greater detail in Section 2.

A different line of research closely related to our work is the construction of adaptive cone kernels

[36,37] in the data-driven study of dynamical systems. Unlike the geometric setting in our work (or [9,35]), 

the low-dimensional manifold structure lives in the phase space, and the kernels are constructed from 

finite differences of time-ordered data samples. In [36], the author constructed a family of nonhomogeneous 

and anisotropic family of kernels that assign higher affinity scores to more aligned velocity vectors; the 

resulting diffusion processes generate paths that asymptotically “follow along” the integral curves of the 

dynamical vector field. The intimate connection between the intrinsic geometry of the data and general 

nonhomogeneous, anisotropic kernels is characterized in great detail in [38]. The usage of these more general 

and flexible kernels is similar in spirit to our construction of the coupled diffusion operator in Section 2.2 in 

the specific case when the Riemannian metric on the fibre bundle splits into the direct sum of horizontal and 

vertical components; however, it is worth pointing out that the lack of a fibre bundle structure in [7,36,37]

makes these applications of anisotropic diffusions drastically different from HDM: in our terminology, these 

constructions are targeted at understanding the total manifold, whereas our goal is to extract information 

jointly and consistently from the total manifold and the base manifold. Specifically, our definitions of 

horizontal base diffusion map (HBDM) and horizontal base diffusion distance (HBDD) in Section 3.2 are 
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meaningful only at the presence of an underlying fibre bundle structure. Most strikingly, as we point out in 

Remark 4.1, the HDM framework differs in an essential way from directly applying an anisotropic diffusion 

kernel construction to the total manifold of the fibre bundle; the two constructions coincide only in the 

very special case when the fibres are totally geodesically embedded into the total manifold. These subtle 

phenomena are characterized for the first time in the diffusion geometry literature. We thus believe that the 

classical differential geometric concepts of fibre bundles, Riemannian submersions, and horizontal/vertical 

Laplacians, though introduced into the blossoming field of geometric data analysis only for the first time, 

open new opportunities for gaining deeper understandings of real world data through the lens of diffusion 

geometry.

1.2. Main contribution

The main theoretical contribution of this paper is to provide a probabilistic interpretation of HDM as 

a horizontal random walk on the fibre bundle, extending the random walk picture of diffusion maps to a 

broader class of geometric objects. In one step, the transition occurs either between points on adjacent but 

distinct fibres, or within the same fibre. If transitions between distinct fibres depend solely on geometric 

proximity specified through a metric on the total manifold E, this looks no different from a direct application 

of diffusion maps on E. In contrast, HDM also incorporates the pairwise correspondences between individual 

manifolds in the fibre bundle formulation, by requiring transitions between distinct fibres to follow certain 

directional constraints imposed by correspondences. The resulting random walk is no longer a standard 

random walk on the total manifold, but rather a “horizontal lift” of a random walk on the base manifold M . 

Under mild assumptions, its continuous limit is a diffusion process on the total manifold E, infinitesimally 

generated by a hypoelliptic differential operator [39]. We can then map the total manifold into a Euclidean 

space using the eigenfunctions of this partial differential operator; discretely this corresponds to solving for 

the eigenvectors of graph horizontal Laplacians. It turns out that, by varying a couple of parameters in its 

construction, the family of graph horizontal Laplacians includes the discrete analogue of several important 

and informative partial differential operators on the fibre bundle, relating the geometry of the base manifold 

with that of the total manifold. Compared with [9,35], the limiting differential operators can be employed 

to reveal the sub-Riemannian structures of a fibre bundle (or Riemannian submersion [40, Chapter 9]), a 

task that can not be accomplished in the principal bundle framework of [9,35]. Our numerical experiments 

revealed intriguing geometric phenomena, such as adiabatic limits, when embedding the fibre bundle using 

eigenvectors of these new graph Laplacians; these phenomena have never been reported in any related work 

within the framework of [9,35].

We note that the idea of studying diffusion processes and random walks on an “augmentation” of the 

original data set, or extracting information from pairwise structural correspondences between sample points, 

has appeared elsewhere as well, in several distinct fields (e.g. shape collection analysis [41], manifold align-

ment [42], and neurogeometry [43]). To our knowledge, HDM is the first theoretical framework that provides 

the mathematical and statistical foundation for these research directions; in particular, like diffusion maps, 

HDM enables decoupling the probabilistic treatment of sampling from the geometry of the data set.

The rest of this paper is organized as follows: Section 2 formulates the problem and discusses the fibre 

bundle assumption; Section 3 describes the algorithmic construction; Section 4 contains the main technical 

results of this paper, several explicit calculations on some concrete examples of fibre bundles with totally 

geodesic fibres, along with a numerical example on SO(3) to validate the theoretical findings; finite sampling 

results and applications to biological shape analysis problems will be pursued in Section 5 and Section 6, 

respectively; Section 7 concludes with a brief discussion and propose potentially interesting directions for 

future work. The differential geometry concepts essential for developing the theoretical framework, as well 

as technical proofs of the main results, are postponed to the appendices.
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2. Horizontal diffusion maps on fibre bundles

In this section, we build the theoretical framework of horizontal diffusion maps, and relate it, where 

appropriate, with practical considerations for data processing.

2.1. The fibre bundle assumption

We say that the data set consists of data objects, and each data object contains data points (note that 

the number of data points contained in each data object may vary). Pairwise structural correspondences 

exist between data objects with high similarity scores; each correspondence is defined from a source data 

object (the collection of source data points) to a target data object (the collection of target data points), 

and can either be a point-to-point map or a “multi-valued map” that associates a source data point with 

multiple target data points. In the latter case, the correspondence may also assign similarity scores between 

source and target data points. To put data objects, data points, and pairwise structure correspondences in 

a unified geometric model, we resort to the following general definition of fibre bundles.

Definition 2.1 (Fibre bundle, [44,45]). Let π : E → M be a smooth map from a total manifold E to a base 

manifold M . We call the quadruple E = (E, M, F, π) a fibre bundle with fibre manifold F if there is an open 

cover {Ui} of M with diffeomorphisms

φi : π−1 (Ui) −→ Ui × F

such that π : π−1 (Ui) → Ui is the composition of φi with projection onto the first factor Ui in Ui × F . In 

other words, the following diagram is commutative:

π−1 (Ui) Ui × F

Ui

φi

π Proj1

It follows immediately from this definition that π−1 (x) is diffeomorphic to F for any x ∈ M . We denote 

Fx for π−1 (x) and call it the fibre over x ∈ M . The diffeomorphism φi : π−1 (Ui) → Ui × F is also 

known as a local trivialization of the fibre bundle E over the open set Ui. Unless otherwise stated, we 

assume throughout this paper that M and F are orientable Riemannian manifolds so the volume form 

and integration are well-defined; the dimensions of M, F will be denoted as d = dim (M), n = dim (F ), 

respectively. Using the language of fibre bundles, our basic assumptions for the data set can be summarized 

as follows:

1. Data points lie approximately on a fibre bundle;

2. Data points on the same data object are sampled from the same fibre.

As stated above, the data sets of interest, to which the fibre bundle assumption applies, are those with pair-

wise correspondences between data objects, or fibres in the fibre bundle. This additional piece of information 

can now be easily incorporated into the fibre bundle framework: we interpret pairwise correspondences as 

parallel-transports along geodesics on the base manifold M , generated by a connection (see Appendix A) 

on the fibre bundle E . For our purposes, the base manifold M plays the same role as the manifold that 

underlies the diffusion maps (i.e., from which data objects are drawn); additionally, we assume that each 

data object x ∈ M carries a manifold structure that is diffeomorphic to a fixed fibre manifold F ; the entire 

data set can thus be interpreted as a collection of instantiations of the fibre F (which can be viewed as a 
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“template”), indexed by points on the base manifold M as {Fx : x ∈ M}. From a fibre bundle point of view, 

it is natural to study the base manifold M using the extra information in the total manifold E = ∪x∈M Fx. 

In the remaining paper, unless otherwise specified, we assume all Riemannian manifolds are geodesically 

complete.

Roughly speaking, a data set satisfies the fibre bundle assumption if the data generation process can be 

viewed as first drawing fibres from the fibre bundle (equivalent to sampling on the base manifold) and then 

sampling on each fibre. The fibre bundle assumption admits “inconsistency” of pairwise correspondences 

as to the nature of the underlying geometry: though pairwise correspondences only exist (or are of high 

fidelity) between nearby data objects, by knitting together these correspondences along “small hops” one 

can still build correspondences between far-apart data objects (provided the base manifold is connected); 

correspondences constructed in this manner are generally inconsistent with each other in the sense that 

knitting together correspondences along different paths connecting the same data objects leads to different 

correspondences. In our framework, this inconsistency would reflect the curvature and holonomy of the 

connection on the fibre bundle; see Appendix A.

The concept of fibre bundles we chose to present above is but one of several equivalent definitions; some 

other popular ones can be found, for instance, in [46, Chapter 3, Chapter 10]. Our choice is based not only 

on the conciseness and flexibility of Definition 2.1, but also—most importantly—because there is no need to 

explicitly specify a structure group. In stark contrast is the equivalent definition of principal and associated 

fibre bundles, e.g. in [35, Appendix A], in which principal bundles are defined as orbit spaces of Lie group 

actions, and an associated bundle is obtained from a principal bundle through representations of the Lie 

group. The unification of all diffusion maps and variants in [35] is made possible by specifying the structure 

groups explicitly for each particular type of diffusion maps. Nevertheless, in most practical applications of 

interest to us, it is difficult to explicitly know the structure group of the fibre bundle underlying the data 

set. For instance, as briefly surveyed in [47, §4.1], for some data sets it may be unrealistic to model the 

correspondence relations between data objects as group elements; groupoids seem to be the more natural 

abstraction in those settings. Similar consideration motivated topological data analysts to propose sheaves

as data models; see e.g. [48] and the references therein. Even in cases in which the pairwise correspondences 

can be modeled as group elements, the group can be too large to manipulate efficiently, such as Lie groups 

of diffeomorphisms or isometries commonly encountered in non-isometric collection shape analysis [49–52]. 

While it is not uncommon to perform reductions of principal bundles to reduce the structure group to smaller 

subgroups whenever possible, in the discrete setting this often boils down to the difficult group theoretic 

and combinatorial problem of understanding the rigidity or approximability of representations of discrete 

lattices of Lie groups [53–55]. These difficulties motivated us to take an alternative path to viewing the data 

sets we encountered as fibre bundles, without explicitly referring to the structure group. Fortunately, the 

following classical result of R. Hermann provides us with one possible route:

Theorem 1 ([56], [40, Theorem 9.3]). Let π : E → M be a Riemannian submersion (cf. [40, Definition 

9.8]). If E is a complete, then π : E → M is a fibre bundle.

The proof of Theorem 1 is constructive. In a nutshell, Hermann explicitly constructed local trivializations 

around each x ∈ M , by connecting points on the fibre π−1 (x) to points on any neighboring fibre π−1 (y) by 

horizontally lifting the geodesic on M that connects x to y. Here the horizontal lifting is made possible by 

the Riemannian structure on E, which canonically splits the tangent bundle of E into the direct sum of a 

horizontal and vertical subbundles. As pointed out in [40, §9.E], the horizontal subbundle is an Ehresmann 

connection (see Appendix A) on the fibre bundle. The structure group of the fibre bundle can then be 

determined from the holonomy of the Ehresmann connection; see [40, §9.47] for more details. Obviously, 

the data required in Theorem 1 to fully specify the fibre bundle structure can be provided in a slightly 

different order: if we are given a Riemannian manifold M and another manifold E but without a prescribed 
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Fig. 2. Left: A random walk on the base manifold M jumps in one step from a point s0 on M to one of its neighboring points 
s1, s2, s3. Right: The horizontal lift of the same random walk from M to the fibre bundle E , which jumps in one step from a point 
on fibre Fs0

to a neighboring point on the fibre Fs1
, Fs2

, or Fs3
.

Riemannian structure, and π : E → M is a smooth submersion with an Ehresmann connection on E, 

then we can define a product Riemannian structure on E which imposes the orthogonality between the 

horizontal and vertical subbundles of the tangent bundle TE. It is straightforward to verify that π : E → M

is a Riemannian submersion with such a Riemannian structure on E. In other words, a fibre bundle can 

be defined equivalently by a smooth submersion between the total and base manifold (with appropriate 

completeness assumptions), a Riemannian structure on the base manifold, and an Ehresmann connection. 

We close the discussion in this section by emphasizing that, though it might appear that our fibre bundle 

framework “discards” the notion of structure groups compared with the fibre bundle formulation pioneered 

in [9,35], structure groups indeed are specified, just in an indirect manner.

2.2. Horizontal random walks and diffusion processes on fibre bundles

Equipped with the geometric notion of fibre bundles, we are now ready to define a random walk tailored 

to a data set with pairwise correspondences. Starting from a point e ∈ E, in one step a random walker is 

allowed to jump to a neighboring e′ ∈ E only π (e′) �= π (e) and e, e′ can be joined by a horizontally lifted 

image of a piecewise geodesic connecting π (e) to π′ (e) on M . More specifically, just as a standard random 

walk on M jumps from x ∈ M to a neighbor y ∈ M following a transition probability P (y | x), a horizontal 

random walk jumps from e ∈ Fx ⊂ E to Pyx (e) ∈ Fy ⊂ E with transition probability P (y | x); note in 

particular that this transition probability depends only on the projections x = π (e) and y = π (Pyx (e)). 

In this sense, a horizontal random walk on the fibre bundle E can be viewed as “driven” by an underlying 

random walk on the base manifold M (see Fig. 2 for an illustration). Passing to the continuous limit (in the 

weak sense as the random walk step size approaches zero, see [57] and Section 5.1), both random walks on 

the fibre bundle and the base manifold converge to diffusion processes. For the convenience of exposition, 

hereafter we refer to the limit diffusion process on the fibre bundle as the horizontal lift of the limit diffusion 

process on the base manifold. In the Riemannian setting, this construction is reminiscent of the notion of 

stochastic parallel transport [58,59] in stochastic differential geometry.

The following is a precise description of the horizontal diffusion processes on the fibre bundle in the 

language of symmetric Markov semigroups. For clarity, let us assume M and F are both orientable. Let 

kernel K : R → R
≥0 be a smooth function compactly supported on the unit interval [0, 1]. For bandwidth 

parameter ǫ > 0 and any pairs of x, y ∈ M , define

Kǫ (x, y) = K

(
d2

M (x, y)

ǫ

)
,

where dM (·, ·) stands for the geodesic distance on M . Note that Kǫ (·, ·) is non-zero only if x, y are sufficiently 

close to each other under the Riemannian metric on M , due to the compactness of the kernel function K. 

For any f ∈ C∞ (E), define the diffusion operator Hǫ : C∞ (E) → C∞ (E) as
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Hǫf (x, v) =

∫

M

Kǫ (x, y) f (y, Pyxv) dvolM (y) , ∀x ∈ M, v ∈ Fx,

where dvolM stands for the Riemannian volume element on M . Intuitively, at each point (x, v) ∈ E, Hǫ

averages the value of f on a neighborhood around (x, v) expanded by parallel-transporting (x, v) along 

geodesics on M . Compared with the diffusion semigroup characterization of a diffusion process on the base 

manifold, Hǫ incorporates the extra information provided by the connection.

Variants of Hǫ that involve the sampling density can be similarly constructed, which is useful since in 

practice it is difficult to uniformly sample from M . Consider a density function p ∈ C∞ (M) with respect 

to which the samples are generated. For simplicity, assume p is bounded away from zero from below, i.e.,

∫

M

p (y) dvolM (y) = 1 and p (y) ≥ p0 > 0 ∀y ∈ M. (2.1)

Similar to the construction of diffusion maps [7], we can decouple the geometry of the manifold from the 

influence of sampling density by normalizing the integral kernel. To this end, we set

pǫ (x) =

∫

M

Kǫ (x, y) p (y) dvolM (y)

and denote for any normalization parameter α ∈ [0, 1]

K(α)
ǫ (x, y) =

Kǫ (x, y)

pα
ǫ (x) pα

ǫ (y)
,

then define the horizontal diffusion operator

H(α)
ǫ f (x, v) =

∫

M

K(α)
ǫ (x, y) f (y, Pyxv) p (y) dvolM (y)

∫

M

K(α)
ǫ (x, y) p (y) dvolM (y)

, ∀x ∈ M, v ∈ Fx (2.2)

for any f ∈ C∞ (E). As we shall see later, the infinitesimal generator of H
(α)
ǫ is a second order partial 

differential operator in which all derivatives, as vector fields on E, are horizontal.

A different practical consideration is that pairwise correspondences can be relaxed from maps to couplings 

of probability measures when fibres are discretized. Examples for such relaxed pairwise correspondences in-

clude the soft-assign Procrustes matching [60] in medical imaging, the soft maps [61] in geometry processing, 

the transport plans [62,63] in optimal transportation, to name just a few. In the HDM framework, these 

relaxed correspondences also define diffusion processes on the fibre bundle, now consisting of two ingredi-

ents: a horizontal lift of a diffusion process on the base manifold, composed with another diffusion process 

within the fibre. In this setting, it is an interesting question to “learn” the connection from the composition 

of two diffusion processes; practically, this amounts to “recovering” maps from couplings in a collection of 

data objects. In some applications (see e.g. Section 6), one can also “learn” the structure of the template 

fibre from the connection. Making an analogy with the terminology manifold learning, we call this type of 

learning problems fibre learning. Similar to (2.2), we can write the diffusion process considered in fibre learn-

ing in the language of Markov semigroups. Let K : R
2 → R

≥0 be a smooth bi-variate function compactly 

supported on the unit square [0, 1] × [0, 1], and let ǫ > 0, δ > 0 be bandwidth parameters. Define
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Kǫ,δ (x, v; y, w) = K

(
d2

M (x, y)

ǫ
,

d2
Fy

(Pyxv, w)

δ

)
(2.3)

for (x, v) ∈ E, (y, w) ∈ E, where dM (·, ·) , dFy
(·, ·) are the geodesic distances on M , Fy respectively. Assume 

p ∈ C∞ (E) is a density function bounded away from zero from below, i.e.

∫

M

∫

Fy

p (y, w) dvolFy
(w) dvolM (y) = 1 (2.4)

and

p (y, w) ≥ p0 > 0, ∀ (y, w) ∈ E. (2.5)

For α ∈ [0, 1], if we set

pǫ,δ (x, v) =

∫

M

∫

Fy

Kǫ,δ (x, v; y, w) p (y, w) dvolFy
(w) dvolM (y) ,

and

K
(α)
ǫ,δ (x, v; y, w) =

Kǫ,δ (x, v; y, w)

pα
ǫ,δ (x, v) pα

ǫ,δ (y, w)
,

then the coupled diffusion operator for all (x, v) ∈ E can be written as

H
(α)
ǫ,δ f (x, v) =

∫

M

∫

Fy

K
(α)
ǫ,δ (x, v; y, w) f (y, w) p (y, w) dvolFy

(w) dvolM (y)

∫

M

∫

Fy

K
(α)
ǫ,δ (x, v; y, w) p (y, w) dvolFy

(w) dvolM (y)

. (2.6)

The infinitesimal generator of H
(α)
ǫ,δ has to be considered differently from that of H

(α)
ǫ due to the appearance 

of two (instead of one) bandwidth parameters ǫ, δ. It turns out that the relative rate with which ǫ and δ

approach 0 affects the type of the infinitesimal generator associated with the diffusion process, see Section 4.

3. The HDM algorithm

In this section, we describe the manifold learning framework of HDM that extracts feature information 

in a data set with pairwise similarity and structural correspondences, based on the geometric intuition 

explained in Section 2. The construction of graph horizontal Laplacians and spectral embeddings apply to 

any fibred graph and symmetric similarity measure satisfying the structural assumptions in this section; 

the theoretical results to be presented in Section 4 and Section 5 apply to the concrete scenario where the 

graph arises from sampling the fibre bundle as an embedded submanifold of an ambient Euclidean space 

and the similarity measure encodes the connection information (see Section 5.1 for more details).

3.1. Graph horizontal Laplacians

The data set considered in the HDM framework is a triplet (X , ρ, G), where
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(1) The total data set X can be partitioned into a collection of data objects X1, · · · , Xn

X =

n⋃

j=1

Xj , Xj ∩ Xk = ∅ for all 1 ≤ j �= k ≤ n,

where each data object Xj is referred to as the j-th fibre of X , which contains κj data points

Xj =
{

xj,1, xj,2, · · · , xj,κj

}
.

We call the collection of fibres the base data set

B = {X1, X2, · · · , Xn} ,

and let π : X → B be the canonical projection from X to B

π : X −→ B

xj,k �−→ Xj , 1 ≤ j ≤ n, 1 ≤ k ≤ κj .

Denote the total number of points in X as

κ = κ1 + κ2 + · · · + κn.

(2) The mutual similarity measure ρ : X × X → R
≥0 is a symmetric non-negative function that vanishes 

on each fibre, i.e.

ρ (ξ, η) ≥ 0, ρ (ξ, η) = ρ (η, ξ) ∀ξ, η ∈ X

and

ρ (ξ, η) = 0 if ξ, η ∈ Xj for some 1 ≤ j ≤ n.

For simplicity of notation, we denote the restriction of ρ on Xi × Xj as

ρij (s, t) := ρ (xi,s, xj,t) ∀xi,s ∈ Xi, xj,t ∈ Xj .

In words, ρij is an κi × κj matrix on R, to which we will refer as the mutual similarity matrix between 

Xi and Xj . Note that ρij = 0 if i = j.

(3) The affinity graph G = (V, E) has κ vertices, with each vi,s corresponding to a point xi,s ∈ X . Without 

loss of generality, assume G is connected. (In our applications, each xi,s is typically connected to several 

xj,t’s on neighboring fibres.) If there is an edge between vi,s and vj,t in G, then xi,s is a neighbor of 

xj,t (and xj,t is a neighbor of xi,s); Xi is called a neighbor of Xj (and similarly Xj a neighbor of Xi) 

if there is an edge in G linking one point in Xi with one point in Xj . Implicitly, these define a graph 

GB = (VB , EB) in which vertices of VB are in one-to-one correspondences with fibres of X , and EB

encodes the neighborhood relations between pairs of fibres. GB will be called as the base affinity graph.

With the triplet (X , ρ, G) specified, we detail below the construction of the graph horizontal Laplacian. 

Let W ∈ R
κ×κ be the weighted adjacency matrix of the graph G, i.e., W is a block matrix in which the 

(i, j)-th block is ρij . The (s, t) entry in Wij stands for the edge weight ρij (s, t) between vi,s and vj,t. Since 

ρij = ρ⊤
ji, W is a symmetric matrix. Let D be the κ × κ diagonal matrix in which the j-th diagonal entry 
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equals to the j-th row sum of W . We define the graph horizontal Laplacian for the triplet (X , ρ, G) as the 

weighted graph Laplacian of G with edge weights W , i.e.

