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or similarity scores, with which one can construct and study a weighted graph
associated with the data set. When each individual data object carries additional
structural details, however, the correspondence relations between these structures
provide extra information that can be leveraged for studying the data set using the
graph. Based on this observation, we generalize Diffusion Maps (DM) in manifold
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information and study the asymptotic behavior of HDM on general fibre bundles. In
a broader context, HDM reveals the sub-Riemannian structure of high-dimensional
data sets, and provides a nonparametric learning framework for data sets with
structural correspondences.
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1. Introduction

Acquiring complex, massive, and often high-dimensional data sets has become a common practice in
many fields of science. While inspiring and stimulating, these data sets can be challenging to analyze or
understand efficiently. To gain insight despite the volume and dimension of the data, methods from a wide
range of science fields have been brought into the picture, rooted in statistical inference, machine learning,
signal processing, to mention just a few. Among the exploding research interests and directions in data
science, the relation between the graph Laplacian [1] and the manifold Laplacian [2] has emerged as a useful
guiding principle. Specifically, the field of non-linear dimensionality reduction has witnessed the emergence
of a variety of kernel-based spectral techniques, such as Locally Linear Embedding (LLE) [3], ISOMAP [4],
Hessian Eigenmaps [5], Local Tangent Space Alignment (LTSA) [6], Diffusion Maps [7], Orientable Diffusion
Maps (ODM) [8], Vector Diffusion Maps (VDM) [9], and Schrédinger Eigenmaps [10]. The general practice
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Fig. 1. An optimal structural correspondence between two lemur teeth illustrated by pushing forward a texture on the left tooth
onto the right tooth. This correspondence leads to the Continuous Procrustes Distance [20] between shape pairs. HDM utilizes
the abundant geometric information in such correspondences.

of these methods is to treat each object (images, texts, shapes, etc.) in the data set as a vertex of a graph,
and two “similar” vertices are connected through an edge weighted by their similarity score. The graph is
then embedded into a Euclidean space of relatively low dimensionality using the eigenvectors of the graph
Laplacian (or its variant) associated with the similarity graph. Built with varying flexibility, these methods
provide valuable tools for organizing complex networks and data sets by “learning” the global geometry
from the local connectivity and weights.

In reality, graph-based data analysis is known to fall short of their expressiveness in capturing multiplex,
heterogeneous, and time-varying pairwise relations commonly encountered in data science problems. Social
network analysis has long been aware of the importance of preserving the “additional information,” such
as structural, compositional, and affiliation attributes, for avoiding potential loss of accuracy due to the
over-simplified abstraction of complex social relations into simple nodes and edges in graph models [11-14].
Recent technological advancement has also fostered an increasing trend of extending the graph-based analysis
to networks of multiple types of connections, or networks of networks [15,16], that encode multi-modal
pairwise relations as multilayer complex systems supported on a set of shared vertices [17-19]. These new
developments essentially follow the same methodology of enriching the graph representation with structures
beyond simple vertices/edges and scalar weights on them.

We propose in this paper Horizontal Diffusion Maps (HDM), a novel graph-based framework for analyzing
complex data sets with non-scalar or functional pairwise relations, with a focus on data sets in which
similarity scores between samples can be obtained from “correspondence relations” between sophisticated
individual structures carried within each sample. We distinguish data objects, which constitute the vertices
of the graph, from the data points sampled from each data object that represent the internal structure of the
data object. Just like manifold learning assumes that data lie approximately on a smooth manifold, we view
the data objects as approximately sampled from a smooth base manifold, and the data points as samples
on the fibres of a fibre bundle over the base manifold; data points on the same data object are assumed to
come from the same fibre. One such example is the biological shape data in geometric morphometrics (see
Fig. 1 and Section 6), where each individual shape is a data object and each point on the shape in a data
object; similar examples can be found e.g. in image analysis, where images are data objects and pixels on
each image are data points. In many of these instances, the data acquired is too noisy, has huge degrees of
freedom, or contains un-ordered (as opposed to sequential) features. Computing pairwise similarity between
data objects typically requires optimizing some functional over the space of admissible pairwise structural
correspondences, and the “optimal correspondence” is used to assign a distance or similarity score between
the two data objects under comparison. Fig. 1 illustrates two objects from a data set of anatomical surfaces,
discretized as triangular meshes; an “optimal correspondence” between the pair is a diffeomorphism between
the two meshes that minimizes an energy functional whose minimum defines a distance between disk-type
surfaces. Often the optimal correspondence encodes substantial information missing from the distance, which
is merely a scalar condensed from the diffeomorphism. The HDM framework aims to mine this hidden
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information from pairwise structural correspondences. For a data set consisting of data objects, data points,
and pairwise structural correspondences, horizontal diffusion maps provide a two-level data representation
that first “synchronizes” the data objects with respect to “denoised” structure correspondences by embedding
the data points into a Euclidean space, and then, building on top of the first-level embedding for the
data points, embed the data objects into another Euclidean space as the second level. As the second-level
embedding for the data objects leverages the rich structural information at the level of data points, they
are expected to be semantically more meaningful than the spectral representation obtained from standard
diffusion maps which can not take advantage of the individual structural information; the synchronized
spectral representation of the data points at the first level also adds to the interpretative power of HDM,
enabling detailed domain-specific analysis for the data objects that is often beyond the scope of standard
diffusion maps.

In the remainder of this section we relate HDM to other recent work in diffusion geometry, summarize
our main theoretical contribution, and then describe the organization of the paper.

1.1. Related work

The Diffusion Map (DM) framework [7,21-24,8 9] proposes a probabilistic interpretation for graph-
Laplacian-based dimensionality reduction algorithms. Under the assumption that the discrete graph is
appropriately sampled from a smooth manifold, it assigns transition probabilities from a vertex to each of
its neighbors (vertices connected to it) according to the edge weights, thus defining a graph random walk the
continuous limit of which is a diffusion process [25,26] over the underlying manifold. The eigenvalues and
eigenvectors of the graph Laplacian, which converge to those of the manifold Laplacian under appropriate
assumptions [27,28], then reveal intrinsic information about the smooth manifold. More precisely, [29] proves
that these eigenvectors embed the manifold into an infinite dimensional ¢? space, in such a way that the
2 distance between embedded points equals to the diffusion distance [7] between the sample points on the
manifold. Appropriate truncation of these sequences leads to an embedding of the smooth manifold into a
finite dimensional Euclidean space, with small metric distortion.

Under the manifold assumption, [8,9] recently observed that estimating random walks and diffusion
processes on structures associated with the original manifold (as opposed to estimates of diffusion on the