LH := D − W. (3.1)

Since G is connected, the diagonal elements of D are all non-zero. Thus D is invertible and we can define 

the random-walk and normalized version of LH :

LH
rw := D−1LH = I − D−1W, (3.2)

LH
∗ := D−1/2LHD−1/2 = I − D−1/2WD−1/2. (3.3)

Following [7], we can also repeat these constructions on a renormalized graph of G by setting for some 

α ∈ [0, 1]

Wα := D−αWD−α (3.4)

and constructing the graph horizontal Laplacians from Wα instead of W . More precisely, let Dα be the κ ×κ

diagonal matrix in which the j-th diagonal entry equals to the j-th row sum of Wα, and set

LH
α := Dα − Wα, (3.5)

LH
α,rw := D−1

α LH
α = I − D−1

α Wα, (3.6)

LH
α,∗ := D−1/2

α LH
α D−1/2

α = I − D−1/2
α WαD−1/2

α . (3.7)

Remark 3.1. The block structure in the matrix W is reminiscent of the graph connection Laplacian [9, 

Section 3], but the constraints on the blocks are different: blocks of the graph connection Laplacian are 

built from matrix representations of a Lie group, but blocks of the graph horizontal Laplacian represent 

similarity between data objects and are matrices with non-negative entries. The normalization we apply to 

W is the same as for standard diffusion maps [7]. Formally, the constructions of LH
α , LH

α,rw, and LH
α,∗, as 

well as the embeddings derived from their eigen-decompositions, appears identical to their counterparts in 

standard diffusion maps, but we will show below that the unique fibred structure of the graph G allows us 

to characterize more subtle geometry in (X , ρ, G) than standard diffusion maps could (see Remark 4.1 and 

Remark 5.1).

3.2. Spectral distances and embeddings

Spectral distances are defined via the eigen-decompositions of graph Laplacians. Since LH
α,rw differs from 

LH
α,∗ only by a similarity transformation

LH
α,* = D1/2

α LH
α,rwD−1/2

α ,

the two Laplacians have essentially the same eigen-decomposition. We shall focus on LH
α,∗ for the rest of 

this section due to its computational advantage as a real symmetric matrix.

Any right eigenvector v ∈ R
κ of LH

α,∗ defines a function on the vertices of G. By the construction of LH
α,∗, 

the length-κ vector v, when written as the concatenation of n segments of length κ1, · · · , κn respectively, 

defines a function on each of the n fibres X1, · · · , Xn. We assume eigenvectors are always column vectors, 

and write

v =
(

v⊤
[1], · · · , v⊤

[n]

)⊤
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where each column vector v[j] ∈ R
κj defines a function on the fibre Xj . Now let

λ0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λκ−1

be the κ eigenvalues of LH
α,∗ in ascending order, and denote the eigenvector corresponding to eigenvalue λj

as vj . By the connectivity assumption for G, we know from spectral graph theory [1] that λ0 = 0, λ0 < λ1, 

and v0 is a constant multiple of the column vector with all entries equal to 1; we have thus

0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λκ−1.

By the spectral decomposition of LH
α,∗,

LH
α,∗ =

κ−1∑

l=0

λlvlv
⊤
l , (3.8)

and for any fixed diffusion time t ∈ R
>0,

(
LH

α,∗

)t
=

κ−1∑

l=0

λt
lvlv

⊤
l , (3.9)

with the (i, j)-th block

((
LH

α,∗

)t
)

ij
=

κ−1∑

l=0

λt
lvl[i]v

⊤
l[j]. (3.10)

In general, this block is not a square matrix. Its Frobenius norm can be computed as

∥∥∥∥
((

LH
α,∗

)t
)

ij

∥∥∥∥
2

F

= Tr

[((
LH

α,∗

)t
)

ij

((
LH

α,∗

)t
)⊤

ij

]
= Tr

⎡
⎣

κ−1∑

l,m=0

λt
lλ

t
mvl[i]v

⊤
l[j]vm[j]v

⊤
m[i]

⎤
⎦

= Tr

⎡
⎣

κ−1∑

l,m=0

λt
lλ

t
mv⊤

m[i]vl[i]v
⊤
l[j]vm[j]

⎤
⎦ =

κ−1∑

l,m=0

λt
lλ

t
mv⊤

m[i]vl[i]v
⊤
l[j]vm[j].

(3.11)

Define the horizontal base diffusion map (HBDM) as

V t : B −→ R
κ2

Xj �−→
(

λ
t/2
l λt/2

m v⊤
l[j]vm[j]

)
0≤l,m≤κ−1

(3.12)

with which

∥∥∥∥
((

LH
α,∗

)t
)

ij

∥∥∥∥
2

F

=
〈
V t (Xi) , V t (Xj)

〉
, (3.13)

where 〈·, ·〉 is the standard Euclidean inner product on R
κ2

. Furthermore, we define the horizontal base 

diffusion distance (HBDD) on B as

dHBDM,t (Xi, Xj) =
∥∥V t (Xi) − V t (Xj)

∥∥

=
{〈

V t (Xi) , V t (Xi)
〉

+
〈
V t (Xj) , V t (Xj)

〉
− 2

〈
V t (Xi) , V t (Xj)

〉} 1
2 .

(3.14)
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From a learning point of view, the map V t : B → R
κ2

is equivalent to the unsupervised features learned 

from the data set with structural correspondences. Note also that HBDM embeds the base data set B into 

a Euclidean space of dimension κ2, which is of much higher dimensionality than the size of the original 

data set. In practice, however, one often truncates the spectrum of graph Laplacians, thus embedding the 

data set into a Euclidean of reduced dimensionality. In our numerical experiments and applications (see 

Section 6), we found it is usually sufficient to retain the first O (
√

κ) to O (κ) eigenvalues. Even though 

this truncation still involves higher spatial complexity than diffusion maps, our results show that HBDM 

significantly outperforms DM for our purposes; we thus believe that the high-dimensional embedding is a 

modest price to pay for extracting the hidden information in the structural correspondences.

In addition to handling the base data set B, HDM is also capable of embedding the total data set X

into Euclidean spaces. Define for each diffusion time t ∈ R
+ the horizontal diffusion map (HDM)

Ht : X −→ R
κ−1

xj,s �−→
(
λt

1v1[j] (s) , λt
2v2[j] (s) , · · · , λt

κ−1v(κ−1)[j] (s)
)

,
(3.15)

where vl[j] (s) is the s-th entry of the j-th segment of the l-th eigenvector, with j = 1, · · · , n, s = 1, · · · , κj . 

We could also have written

vl[j] (s) = vl (sj + s) , where s1 = 0 and sj =

j−1∑

p=1

κp for j ≥ 2.

Following a similar argument as in [7], we can define the horizontal diffusion distance (HDD) on X as

dHDM,t (xi,s, xj,t) =
∥∥Ht (xi,s) − Ht (xj,t)

∥∥ . (3.16)

As it stands, Ht embeds the total data set X into a Euclidean space preserving the horizontal diffusion 

distance on X . Moreover, this embedding automatically suggests a global registration for all fibres that 

respects the mutual similarity measure ρ; similar ideas was already implicit in [41]. For simplicity of notation, 

let us write

Ht
j := Ht ↾ Xj

for the restriction of Ht to fibre Xj , and call this the j-th component of Ht. Up to scaling, the components 

of Ht bring the fibres of X to a common “template”, such that points xi,s and xj,t with a high similarity 

measure ρij (s, t) tend to be close to each other in the embedded Euclidean space. One can then reconstruct 

pairwise structural correspondences between fibres Xi, Xj in the embedded Euclidean space, now between 

the embedded point clouds in Rκ2

. With appropriate truncation of the spectrum of the graph horizontal 

Laplacian, these reconstructed structural correspondences are the “denoised version” of the original corre-

spondences. Moreover, recalling that each Xj is sampled from some manifold Fj, one can often estimate a 

template fibre F ⊂ R
m from the embedded images

Ht
1 (X1) , · · · , Ht

n (Xn) ,

and extend (by interpolation) Ht
j from a discrete correspondence to a continuous bijective map from Fj

to F , then build correspondence maps between an arbitrary pair Xi, Xj by composing (the interpolated 

continuous maps) Ht
i with 

(
Ht

j

)−1
. Pairwise correspondences reconstructed in this manner are globally 

consistent, since they all go through the common template manifold F . We discuss in greater detail an 

application of HDM and HDD to a data set of shapes in geometric morphometrics in Section 6.
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4. Infinitesimal generators for horizontal and coupled diffusion operators

We are now ready to present the main technical results of this paper. First, we characterize the infinites-

imal generator of the horizontal diffusion operator H
(α)
ǫ in (2.2).

Theorem 2. Suppose E = (E, M, F, π) is a fibre bundle, M is a smooth Riemannian manifold without 

boundary, and E is equipped with the Riemannian metric (B.6). For any f ∈ C∞ (E) and (x, v) ∈ E,

lim
ǫ→0

H
(α)
ǫ f (x, v) − f (x, v)

ǫ
=

m2

2m0

[
ΔH

(
fp̄1−α

)
− fΔH p̄1−α

]
(x, v)

p1−α (x)
, (4.1)

where m0, m2 are positive constants depending only on the base manifold M and the kernel K, ΔH is the 

rough horizontal Laplacian on E in (B.8), and p̄ = p ◦ π ∈ C∞ (E).

The proof of Theorem 2 can be found in Appendix C.

Corollary 3. Under the same assumptions as in Theorem 2, when α = 1,

lim
ǫ→0

H
(1)
ǫ f (x, v) − f (x, v)

ǫ
=

m2

2m0
ΔHf (x, v) . (4.2)

Characterizing the infinitesimal generator of the coupled diffusion operator H
(α)
ǫ,δ is slightly more subtle: 

the generator of the diffusion process depends on the relative speed at which the two bandwidth parameters 

ǫ, δ approach 0. For clarity, we first state the result for the case when the ratio δ/ǫ remains bounded as 

ǫ, δ → 0.

Theorem 4 (Bounded ratio δ/ǫ). Suppose E = (E, M, F, π) is a fibre bundle, M is a smooth Riemannian 

manifold without boundary, and E is equipped with the Riemannian metric (B.6). For any f ∈ C∞ (E) and 

(x, v) ∈ E, if δ = O (ǫ) as ǫ → 0, then

H
(α)
ǫ,δ f (x, v) = f (x, v) + ǫ

m21

2m0

[
ΔH

(
fp1−α

)
− fΔHp1−α

]
(x, v)

p1−α (x, v)

+ δ
m22

2m0

[
ΔV

E

(
fp1−α

)
− fΔV

Ep1−α
]

(x, v)

p1−α (x, v)
+ O

(
ǫ2 + ǫδ + δ2

)
,

(4.3)

where m0, m21, m22 are positive constants depending only on the total manifold E and the kernel K, ΔH is 

the rough horizontal Laplacian on E defined in (B.8), and ΔV
E is the vertical Laplacian of the fibre bundle 

E defined in (B.11).

For a proof of Theorem 4, see Appendix C. Note that in the distribution sense Theorem 2 can be 

interpreted as a special case of Theorem 4 when δ = o (ǫ) as ǫ → 0. From a different point of view, 

Theorem 4 can also be interpreted as [7, Theorem 2] applied on a fibre bundle (E, M, F, π) with a family of 

varying Riemannian metrics

gE
δ/ǫ = gM ⊕ δ

ǫ
gF ,

which is known as the canonical variation in the literature of Riemannian submersion [40, §9.G] [64, §2.7.5]. 

If δ/ǫ → 0, then the rescaled metric



JID:YACHA AID:1332 /FLA [m3L; v1.260; Prn:19/08/2019; 14:07] P.16 (1-69)

16 T. Gao / Appl. Comput. Harmon. Anal. ••• (••••) •••–•••

ǫ

δ
gE

δ/ǫ =
ǫ

δ
gM ⊕ gF

is said to approach its adiabatic limit, or taking adiabatic limits amounts to blowing up or contracting the 

fibres, which is very useful in studying foliations. In the horizontal diffusion maps framework, the adiabatic 

limits can be indirectly taken by adjusting the relative magnitudes of the horizontal and vertical bandwidth 

parameters; see Fig. 3 for an illustration. An in-depth discussion of adiabatic limits is beyond the scope of 

this paper, and we refer interested readers to [65,66] and references therein.

Corollary 5. Under the same assumptions as in Theorem 4, if the limit of the ratio δ/ǫ exists and is finite, 

i.e.,

β := lim
ǫ→0

δ/ǫ < ∞,

then

lim
ǫ→0

H
(α)
ǫ,δ f (x, v) − f (x, v)

ǫ
=

1

2

[
Lβ

(
fp1−α

)
− fLβp1−α

]
(x, v)

p1−α (x, v)
(4.4)

where Lβ is a second order partial differential operator on E given by

Lβ =
m21

m0
ΔH + β

m22

m0
ΔV

E . (4.5)

In particular, if m21 = βm22 and π : E → M is a harmonic map, then L = cΔE where ΔE is the 

Laplace-Beltrami operator on E and c a multiplicative constant. In addition, if α = 1, then

lim
ǫ→0

H
(1)
ǫ,δ f (x, v) − f (x, v)

ǫ
=

c

2
ΔEf (x, v) .

Proof. If π : E → M is a harmonic map, the fibres of π are minimal submanifolds of E (vice versa, see 

e.g. [64, Lemma 2.2.4]) and ΔH = ΔH
E (see Remark 7.2). ✷

Remark 4.1. Corollary 5 clearly indicates that the coupled diffusion operator H
(α)
ǫ,δ differs from the 

anisotropic diffusion operators considered in [21,7] and the dynamical system literature [36,37] in an essen-

tial way: in general, when the fires are not totally geodesic submanifolds of the fibre bundle, the infinitesimal 

generator (4.5) will never equal to the Laplace-Beltrami operator of the total manifold, regardless of the 

relative ratio between δ and ǫ — even when the two constants in front of ΔH and ΔV
E coincide. This is 

essentially due to the difference between the rough horizontal Laplacian ΔH and the bona fide “horizontal 

Laplacian” ΔH
E commonly encountered in sub-Riemannian geometry and Riemannian submersions; see Re-

mark 7.2 for more details. The HDM framework is thus by no means a straightforward application of the 

anisotropic diffusion maps to the total manifold of the fibre bundle.

In order to state the result for the case when the ratio δ/ǫ is not asymptotically bounded as ǫ → 0, let 

us define the fibre average of any function f ∈ C∞ (E) as

〈f〉 (x) =

∫

Fx

f (x, v) dvolFx
(v) (4.6)

whenever the integral converges. If 〈f〉 (x) exists for all x ∈ M (e.g. when the fibre is compact or f is 

integrable), obviously 〈f〉 ∈ C∞ (M).
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Consider now the probability density function p in the definition of H
(α)
ǫ,δ . The fibre average 〈p〉 is a 

probability density function on M , since

∫

M

〈p〉 (x) dvolM (x) =

∫

M

∫

Fx

p (x, v) dvolFx
(v) dvolM (x) = 1.

Note that 〈p〉 is bounded away from 0 from below according to our assumption (2.5). We can thus divide p

by 〈p〉 and define the conditional probability density function on E as

p (v | x) :=
p (x, v)

〈p〉 (x)
. (4.7)

The name comes from the observation that p (v | x) defines a probability density function when restricted 

to a single fibre:

∫

Fx

p (v | x) dvolFx
(v) =

∫

Fx

p (x, v) dvolFx
(v)

〈p〉 (x)
= 1.

The last piece of notation we need for Theorem 6 is

〈f〉p (x) :=

∫

Fx

f (x, v) p (v | x) dvolFx
(v) , (4.8)

for any function f ∈ C∞ (E). We shall refer to 〈f〉p as the fibre average of f with respect to the probability 

density function p.

Theorem 6 (Unbounded ratio δ/ǫ). Suppose E = (E, M, F, π) is a fibre bundle, M is a smooth Rieman-

nian manifold without boundary, and E is equipped with the Riemannian metric (B.6). Define γ := δ/ǫ

(equivalently δ = γǫ). For any f ∈ C∞ (E) and (x, v) ∈ E, as ǫ → 0,

lim
γ→∞

H(α)
ǫ,γǫf (x, v)

= 〈f〉p (x) + ǫ
m′

2

2m′
0

[
ΔM

(
〈f〉p〈p〉1−α

)
− 〈f〉pΔM 〈p〉1−α

]
(x)

〈p〉1−α (x)
+ O

(
ǫ2
)

,

(4.9)

where m′
0, m′

2 are positive constants depending only on the base manifold M and the kernel K, ΔM is the 

Laplace-Beltrami operator on M , 〈p〉 is the fibre average of the probability density function p, and 〈f〉p is 

the fibre average of f with respect to the density p. In particular, if α = 1, then

lim
γ→∞

H(1)
ǫ,γǫ = 〈f〉p (x) + ǫ

m′
2

2m′
0

ΔM 〈f〉p + O
(
ǫ2
)

.

The proof of Theorem 6 can be found in Appendix C. Intuitively, Theorem 6 states that if the vertical 

bandwidth parameter δ → ∞ then the coupled diffusion operator contains little information about the 

fibres. Comparing Theorem 6 with Theorem 4, one can see that in general

lim
ǫ→0

lim
γ→∞

H
(α)
ǫ,γǫf (x, v) − f (x, v)

ǫ
�= lim

γ→∞
lim
ǫ→0

H
(α)
ǫ,γǫf (x, v) − f (x, v)

ǫ
,
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thus an asymptotic expansion of H
(α)
ǫ,δ f (x, v) for small ǫ, δ is not well-defined without careful consideration 

of the behavior of δ/ǫ if it is not asymptotically bounded.

Remark 4.2. The subtlety in the characterization of the infinitesimal generator H
(α)
ǫ,δ speaks of the pecu-

liarity of the nonhomogeneous, anisotropic diffusion processes considered in [7,67], at the presence of an 

underlying fibre bundle structure. These phenomena not only indicate that the horizontal and coupled 

diffusion operators are capable of unveiling richer geometric structures in complex real world data sets, 

but also imply that additional care has to be taken when tuning the bandwidth parameters in practice — 

the flexibility in choosing the appropriate relative scale between δ and ǫ adapts the HDM framework to a 

myriad of scenarios in which the relative importance of the structural information in the data objects vary 

drastically. The dependence of the infinitesimal generators on the ratio δ/ǫ is also reminiscent of recent 

trends of studying “big data” in high-dimensional statistics [68,69], where new paradigms of estimation and 

inference arise as the ratio between the number of features and the number of samples becomes unbounded 

asymptotically.

5. Finite sampling results on unit tangent bundles

The algorithm and theoretical results discussed so far are very general — we assumed that the diffusion 

kernel (2.3) is constructed from abstract, geodesic distances on the base and fibre manifolds. This section 

investigates the finite sampling aspects of horizontal diffusion maps, which connects the discrete, graph 

construction in Section 3 with the continuous, infinitesimal characterization in Section 4. We focus on 

analyzing the finite sample rate of convergence for unit tangent bundles, the fibre bundle with compact fibres 

that is as prevalent as manifolds. This is a subbundle of the tangent bundle TM (which is non-compact) 

defined as

UTM :=
∐

x∈M

Sx, Sx := {v ∈ TxM | gx (v, v) = 1} ⊂ TxM.

In particular, UTM is a hypersurface of TM equipped with a metric induced from TM . The volume form 

on UTM with respect to the induced metric

dΘ (x, v) = dvolSx
(v) dvolM (x)

is often known as the Liouville measure or the kinematic density [70, Chapter VII]. It is the only invariant 

measure on UTM under geodesic flows. The coupled diffusion operator on UTM can be written with the 

Liouville measure:

H
(α)
ǫ,δ f (x, v) =

∫

UT M

K
(α)
ǫ,δ (x, v; y, w) f (y, w) p (y, w) dΘ (y, w)

∫

UT M

K
(α)
ǫ,δ (x, v; y, w) p (y, w) dΘ (y, w)

, ∀f ∈ C∞ (UTM) .

The horizontal and vertical Laplacians on UTM can be defined from ΔH
TM and ΔV

TM by extending f ∈
C∞ (UTM) to C∞ (TM) and restricting the result back to UTM . Therefore, for any f ∈ C∞ (TM), if 

δ = O (ǫ),

H
(α)
ǫ,δ f (x, v) = f (x, v) + ǫ

m21

2m0

[
ΔH

UTM

(
fp1−α

)
− fΔH

UTM p1−α
]

(x, v)

p1−α (x, v)

+ δ
m22

2m0

[
ΔV

UTM

(
fp1−α

)
− fΔV

UTM p1−α
]

(x, v)

p1−α (x, v)
+ O

(
ǫ2 + ǫδ + δ2

)
.
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This is consistent with the conclusion obtained in [71, Chapter 3].

The theory of HDM on tangent and unit tangent bundles are parallel to each other, but a general theory 

for sampling from fibre bundles of arbitrary fibre type will find it easier to consider sampling from the 

unit tangent bundle due to the compactness of its fibres. Sampling from tangent bundles is special, since 

its fibres are vector spaces and thus determined by estimating a basis; this is considered in [9, §5]. We 

thus study the behavior of HDM on unit tangent bundles under finite sampling. In this section, we first 

consider sampling without noise, i.e. where we sample exactly on unit tangent bundles; next, we study the 

case where the tangent spaces are empirically estimated from samples on the base manifold. The latter 

scenario is a proof-of-concept for applying HDM to general fibre bundles in practical situations where data 

representing each fibre are often acquired with noise. The proofs of Theorem 9 and Theorem 10 can be found 

in Appendix D. In Section 5.2, we shall demonstrate a numerical experiment on SO(3) (the unit tangent 

bundle of the 2-sphere in R3) that addresses the two sampling strategies. Throughout this section, recall 

from Remark 7.2 that ΔH = ΔH
UTM since the fibres of UTM are totally geodesic.

5.1. Rate of convergence from finite samples

5.1.1. Sampling without noise

We begin with some assumptions and definitions. Assumption 7 includes our technical assumptions, and 

Assumption 8 specifies the noiseless sampling strategy.

Assumption 7.

(1) ι : M →֒ R
D is an isometric embedding of a d-dimensional closed Riemannian manifold into RD, with 

D ≫ d.

(2) Let the bi-variate smooth kernel function K : R
2 → R

≥0 be compactly supported within the unit square 

[0, 1] × [0, 1]. The partial derivatives ∂1K, ∂2K are therefore automatically compactly supported on the 

unit square as well. (In fact, a similar result still holds if K and its first order derivatives decay faster 

at infinity than any inverse polynomials; to avoid technicalities and focus on demonstrating the idea, 

we use compactly supported K.)

Assumption 8. The (NB × NF ) data points

x1,1, x1,2, · · · , x1,NF

x2,1, x2,2, · · · , x2,NF

...
... · · ·

...
xNB ,1, xNB ,2, · · · , xNB ,NF

are sampled from UTM with respect to a probability density function p (x, v) satisfying (2.5), following a 

two-step strategy: (i) sample NB points ξ1, · · · , ξNB
i.i.d. on M with respect to 〈p〉, the fibre average of 

p on M ; (ii) sample NF points xj,1, · · · , xj,NF
on Sξj

with respect to p (· | ξj), the conditional probability 

density.

Definition 5.1.

(1) For ǫ > 0, δ > 0 and 1 ≤ i, j ≤ NB , 1 ≤ r, s ≤ NF , define

K̂ǫ,δ (xi,r, xj,s) =

⎧
⎪⎨
⎪⎩

K

(‖ξi − ξj‖2

ǫ
,

‖Pξj ,ξi
xi,r − xj,s‖2

δ

)
, i �= j,

0, i = j,
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where Pξj ,ξi
: Sξi

→ Sξj
is the parallel transport from Sξi

to Sξj
. Note the difference between K̂ǫ,δ and 

Kǫ,δ defined in (2.3): K̂ǫ,δ uses Euclidean distance while Kǫ,δ uses geodesic distance.

(2) For 0 ≤ α ≤ 1, define

p̂ǫ,δ (xi,r) =

NB∑

j=1

NF∑

s=1

K̂ǫ,δ (xi,r, xj,s)

and the empirical α-normalized kernel K̂α
ǫ,δ

K̂α
ǫ,δ (xi,r, xj,s) =

K̂ǫ,δ (xi,r, xj,s)

p̂α
ǫ,δ (xi,r) p̂α

ǫ,δ (xj,s)
, 1 ≤ i, j ≤ NB , 1 ≤ r, s ≤ NF .

(3) For 0 ≤ α ≤ 1 and f ∈ C∞ (UTM), denote the α-normalized empirical horizontal diffusion operator by

Ĥα
ǫ,δf (xi,r) =

NB∑

j=1

NF∑

s=1

K̂α
ǫ,δ (xi,r, xj,s) f (xj,s)

NB∑

j=1

NF∑

s=1

K̂α
ǫ,δ (xi,r, xj,s)

.

Theorem 9 (Finite sampling without noise). Under Assumption 7 and Assumption 8, if

(i) δ = O (ǫ) as ǫ → 0;

(ii)

lim
NB→∞
NF →∞

NF

NB
= β ∈ (0, ∞) ,

then for any xi,r with 1 ≤ i ≤ NB and 1 ≤ r ≤ NF , as ǫ → 0 (and thus δ → 0), with high probability

Ĥα
ǫ,δf (xi,r) = f (xi,r) + ǫ

m21

2m0

[
ΔH

[
fp1−α

]
(xi,r)

p1−α (xi,r)
− f (xi,r)

ΔHp1−α (xi,r)

p1−α (xi,r)

]

+ δ
m22

2m0

[
ΔV

UT M

[
fp1−α

]
(xi,r)

p1−α (xi,r)
− f (xi,r)

ΔV
UT M p1−α (xi,r)

p1−α (xi,r)

]

+ O
(

ǫ2 + δ2 + θ−1
∗ N

− 1
2

B ǫ− d
4

)
,

(5.1)

where

θ∗ = 1 − 1

1 + ǫ
d
4 δ

d−1
4

√
NF

NB

.

The proof of Theorem 9 is deferred to Appendix D.

Remark 5.1. Theorem 9 reflects the difference in the finite-sample rate of convergence between considering 

horizontal diffusion and standard diffusion on the total manifold of the fibre bundle. For instance, in the 

special case ǫ = δ, by [72], the variance error associated with the standard diffusion maps on the total 
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manifold is O
(

N
−1/2
F N

−1/2
B ǫ−(2d−1)/4

)
, while the variance error in (5.1) is O

(
θ−1

∗ N
−1/2
B ǫ−d/4

)
. This is 

another evidence demonstrating the difference between horizontal diffusion maps and standard diffusion 

maps on the total manifold of the fibre bundle; see also Remark 4.1.

5.1.2. Sampling from empirical tangent spaces

In practice, it has been shown in [9] that, under the manifold assumption, a local PCA procedure can be 

used for estimating tangent spaces from a point cloud; we are using PCA here as a procedure that determines 

the dimension of a local good linear approximation to the manifold, and also, conveniently, provides a good 

basis, which can be viewed as a basis for each tangent plane. To sample on these tangent spaces, it suffices to 

repeatedly sample coordinate coefficients from a fixed standard unit sphere; each sample can be interpreted 

as giving the coordinates of a point (approximately) on the tangent space. Parallel-transports will take the 

corresponding point that truly lies on the tangent space at ξ to the tangent space at ζ, another point on the 

manifold. This new tangent space is, however, again known only approximately; points in this approximate 

space are characterized by coordinates with respect to the local PCA basis at ζ. We can thus express the 

whole (approximate) parallel-transport procedure by maps between coordinates with respect to PCA basis 

at ξ to sets of coordinates at ζ; these changes of coordinates incorporate information on the choices of basis 

at each end as well as on the parallel-transport itself.

Let us now describe this in more detail, setting up notations along the way. Throughout this section, 

Assumption 7 still holds. Let {ξ1, · · · , ξNB
} be a collection of i.i.d. samples from M ; then the local PCA 

procedure can be summarized as follows: for any ξj, 1 ≤ j ≤ NB , let ξj1
, · · · , ξjk

be its k nearest neighboring 

points. Then

Xj = [ξj1
− ξj , · · · , ξjk

− ξj ]

is a D × k matrix. Let KPCA be a positive monotonic decreasing function supported on the unit interval, 

e.g. the Epanechnikov kernel [73]

KPCA (u) =
(
1 − u2

)
χ[0,1],

where χ is the indicator function. Fix a scale parameter ǫPCA > 0, let Dj be the k × k diagonal matrix

Dj = diag

(√
KPCA

(‖ξj − ξj1
‖√

ǫPCA

)
, · · · ,

√
KPCA

(‖ξj − ξjk
‖√

ǫPCA

))

and carry out the singular value decomposition (SVD) of matrix XjDj as

XjDj = UjΣjV ⊤
j .

An estimated basis Bj for the local tangent plane at ξj is formed by the first d left singular vectors 

(corresponding to the d largest singular values in Σj), arranged into a matrix as follows:

Bj =
[
u

(1)
j , · · · , u

(d)
j

]
∈ R

D×d.

Note that the intrinsic dimension d is generally not known a priori. The authors of [9] proposed a procedure 

that first estimates local dimensions from the decay of singular values in Σj and then sets d to be the median 

of all local dimensions; [74] proposed a different approach based on multi-scale singular value decomposition.

Once a pair of estimated bases Bi, Bj is obtained for neighboring points ξi, ξj , one estimates a parallel-

transport from Tξi
M to Tξj

M as
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Oji := arg min
O∈O(d)

∥∥O − B⊤
j Bi

∥∥
HS

,

where ‖·‖HS is the Hilbert-Schmidt norm. Though this minimization problem is non-convex, it has an 

efficient closed-form solution via the SVD of B⊤
i Bj , namely

Oji = UV ⊤, where B⊤
j Bi = UΣV ⊤ is the SVD of B⊤

j Bi.

It is worth noting that Oji depends on the bases; it operates on the coordinates of tangent vectors under 

Bi and Bj , as explained above. Oji approximates the true parallel-transport Pξj ,ξi
(composed with the 

bases-expansions) with an error of O (ǫPCA), in the sense of [9, Lemma B.1].

We summarize our sampling strategy for this section (with some new notations) in the following definition.

Definition 5.2.

(1) Let {ξ1, · · · , ξNB
} be a collection of samples from the base manifold M , i.i.d. with respect to some 

probability density function p ∈ C∞ (M). For each ξj , 1 ≤ j ≤ NB , sample NF points uniformly 

from the (d − 1)-dimensional standard unit sphere Sd−1 in Rd, and denote the set of samples as Cj =

{cj,1, · · · , cj,NF
}, where each cj,s is a d × 1 column vector. Using the basis Bj estimated from the local 

PCA procedure, each cj,s corresponds to an “approximate tangent vector at ξj”, denoted as

τj,s := Bjcj,s.

We use the notation Sj for the unit sphere in the estimated tangent space (i.e., the column space of 

Bj). Note that the τj,1, · · · , τj,NF
are uniformly distributed on Sj .

(2) By [9, lemma B.1], for any Bj there exists a D × d matrix Qj , such that the columns of Qj constitutes 

an orthonormal basis for ι∗Tξj
M and

‖Bj − Qj‖HS = O (ǫPCA) .

We define the tangent projection from ι∗Sξj
to the estimated tangent plane as

τj,s �→ τ j,s =
QjQ⊤

j τj,s∥∥QjQ⊤
j τj,s

∥∥ .

This map is well-defined for sufficiently small ǫPCA, and then it is an isometry. Its inverse is given by

τ j,s �→ τj,s =
BjB⊤

j τ j,s∥∥BjB⊤
j τ j,s

∥∥ .

Note that we have

‖τj,s − τ j,s‖ ≤ CǫPCA

for some constant C > 0 independent of indices j, s. Since we sample each Sj uniformly and the 

projection map τj,s �→ τ̄j,s is an isometry, the points {τ j,1, · · · , τ j,NF
} are also uniformly distributed on 

Sξj
. The points

τ1,1, τ1,2, · · · , τ1,NF

τ2,1, τ2,2, · · · , τ2,NF

...
... · · ·

...
τNB ,1, τNB ,2, · · · , τNB ,NF
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are therefore distributed on UTM according to a joint probability density function p on UTM defined 

as

p (x, v) = p (x) , ∀ (x, v) ∈ UTM.

As in Assumption 8, we assume p satisfies (2.5), i.e.,

0 < pm ≤ p (x, v) = p (x) ≤ pM < ∞, ∀ (x, v) ∈ UTM

for positive constants pm, pM .

(3) For ǫ > 0, δ > 0 and 1 ≤ i, j ≤ NB , 1 ≤ r, s ≤ NF , define

Kǫ,δ (τ i,r, τ j,s) =

⎧
⎪⎨
⎪⎩

K

(‖ξi − ξj‖2

ǫ
,

‖Ojici,r − cj,s‖2

δ

)
, i �= j,

0, i = j,

where Oji is the estimated parallel-transport from Tξi
M to Tξj

M .

(4) For 0 ≤ α ≤ 1, define

q̂ǫ,δ (τ i,r) =

NB∑

j=1

NF∑

s=1

Kǫ,δ (τ i,r, τ j,s)

and

K
α

ǫ,δ (τ i,r, τ j,s) =
Kǫ,δ (τ i,r, τ j,s)

q̂α
ǫ,δ (τ i,r) q̂α

ǫ,δ (τ j,s)
, 1 ≤ i, j ≤ NB , 1 ≤ r, s ≤ NF .

(5) For 0 ≤ α ≤ 1 and f ∈ C∞ (UTM), denote

H
α

ǫ,δf (τ i,r) =

NB∑

j=1

NF∑

s=1

K
α

ǫ,δ (τ i,r, τ j,s) f (τ j,s)

NB∑

j=1

NF∑

s=1

K
α

ǫ,δ (τ i,r, τ j,s)

.

Theorem 10 (Finite sampling from empirical tangent planes). In addition to Assumption 7, suppose

(i) ǫPCA = O

(
N

− 2
d+2

B

)
as NB → ∞;

(ii) As ǫ → 0, δ = O (ǫ) and δ ≫
(

ǫ
1
2

PCA + ǫ
3
2

)
;

(iii)

lim
NB→∞
NF →∞

NF

NB
= β ∈ (0, ∞) .
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Then for any τi,r with 1 ≤ i ≤ NB and 1 ≤ r ≤ NF , as ǫ → 0 (and thus δ → 0), with high probability

H
α

ǫ,δf (τ i,r) = f (τ i,r) + ǫ
m21

2m0

[
ΔH

UTM

[
fp1−α

]
(τ i,r)

p1−α (τ i,r)
− f (τ i,r)

ΔH
UTM p1−α (τ i,r)

p1−α (τ i,r)

]

+ δ
m22

2m0

[
ΔV

UTM

[
fp1−α

]
(τ i,r)

p1−α (τ i,r)
− f (τ i,r)

ΔV
UTM p1−α (τ i,r)

p1−α (τ i,r)

]

+ O
(

ǫ2 + ǫδ + δ2 + θ−1
∗ N

− 1
2

B ǫ− d
4 + δ−1

(
ǫ

1
2

PCA + ǫ
3
2

))
,

(5.2)

where

θ∗ = 1 − 1

1 + ǫ
d
4 δ

d−1
4

√
NF

NB

.

We give a proof of Theorem 10 in Appendix D.

5.2. Numerical experiments

The unit tangent bundle is of special interest since UTM is a compact Riemannian manifold whenever 

M is compact, enabling finite sampling and numerically validating Theorem 4 and Theorem 6. We present 

in below a numerical experiment on SO(3), the unit tangent bundle of the standard two-dimensional sphere 

in R
3, along with an analysis of sampling errors on general unit tangent bundles. In the first step, we 

uniformly sample NB = 2, 000 points {ξ1, · · · , ξNB
} on the unit sphere S2, and find for each sample point 

the KB = 100 nearest neighbors in the point cloud. Next, we sample NF = 50 vectors of unit length 

tangent to the unit sphere at each sample point (which in this case is a circle), thus collecting a total of 

NB × NF = 100, 000 points on UTS2 = SO(3), denoted as

{xj,s | 1 ≤ j ≤ NB , 1 ≤ s ≤ NF } .

The horizontal diffusion matrix H is then constructed as an NB ×NB block matrix with block size NF ×NF , 

and Hij (the (i, j)-th block of H) is non-zero only if the sample points ξi, ξj are each among the KB-nearest 

neighbors of the other; when Hij is non-zero, its (r, s)-entry (1 ≤ r, s ≤ NF ) is non-zero only if Pξj ,ξi
xi,r

and xj,s are each among the KF = 50 nearest neighbors of the other, and in that case for all i �= j

Hij (r, s) = exp

[
−
(

‖ξi − ξj‖2

ǫ
+

∥∥Pξj ,ξi
xi,r − xj,s

∥∥2

δ

)]
, (5.3)

where the choices of ǫ, δ will be explained below. The diagonal blocks are set to zero as in Definition 5.1. 

Note that for the unit sphere S2 the parallel-transport from Tξi
S2 to Tξj

S2 can be explicitly constructed 

as a rotation along the axis ξi × ξj . Finally, we form the α-normalized horizontal diffusion matrix Hα by

(Hα)ij (r, s) =
Hij (r, s)

(
NB∑

l=1

NF∑

m=1

Hil (r, m)

)α (NB∑

k=1

NF∑

n=1

Hjk (r, n)

)α , (5.4)

and solve the eigenvalue problem

(
D− 1

2 HαD− 1
2

)
U = UΛ (5.5)
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Fig. 3. Bar plots of the smallest 36 eigenvalues of I − D−1Hα with α = 1, ǫ = 0.2, and varying δ values (sampling without noise). 
Left: When δ ≪ ǫ, H1

ǫ,δ approximates the heat kernel of ∆H
SO(3), of which the multiplicities of largest eigenvalues are 1, 6, 13, · · · ; 

Middle: When δ ≈ ǫ, H1
ǫ,δ approximates the heat kernel of ∆SO(3), of which the multiplicities of largest eigenvalues are 1, 9, 25, · · · ; 

Right: When δ ≫ ǫ, H1
ǫ,δ approximates the heat kernel of ∆S2 , of which the multiplicities of largest eigenvalues are 1, 3, 5, · · · .

where D is the (NBNF ) × (NBNF ) diagonal matrix with entry (k, k) equal to the k-th column sum of Hα:

D (k, k) =

NBNF∑

v=1

Hα (k, v) ,

and Λ is a diagonal matrix of the same dimensions. Throughout this experiment, we fix α = 1, ǫ = 0.2 and 

choose various values of δ ranging from 0.0005 to 50, and observe the spacing of the eigenvalues stored in 

Λ.

The purpose of this experiment is to investigate the influence of the ratio γ = δ/ǫ on the spectral behavior 

of graph horizontal Laplacians. As shown in Fig. 3, the spacing in the spectrum of these graph horizontal 

Laplacians follow patterns similar to the multiplicities of the eigenvalues of corresponding Laplacians on 

SO(3) (governed by the relative size of δ and ǫ). In Fig. 3(a), δ ≪ ǫ, hence the graph horizontal Lapla-

cian approximates the horizontal Laplacian on SO(3) (according to Theorem 4 and Corollary 5), in which 

the smallest eigenvalues have multiplicities 1, 6, 13, · · · ; in Fig. 3(b), δ = O (ǫ), hence the graph horizontal 

Laplacian approximates the total Laplacian on SO(3) (again, according to Theorem 4 and Corollary 5), with 

eigenvalue multiplicities 1, 9, 25, · · · ); in Fig. 3(c), δ ≫ ǫ, hence the graph horizontal Laplacian approximates 

the Laplacian on the base manifold S2 (according to Theorem 6), with eigenvalue multiplicities 1, 3, 5, · · · ). 

Note that in Fig. 3(c) we fixed ǫ and pushed δ to ∞, which essentially corresponds to the limit process in 

(4.9) rather than (4.1). Moreover, if in each figure we divide the sequence of eigenvalues by the smallest non-

zero eigenvalue, the resulting sequence coincides with the list of eigenvalues of the corresponding manifold 

Laplacian up to numerical error. For a description of the spectrum of these partial differential operators, 

see [75, Chapter 2].

Similar numerical results have been observed for sampling from empirically estimated tangent spaces; we 

refer interested readers to [71, §3.5.2].

6. Application to automated geometric morphometrics

The HDM framework can be applied to any data set with pairwise structural correspondences. In many 

applications, such structural correspondences are readily available through a registration procedure, and 

have been used to compute similarity scores or distances between objects of interest. In this section, we 

sketch the application of HDM to automated geometric morphometrics. In a nutshell, this is an unsupervised 

learning problem with heterogeneous or unorganized data, for which feature engineering is particularly 

difficult; moreover, it is hard to apply kernel methods due to the lack of an informative kernel function. 
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Fig. 4. A second mandibular molar of a Philippine flying lemur (Cynocephalus volans), represented as a point cloud (left), wireframe 
(middle), and a piecewise linear surface (right).

We expect problems arising from machine learning, pattern recognition, and computer vision facing similar 

difficulties to benefit from the proposed approach.

Geometric morphometrics is the quantitative analysis of shape variation and their correlation with other 

traits for biological organisms. For instance, it is often of interest to geometric morphometricians to under-

stand quantitatively the amount of the shape variation explained by geometric features within a collection 

of shapes. They typically select equal numbers of consistently homologous landmark points on each sur-

face [76], corresponding to a mental model of a latent “template,” of which every individual shape is an 

instantiation. In statistical shape analysis, this landmark-based approach is developed in the framework of 

Procrustes analysis [77]. Obviously, such an analysis is limited by the knowledge of landmark placement. 

From a mathematical point of view, extracting a limited number of landmarks from a continuous surface 

inevitably loses geometric information, unless when the shapes under consideration are solely determined 

by the landmarks (e.g. polygonal shapes, as considered in [78] [79]), which is rarely the case for geomet-

ric morphometricians in biology; from a practical point of view, the requirement that an equal number of 

landmarks must be chosen on each shape is sometimes unrealistic due to the complex evolutionary and 

developmental process. Manually placing landmarks on each shape among a large collection is also a tedious 

task, and the skill to perform it “correctly” typically requires years of professional training; even then the 

“correctness” or the number of landmarks one should fix for a collection of shapes can be subject to debate 

among experts. These difficulties are gradually and continuously being addressed by a recent trend that 

advocates automated workflows to bypass the repetitive, laborious, and time-consuming process of manual 

landmark placement on large collections of 3D digitized anatomical surfaces (see [20,80–86,71,87–91] and 

references therein).

The digitized morphological data set contains hundreds of triangular meshes (see Fig. 4) of diverse 

size, topology, and quality, each representing an anatomical surface reconstructed from MicroCT images. 

In [20], the authors introduced Continuous Procrustes Distance (CPD) between surfaces with disk-type 

topology, and used conformal parameterization (uniformization) to design a fast algorithm that computes 

automatically (without landmarks) distances between pairs of morphological surfaces that would be at least 

as effective, for species discrimination, as Procrustes distances computed from user-defined landmarks [80]. 

Upon computing a distance between pairs of surfaces, the algorithm in [20] minimize an energy functional 

depending on the pair, over an admissible set of correspondence maps; the distance is indeed the value of 

the functional at the optimal correspondence map (Fig. 1). This approach has recently been followed by 

other authors as well [86].

Detailed inspection of the optimal correspondence maps generated from the algorithm [20] showed that 

some of them presented serious anomalies, such as reversed alignments of the anteroposterior/buccolingual 

axes [89]. It may seem surprising that the algorithms, despite sometimes producing these erroneous maps, 

nevertheless were sufficiently successful in capturing sample geometry to achieve the success rate reported 

in [80]. As we extend the algorithm in [20] in different directions, the correspondence maps became an 
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important explicit goal of the algorithm, as opposed to an interesting by-product. While CPD automates 

the traditional Procrustes analysis, the optimal correspondence maps parallel the landmark-identification 

procedure performed mentally by geometric morphometricians. Moreover, these maps provide detailed in-

formation about correlations, often not fully retained when an energy functional summarizes a similarity 

measure, between functional or developmental regions on different shapes.

HDM is a natural algorithmic framework for unsupervised learning from structural correspondences maps. 

In this section, we apply HDM to a data set consisting of 50 discretized triangular meshes of the second 

mandibular molar of prosimian primates and nonprimate close relatives. The 50 meshes are evenly divided 

into 5 genus groups: Alouatta, Ateles, Brachyteles, Callicebus, and Saimiri; each mesh contains about 5,000

vertices and 10,000 faces. We compute first all pairwise CPD and correspondence maps, then all pairwise 

Horizontal Base Diffusion Distance (HBDD) from the distances and maps. The 50 × 50 distance matrices 

are finally embedded into R3 for comparison via multi-dimensional scaling (MDS).

The HBDD is constructed from CPD as follows. For each pair of triangular meshes Si, Sj in the data 

set, denote their CPD as dij , and the optimal correspondence from Si to Sj as fij . Note that dij = dji and 

fij = f−1
ji . In the first step, we discretize each surface area measure μj = dvolSj

into a linear combination 

of Dirac delta measures supported on vertices of Sj, where each vertex of Sj is assigned 1/3 of the surface 

area of its one-ring neighborhood. We then soften each bijective smooth map fij into a transport plan matrix 

wij , the s-th row of which records the transition probability from vertex xi,s of Si to each vertex on Sj; 

moreover, the specific softening we choose here allows each xi,s to jump (in one step) only to the three 

vertices of the unique1 triangular face on Sj that contains fij (xi,s). If xj,r is a vertex on Sj that can be 

reached from xi,s in one step of the random walk, we set the transition probability between xi,s and xj,r

proportional to

exp

(
−‖fij (xi,s) − xj,r‖2

ǫF

)
,

where ǫF is a prescribed positive constant playing the role of the vertical bandwidth parameter δ in (2.6). 

For this specific data set, we choose ǫF = 0.001 which is the order of magnitude of the average distance 

between adjacent vertices on each mesh in the data set. Next, we construct the horizontal diffusion matrix 

H as a 50 × 50 block matrix, with block (i, j)

H (i, j) =

⎧
⎪⎨
⎪⎩

exp

(
−

d2
ij

ǫB

)
· wij if Sj is within the NB-neighborhood of Si,

0 otherwise.

We chose for this data set NB = 4 and ǫB = 0.03. These parameters are picked empirically, where 0.03 is 

usually the maximum CPD between surfaces that belong to the same species group. We then construct the 

normalized graph horizontal Laplacian LH
α,∗ from H, as in (3.7), and solve for its largest 100 eigenvalues and 

corresponding eigenvectors. From this eigen-decomposition we compute the horizontal base diffusion map

(HBDM) as in (3.12), obtaining an embedding of the data set into R
(100

2

)
= R

4950. Though this embedding 

is still high dimensional, it is only 1/3 of the original dimensionality (approximately 5000 ×3 = 15000). The 

HBDD between each pair Si, Sj is then defined as the Euclidean distance between their images embedded 

in R4950, as in (3.14). For comparison, we also embed the standard Diffusion Distance matrix in to R3 using 

MDS. As shown in Fig. 5, HBDD demonstrates the most clear pattern of species clusters among the three 

1 It is conceivable that fij (xi,s) could fall on the edge shared by two triangles in Sj , or even on a vertex of Sj shared by more 
than 2 triangles. While this rarely happens in practice, in our implementation for this application we resolve such conflicts by 
assigning fij (xi,s) randomly to any of the qualified triangles. This is because we express fij (xi,s) as a barycentric combination 
of the vertices of the triangle to which it is assigned, and thus the softening is in fact independent of the specific choice made.
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Fig. 5. Embeddings of CPD (left), DM (middle), and HBDD (right) matrices into R3 using Multi-dimensional Scaling (MDS). (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 6. Phylogeny of the 5 species groups Alouatta, Ateles, Brachyteles, Callicebus, and Saimiri. HBDD (see Fig. 5) reflects the 
dietary categories but not the phylogeny.

distances. It is even more interesting to notice that HBDD reflects the dietary groups within the data set 

(see Fig. 6): folivores Alouatta (red) and Brachyteles (green) are adjacent to each other in the rightmost 

panel of Fig. 5, so are frugivores Ateles (blue) and Callicebus (purple); the insectivore Saimiri (yellow) is 

far from the other herbivorous groups.

For applications in geometric morphometrics, a major advantage of HDM over persistence-diagram-based 

methods is the morphological interpretability. This interpretability amounts to a globally consistent man-

ner to identify corresponding regions on each shape in the data set and is potentially useful for subsequent 

studies of the evolutionary and developmental history. In standard morphologists’ practice, such correspon-

dences are assessed visually and manually; recent progress in techniques for generating and analyzing digital 

representations led to major advances [92–94] but still require the input of anatomical landmarks from the 

user. In contrast, by spectral clustering on the point cloud embedded into R
100 by HDM, we can easily 

obtain a globally consistent segmentation for all surfaces, see Fig. 7.

7. Discussion and future work

This paper introduced horizontal diffusion maps (HDM), a novel semi-supervised learning framework 

for the analysis and organization of a class of complex data sets, in which individual structures at each 

data point carry abundant information that can not be easily abstracted away by a pairwise similarity 

measure. We also introduced the fibre bundle assumption, a generalization of the manifold assumption, and 

showed that under this assumption HDM provides embeddings for both the base and the total manifold; 

furthermore, the flexibility of the HDM framework enables us to view VDM and the standard diffusion 

maps (DM) as special cases. The rest of the paper focused on analyzing the asymptotic behavior of HDM, 

with convergence rate estimated for finite sampling on unit tangent bundles. These results provide the 

mathematical foundation for HDM on fibre bundles, and motivate further studies concerning both wider 

applicability and deeper mathematical understanding of the algorithmic framework. We conclude this paper 

by listing a few potential directions for further exploration.
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Fig. 7. Automated landmarking: consistent segmentation of 50 lemur teeth by spectral clustering in the Euclidean space to which 
HDM embeds. From the top row to the bottom row: Alouatta, Ateles, Brachyteles, Callicebus, Saimiri.

1) Spectral Convergence of HDM. The convergence results in this paper are pointwise; as in [28,35], we 

believe that it is possible to show the convergence of the eigenvalues and eigenvectors of the graph 

horizontal Laplacians to the eigenvalues and eigenvectors of the manifold horizontal Laplacians, thus 

establishing the mathematical foundation for the spectral analysis of the HDM framework. Moreover, 

the horizontal diffusion maps differ from diffusion maps and vector diffusion maps in that the fibres tend 

to be registered to a common “template”, which, to our knowledge, is a new phenomenon addressed 

here for the first time.

2) Spectral Clustering and Cheeger-Type Inequalities. An important application of graph Laplacian is 

spectral clustering (graph partitioning). In a simple case, for a connected graph, the eigenvector corre-

sponding to the smallest positive eigenvalue of the graph Laplacian partitions the graph vertices into 

two similarly sized subsets, in such a way that the number of edges across the subsets is as small as 

possible. In spectral graph theory [1], the classical Cheeger’s Inequality provides upper and lower bounds 

for the performance of the partition; recently, [95] established similar results for the graph connection 

Laplacian, the central object of VDM. We believe that similar inequalities can be established for graph 

horizontal Laplacians as well, with potentially more interesting behavior of the eigenvectors. For in-

stance, we observed in practice that the eigenvector corresponding to the smallest positive eigenvalue 

of the graph horizontal Laplacian stably partitions all the fibres in a globally consistent manner.

3) Multiscale Analysis and Hierarchical Coarse-Graining. Multiscale representation of massive, complex 

data sets based on similarity graphs is an interesting and fruitful application of diffusion opera-

tors [96,24]. Based on HDM, one can build a similar theory for data sets possessing fibre bundle 

structures, providing a natural framework for coarse-graining that is meaningful (or even possible) 

only when performed simultaneously on the base and fibre manifolds. Moreover, since the horizontal 

diffusion matrix is often of high dimensionality, an efficient approach to store and compute its powers 

will significantly improve the applicability of the HDM algorithm. We thus expect to develop a theory 

of horizontal diffusion wavelets and investigate their performance on real data sets with underlying fibre 

bundle structures.

Software Matlab code accompanying this paper can be found at https://github .com /trgao10 /HDM.
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Appendix A. Fibre bundles and connections

There are different ways to define a connection on a fibre bundle. For the sake of generality, we adopt 

here the treatment in [45] or [97] from a Riemannian submersion point of view; see also [40,64] for more 

detailed discussions.

For any fibre bundle E = (E, M, F, π), the bundle projection map π : E → M descends canonically to 

its differential dπ between tangent bundles TE and TM , defining linear surjective homomorphisms between 

tangent planes TeE and Tπ(e)M for any e ∈ E. We denote VE for the vertical bundle, a sub-bundle of TE

defined as the kernel of the differential map dπ : TE → TM . A horizontal bundle HE is a sub-bundle of TE

that is supplementary to VE in the sense that TE = HE ⊕ VE, or equivalently

TeE = HeE ⊕ VeE for all e ∈ E.

Here HeE, VeE stand for the fibres of HE, VE above e ∈ E, respectively; we shall refer to HeE, VeE as the 

horizontal tangent space and vertical tangent space at e ∈ E for future convenience, and denote

H : TE → HE, V : TE → VE (A.1)

for the corresponding horizontal projection and vertical projection. Note that although VE is canonically 

defined, the choice of HE is arbitrary at this point. Since dπ
∣∣
HeE

: HeE → Tπ(e)M is a linear isomorphism, 

for any tangent vector u ∈ Tπ(e)M there exists a unique tangent vector u ∈ HeE such that dπe (u) = u; 

we call ū the horizontal lift of u. Furthermore, we know from simple ODE theory (and the smoothness of 

HE) that for any vector field X ∈ Γ (M, TM) there exists a unique horizontal lift X̄ ∈ Γ (E, HE) such that 

dπe

(
X̄e

)
= Xπ(e) for all e ∈ E.

In the rest of this paper, a path γ : [0, T ] → E is horizontal if all tangent vectors along γ are in HE. 

Given a path c : [0, T ] → M , a horizontal lift of c is any horizontal path c̄ in E that projects to c under the 

bundle projection π, i.e. π ◦ c̄ = c. Again, by horizontally lifting the tangent vector field along the path from 

TM to HE and solving the ODE system (where the overline again stands for horizontally lifted tangent 

vectors)

dc̃

dt
=

(
dc

dt

)
, t ∈ [0, T ]

we can uniquely lift any piecewise smooth path c in M starting at π (e) ∈ M to a horizontal path c̄ in E

starting at e ∈ E, at least locally around c (0). We call HE a Ehresmann connection [97], or connection

hereafter, if any path in M starting at m ∈ M can be globally horizontally lifted to E with any given initial 

point e ∈ E satisfying e ∈ π−1 (m). Such a lifting property is guaranteed, for instance, on any Riemannian 

submersion π : E → M with geodesically complete total space E, in which case the submersion is known 

to be a locally trivial fibration [56].

We shall focus on Ehresmann connections so that the horizontal lift of any path in M is uniquely 

determined once the starting point on E is specified. Therefore, given a smooth curve γ : [0, T ] → M that 

connects γ (0) to γ (T ) on M , there exists a smooth map from Fγ(0) to Fγ(T ) (at least when γ (0) and γ (T )

are sufficiently close), defined as
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Fγ(0) ∋ e �→ γ̄e (T ) ∈ Fγ(T ),

where γ̄e denotes the horizontal lift of γ with starting point p. We call this construction of maps between 

fibres, obviously depending on the choice of path γ, the parallel transport along γ (with respect to the 

connection), and denote P γ
yx : Fx → Fy for the parallel transport from fibre Fx to fibre Fy. When γ is a 

unique geodesic on M that connects x to y, we drop the superscript γ and simply write Pyx : Fx → Fy. For 

future reference, we give the precise definition of the operator Pyx here.

Definition 7.1 (Parallel transport on fibre bundles). Let E = (E, M, F, π) be a fibre bundle, x ∈ M , v ∈ Fx, 

and U a geodesic normal neighborhood of x on the base manifold M . For any y ∈ U , denote the geodesic 

distance between x and y as dM (x, y). Let γ : [0, dM (x, y)] → M be the unique unit-speed geodesic on M

connecting x to y, i.e., γ (0) = x, γ (dM (x, y)) = y; let γ̄ be the unique horizontal lift of γ starting at v ∈ Fx, 

i.e.,

{
γ̄′ (t) = γ′ (t) , t ∈ [0, dM (x, y)] ,

γ̄ (0) = v.

The parallel-transport of v from x to y, denoted as Pyxv, is defined as

Pyxv = γ̄ (dM (x, y)) ∈ Fy.

The probabilistic interpretation of HDM (and even VDM) implicitly depends on lifting from the base 

manifold a path that is continuous but not necessarily smooth. Though this can not be trivially achieved 

by the ODE-based approach, stochastic differential geometers developed tools appropriate for tackling this 

technicality (see e.g. [98, §5.1.2]).

Appendix B. Horizontal and vertical Laplacians

Assume 
(
M, gM

)
is a d-dimensional Riemannian manifold, and denote ∇M for the canonical Levi-Civita 

connection on M . The Laplace-Beltrami operator on M , or Laplacian for short, is the analogy of the usual 

Laplace operator on the Euclidean space defined by

ΔM f (x) = Trace ∇M ∇f (x)

for all f ∈ C∞ (M), x ∈ M . For an orthonormal local frame {X1, · · · , Xd} near x ∈ M , ΔM can also be 

written as

ΔM f (x) =

d∑

j=1

gM
(

∇M
Xj

∇f, Xj

)
(x) =

d∑

j=1

X2
j f (x) −

⎛
⎝

d∑

j=1

∇M
Xj

Xj (x)

⎞
⎠ f (x) . (B.1)

If we further pick the frame to be a local geodesic frame centered at x ∈ M , then ∇M
Xj

Xk (x) = 0 for all 

1 ≤ j, k ≤ d and thus ΔM takes the following sum-of-squares form

ΔM f (x) =

d∑

j=1

X2
j f (x) . (B.2)

The infinitesimal generator of the horizontal diffusion (2.2) turns out to be a differential operator on E that 

is a “horizontal lift” of ΔM in a sense to be made clear later in this section. To characterize this infinitesimal 
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generator, let us first introduce a Riemannian metric on E that is adapted to the connection HE. For any 

x ∈ M , recall from Section 2.1 that Fx (the fibre at point x ∈ M) is a Riemannian submanifold of E, thus 

vertical tangent vectors at e ∈ π−1 (x) can be canonically identified with tangent vectors to Fx; if each Fx

is equipped with a Riemannian metric gFx , we define for any U, V ∈ VeE

gE (U, V ) = gFx (U, V ) . (B.3)

For any X, Y ∈ HeE, by the linear isomorphism between HeE and TxM we define

gE (X, Y ) = gM (dπe (X) , dπe (Y )) (B.4)

where gM stands for the Riemannian metric on M . Finally, impose orthogonality between HeE and VeE

by setting for any X ∈ HeE, U ∈ VeE

gE (X, U) = 0. (B.5)

The smoothness of gE with respect to e ∈ E follows from the smoothness of gM and gFx . In other words, gE

is constructed so as to make the decomposition TE = HE ⊕VE orthogonal. Some authors [66,99] abbreviate 

this construction as

gE = gM ⊕ gF . (B.6)

For future convenience, let us use superscripts to denote the horizontal and vertical components of tangent 

vectors to E, i.e. for any Z ∈ TeE

Z = ZH + ZV

where ZH ∈ HeE, ZV ∈ VeE are uniquely determined due to the direct sum decomposition TeE =

HeE ⊕ VeE. Thus for any W, Z ∈ TeE

gE (W, Z) = gM
(
dπe

(
W H

)
, dπe

(
ZH

))
+ gFπ(e)

(
W V , ZV

)
.

We also write the horizontal and vertical components of the gradient of any smooth function f ∈ C∞ (E)

as

∇Hf := (∇f)
H

, ∇V f := (∇f)
V

. (B.7)

Let ∇E denote the Levi-Civita connection with respect to gE. Define the rough horizontal Laplacian ΔH

on E for f ∈ C∞ (E) as the following second order partial differential operator:

ΔHf (e) = Trace
(
∇E∇Hf

)H
(e) for all e ∈ E. (B.8)

Let 
{

X̄1, · · · , X̄d

}
be the horizontal lift of an orthonormal frame {X1, · · · , Xd} near π (e) = x ∈ M . Since 

gE
(
X̄j , X̄k

)
= gM (Xj , Xk) for 1 ≤ j, k ≤ d, the tangent vectors X̄1 (e′) , · · · , X̄d (e′) form an orthonormal 

basis for He′E for all e′ sufficiently close to e. We can write (B.8) in terms of these horizontally lifted vector 

fields as

ΔHf (e) =
d∑

j=1

gE
(

∇E
X̄j

∇Hf, X̄j

)
(e)

=

d∑

j=1

X̄2
j f (e) −

⎛
⎝

d∑

j=1

(
∇E

X̄j
X̄j

)H

⎞
⎠ f (e) .

(B.9)
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Loosely speaking, ΔH is the “horizontal lift” of ΔM from M to E, since (B.9) can be obtained from (B.1)

by replacing each Xj with its horizontal lift X̄j and noting that 
(

∇E
X̄j

X̄j

)H

is the horizontal lift of ∇M
Xj

Xj

(see e.g. [56, Proposition 3.1]). More precisely, for any g ∈ C∞ (M), denote ḡ = g ◦ π ∈ C∞ (E), then for 

any e ∈ E and x = π (e) ∈ M we have

ΔM g (x) = ΔH ḡ (e) . (B.10)

Remark 7.1. When E = O (M) is the frame bundle of M , the rough horizontal Laplacian ΔH coincides with 

the Bochner horizontal Laplacian ΔO(M) in stochastic differential geometry [59, Chapter 3]. The classical 

Eells-Elworthy-Malliavin approach intrinsically defines a Brownian motion on manifolds as a horizontal 

Brownian motion on O (M) generated by ΔO(M).

Remark 7.2. In general, the rough horizontal Laplacian ΔH differs from the concept of “horizontal Lapla-

cian” commonly seen in sub-Riemannian geometry by a mean curvature term [99,100]; the two types of 

horizontal Laplacian coincide only when the fibres of E are minimal submanifolds of E. In fact, for any 

f ∈ C∞ (E), the Laplace-Beltrami operator on E with respect to gE splits into two parts

ΔEf = Trace ∇E∇f = Trace ∇E∇Hf + Trace ∇E∇V f

Define the horizontal Laplacian ΔH
E and the vertical Laplacian ΔV

E as

ΔH
E f := Trace ∇E∇Hf, ΔV

Ef := Trace ∇E∇V f, (B.11)

then

ΔE = ΔH
E + ΔV

E . (B.12)

Recalling the definition of ΔH from (B.8), we have

ΔH
E f = Trace

(
∇E∇Hf

)H
+ Trace

(
∇E∇Hf

)V

= ΔHf + Trace
(
∇E∇Hf

)V

and ΔH
E = ΔH if and only if

Trace
(
∇E∇Hf

)V
= 0 for all f ∈ C∞ (E)

which turns out to be equivalent to the requirement that Fx are minimal submanifolds of E for all x ∈ M . 

This holds, for instance, when all fibres of the Riemannian submersion π : E → M are totally geodesic, a 

scenario of great theoretic interest since it implies that all fibres are isometric [56]; we do not make such 

an assumption in the HDM framework since this particularly simple case is obviously too restricted for 

practical purposes.

Remark 7.3. For any x ∈ M and e ∈ π−1 (x), if {X1, · · · , Xd} is a geodesic frame on M near x, then the 

horizontal lifts 
{

X̄1, · · · , X̄d

}
near e also constitute a “horizontal geodesic frame” in the sense that

(
∇E

X̄j
X̄k

)H

(e) = 0, for all 1 ≤ j, k ≤ d,

which simplifies (B.9) into a sum-of-squares form analogous to (B.2)
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ΔHf (e) =
d∑

j=1

X̄2
j f (e) for all f ∈ C∞ (E) . (B.13)

Remark 7.4. We make the observation that the vertical Laplacian ΔV
E , which turns out to characterize the 

“vertical component” of the coupled diffusion operator H
(α)
ǫ,δ on the fibre bundle, coincides with the Laplace-

Beltrami operator on each fibre Fx. This fact will be needed in the proof of Theorem 4 in Appendix C. 

More precisely, for any f ∈ C∞ (E) and e ∈ E,

ΔV
Ef (e) =

[
ΔFπ(e)

(
f ↾ Fπ(e)

)]
(e) = Trace

(
∇E∇V f

)V
. (B.14)

At a first glance this might seem a bit surprising since one may expect a mean curvature term in ΔV
E

from (B.11) (as is the case for ΔH
E ):

ΔV
Ef = Trace ∇E∇V f = Trace

(
∇E∇V f

)H
+ Trace

(
∇E∇V f

)V
. (B.15)

However, the first trace term in (B.15) vanishes for the following reason. Let {X1, · · · , Xd} be a local 

horizontal orthonormal frame around e ∈ E, and {U1, · · · , Un} a local vertical orthonormal frame (recall 

that dim (F ) = n); {X1, · · · , Xd, U1, · · · , Un} is then a local orthonormal frame on E. We have

Trace
(
∇E∇V f

)H
=

d∑

j=1

〈
(

∇E
Xj

∇V f
)H

, Xj〉 +

n∑

k=1

〈
(
∇E

Uk
∇V f

)H
, Uk〉 =

d∑

j=1

〈
(

∇E
Xj

∇V f
)H

, Xj〉

=

d∑

j=1

〈∇E
Xj

∇V f, Xj〉 = 〈∇V f,

d∑

j=1

−∇E
Xj

Xj〉 = 〈∇V f,

d∑

j=1

−
(

∇E
Xj

Xj

)V

〉 = 0,

where the last equality follows from [101, Lemma 2]:

(
∇E

Xj
Xj

)V

=
1

2
([Xj , Xj ])

V
= 0 for all 1 ≤ j ≤ d.

In the remaining section we consider horizontal and coupled diffusion operators on a few classical exam-

ples. All fibre bundles in this section are Riemannian submersions with totally geodesic fibres, for which, as 

explained in Remark 7.2, the rough horizontal Laplacian ΔH equals to the horizontal Laplacian ΔH
E . See 

[99] [40, §9.F] for more details about Riemannian submersions with totally geodesic fibres.

Example 11 (Heisenberg group). The Heisenberg group

H
2n+1 =

{
(x, y, z) ∈ R

2n+1 | x ∈ R
n, y ∈ R

n, z ∈ R
}

is essentially R2n+1 endowed with the following group structure:

(x1, y1, z1) · (x2, y2, z2) =

(
x1 + x2, y1 + y2, z1 + z2 +

1

2
(x1 · y2 − x2 · y1)

)
.

The projection

π : H
2n+1 −→ R

2

(x, y, z) �−→ (x, y)



JID:YACHA AID:1332 /FLA [m3L; v1.260; Prn:19/08/2019; 14:07] P.35 (1-69)

T. Gao / Appl. Comput. Harmon. Anal. ••• (••••) •••–••• 35

is a Riemannian submersion with totally geodesic fibres [99]. Since H2n+1 is complete, it follows from [56, 

Theorem 1] that 
(
H

2n+1, R
2, R, π

)
is a fibre bundle. In fact, H2n+1 is a Lie group, and its Lie algebra of 

left invariant vector fields at (x, y, z) is spanned by

∂

∂z
,

∂

∂xj
− 1

2
yj

∂

∂z
,

∂

∂yj
− 1

2
xj

∂

∂z
, j = 1, · · · , n.

These invariant vector fields define a connection on H2n+1 in the sense of Ehresmann [97]. The horizontal 

and vertical Laplacians on H2n+1 with respect to this connection are

ΔH
H2n+1 =

n∑

j=1

[
∂2

∂x2
j

+
∂2

∂y2
j

+
1

4

(
x2

j + y2
j

) ∂2

∂z2
− yj

∂2

∂xj∂z
+ xj

∂2

∂yj∂z

]
,

ΔV
H2n+1 =

∂2

∂z2
.

By Theorem 4, for any f ∈ C∞
(
H

2n+1
)
, if δ = O (ǫ),

H
(α)
ǫ,δ f (x, v) = f (x, v) + ǫ

m21

2m0

[
ΔH

H2n+1

(
fp1−α

)
− fΔH

H2n+1p1−α
]

(x, v)

p1−α (x, v)

+ δ
m22

2m0

[
ΔV

H2n+1

(
fp1−α

)
− fΔV

H2n+1p1−α
]

(x, v)

p1−α (x, v)
+ O

(
ǫ2 + ǫδ + δ2

)
.

When n = 1, this is consistent with the conclusion obtained in [71, Chapter 4].

Example 12 (Tangent bundles). Tangent bundles play an important role in Riemannian geometry. For a 

closed d-dimensional Riemannian manifold (M, g), its tangent bundle TM is defined as

TM =
∐

x∈M

TxM

equipped with a natural smooth structure (see e.g. [102]). In a local coordinate chart (U ; x1, · · · , xd) of 

M , {Ej = ∂/∂xj | 1 ≤ j ≤ d} is a local frame on M , and we write v ∈ TxM as v = vjEj (x). A local 

trivialization on U can be chosen as

(x, v) �→ (x1, · · · , xd, v1, · · · , vd) , ∀x ∈ U, v ∈ TxM,

and the corresponding basis for T(x,v)TM can be written as

{
∂

∂x1

∣∣∣
(x,v)

, · · · ,
∂

∂xd

∣∣∣
(x,v)

,
∂

∂v1

∣∣∣
(x,v)

, · · · ,
∂

∂vd

∣∣∣
(x,v)

}
.

Let Γβ
αj be the connection coefficients of the Levi-Civita connection on M . The horizontal subbundle of 

TTM determined by this connection is

HTM :=
∐

(x,v)∈T M

HT(x,v)M =
∐

(x,v)∈T M

span

{
∂

∂xj

∣∣∣
(x,v)

− Γβ
αj (x) vα

∂

∂vβ

∣∣∣
(x,v)

, j = 1 · · · , d

}
.

The metric (B.6) on TM given by this construction is the Sasaki metric [103,104]. The horizontal and 

vertical Laplacians acts on any f ∈ C∞ (TM) as
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ΔH
TM f (x, v) =

1√
|g (x)|

(
∂

∂xj
− Γβ

αj (x) vα
∂

∂vβ

)[√
|g (x)| gjk (x)

(
∂f

∂xk
− Γβ

αk (x) vα
∂f

∂vβ

)]
,

ΔV
TM f (x, v) =

1√
|g (x)|

∂

∂vj

(√
|g (x)| gjk (x)

∂f

∂vk

)
= gjk (x)

∂2f

∂vj∂vk
.

According to Theorem 4, for any f ∈ C∞ (TM), if δ = O (ǫ),

H
(α)
ǫ,δ f (x, v) = f (x, v) + ǫ

m21

2m0

[
ΔH

TM

(
fp1−α

)
− fΔH

TM p1−α
]

(x, v)

p1−α (x, v)

+ δ
m22

2m0

[
ΔV

TM

(
fp1−α

)
− fΔV

TM p1−α
]

(x, v)

p1−α (x, v)
+ O

(
ǫ2 + ǫδ + δ2

)
.

This is consistent with the conclusion obtained in [71, Chapter 3].

Appendix C. Proofs of Theorem 2, Theorem 4, and Theorem 6

Throughout this appendix we assume the Einstein summation convention unless otherwise specified. Our 

starting point is the following lemma, in reminiscent of [7, Lemma 8] and [9, Lemma B.10].

Lemma 13. Let Φ : R → R be a smooth function compactly supported in [0, 1]. Assume M is a d-dimensional 

compact Riemannian manifold without boundary, with injectivity radius Inj (M) > 0. For any ǫ > 0, define 

kernel function

Φǫ (x, y) = Φ

(
d2

M (x, y)

ǫ

)
(C.1)

on M×M , where d2
M (·, ·) is the geodesic distance on M . For sufficiently small ǫ satisfying 0 ≤ ǫ ≤

√
Inj (M), 

the integral operator associated with kernel Φǫ

(Φǫ g) (x) :=

∫

M

Φǫ (x, y) g (y) dvolM (y) (C.2)

has the following asymptotic expansion as ǫ → 0:

(Φǫ g) (x) = ǫ
d
2

[
m0g (x) + ǫ

m2

2

(
ΔM g (x) − 1

3
ScalM (x) g (x)

)
+ O

(
ǫ2
)]

, (C.3)

where m0, m2 are constants that depend on the moments of Φ and the dimension d of the Riemannian 

manifold M , ΔM is the Laplace-Beltrami operator on M , and ScalM (x) is the scalar curvature of M at x.

Proof. Consider geodesic normal coordinates near x ∈ M . Let {e1, · · · , ed} be an orthonormal basis for 

TxM , (s1, · · · , sd) the geodesic normal coordinates, and write r = dM (x, y). Then r2 = s2
1 + · · · + s2

d. Note 

that

∫

M

Φǫ (x, y) g (y) dvolM (y) =

∫

B√
ǫ(x)

Φ

(
d2

M (x, y)

ǫ

)
g (y) dvolM (y)

=

∫

B√
ǫ(0)

Φ

(
r2

ǫ

)
g̃ (s) dvolM (s)

(C.4)
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where

g̃ (s) = g̃ (s1, · · · , sd) = g ◦ expx (s1e1 + · · · + sded) ,

dvolM (s) = dvolM (s1, · · · , sd) = dvolM (expx (s1e1 + · · · + sded)) .

By a further change of variables

s̃1 =
s1√

ǫ
, · · · , s̃d =

sd√
ǫ
; r̃ =

r√
ǫ
, (C.5)

we have

∫

B√
ǫ(0)

Φ

(
r2

ǫ

)
g̃ (s) dvolM (s) =

∫

B1(0)

Φ
(
r̃2
)

g̃
(√

ǫ s̃
)

dvolM
(√

ǫ s̃
)

. (C.6)

On the other hand, in geodesic normal coordinates the Riemannian volume form has asymptotic expansion 

(see e.g. [105])

dvolM (s1, · · · , sd) =

[
1 − 1

6
Rkℓ (x) sksℓ + O

(
r3
)]

ds1 · · · dsd (C.7)

where Rkℓ is the Ricci curvature tensor

Rkℓ (x) = gijRkiℓj (x) .

Thus

dvolM
(√

ǫ s̃1, · · · ,
√

ǫ s̃d

)
=
[
1 − ǫ

6
Rkℓ (x) s̃ks̃ℓ + O

(
ǫ

3
2 r̃3

)]
· ǫ

d
2 ds̃1 · · · ds̃d. (C.8)

In the meanwhile, the Taylor expansion of g̃ (s) near x reads

g̃ (s) = g̃ (0) +
∂g̃

∂sj
(0) sj +

1

2

∂2g̃

∂sk∂sℓ
(0) sksℓ + O

(
r3
)

and thus

g̃
(√

ǫ s̃
)

= g (x) +
√

ǫ · ∂g̃

∂sj
(0) s̃j + ǫ · 1

2

∂2g̃

∂sk∂sℓ
(0) s̃ks̃ℓ + O

(
ǫ

3
2 r̃3

)
. (C.9)

By the symmetry of the kernel and the domain of integration B1 (0),

∫

B1(0)

Φ
(
r̃2
)

s̃jds̃1 · · · ds̃d = 0 for all 1 ≤ j ≤ d,

∫

B1(0)

Φ
(
r̃2
)

s̃ks̃ℓ ds̃1 · · · ds̃d = 0 fir all 1 ≤ k �= ℓ ≤ d.

(C.10)

Combining (C.4)–(C.10), we have
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∫

M

Φǫ (x, y) g (y) dvolM (y) =

∫

B1(0)

Φ
(
r̃2
)

g̃
(√

ǫ s̃1, · · · ,
√

ǫ s̃d

)
dvolM

(√
ǫ s̃
)

= ǫ
d
2

[
g (x)

∫

B1(0)

Φ
(
r̃2
)

ds̃ +
ǫ

2

d∑

k=1

(
∂2g̃

∂s2
k

(0) − 1

3
g (x) Rkk (x)

) ∫

B1(0)

Φ
(
r̃2
)

s̃2
k ds̃ + O

(
ǫ2
)
]

Note that O
(
ǫ3/2

)
term vanishes again by symmetry (the same argument given in [72, §2] applies). Define 

constants

m0 :=

∫

B1(0)

Φ
(
r̃2
)

ds̃1 · · · ds̃d = ωd−1

1∫

0

Φ
(
r̃2
)

r̃d−1dr̃,

m2 :=

∫

B1(0)

Φ
(
r̃2
)

(s̃k)
2

ds̃1 · · · ds̃d for any k ∈ {1, · · · , d} .

(C.11)

Then

∫

M

Φǫ (x, y) g (y) dvolM (y)

= ǫ
d
2

[
m0g (x) + ǫ

m2

2

(
ΔM g (x) − 1

3
ScalM (x) g (x)

)
+ O

(
ǫ2
)]

,

where we used the fact that in geodesic normal coordinates

d∑

k=1

∂2g̃

∂s2
k

(0) = ΔM g (x) ,

d∑

k=1

Rkk (x) = ScalM (x) . ✷

Before applying Lemma 13 to compute the infinitesimal generators of H
(α)
ǫ and H

(α)
ǫ,δ , we need more local 

information about f (x, Pyxv) near (x, v). To this end, let {X1, · · · , Xd} be a local geodesic frame on U at 

x, and denote 
{

X̄1, · · · , X̄d

}
for the horizontal lift of this frame; in addition, let {V1, · · · , Vn} be vertical 

vector fields on E such that

{
X̄1 (e) , · · · , X̄d (e) , V1 (e) , · · · , Vn (e)

}

constitutes an orthonormal basis for all e in a sufficiently small neighborhood of (x, v) contained in π−1 (U). 

Write 
{

θ1, · · · , θd, φ1, · · · φn
}

for the 1-forms dual to the vector fields 
{

X̄1, · · · , X̄d, V1, · · · , Vn

}
, i.e.,

θj
(
X̄k

)
= δj

k, θj (Vℓ) = 0,

φm
(
X̄k

)
= 0, φm (Vℓ) = δm

ℓ ,

for all 1 ≤ j, k ≤ d, 1 ≤ ℓ, m ≤ n.

If γ is a unit speed geodesic on M starting at x, recall from Definition 7.1 that t �→ Pγ(t),xv is the unique 

horizontal lift of γ with starting point v ∈ Fx, i.e.,

γ̄ (t) = Pγ(t),xv.

Since γ̄ is horizontal, φm (γ̄′ (t)) = 0 for all 1 ≤ m ≤ n and thus (adopting Einstein summation convention)
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γ̄′ (t) = θj (γ̄′ (t)) X̄j (t) . (C.12)

Here, as well as in the rest of this appendix, we set

Xj (t) = Xj (γ (t)) , X̄j (t) = X̄j (γ (t)) .

By [56, Proposition 3.1], γ̄ (t) is a geodesic on E, thus

0 = ∇E
γ̄′(t)γ̄

′ (t) =
d

dt

[
θj (γ̄′ (t))

]
X̄j (t) + θj (γ̄′ (t)) θk (γ̄′ (t)) ∇E

X̄k(t)
X̄j (t) ,

which implies

d

dt

[
θj (γ̄′ (t))

]
X̄j (t) = −θj (γ̄′ (t)) θk (γ̄′ (t)) ∇E

X̄k(t)
X̄j (t) . (C.13)

In particular, the right hand side of (C.13) is horizontal. It follows that

d

dt

[
θj (γ̄′ (t))

]
X̄j (t) = −θj (γ̄′ (t)) θk (γ̄′ (t)) H ∇E

X̄k(t)
X̄j (t)

= −θj (γ̄′ (t)) θk (γ̄′ (t)) 〈∇E
X̄k(t)

X̄j (t) , X̄i (t)〉γ̄(t)X̄i (t)

= −θj (γ̄′ (t)) θk (γ̄′ (t)) 〈∇M
Xk(t)Xj (t) , Xi (t)〉γ(t)X̄i (t) ,

where H is the horizontal projection as defined in (A.1). By linear independence,

d

dt

[
θj (γ̄′ (t))

]
= −θi (γ̄′ (t)) θk (γ̄′ (t)) Γj

ik (γ (t)) , (C.14)

where Γj
ik are the connection coefficients for the frame {X1, · · · , Xd} on M

Γj
ik = 〈∇M

Xk
Xj , Xi〉, ∀1 ≤ i, j, k ≤ d.

Setting t = 0 in (C.14) to get

d

dt

∣∣∣
t=0

[
θj (γ̄′ (t))

]
= −θi (γ̄′ (0)) θk (γ̄′ (0)) Γj

ik (γ (0)) = 0 (C.15)

where Γj
ik (x) = 0 since we picked {Xj | 1 ≤ j ≤ d} as a geodesic frame at x.

Now for any f ∈ C∞ (E) write

f (t) := f (γ̄ (t)) = f
(
γ (t) , Pγ(t),xv

)
.

Using (C.12) and (C.15), the first and second derivatives of f (t) at t = 0 can be written as

f ′ (0) = θj (γ̄′ (0)) X̄jf (0) ,

f ′′ (0) =
d

dt

∣∣∣
t=0

[
θj (γ̄′ (t))

]
X̄jf (t) + θi (γ̄′ (0)) θk (γ̄′ (0)) X̄kX̄jf (0)

= θi (γ̄′ (0)) θk (γ̄′ (0)) X̄kX̄if (0) .

Furthermore, if we denote π∗ : Λ∗M → Λ∗E for the pullback map, and write 
{

ψj | 1 ≤ j ≤ d
}

for the dual 

1-forms to the geodesic frame {Xj | 1 ≤ j ≤ d} on M , then θj = π∗ψj for all 1 ≤ j ≤ d and



JID:YACHA AID:1332 /FLA [m3L; v1.260; Prn:19/08/2019; 14:07] P.40 (1-69)

40 T. Gao / Appl. Comput. Harmon. Anal. ••• (••••) •••–•••

θj (γ̄′ (0)) = π∗ψj (γ̄′ (0)) = ψj (γ′ (0)) .

Thus 
(
θ1 (γ̄′ (0)) , · · · , θd (γ̄′ (0))

)
is γ′ (0) represented in the geodesic normal coordinate system associated 

with the geodesic frame {Xj | 1 ≤ j ≤ d}. If we write σj = θj (γ̄′ (0)) and sj (t) = tσj for all j = 1, · · · , d, 

then 
∑d

j=1 σ2
j = 1 and (s1, · · · , sd) are the geodesic coordinates of γ (t) on M with respect to the geodesic 

frame {Xj | 1 ≤ j ≤ d}. With this notation,

f ′ (0) = σjX̄jf (0) ,

f ′′ (0) = σiσkX̄iX̄kf (0) .

Using (C.12), (C.15), and f ′′ (t), it is straightforward to compute the third order derivative of f at t = 0:

f ′′′ (0) = σiσjσkX̄iX̄jX̄kf (0) ,

hence the Taylor expansion of f (t) near t = 0 is

f (t) = f (0) + tf ′ (0) +
t2

2
f ′′ (0) +

t3

6
f ′′′ (0) + O

(
t4
)

= f (x, v) + tσjX̄jf (x, v) +
t2

2
σiσkX̄iX̄kf (x, v) +

t3

6
σiσjσkX̄iX̄jX̄kf (x, v) + O

(
t4
)

.

(C.16)

This expansion immediately leads to the following lemma:

Lemma 14. Following Lemma 13, let Pyx : Fx → Fy be as defined in Definition 7.1. For any f ∈ C∞ (E)

and v ∈ Fx, as ǫ → 0,

∫

M

Φǫ (x, y) f (y, Pyxv) dvolM (y)

= ǫ
d
2

{
m0f (x, v) + ǫ

m2

2

[
ΔHf (x, v) − 1

3
ScalM (x) f (x, v)

]
+ O

(
ǫ2
)}

,

(C.17)

where m0, m2 are constants, ScalM (x) is the scalar curvature of M at x, and ΔH is the rough horizontal 

Laplacian on E defined in (B.8).

Proof. Let U ⊂ M be a geodesic normal neighborhood around x ∈ M , and ǫ sufficiently small that any 

point in U can be connected to x with a geodesic of length less than ǫ1/2. Let {Xj | 1 ≤ j ≤ d} be a geodesic 

frame on E, s1, · · · , sd geodesic normal coordinates on U with respect to this geodesic frame, and

r > 0, r2 =

d∑

j=1

s2
j , σj =

sj

r
for all 1 ≤ j ≤ d.

Following the proof of Lemma 13, let s̃j , ̃r be as defined in (C.5) and use (C.16) in place of (C.12),

∫

M

Φǫ (x, y) f (y, Pyxv) dvolM (y) =

∫

B1(0)

Φ
(
r̃2
)

f̃
(√

ǫ s̃, v
)

dvolM
(√

ǫ s̃
)

= f (x, v)

∫

B1(0)

Φ
(
r̃2
)

dvolM
(√

ǫ s̃
)

+ ǫ
1
2 X̄jf (x, v)

∫

B1(0)

s̃jΦ
(
r̃2
)

dvolM
(√

ǫ s̃
)
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+
ǫ

2
X̄iX̄kf (x, v)

∫

B1(0)

s̃is̃kΦ
(
r̃2
)

dvolM
(√

ǫ s̃
)

+
ǫ

3
2

6
X̄iX̄jX̄kf (x, v)

∫

B1(0)

s̃is̃j s̃kΦ
(
r̃2
)

dvolM
(√

ǫ s̃
)

+ O
(
ǫ2
)

.

Again by symmetry of these integrals and (C.7), this reduces to

ǫ
d
2

[
m0f (x, v) − ǫ

6
m2ScalM (x) f (x, v) +

ǫ

2
m2

d∑

k=1

X̄2
kf (x, v) + O

(
ǫ2
)
]

= ǫ
d
2

[
m0f (x, v) + ǫ

m2

2

(
ΔHf (x, v) − 1

3
ScalM (x) f (x, v)

)
+ O

(
ǫ2
)]

,

where m0, m2 are constants defined in (C.11), and

d∑

k=1

X̄2
kf (x, v) = ΔHf (x, v)

as explained in (B.13). ✷

We are now ready to give the proof of Theorem 2.

Proof of Theorem 2. By the definition of H
(α)
ǫ in (2.2), for any f ∈ C∞ (E),

H(α)
ǫ f (x, v) =

∫

M

K(α)
ǫ (x, y) f (y, Pyxv) p (y) dvolM (y)

∫

M

K(α)
ǫ (x, y) p (y) dvolM (y)

=

∫

M

Kǫ (x, y) f (y, Pyxv) p (y) p−α
ǫ (y) dvolM (y)

∫

M

Kǫ (x, y) p (y) p−α
ǫ (y) dvolM (y)

.

By Lemma 13,

pǫ (y) =

∫

M

Kǫ (x, y) p (η) dvolM (η)

= ǫ
d
2

{
m0p (y) + ǫ

m2

2

(
ΔM p (y) − 1

3
ScalM (y) p (y)

)
+ O

(
ǫ2
)}

.

Using this expansion of pǫ and applying Lemma 13 to the denominator of H
(α)
ǫ ,

∫

M

Kǫ (x, y) p (y) p−α
ǫ (y) dvolM (y)

= ǫ
(1−α)d

2 m−α
0

[
m0p1−α (x) + ǫ

m2

2

(
ΔM p1−α (x) − 1

3
ScalM (x) p1−α (x)

)
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− αǫ
m2

2
p−α (x)

(
ΔM p (x) − 1

3
ScalM (x) p (x)

)
+ O

(
ǫ2
)
]

.

Similarly, apply Lemma 14 to the numerator of H
(α)
ǫ to get

∫

M

Kǫ (x, y) f (y, Pyxv) p (y) p−α
ǫ (y) dvolM (y)

= ǫ
(1−α)d

2 m−α
0

{
m0

(
fp̄1−α

)
(x, v)

+ ǫ
m2

2

[
ΔH

(
fp̄1−α

)
(x, v) − 1

3
ScalM (x)

(
fp̄1−α

)
(x, v)

]

− αǫ
m2

2
f (x, v) p−α (x)

(
ΔM p (x) − 1

3
ScalM (x) p (x)

)
+ O

(
ǫ2
)
}

.

Noting that p̄ = p ◦ π and by (B.10)

ΔH p̄1−α = ΔM p1−α,

a direct computation (plus assumption (2.1) for the density p) concludes

H(α)
ǫ f (x, v) = f (x, v) + ǫ

m2

2m0

[
ΔH

(
fp̄1−α

)
− fΔH p̄1−α

]
(x, v)

p̄1−α (x, v)
+ O

(
ǫ2
)

,

whence (4.1) follows. ✷

We now turn to the proof of Theorem 4. The basic idea is to apply Lemma 13 and Lemma 14 repeatedly 

in both vertical and horizontal directions.

Lemma 15. Suppose E = (E, M, F, π) is a fibre bundle, M is a smooth closed Riemannian manifold with 

Inj (M) > 0, and E equipped with the Riemannian metric (B.6). Assume dim M = d and dim F = n. Let 

Kǫ,δ be defined as in (2.3) with ǫ ∈
(

0, Inj (M)
2
)

, δ = O (ǫ). For any function f ∈ C∞ (E),

∫

M

∫

Fy

Kǫ,δ (x, v; y, w) f (y, w) dvolFy
(w) dvolM (y)

= ǫ
d
2 δ

n
2

{
m0f (x, v) + ǫ

m21

2

(
ΔHf (x, v) − 1

3
ScalM (x) f (x, v)

)

+ δ
m22

2

(
ΔV

Ef (x, v) − 1

3
ScalFx (v) f (x, v)

)
+ O

(
ǫ2 + ǫδ + δ2

)
}

,

(C.18)

where m0, m21, m22 are positive constants depending only on the kernel K and the fibre bundle, ScalM , 

ScalFx are scalar curvatures of M , Fx respectively, and ΔH , ΔV
E are defined in (B.8) and (B.11).
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Proof. By definition of Kǫ,δ,

∫

M

∫

Fy

Kǫ,δ (x, v; y, w) f (y, w) dvolFy
(w) dvolM (y)

=

∫

M

∫

Fy

K

(
d2

M (x, y)

ǫ
,

d2
Fy

(Pyxv, w)

δ

)
f (y, w) dvolFy

(w) dvolM (y) .

For any fixed y ∈ M , apply Lemma 13 to the inner integral over Fy with

Φ (p, q) = K

(
d2

M (x, y)

ǫ
,

d2
Fy

(p, q)

δ

)

then the constants m0, m2 will depend on d2
M (x, y) /ǫ. More specifically, if we set

M0

(
r2
)

=

∫

Bn
1 (0)

K
(
r2, ρ2

)
dθ1 · · · dθn, M2

(
r2
)

=

∫

Bn
1 (0)

θ2
1K

(
r2, ρ2

)
dθ1 · · · dθn,

M3

(
r2
)

=

∫

Bn
1 (0)

θ4
1K

(
r2, ρ2

)
dθ1 · · · dθn, where ρ2 =

n∑

j=1

θ2
j

and recall from (B.14) that ΔV
E coincides with ΔFy

if one restricts a smooth function in C∞ (E) to Fy, then 

Lemma 13 leads to
∫

Fy

Kǫ,δ (x, v; y, w) f (y, w) dvolFy
(w)

= δ
n
2

{
M0

(
d2

M (x, y)

ǫ

)
f (y, Pyxv) +

δ

2
M2

(
d2

M (x, y)

ǫ

)
×

[
ΔV

E f (y, Py,xv) − 1

3
ScalFy (Pyxv) f (y, Pyxv)

]
+ O

(
δ2M3

(
d2

M (x, y)

ǫ

))}
.

Now integrate over M and apply Lemma 14 multiple times:

∫

M

M0

(
d2

M (x, y)

ǫ

)
f (y, Pyxv) dvolM (y)

= ǫ
d
2

{
m0f (x, v) + ǫ

m21

2

(
ΔHf (x, v) − 1

3
ScalM (x) f (x, v)

)
+ O

(
ǫ2
)}

,

∫

M

M2

(
d2

M (x, y)

ǫ

)[
ΔV

E f (y, Py,xv) − 1

3
ScalFy (Pyxv) f (y, Pyxv)

]
dvolM (y)

= ǫ
d
2

{
m22

[
ΔV

E f (x, v) − 1

3
ScalFx (v) f (x, v)

]
+ O (ǫ)

}
,

where the constants m0, m21, m22 are determined by (writing r2 =
∑d

j=1 s2
j )

m0 =

∫

Bd
1 (0)

M0

(
r2
)

ds1 · · · dsd,
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m21 =

∫

Bd
1 (0)

M0

(
r2
)

s2
1 ds1 · · · dsd, m22 =

∫

Bd
1 (0)

M2

(
r2
)

ds1 · · · dsd.

Therefore
∫

M

∫

Fy

Kǫ,δ (x, v; y, w) f (y, w) dvolFy
(w) dvolM (y)

= ǫ
d
2 δ

n
2

{
m0f (x, v) + ǫ

m21

2

(
ΔHf (x, v) − 1

3
ScalM (x) f (x, v)

)

+ δ
m22

2

(
ΔV

Ef (x, v) − 1

3
ScalFx (v) f (x, v)

)
+ O

(
ǫ2 + ǫδ + δ2

)
}

. ✷

Proof of Theorem 4. Note that

H
(α)
ǫ,δ f (x, v) =

∫

M

∫

Fy

K
(α)
ǫ,δ (x, v; y, w) f (y, w) p (y, w) dvolFy

(w) dvolM (y)

∫

M

∫

Fy

K
(α)
ǫ,δ (x, v; y, w) p (y, w) dvolFy

(w) dvolM (y)

=

∫

M

∫

Fy

Kǫ,δ (x, v; y, w) f (y, w) p−α
ǫ,δ (y, w) p (y, w) dvolFy

(w) dvolM (y)

∫

M

∫

Fy

Kǫ,δ (x, v; y, w) p−α
ǫ,δ (y, w) p (y, w) dvolFy

(w) dvolM (y)

.

(C.19)

Applying Lemma 15 to pǫ,δ to get

pǫ,δ (y, w) = ǫ
d
2 δ

n
2

{
m0p (y, w) + ǫ

m21

2

(
ΔHp (y, w) − 1

3
ScalM (y) p (y, w)

)

+ δ
m22

2

(
ΔV

Ep (y, w) − 1

3
ScalFy (w) p (y, w)

)
+ O

(
ǫ2 + ǫδ + δ2

)
}

.

Using this and applying Lemma 13, Lemma 14 to the denominator and numerator of (C.19) respectively:

∫

M

∫

Fy

Kǫ,δ (x, v; y, w) p−α
ǫ,δ (y, w) p (y, w) dvolFy

(w) dvolM (y)

= ǫ
(1−α)d

2 δ
(1−α)n

2 m1−α
0 p1−α (x, v)

{
1 + ǫ

m21

2m0

(
ΔHp1−α (x, v)

p1−α (x, v)
− 1

3
ScalM (x)

)

+ δ
m22

2m0

(
ΔV

Ep1−α (x, v)

p1−α (x, v)
− 1

3
ScalFx (x)

)
− αǫ

m21

2m0
(x, v)

(
ΔHp (x, v)

p (x, v)
− 1

3
ScalM (x)

)

− αδ
m22

2m0

(
ΔV

Ep (x, v)

p (x, v)
− 1

3
ScalFx (w)

)
+ O

(
ǫ2 + ǫδ + δ2

)
}

,

∫

M

∫

Fy

Kǫ,δ (x, v; y, w) f (y, w) p−α
ǫ,δ (y, w) p (y, w) dvolFy

(w) dvolM (y)
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= ǫ
(1−α)d

2 δ
(1−α)n

2 m1−α
0

(
fp1−α

)
(x, v)

{
1 + ǫ

m21

2m0

(
ΔH

(
fp1−α

)
(x, v)

(fp1−α) (x, v)
− 1

3
ScalM (x)

)

+ δ
m22

2m0

(
ΔV

E

(
fp1−α

)
(x, v)

(fp1−α) (x, v)
− 1

3
ScalFx (x)

)
− αǫ

m21

2m0
(x, v)

(
ΔHp (x, v)

p (x, v)
− 1

3
ScalM (x)

)

− αδ
m22

2m0

(
ΔV

Ep (x, v)

p (x, v)
− 1

3
ScalFx (w)

)
+ O

(
ǫ2 + ǫδ + δ2

)
}

.

Combining these two expansions, a direct computation concludes

H
(α)
ǫ,δ f (x, v) = f (x, v) + ǫ

m21

2m0

[
ΔH

(
fp1−α

)
− fΔHp1−α

]
(x, v)

p1−α (x, v)

+ δ
m22

2m0

[
ΔV

E

(
fp1−α

)
− fΔV

Ep1−α
]

(x, v)

p1−α (x, v)
+ O

(
ǫ2 + ǫδ + δ2

)
. ✷

Proof of Theorem 6. Since Py,xv does not depend on γ,

lim
γ→∞

pǫ,γǫ (x, v) = lim
γ→∞

∫

M

∫

Fy

K

(
d2

M (x, y)

ǫ
,

d2
Sy

(Py,xv, w)

γǫ

)
p (y, w) dvol (w) dvolM (y)

=

∫

M

K

(
d2

M (x, y)

ǫ
, 0

)[∫

Fy

p (y, w) dvol (w)

]
dvolM (y) .

Define

Kǫ (x, y) = K

(
d2

M (x, y)

ǫ

)
= K

(
d2

M (x, y)

ǫ
, 0

)
, K

(α)

ǫ (x, y) =
Kǫ (x, y)

〈p〉α
ǫ (x) 〈p〉α

ǫ (y)
.

By direct computation,

lim
γ→∞

H(α)
ǫ,γǫf (x, v) =

∫

M

K
(α)

ǫ (x, y)

[∫

Fy

f (y, w)
p (y, w)

〈p〉 (y)
dvol (w)

]
〈p〉 (y) dvolM (y)

∫

M

K
(α)

ǫ (x, y) 〈p〉 (y) dvolM (y)

=

∫

M

K
(α)

ǫ (x, y) 〈f〉p (y) 〈p〉 (y) dvolM (y)

∫

M

K
(α)

ǫ (x, y) 〈p〉 (y) dvolM (y)

.

(C.20)

By [7, Theorem 2], as ǫ → 0

lim
γ→∞

H(α)
ǫ,γǫf (x, v) = 〈f〉p (x) + ǫ

m′
2

2m′
0

[
ΔM

(
〈f〉p〈p〉1−α

)
− 〈f〉pΔM 〈p〉1−α

]
(x)

〈p〉1−α (x)
+ O

(
ǫ2
)

, (C.21)

where

m′
0 =

∫

Bd
1 (0)

K
(
r2
)

ds1 · · · dsd, m′
2 =

∫

Bd
1 (0)

K
(
r2
)

s2
1ds1 · · · dsd. ✷
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Appendix D. Proofs of Theorem 9 and Theorem 10

In this appendix, we prove the two finite sampling theorems on unit tangent bundles in Section 5.1, 

following the paths paved by [27,106,72,9]. Recall from Section 5.2 that for any f ∈ C∞ (UTM)

H
(α)
ǫ,δ f (x, v) =

∫

UTM

K
(α)
ǫ,δ (x, v; y, w) f (y, w) p (y, w) dΘ (y, w)

∫

UTM

K
(α)
ǫ,δ (x, v; y, w) p (y, w) dΘ (y, w)

,

where dΘ (x, v) = dvolSx
dvolM (v) is the Liouville measure. Since Sx is a unit ball in TxM , we shall also 

write dσx = dvolSx
for convenience.

D.1. Sampling without noise

The following lemma builds the bridge between the geodesic distance on the manifold and the Euclidean 

distance in the ambient space.

Lemma 16. Let ι : M →֒ R
D be an isometric embedding of the smooth d-dimensional closed Riemannian 

manifold M into RD. For any x, y ∈ M such that dM (x, y) < Inj (M), we have

d2
M (x, y) = ‖ι (x) − ι (y)‖2

+
1

12
d4

M (x, y) ‖Π (θ, θ)‖2
+ O

(
d5

M (x, y)
)

, (D.1)

where θ ∈ TxM , ‖θ‖x = 1 comes from the geodesic polar coordinates of y in a geodesic normal neighborhood 

of x:

y = expxrθ, r = dM (x, y) .

Proof. See [107, Proposition 6]. ✷

For proving Theorem 9, it is convenient to introduce the “Euclidean distance version” of the diffusion 

operators introduced in Section 2.2. Note that in Definition 5.1 the hat “ˆ” is used for empirical quantities; 

for the remainder of this appendix, the tilde “˜” will be used for quantities in the definition of H
(α)
ǫ and 

H
(α)
ǫ,δ with Euclidean distance in place of geodesic distance. For instance,2

K̃ǫ,δ (x, v; y, w) = K

(
‖x − y‖2

ǫ
,

‖Py,xv − w‖2
y

δ

)
,

p̃ǫ,δ (x, v) =

∫

UTM

K̃ǫ,δ (x, v; y, w) p (y, w) dΘ (y, w) ,

K̃
(α)
ǫ,δ (x, v; y, w) =

K̃ǫ,δ (x, v; y, w)

p̃α
ǫ,δ (x, v) p̃α

ǫ,δ (y, w)
,

and eventually

2 Note that here K̂(α)
ǫ,δ = K̃

(α)
ǫ,δ , but this equality no longer holds in next subsection where K̂(α)

ǫ,δ is constructed from estimated 
parallel-transports.
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H̃
(α)
ǫ,δ f (x, v) =

∫

UTM

K̃
(α)
ǫ,δ (x, v; y, w) f (y, w) p (y, w) dΘ (y, w)

∫

UTM

K̃
(α)
ǫ,δ (x, v; y, w) p (y, w) dΘ (y, w)

.

The next step is to establish an asymptotic expansion of type (4.3) for H̃
(α)
ǫ,δ . We deduce the following 

Lemma 17, the “Euclidean distance version” of Lemma 13, from Lemma 16 and Lemma 13 itself.

Lemma 17. Let Φ : R → R be a smooth function compactly supported in [0, 1]. Assume M is a d-dimensional 

closed Riemannian manifold isometrically embedded in R
D, with injectivity radius Inj (M) > 0. For any 

ǫ > 0, define kernel function

Φ̂ǫ (x, y) = Φ

(
‖x − y‖2

ǫ

)
(D.2)

on M × M , where ‖·‖ is the Euclidean distance on RD. If the parameter ǫ is sufficiently small such that 

0 ≤ ǫ ≤
√

Inj (M), then the integral operator associated with kernel Φǫ

(
Φ̂ǫ g

)
(x) :=

∫

M

Φǫ (x, y) g (y) dvolM (y) (D.3)

has the following asymptotic expansion as ǫ → 0

(
Φ̂ǫ g

)
(x) = ǫ

d
2

[
m0g (x) + ǫ

m2

2
(ΔM g (x) + E (x) g (x)) + O

(
ǫ2
)]

, (D.4)

with

E (x) = −1

3
ScalM (x) +

d (d + 2)

12
A (x)

where m0, m2 are constants that depend on the moments of Φ and the dimension d of the Riemannian 

manifold M , ΔM is the Laplace-Beltrami operator on M , ScalM (x) is the scalar curvature of M at x, and 

A (x) is a scalar function on M that only depends on the intrinsic dimension d and the second fundamental 

form of the isometric embedding ι : M →֒ R
D.

Proof. Since we already established Lemma 13, it suffices to expand the difference

∫

M

[
Φ

(
‖x − y‖2

ǫ

)
− Φ

(
d2

M (x, y)

ǫ

)]
g (y) dvolM (y) . (D.5)

Put y in geodesic polar coordinates in a geodesic normal neighborhood of x ∈ M :

y = expxrθ, with r = dM (x, y) , θ ∈ TxM, ‖θ‖x = 1,

and denote the geodesic normal coordinates around x as (s1, · · · , sd). By Lemma 16,

‖x − y‖2 − d2
M (x, y) = − 1

12
d4

M (x, y) ‖Π (θ, θ)‖2
+ O

(
d5

M (x, y)
)

thus
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Φ

(
‖x − y‖2

ǫ

)
− Φ

(
d2

M (x, y)

ǫ

)

= Φ′

(
d2

M (x, y)

ǫ

)
·
(

− 1

12ǫ
d4

M (x, y) ‖Π (θ, θ)‖2

)
+ O

(
d8

M (x, y)

ǫ2

)
.

(D.6)

Recall that Φ is supported on the unit interval, which implies that in (D.5) only those y ∈ M satisfying 

‖x − y‖ ≤ √
ǫ or dM (x, y) ≤ √

ǫ are involved. According to Lemma 16, for sufficiently small ǫ > 0, ‖x − y‖ ≤√
ǫ implies dM (x, y) < 2

√
ǫ, thus the higher order error in (D.6) is indeed

O

(
d8

M (x, y)

ǫ2

)
= O

(
(
√

ǫ)
8

ǫ2

)
= O

(
ǫ2
)

.

Therefore,

∫

M

[
Φ

(
‖x − y‖2

ǫ

)
− Φ

(
d2

M (x, y)

ǫ

)]
g (y) dvolM (y)

= − 1

12ǫ

∫

M

Φ′

(
d2

M (x, y)

ǫ

)
d4

M (x, y) ‖Π (θ, θ)‖2
g (y) dvolM (y) + ǫ

d
2 · O

(
ǫ2
)

= − 1

12ǫ

∫

M

Φ′

(
r2

ǫ

)
r4 ‖Π (θ, θ)‖2

g (y) dvolM (y) + ǫ
d
2 · O

(
ǫ2
)

.

(D.7)

In geodesic normal coordinates (s1, · · · , sd),

∫

M

Φ′

(
r2

ǫ

)
r4 ‖Π (θ, θ)‖2

g (y) dvolM (y)

=

∫

B√
ǫ(0)

Φ′

(
r2

ǫ

)
r4 ‖Π (θ, θ)‖2

g̃ (s)

[
1 − 1

6
Rkℓ (x) sksℓ + O

(
r3
)]

ds1 · · · dsd.

(D.8)

Using the Taylor expansion of g̃ (s) around s = 0 and the symmetry of the integral, (D.8) reduces to

∫

B√
ǫ(0)

Φ′

(
r2

ǫ

)
r4 ‖Π (θ, θ)‖2

g (x) ds1 · · · dsd

+

∫

B√
ǫ(0)

Φ′

(
r2

ǫ

)
r4 ‖Π (θ, θ)‖2

O
(
r2
)

ds1 · · · dsd

= ǫ
d
2 · ǫ2g (x)

∫

S1(0)

‖Π (θ, θ)‖2
dθ

1∫

0

Φ′
(
r̃2
)

r̃3+ddr̃ + ǫ
d
2 · O

(
ǫ3
)

.

Let m2 be the constant as in Lemma 14, ωd−1 the volume of the standard unit sphere in Rd. Note that

ωd−1

1∫

0

Φ
(
r̃2
)

r̃d+1dr =

∫

B1(0)

Φ
(
r̃2
)

r̃2ds̃1 · · · ds̃d = m2d.
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Let A (x) be the average of the length of the second fundamental form over the standard unit sphere, i.e.,

A (x) =
1

ωd−1

∫

S1(0)

‖Π (θ, θ)‖2
dθ.

Integrating the term involving Φ′
(
r̃2
)

by parts to get

ǫ
d
2 · ǫ2g (x)

∫

S1(0)

‖Π (θ, θ)‖2
dθ

1∫

0

Φ′
(
r̃2
)

r̃3+ddr̃ = −ǫ
d
2 · ǫ2 m2

2
d (d + 2) g (x) A (x) . (D.9)

Therefore,

∫

M

[
Φ

(
‖x − y‖2

ǫ

)
− Φ

(
d2

M (x, y)

ǫ

)]
g (y) dvolM (y)

= ǫ
d
2

[
ǫ
m2

24
d (d + 2) A (x) g (x) + O

(
ǫ2
)]

,

and thus

(
Φ̂ǫ g

)
(x) = ǫ

d
2

[
m0g (x) + ǫ

m2

2
(ΔM g (x) + E (x) g (x)) + O

(
ǫ2
)]

where

E (x) := −1

3
Scal (x) +

1

12
d (d + 2) A (x) . ✷

Remark 7.5. The only difference between the conclusions in Lemma 17 and Lemma 13 is that the scalar 

function E (x) takes the place of the scalar curvature ScalM (x); one can check, essentially by going through 

the proof of Theorem 4, that the proof still works through, due to the cancellation of the terms involving 

E (x). In fact, applying Lemma 17 repeatedly, one has

∫

M

Φ̂ǫ (x, y) f (y, Py,xv) dvolM (y)

= ǫ
d
2

{
m0f (x, v) + ǫ

m2

2
[ΔHf (x, v) + E1 (x) f (x, v)] + O

(
ǫ2
)}

,

(D.10)

and

∫

UTM

K̃ǫ,δ (x, v; y, w) g (y, w) dΘ (y, w)

= ǫ
d
2 δ

d−1
2

{
m0g (x, v) + ǫ

m21

2

[
ΔH

UTM g (x, v) + E1 (x) g (x, v)
]

+ δ
m22

2

[
ΔV

UTM g (x, v) + E2 · g (x, v)
]

+ O
(
ǫ2 + δ2

)
}

,

(D.11)

where
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E1 (ξi) = −1

3
ScalM (ξi) +

d (d + 2)

12
· 1

ωd−1

∫

S1(0)

‖ΠM (θ, θ)‖2
dθ

only depends on the scalar curvature ScalM and the second fundamental form ΠM of the base manifold M

at ξ, and

E2 = −1

3
ScalS +

(d − 1) (d + 1)

12
· 1

ωd−2

∫

S1(0)

‖ΠS (θ, θ)‖2
dθ

is a constant because

ScalS ≡ (d − 1) (d − 2) , ‖ΠS (θ, θ)‖2 ≡ 1 for any unit tangent vector θ.

These expansions are essentially the equivalents of Lemma 14 and Lemma 15 for K̃ǫ,δ. Using (D.10), (D.11)

and picking δ = O (ǫ) as ǫ → 0, a version of Theorem 4 holds true when K
(α)
ǫ,δ is replaced with K̃

(α)
ǫ,δ , i.e., as 

ǫ → 0 (and thus δ → 0),

H̃
(α)
ǫ,δ f (x, v) = f (x, v) + ǫ

m21

2m0

[
ΔH

[
fp1−α

]
(x, v)

p1−α (x, v)
− f (x, v)

ΔHp1−α (x, v)

p1−α (x, v)

]

+ δ
m22

2m0

[
ΔV

E

[
fp1−α

]
(x, v)

p1−α (x, v)
− f (x, v)

ΔV
Ep1−α (x, v)

p1−α (x, v)

]
+ O

(
ǫ2 + ǫδ + δ2

)
.

(D.12)

As we shall see below, this observation is the key to establishing estimates for the bias error in the proof of 

Theorem 9.

Before we present the proof of Theorem 9, we establish a large deviation bound for our two-step sampling 

strategy. Recall from Assumption 8 that we first sample NB points ξ1, · · · , ξNB
i.i.d. with respect to 〈p〉 on 

the base manifold M , then sample NF points on each fibre Sξj
i.i.d. with respect to p (· | ξj). The resulting 

NB × NF points on UTM

x1,1, x1,2, · · · , x1,NF

x2,1, x2,2, · · · , x2,NF

...
... · · ·

...
xNB ,1, xNB ,2, · · · , xNB ,NF

are generally not i.i.d. sampled from UTM . This forbids applying the Law of Large Numbers directly to 

quantities that take the form of an average over the entire unit tangent bundle, such as

1

NBNF

NB∑

j=1

NF∑

s=1

K̂ǫ,δ (xi,r, xj,s) f (xj,s) .

However, due to the conditional i.i.d. fibrewise sampling, it makes sense to apply the law of large numbers 

to average quantities on a fixed fibre, e.g.,

1

NF

NF∑

s=1

K̂ǫ,δ (xi,r, xj,s) f (xj,s) −→ EZ

[
K̃ǫ,δ (xi,r, (ξj , Z)) f (ξj , Z)

]
,

where EZ stands for the expectation with respect to the “fibre component” of the coordinates of the points 

on Sξj
. Explicitly,
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EZ

[
K̃ǫ,δ (xi,r, (ξj , ·)) f (ξj , ·)

]
=

∫

Sξj

K̃ǫ,δ (xi,r, (ξj , w)) f (ξj , w) p (w | ξj) dσξj
(w) .

Next, note that ξ1, · · · , ξNB
are i.i.d. sampled from the base manifold M , the partial expectations

{
EZ

[
K̃ǫ,δ (xi,r, (ξj , Z)) f (ξj , Z)

]}NB

j=1

are i.i.d. random variables on M with respect to 〈p〉. Thus

1

NB

NB∑

j=1

EZ

[
K̃ǫ,δ (xi,r, (ξj , Z)) f (ξj , Z)

]
−→ EY

[
EZ

[
K̃ǫ,δ (xi,r, (Y, Z)) f (Y, Z)

]]
,

where

EY

[
EZ

[
K̃ǫ,δ (xi,r, (Y, Z)) f (Y, Z)

]]

=

∫

M

〈p〉 (y)

∫

Sξj

K̃ǫ,δ (xi,r, (ξj , w)) f (y, w) p (w | y) dσy (w) dvolM (y)

=

∫

M

∫

Sξj

K̃ǫ,δ (xi,r, (ξj , w)) f (y, w) p (y, w) dσy (w) dvolM (y) .

This gives

lim
NB→∞

lim
NF →∞

1

NBNF

NB∑

j=1

NF∑

s=1

K̂ǫ,δ (xi,r, xj,s) f (xj,s)

=

∫

M

∫

Sξj

K̃ǫ,δ (xi,r, (ξj , w)) f (y, w) p (y, w) dσy (w) dvolM (y) ,

in which the two limits on the left hand side do not commute in general. Thus it is natural to consider 

iterated partial expectations rather than expectation on the entire UTM . From now on, we denote EY , EZ

as E1, E2 for simplicity.

Definition 7.2. Let p be a probability density function on UTM , and

〈p〉 (x) =

∫

Sx

p (x, w) dσx (w) , p (v | x) =
p (x, v)

〈p〉 (x)

be as defined in (4.6), (4.7). For any f ∈ C∞ (M) and g ∈ C∞ (Sξ), ξ ∈ M , define

E1f :=

∫

M

f (y) p (y) dvolM (y) ,

E
ξ
2g :=

∫

Sξ

g (ξ, w) p (w | ξ) dσξ (w) .

Definition 7.3. Let p be a probability density function on UTM . We call a collection of NB ×NF real-valued 

random functions
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{Xj,s | 1 ≤ j ≤ NB , 1 ≤ s ≤ NF }

Procrustean with respect to p on UTM , if

(i) For each 1 ≤ j ≤ NB , the subcollection {Xj,s | 1 ≤ s ≤ NF } are i.i.d. on Sξj
for some ξj ∈ M , with 

respect to the conditional probability density p (· | ξj);

(ii) The points {ξj | 1 ≤ j ≤ NB} are i.i.d. on M with respect to the fibre average density 〈p〉 (·).

Due to (7.3), we can drop the dependency of Xj,s with respect to s and simply write

E
ξj

2 Xj := E
ξj

2 Xj,s, E
ξj

2 X2
j := E

ξj

2 X2
j,s.

Similarly, because of (7.3) we can write

E1E2X := E1E
ξj

2 Xj , E1 (E2X)
2

:= E1

(
E

ξj

2 Xj

)
.

Lemma 18. Let {Xj,s | 1 ≤ j ≤ NB , 1 ≤ s ≤ NF } be a collection of Procrustean random functions with re-

spect to some density function p on UTM . If

|Xj,s| ≤ M0,
∣∣∣Eξj

2 Xj

∣∣∣ ≤ M1, |E1E2X| ≤ M2 a.s. for all 1 ≤ j ≤ NB , 1 ≤ s ≤ NF ,

then for any t > 0 and 0 < θ < 1,

P

⎧
⎨
⎩

1

NBNF

NB∑

j=1

NF∑

s=1

Xj,s − E1E2X > t

⎫
⎬
⎭

≤
NB∑

j=1

exp

⎧
⎪⎪⎨
⎪⎪⎩

−
1

2
(1 − θ)

2
NF t2

[
E

ξj

2 X2
j −

(
E

ξj

2 Xj

)2
]

+
1

3
(M0 + M1) (1 − θ) t

⎫
⎪⎪⎬
⎪⎪⎭

+ exp

⎧
⎪⎨
⎪⎩

−
1

2
θ2NBt2

[
E1 (E2X)

2 − (E1E2X)
2
]

+
1

3
(M1 + M2) θt

⎫
⎪⎬
⎪⎭

.

Proof. Note that for any θ ∈ (0, 1)

P

⎧
⎨
⎩

1

NBNF

NB∑

j=1

NF∑

s=1

Xj,s − E1E2X > t

⎫
⎬
⎭

≤ P

⎧
⎨
⎩

1

NBNF

NB∑

j=1

NF∑

s=1

Xj,s − 1

NB

NB∑

j=1

E
ξj

2 Xj > (1 − θ) t

⎫
⎬
⎭

+ P

⎧
⎨
⎩

1

NB

NB∑

j=1

E
ξj

2 Xj − E1E2X > θt

⎫
⎬
⎭ =: (I) + (II) .

Since

∣∣∣Eξj

2 Xj − E1E2X
∣∣∣ ≤ M1 + M2,
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by Bernstein’s Inequality [108, §2.2],

(II) = P

⎧
⎨
⎩

NB∑

j=1

(
E

ξj

2 Xj − E1E2X
)

> θNBt

⎫
⎬
⎭

≤ exp

⎧
⎪⎨
⎪⎩

−
1

2
θ2NBt

[
E1 (E2X)

2 − (E1E2X)
2
]

+
1

3
(M1 + M2) θt

⎫
⎪⎬
⎪⎭

.

For (I), a union bound plus Bernstein’s Inequality gives

(I) = P

⎧
⎨
⎩

NB∑

j=1

(
1

NF

NF∑

s=1

Xj,s − E
ξj

2 Xj

)
> (1 − θ) NBt

⎫
⎬
⎭

≤
NB∑

j=1

P

{
NF∑

s=1

(
Xj,s − E

ξj

2 Xj

)
> (1 − θ) NF t

}

≤
NB∑

j=1

exp

⎧
⎪⎪⎨
⎪⎪⎩

−
1

2
(1 − θ)

2
NF t2

[
E

ξj

2 X2
j −

(
E

ξj

2 Xj

)2
]

+
1

3
(M0 + M1) (1 − θ) t

⎫
⎪⎪⎬
⎪⎪⎭

.

The conclusion follows from combining these two bounds. ✷

Remark 7.6. Intuitively, the second term in the bound comes from the sampling error on the base manifold, 

and is thus independent of δ and NF ; the first term in the bound comes from accumulating fibrewise 

sampling error across all NB fibres.

Proof of Theorem 9. We first establish the result for α = 0. In this case, K̂
(0)
ǫ,δ (·, ·) = K̂ǫ,δ (·, ·), and

Ĥ
(0)
ǫ,δ f (xi,r) =

NB∑

j=1

NF∑

s=1

K̂ǫ,δ (xi,r, xj,s) f (xj,s)

NB∑

j=1

NF∑

s=1

K̂ǫ,δ (xi,r, xj,s)

=

1

NBNF

NB∑

j=1

NF∑

s=1

K

(‖ξi − ξj‖2

ǫ
,

‖Pξj ,ξi
xi,r − xj,s‖2

δ

)
f (xj,s)

1

NBNF

NB∑

j=1

NF∑

s=1

K

(‖ξi − ξj‖2

ǫ
,

‖Pξj ,ξi
xi,r − xj,s‖2

δ

) .

Since {xj,s}NF

s=1 are i.i.d. with respect to p (· | ξj), by the law of large numbers, for each fixed j = 1, · · · , NB , 

as NF → ∞,

lim
NF →∞

1

NF

NF∑

s=1

K

(‖ξi − ξj‖2

ǫ
,

‖Pξj ,ξi
xi,r − xj,s‖2

δ

)
f (xj,s)

=

∫

Sξj

K

(‖ξi − ξj‖2

ǫ
,

‖Pξj ,ξi
xi,r − w‖2

δ

)
f (ξj , w) p (w | ξj) dσξj

(w) .
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Note that {ξj}NB

j=1 are i.i.d. with respect to 〈p〉, it follows again from the law of large numbers that

lim
NB→∞

1

NB

NB∑

j=1

lim
NF →∞

1

NF

NF∑

s=1

K

(‖ξi − ξj‖2

ǫ
,

‖Pξj ,ξi
xi,r − xj,s‖2

δ

)
f (xj,s)

=

∫

UTM

K

(‖ξi − y‖2

ǫ
,

‖Py,ξi
xi,r − w‖2

δ

)
f (y, w) p (y, w) dΘ (y, w) ,

where we used p (y, w) = 〈p〉 (y) p (w | y). For f ≡ 1,

lim
NB→∞

1

NB

NB∑

j=1

lim
NF →∞

1

NF

NF∑

s=1

K

(‖ξi − ξj‖2

ǫ
,

‖Pξj ,ξi
xi,r − xj,s‖2

δ

)

=

∫

UTM

K

(‖ξi − y‖2

ǫ
,

‖Py,ξi
xi,r − w‖2

δ

)
p (y, w) dΘ (y, w) .

Therefore,

lim
NB→∞

lim
NF →∞

Ĥ
(0)
ǫ,δ f (xi,r) = H̃

(0)
ǫ,δ f (xi,r)

= f (xi,r) + ǫ
m21

2m0

[
ΔH

UTM [fp] (xi,r)

p (xi,r)
− f (xi,r)

ΔH
UTM p (xi,r)

p (xi,r)

]

+ δ
m22

2m0

[
ΔV

UTM [fp] (xi,r)

p (xi,r)
− f (xi,r)

ΔV
UTM p (xi,r)

p (xi,r)

]
+ O

(
ǫ2 + ǫδ + δ2

)
.

The last equality makes use of the assumption δ = O (ǫ) as ǫ → 0 and Remark 7.5. This establishes the bias 

error for the special case α = 0 and it remains to estimate the variance error. To this end, denote

Fj,s = K̂ǫ,δ (xi,r, xj,s) f (xj,s) , Gj,s = K̂ǫ,δ (xi,r, xj,s)

for any fixed xi,r ∈ UTM . Note that Fi,s = 0, Gi,s = 0 for all s = 1, · · · , NF , by Definition 5.1 (5.1); by the 

compactness of UTM we have the following trivial bounds uniform in j, s:

|Fj,s| ≤ ‖K‖∞ ‖f‖∞ , |Gj,s| ≤ ‖K‖∞ .

Thus we already have

lim
NB→∞

lim
NF →∞

Ĥ
(0)
ǫ,δ f (xi,r) =

E1E2F

E1E2G
,

and would like to estimate

p (NB , NF , β) := P

{∑
j

∑
s Fj,s∑

j

∑
s Gj,s

− E1E2F

E1E2G
> β

}

for sufficiently small β > 0. An upper bound for

P

{∑
j

∑
s Fj,s∑

j

∑
s Gj,s

− E1E2F

E1E2G
< −β

}
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can be obtained in a similar manner. Since Gj,s > 0,

p (NB , NF , β) = P

⎧
⎨
⎩

(∑
j

∑
s Fj,s

)
E1E2G −

(∑
j

∑
s Gj,s

)
E1E2F

(∑
j

∑
s Gj,s

)
E1E2G

> β

⎫
⎬
⎭

= P

⎧
⎨
⎩

⎛
⎝∑

j

∑

s

Fj,s

⎞
⎠E1E2G −

⎛
⎝∑

j

∑

s

Gj,s

⎞
⎠E1E2F > β

⎛
⎝∑

j

∑

s

Gj,s

⎞
⎠E1E2G

⎫
⎬
⎭ .

Denote

Yj,s := Fj,sE1E2G − Gj,sE1E2F + β (E1E2G − Gj,s) E1E2G,

then it is easily verifiable that E1E2Yj,s = 0 for all 1 ≤ j ≤ NB , 1 ≤ s ≤ NF , and

p (NB , NF , β) = P

⎧
⎨
⎩

1

NBNF

∑

j

∑

s

Yj,s > β (E1E2G)
2

⎫
⎬
⎭ .

By Lemma 18, bounding this quantity reduces to computing various moments. Define

Xj := E2Yj ,

then X1, · · · , XNB
are i.i.d. on M with respect to 〈p〉, and E1Xj = 0 for 1 ≤ j ≤ NB . Furthermore, 

X1, · · · , XNB
are uniformly bounded. To find this bound explicitly, note that

|Xj | = |E2Yj | = |(E2Fj) E1E2G − (E2Gj) E1E2F + β (E1E2G − E2Gj) E1E2G|
≤ |(E2Fj) E1E2G| + |(E2Gj) E1E2F | + β (E1E2G)

2
+ β |E2Gj | |E1E2G| ,

and recall from Lemma 17 and Remark 7.5 that

E1E2F = O
(

ǫ
d
2 δ

d−1
2

)
, E1E2G = O

(
ǫ

d
2 δ

d−1
2

)
,

E2Fj = O
(

δ
d−1

2

)
, E2Gj = O

(
δ

d−1
2

)
,

thus

|Xj | ≤ C̃ǫ
d
2 δd−1 + β

(
ǫdδd−1 + ǫ

d
2 δd−1

)

where C̃ is some positive constant depending on the pointwise bounds of K, p, and f . Since we will be 

mostly interested in small β > 0, let us pick β = O
(
ǫ2 + ǫδ + δ2

)
and rewrite the upper bound as

|Xj | ≤ Cǫ
d
2 δd−1, C = C (‖K‖∞ , ‖f‖∞ , pm, pM ) > 0. (D.13)

We then need to bound E1X2
j . Since

E1X2
j =

[
E1 (E2Fj)

2
]

(E1E2G)
2

+
[
E1 (E2Gj)

2
]

(E1E2F )
2

− 2E1 [(E2Fj) (E2Gj)] (E1E2F ) (E1E2G) + β2 (E1E2G)
2
[
E1 (E2G)

2 − (E1E2G)
2
]

+ 2β (E1E2G)
[
E1 (E2G)

2
E1E2F − (E1E2G) E1 (E2FjE2Gj)

]
,
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it suffices to compute the first and second moments of E2Fj , E2Gj for 1 ≤ j ≤ NB . By (D.11),

E1E2F = ǫ
d
2 δ

d−1
2

{
m0 [fp] (xi,r) + ǫ

m21

2

(
ΔH

UTM [fp] (xi,r) + E1 (ξi) [fp] (xi,r)
)

+ δ
m22

2

(
ΔV

UTM [fp] (xi,r) + E2 · [fp] (xi,r)
)

+ O
(
ǫ2 + ǫδ + δ2

)}
,

E1E2G = ǫ
d
2 δ

d−1
2

{
m0p (xi,r) + ǫ

m21

2

(
ΔH

UTM p (xi,r) + E1 (ξi) p (xi,r)
)

+ δ
m22

2

(
ΔV

UTM p (xi,r) + E2p (xi,r)
)

+ O
(
ǫ2 + ǫδ + δ2

)}
.

Using the notation and applying Lemma 17 once

p (v | x) =
p (x, v)

〈p〉 (x)
=

p (x, v)

〈p〉 ◦ π (x, v)
=

[
p

〈p〉 ◦ π

]
(x, v) ,

we have

E2Fj = δ
d−1

2

{
M0

(
‖ξi − ξj‖2

ǫ

)[
fp

〈p〉 ◦ π

] (
Pξj ,ξi

xi,r

)

+
δ

2
M2

(
‖ξi − ξj‖2

ǫ

)(
ΔV

UTM

[
fp

〈p〉 ◦ π

]
+ E2 ·

[
fp

〈p〉 ◦ π

]) (
Pξj ,ξi

xi,r

)
+ O

(
δ2
)}

,

where M0 (·), M2 (·) are functions depending only on the kernel K, as in the proof of Lemma 15. By a direct 

computation using Lemma 17,

E1 (E2Fj)
2

= ǫ
d
2 δd−1

{
m′

0

[
(fp)

2

〈p〉 ◦ π

]
(xi,r) + ǫ

m′
21

2

(
ΔH

UTM

[
(fp)

2

〈p〉 ◦ π

]
(xi,r) + E1 (ξi)

[
(fp)

2

〈p〉 ◦ π

]
(xi,r)

)

+ δm′
22 [fp] (xi,r)

(
ΔV

UTM

[
fp

〈p〉 ◦ π

]
(xi,r) + E2 ·

[
fp

〈p〉 ◦ π

]
(xi,r)

)
+ O

(
ǫ2 + ǫδ + δ2

)}
,

where m′
0, m′

21, m′
22 are positive constants determined by the kernel function K and dimension d:

m′
0 =

∫

Bd
1 (0)

M2
0

(
r2
)

ds1 · · · dsd, r2 =
d∑

k=1

(
sk
)2

,

m′
21 =

∫

Bd
1 (0)

M0

(
r2
) (

s1
)2

ds1 · · · dsd, m′
22 =

∫

Bd
1 (0)

M0

(
r2
)

M2

(
r2
)

ds1 · · · dsd.

Setting f ≡ 1,

E1 (E2Gj)
2

= ǫ
d
2 δd−1

{
m′

0

[
p2

〈p〉 ◦ π

]
(xi,r) + ǫ

m′
21

2

(
ΔH

UTM

[
p2

〈p〉 ◦ π

]
(xi,r) + E1 (ξi)

[
p2

〈p〉 ◦ π

]
(xi,r)

)

+ δm′
22p (xi,r)

(
ΔV

UTM

[
p

〈p〉 ◦ π

]
(xi,r) + E2 ·

[
p

〈p〉 ◦ π

]
(xi,r)

)
+ O

(
ǫ2 + ǫδ + δ2

)}
.
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Similarly,

E1 [(E2Fj) (E2Gj)] = ǫ
d
2 δd−1

{
m′

0

[
fp2

〈p〉 ◦ π

]
(xi,r)

+ ǫ
m′

21

2

(
ΔH

UTM

[
fp2

〈p〉 ◦ π

]
(xi,r) + E1 (ξi)

[
fp2

〈p〉 ◦ π

])

+ δ
m′

22

2

(
p (xi,r) ΔV

UTM

[
fp

〈p〉 ◦ π

]
(xi,r) + [fp] (xi,r) ΔV

UTM

[
p

〈p〉 ◦ π

]
(xi,r)

+ 2E2 ·
[

fp2

〈p〉 ◦ π

]
(xi,r)

)
+ O

(
ǫ2 + ǫδ + δ2

)}
.

Take β = O
(
ǫ2 + ǫδ + δ2

)
so that O (β) and O

(
β2
)

terms are absorbed into

O
[
ǫ

3d
2 δ2(d−1)

(
ǫ2 + ǫδ + δ2

)]
.

Direct computation using

ΔH
UTM

(
f2g

)
+ f2ΔH

UTM g − 2fΔH
UTM (fg) = 2

∥∥∇H
UTM f

∥∥2
g

gives

E1X2
j =

[
E1 (E2Fj)

2
]

(E1E2G)
2

+
[
E1 (E2Gj)

2
]

(E1E2F )
2

− 2E1 [(E2Fj) (E2Gj)] (E1E2F ) (E1E2G) + O
(
ǫ2 + δ2

)

= ǫ
3d
2 δ2(d−1)

{
ǫm2

0m′
21

[
p4

〈p〉 ◦ π

]
(xi,r)

∥∥∇H
UTM f

∥∥2
(xi,r) + O

(
ǫ2 + ǫδ + δ2

)}

≤ ǫ
3d
2 δ2(d−1)

(
C ′ǫ + O

(
ǫ2 + ǫδ + δ2

))

where

C ′ =
m2

0m′
21p4

M

∥∥∇H
UTM f

∥∥2

∞

ω4
d−1pm

> 0.

Note that O (δ) terms do not show up in this bound, intuitively because Xj = E2Yj,s is already the 

expectation along the fibre direction, which “freezes” the variability controlled by the fibrewise bandwidth 

δ.

It remains to bound

E
ξj

2 Y 2
j −

(
E

ξj

2 Yj

)2

for each 1 ≤ j ≤ NB . Since we picked β = O
(
ǫ2 + ǫδ + δ2

)
,

|Yj,s| = |Fj,sE1E2G − Gj,sE1E2F + β (E1E2G − Gj,s) E1E2G| ≤ Cǫ
d
2 δ

d−1
2

where

C = C (‖K‖∞ , ‖f‖∞ , pm, pM )
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is a positive constant. Again taking advantage of β = O
(
ǫ2 + ǫδ + δ2

)
, we have

E2Y 2
j − (E2Yj)

2
=
[
E2F 2

j,s − (E2Fj)
2
]

(E1E2G)
2

+
[
E2G2

j,s − (E2Gj)
2
]

(E1E2F )
2

+ 2 [(E2Fj) (E2Gj) − E2 (Fj,sGj,s)]) (E1E2F ) (E1E2G)

+ O
[
ǫdδ2(d−1)

(
ǫ2 + ǫδ + δ2

)]
.

Note that

E2F 2
j,s = O

(
δ

d−1
2

)
, E2G2

j,s = O
(

δ
d−1

2

)
, E2 [Fj,sGj,s] = O

(
δ

d−1
2

)
,

but

(E2Fj,s)
2

= O
(
δd−1

)
, (E2Gj,s)

2
= O

(
δd−1

)
, (E2Fj) (E2Gj) = O

(
δd−1

)
,

the leading order error term in E2Y 2
j − (E2Yj)

2
is

(
E2F 2

j,s

)
(E1E2G)

2
+
(
E2G2

j,s

)
(E1E2F )

2 − 2E2 (Fj,sGj,s) (E1E2F ) (E1E2G) .

By Lemma 17,

E2F 2
j,s = δ

d−1
2

{
M̃0

[
f2p

〈p〉 ◦ π

] (
Pξj ,ξi

xi,r

)

+
δ

2
M̃2

(
ΔV

UTM

[
f2p

〈p〉 ◦ π

] (
Pξj ,ξi

xi,r

)
+ E2 ·

[
f2p

〈p〉 ◦ π

]) (
Pξj ,ξi

xi,r

)
+ O

(
δ2
)}

.

Similarly,

E2G2
j,s =δ

d−1
2

{
M̃0

[
p

〈p〉 ◦ π

] (
Pξj ,ξi

xi,r

)

+
δ

2
M̃2

(
ΔV

UTM

[
p

〈p〉 ◦ π

]
+ E2 ·

(
p

〈p〉 ◦ π

))(
Pξj ,ξi

xi,r

)
+ O

(
δ2
)}

,

E2 (Fj,sGj,s) = δ
d−1

2

{
M̃0

[
fp

〈p〉 ◦ π

] (
Pξj ,ξi

xi,r

)

+
δ

2
M̃2

(
ΔV

UTM

[
fp

〈p〉 ◦ π

]
+ E2 ·

[
fp

〈p〉 ◦ π

]) (
Pξj ,ξi

xi,r

)
+ O

(
δ2
)}

.

Since the kernel K is compactly supported and f is Lipschitz (UTM compact), the difference f
(
Pξj ,ξi

xi,r

)
−

f (xi,r) is of order O (dM (ξj , ξi)) = O
(

ǫ
1
2

)
. Thus

∣∣∣
(
E2F 2

j,s

)
(E1E2G)

2
+
(
E2G2

j,s

)
(E1E2F )

2 − 2E2 (Fj,sGj,s) (E1E2F ) (E1E2G)
∣∣∣

≤ ǫdδ
3(d−1)

2 (C ′ǫ + C ′′δ) , C ′ > 0, C ′′ > 0

and

E
ξj

2 Y 2
j −

(
E

ξj

2 Yj

)2

= O
(

ǫdδ
3(d−1)

2 (ǫ + δ)
)

.

If we let C ′′
1 , C ′′

2 be constants such that
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C ′′
1 ǫ

d
2 δ

d−1
2 ≤ |E1E2G| ≤ C ′′

2 ǫ
d
2 δ

d−1
2 ,

then for any θ ∈ (0, 1), by β = O
(
ǫ2 + ǫδ + δ2

)
and Lemma 18,

p (NB , NF , β) ≤

NB exp

⎧
⎨
⎩− (1 − θ)

2
NF ǫdδ

d−1
2 β2

C1 (ǫ + δ) + O
(

ǫ
d
2 (ǫ2 + δ2)

)

⎫
⎬
⎭ + exp

{
− θ2NBǫ

d
2 β2

C2ǫ + O (ǫ2 + δ2)

}
.

(D.14)

As pointed out in Remark 7.6, the second term in this bound is the sampling error on the base manifold; 

the noise error resulted from this term is of the order

O

[(
NBǫ

d
2 −1

)− 1
2

]
= O

(
N

− 1
2

B ǫ
1
2 − d

4

)
,

which is in accordance with the convergence rate obtained in [72]. The first term in the bound reflects the 

accumulated fibrewise sampling error and grows linearly with respect to the number of fibres sampled, but 

can be reduced as one increases NF accordingly (which has an effect of reducing fibrewise sampling errors). 

The choice of θ is important: as θ increases from 0 to 1, the first term in the bound decreases but the 

second term increases. One may wish to pick an “optimal” θ ∈ (0, 1), but this does not make sense unless 

one chooses ǫ, δ, NF appropriately so as to make the sum of the two terms smaller than 1. Let us consider 

θ∗ ∈ (0, 1) satisfying

(1 − θ∗)
2

NF ǫdδ
d−1

2 = θ2
∗NBǫ

d
2 , (D.15)

or equivalently

ǫ
d
4 δ

d−1
4

√
NF

NB
=

θ∗

1 − θ∗

⇔ θ∗ =
ǫ

d
4 δ

d−1
4

√
NF

NB

1 + ǫ
d
4 δ

d−1
4

√
NF

NB

. (D.16)

Setting θ = θ∗ in (D.14), we have for some C > 0

p (NB , NF , β) ≤ (NB + 1) exp

{
−θ2

∗NBǫ
d
2 β2

C (ǫ + δ)

}
= exp

(
−θ2

∗NBǫ
d
2 β2

C (ǫ + δ)
+ log (NB + 1)

)
. (D.17)

Since

lim
NB→∞

NB

log NB
= ∞,

for any fixed ǫ, δ we have p (NB , NF , β) → 0 as NB → ∞, as long as one increases NF accordingly so as 

to prevent θ∗ from approaching 0 or 1; for instance, this is the case if the assumption (9) in Theorem 9 is 

satisfied:

lim
NB→∞
NF →∞

NF

NB
= β ∈ (0, ∞) . (D.18)

This completes the proof for the pointwise convergence of Ĥ
(0)
ǫ,δ f in probability.
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We now turn to the general case α �= 0. Recall that

Ĥ
(α)
ǫ,δ f (xi,r) =

NB∑

j=1

NF∑

s=1

K̂
(α)
ǫ,δ (xi,r, xj,s) f (xj,s)

NB∑

j=1

NF∑

s=1

K̂
(α)
ǫ,δ (xi,r, xj,s)

=

NB∑

j=1

NF∑

s=1

K̂ǫ,δ (xi,r, xj,s) f (xj,s)

p̂α
ǫ,δ (xi,r) p̂α

ǫ,δ (xj,s)

NB∑

j=1

NF∑

s=1

K̂ǫ,δ (xi,r, xj,s)

p̂α
ǫ,δ (xi,r) p̂α

ǫ,δ (xj,s)

where

p̂ (xj,s) =

NB∑

k=1

NF∑

t=1

K̂ǫ,δ (xj,s, xk,t) .

By the law of large numbers,

lim
NB→∞

1

NB
lim

NF →∞

1

NF
p̂ (xj,s) =

∫

UTM

K̃ǫ,δ (xi,r, η) p (η) dΘ (η)

= p̃ (xi,r) = E1E2

[
K̃ǫ,δ (xj,s, ·)

]
.

Therefore, as NB → ∞, NF → ∞, we expect Ĥ
(α)
ǫ,δ f (xi,r) to converge to

∫

UTM

K̃
(α)
ǫ,δ (xi,r, η) f (η) p (η) dΘ (y, w)

∫

UTM

K̃
(α)
ǫ,δ (xi,r, η) p (η) dΘ (y, w)

= H̃
(α)
ǫ,δ f (xi,r)

=f (xi,r) + ǫ
m21

2m0

(
ΔH

UTM

[
fp1−α

]
(xi,r)

p1−α (xi,r)
− f (xi,r)

ΔH
UTM p1−α (xi,r)

p1−α (xi,r)

)

+ δ
m22

2m0

(
ΔV

UTM

[
fp1−α

]
(xi,r)

p1−α (xi,r)
− f (xi,r)

ΔV
UTM p1−α (xi,r)

p1−α (xi,r)

)
+ O

(
ǫ2 + ǫδ + δ2

)
,

which gives the same bias error O
(
ǫ2 + ǫδ + δ2

)
as in the α = 0 case.

It remains to estimate the variance error. By

Ĥα
ǫ,δf (xi,r) =

NB∑

j=1

NF∑

s=1

K̂ǫ,δ (xi,r, xj,s) p̂−α
ǫ,δ (xj,s) f (xj,s)

NB∑

j=1

NF∑

s=1

K̂ǫ,δ (xi,r, xj,s) p̂−α
ǫ,δ (xj,s)

,

and

NB∑

j=1

NF∑

s=1

K̂ǫ,δ (xi,r, xj,s) p̂−α
ǫ,δ (xj,s) f (xj,s)

NB∑

j=1

NF∑

s=1

K̂ǫ,δ (xi,r, xj,s) p̂−α
ǫ,δ (xj,s)

−

NB∑

j=1

NF∑

s=1

K̂ǫ,δ (xi,r, xj,s) p̃−α
ǫ,δ (xj,s) f (xj,s)

NB∑

j=1

NF∑

s=1

K̂ǫ,δ (xi,r, xj,s) p̃−α
ǫ,δ (xj,s)
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=

NB∑

j=1

NF∑

s=1

K̂ǫ,δ (xi,r, xj,s)
[
N

(α)
B N

(α)
F p̂−α

ǫ,δ (xj,s) − p̃−α
ǫ,δ (xj,s)

]
f (xj,s)

NB∑

j=1

NF∑

s=1

K̂ǫ,δ (xi,r, xj,s) Nα
BNα

F p̂−α
ǫ,δ (xj,s)

+

NB∑

j=1

NF∑

s=1

K̂ǫ,δ (xi,r, xj,s) p̃−α
ǫ,δ (xj,s) f (xj,s) ×

⎡
⎢⎢⎢⎢⎢⎢⎣

−
NB∑

j=1

NF∑

s=1

K̂ǫ,δ (xi,r, xj,s)
[
Nα

BNα
F p̂−α

ǫ,δ (xj,s) − p̃−α
ǫ,δ (xj,s)

]

⎛
⎝

NB∑

j=1

NF∑

s=1

K̂ǫ,δ (xi,r, xj,s) Nα
BNα

F p̂−α
ǫ,δ (xj,s)

⎞
⎠
⎛
⎝

NB∑

j=1

NF∑

s=1

K̂ǫ,δ (xi,r, xj,s) p̃−α
ǫ,δ (xj,s)

⎞
⎠

⎤
⎥⎥⎥⎥⎥⎥⎦

=: (A) + (B) ,

thus if we estimate (A), (B) by controlling the error

[
Nα

BNα
F p̂−α

ǫ,δ (xj,s) − p̃−α
ǫ,δ (xj,s)

]

then it suffices to estimate the variance error caused by

⎡
⎣

NB∑

j=1

NF∑

s=1

K̂ǫ,δ (xi,r, xj,s) f (xj,s)

p̃
(α)
ǫ,δ (xi,r) p̃

(α)
ǫ,δ (xj,s)

⎤
⎦
⎡
⎣

NB∑

j=1

NF∑

s=1

K̂ǫ,δ (xi,r, xj,s)

p̃
(α)
ǫ,δ (xi,r) p̃

(α)
ǫ,δ (xj,s)

⎤
⎦

−1

. (D.19)

Our previous proof for the special case α = 0 can then be applied to (D.19): the only adjustment is to 

replace the kernel K̂ǫ,δ (x, y) in that proof with the α-normalized kernel

K̃ǫ,δ (x, y)

p̃α
ǫ,δ (x) p̃α

ǫ,δ (y)
.

We would like to estimate the tail probability

P

{
1

NBNF
p̂ǫ,δ (xj,s) − p̃ǫ,δ (xj,s) > β

}
,

but since p̃ǫ,δ (xj,s) = O
(

ǫ
d
2 δ

d−1
2

)
, it is not lower bounded away from 0 as ǫ, δ → 0. We thus estimate the 

following tail probability instead:

q (NB , NF , β) := P

{
1

NBNF
ǫ− d

2 δ− d−1
2 p̃ǫ,δ (xj,s) − ǫ− d

2 δ− d−1
2 p̃ǫ,δ (xj,s) > β

}

= P

{
1

NBNF
p̃ǫ,δ (xj,s) − p̃ǫ,δ (xj,s) > ǫ

d
2 δ

d−1
2 β

}
,

where

p̂ǫ,δ (xj,s) =

NB∑

k=1

NF∑

t=1

K̂ǫ,δ (xj,s, xk,t) , p̃ǫ,δ (xj,s) = E1E2

[
K̃ǫ,δ (xj,s, ·)

]
.
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Noting that for some positive constant C = C (‖K‖∞ , pM , pm, d)

∣∣K̃ǫ,δ (xi,r, xj,s)
∣∣ ≤ ‖K‖∞ ,

∣∣E2

[
K̃ǫ,δ (xi,r, ·)

]∣∣ ≤ Cδ
d−1

2 ,
∣∣E1E2

[
K̃ǫ,δ (xi,r, ·)

]∣∣ ≤ Cǫ
d
2 δ

d−1
2 ,

and by direct computation

E
ξj

2

[
K̃ǫ,δ (xi,r, ·)

]2
= O

(
δ

d−1
2

)
, E1

[
E2K̃ǫ,δ (xi,r, ·)

]2
= O

(
ǫ

d
2 δd−1

)
,

Lemma 18 and β = O
(
ǫ2 + ǫδ + δ2

)
gives

q (NB , NF , β) ≤ NB exp

{
− (1 − θ)

2
NF ǫdδd−1β2

2C1δ
d−1

2

}
+ exp

{
−θ2NBǫdδd−1β2

2C1ǫ
d
2 δd−1

}

= NB exp

{
− (1 − θ)

2
NF ǫdδ

d−1
2 β2

2C1

}
+ exp

{
−θ2NBǫ

d
2 β2

2C1

}

for C1 > 0 some constant. A simple union bound gives

P

⎛
⎝⋃

j,s

{∣∣∣∣
1

NBNF
p̂ǫ,δ (xj,s) − p̃ǫ,δ (xj,s)

∣∣∣∣ > ǫ
d
2 δ

d−1
2 β

}⎞
⎠

≤ NBNF

[
NB exp

{
− (1 − θ)

2
NF ǫdδ

d−1
2 β2

2C1

}
+ exp

{
−θ2NBǫ

d
2 β2

2C1

}]

= NB (NB + 1) NF exp

{
−θ2

∗NBǫ
d
2 β2

2C1

}
setting θ = θ∗ as in (D.15).

(D.20)

We are interested in seeing how this bound compares with the bound in (D.17). As NB , NF → ∞, as long 

as (D.18) holds,

NB (NB + 1) NF exp

{
−θ2

∗NBǫ
d
2 β2

2C1

}

(NB + 1) exp

{
−θ2

∗NBǫ
d
2 β2

C (ǫ + δ)

}

=NBNF exp

{
−θ2

∗NBǫ
d
2 β2

[
1

2C1
− 1

C (ǫ + δ)

]}
−→ ∞ for small ǫ, δ,

thus the bound in (D.17) is asymptotically negligible compared to the bound in (D.20). This means that 

when α �= 0 the density estimation in general slows down the convergence rate by a factor (ǫ + δ)
1
2 , which is 

consistent with the conclusion for standard diffusion maps on manifolds [106,9]. Therefore, for probability 

at least

1 − NB (NB + 1) NF exp

{
−θ2

∗NBǫ
d
2 β2

2C1

}

we have
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∣∣∣∣∣∣∣∣∣∣∣

NB∑

j=1

NF∑

s=1

K̂ǫ,δ (xi,r, xj,s) f (xj,s)

p̃α
ǫ,δ (xi,r) p̃α

ǫ,δ (xj,s)

NB∑

j=1

NF∑

s=1

K̂ǫ,δ (xi,r, xj,s) p̃−α
ǫ,δ (xj,s)

p̃α
ǫ,δ (xi,r) p̃α

ǫ,δ (xj,s)

− H̃
(α)
ǫ,δ f (xi,r)

∣∣∣∣∣∣∣∣∣∣∣

≤ β

as well as

∣∣∣∣
1

NBNF
p̂ǫ,δ (xj,s) − p̃ǫ,δ (xj,s)

∣∣∣∣ ≤ ǫ
d
2 δ

d−1
2 β for all 1 ≤ j ≤ NB , 1 ≤ s ≤ NF .

Note that by our assumption

0 < pm ≤ p (x, v) ≤ pM < ∞ for all (x, v) ∈ UTM

there exist constants C1, C2 such that

0 < C1 < ǫ− d
2 δ− d−1

2 p̃ǫ,δ (xj,s) < C2 < ∞.

For sufficiently small β, we also have

0 < C1 <
1

NBNF
ǫ− d

2 δ− d−1
2 p̂ǫ,δ (xj,s) < C2 < ∞.

Thus

∣∣∣NBNF p̂−1
ǫ,δ (xj,s) − p̃−1

ǫ,δ (xj,s)
∣∣∣ ≤ ǫ

d
2 δ

d−1
2 β · 1

C2
1 ǫdδd−1

=
β

C2
1 ǫ

d
2 δ

d−1
2

and (A), (B) can be bounded as

|(A)| ≤ C
(α)
2 ǫ

αd
2 δ

α(d−1)
2 ‖f‖∞ · α

(
2

C2ǫ
d
2 δ

d−1
2

)α−1
β

C2
1 ǫ

d
2 δ

d−1
2

=
2α−1αC2 ‖f‖∞

C2
1

β,

|(B)| ≤ C2α
2 ǫαdδα(d−1)

C
(α)
1 ǫ

αd
2 δ

α(d−1)
2

‖f‖∞ · α

(
2

C2ǫ
d
2 δ

d−1
2

)α−1
β

C2
1 ǫ

d
2 δ

d−1
2

=
2α−1αCα+1

2 ‖f‖∞

Cα+2
1

β.

Since C1, C2 only depend on the kernel function K, the dimension d, and pm, pM , these bounds ensure that

∣∣∣Ĥ(α)
ǫ,δ f (xi,r) − H̃

(α)
ǫ,δ f (xi,r)

∣∣∣ < Cβ

with probability at least

1 − NB (NB + 1) NF exp

{
−θ2

∗NBǫ
d
2 β2

2C1

}
,

where constants C, C1 only depend on the kernel function K, the dimension d, and pm, pM . This establishes 

the conclusion for all α ∈ [0, 1]. ✷
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D.2. Sampling from empirical tangent spaces

The following two lemmas from [9] provide estimates for the error of approximating parallel-transports 

from local PCA. We adapted these lemmas to our notation; note that the statements are more compact 

than their original form since we assume M is closed.

Lemma 19. Suppose KPCA ∈ C2 ([0, 1]). If ǫPCA = O

(
N

− 2
d+2

B

)
, then, with high probability, the columns of 

the D × d matrix Oi determined by local PCA form an orthonormal basis to a d-dimensional subspace of 

R
D that deviates from ι∗Txi

M by O
(

ǫ
3
2

PCA

)
, in the following sense:

min
O∈O(d)

‖O⊤
i Θi − O‖HS = O

(
ǫ

3
2

PCA

)
= O

(
N

− 3
d+2

B

)
, (D.21)

where Θi is a D × d matrix whose columns form an orthonormal basis to ι∗Txi
M . Let the minimizer if 

(D.21) be

Ôi = arg min
O∈O(d)

‖O⊤
i Θi − O‖F, (D.22)

and denote by Qi the D × d matrix

Qi := ΘiÔ
⊤
i . (D.23)

The columns of Qi form an orthonormal basis to ι∗Txi
M , and

‖Oi − Qi‖F = O (ǫPCA) , (D.24)

where ‖·‖F is the matrix Frobenius norm.

Proof. See [9, Lemma B.1]. ✷

Lemma 20. Consider points xi, xj ∈ M such that the geodesic distance between them is O
(

ǫ
1
2

)
. For ǫPCA =

O

(
N

− 2
d+2

B

)
, with high probability, Oij approximates Pxi,xj

in the following sense:

OijX̄j =
(
〈ι∗Pxi,xj

X (xj) , ul (xi)〉
)d

l=1
+ O

(
ǫ

1
2

PCA + ǫ
3
2

)
, for all X ∈ Γ (M, TM) , (D.25)

where {ul (xi)}d
l=1 is an orthonormal set determined by local PCA, and

X̄i ≡ (〈ι∗X (xi) , ul (xi)〉)d
l=1 ∈ R

d.

Proof. See [9, Theorem B.2]. ✷

Proof of Theorem 10. By Definition 5.2 (5.2),

Ojici,r =
OjiB

⊤
i τ i,r∥∥B⊤

i τ i,r

∥∥ .

By Lemma 20,
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OjiB
⊤
i τ i,r = B⊤

j

(
Pξj ,ξi

τ i,r

)
+ O

(
ǫ

1
2

PCA + ǫ
3
2

)
,

thus

OjiB
⊤
i τ i,r∥∥B⊤

i τ i,r

∥∥ =
B⊤

j

(
Pξj ,ξi

τ i,r

)
∥∥B⊤

i τ i,r

∥∥ + O
(

ǫ
1
2

PCA + ǫ
3
2

)
,

where we used 
∥∥B⊤

j

(
Pξj ,ξi

τ i,r

)∥∥ ≤
∥∥Pξj ,ξi

τ i,r

∥∥ = 1 and

∣∣∥∥B⊤
i τ i,r

∥∥
F

− 1
∣∣ =

∣∣∥∥B⊤
i τ i,r

∥∥
F

−
∥∥Q⊤

i τ i,r

∥∥
F

∣∣ ≤
∥∥B⊤

i τ i,r − Q⊤
i τ i,r

∥∥
F

≤
∥∥B⊤

i − Q⊤
i

∥∥
F

= O (ǫPCA) .

Thus

Ojici,r − cj,s =
B⊤

j

(
Pξj ,ξi

τ i,r

)
∥∥B⊤

i τ i,r

∥∥ + O
(

ǫ
1
2

PCA + ǫ
3
2

)
−

B⊤
j τ j,s∥∥B⊤
j τ j,s

∥∥

= Pξj ,ξi
τ i,r − τ j,s + O

(
ǫ

1
2

PCA + ǫ
3
2

)
,

∣∣∣‖Ojici,r − cj,s‖2 −
∥∥Pξj ,ξi

τ i,r − τ j,s

∥∥2
∣∣∣ = O

(
ǫ

1
2

PCA + ǫ
3
2

)
,

and

K

(
‖ξi − ξj‖2

ǫ
,

‖Ojici,r − cj,s‖2

δ

)
= K

(
‖ξi − ξj‖2

ǫ
,

∥∥Pξj ,ξi
τ i,r − τ j,s

∥∥2

δ

)

+ ∂2K

(
‖ξi − ξj‖2

ǫ
,

∥∥Pξj ,ξi
τ i,r − τ j,s

∥∥2

δ

)
·

O
(

ǫ
1
2

PCA + ǫ
3
2

)

δ
.

Thus for any function g ∈ C∞ (UTM) we have

∫

UTM

Kǫ,δ (τ i,r, η) g (η) dΘ (η)

=

∫

UTM

K̃ǫ,δ (τ i,r, η) g (η) dΘ (η) + ǫ
d
2 δ

d−1
2 −1O

(
ǫ

1
2

PCA + ǫ
3
2

)
.

Following the notation used in the proof of Theorem 9, by the law of large numbers

lim
NB→∞

lim
NF →∞

1

NBNF
q̂ǫ,δ (τ i,r) = E1E2 [Kǫ,δ (τ i,r, ·)]

= E1E2

[
K̃ǫ,δ (τ i,r, ·)

]
+ ǫ

d
2 δ

d−1
2 −1O

(
ǫ

1
2

PCA + ǫ
3
2

)
,

hence we expect H
(α)

ǫ,δ f (τ i,r) to converge to

H̃
(α)
ǫ,δ f (τ i,r) + O

(
δ−1

(
ǫ

1
2

PCA + ǫ
3
2

))

= f (τ i,r) + ǫ
m21

2m0

[
ΔH

UTM

[
fp1−α

]
(τ i,r)

p1−α (τ i,r)
− f (τ i,r)

ΔH
UTM p1−α (τ i,r)

p1−α (τ i,r)

]
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+ δ
m22

2m0

[
ΔV

UTM

[
fp1−α

]
(τ i,r)

p1−α (τ i,r)
− f (τ i,r)

ΔV
UTM p1−α (τ i,r)

p1−α (τ i,r)

]

+ O
(
ǫ2 + ǫδ + δ2

)
+ O

(
δ−1

(
ǫ

1
2

PCA + ǫ
3
2

))
.

In fact, noting that

1

ǫ
d
2 δ

d−1
2 NBNF

q̂ǫ,δ (τ i,r) =
1

ǫ
d
2 δ

d−1
2 NBNF

p̂ǫ,δ (τ i,r, τ j,s) +
O
(

δ−1
(

ǫ
1
2

PCA + ǫ
3
2

))

ǫ
d
2 δ

d−1
2

,

we have

ǫαdδα(d−1)N2α
B N2α

F K
(α)

ǫ,δ (τ i,r, τ j,s)

= ǫαdδα(d−1)N2α
B N2α

F K
(α)
ǫ,δ (τ i,r, τ j,s) + O

(
δ−1

(
ǫ

1
2

PCA + ǫ
3
2

))
.

Consequently,

H
(α)

ǫ,δ f (τ i,r) =

NB∑

j=1

NF∑

s=1

K̃
(α)
ǫ,δ (τ i,r, τ j,s) f (τ j,s)

NB∑

j=1

NF∑

s=1

K̃
(α)
ǫ,δ (τ i,r, τ j,s)

+ O
(

δ−1
(

ǫ
1
2

PCA + ǫ
3
2

))

= Ĥ
(α)
ǫ,δ f (τ i,r) + O

(
δ−1

(
ǫ

1
2

PCA + ǫ
3
2

))
.

Under the assumption that

δ−1
(

ǫ
1
2

PCA + ǫ
3
2

)
−→ 0 as ǫ → 0,

we can apply Theorem 9. This completes the proof of Theorem 10. ✷
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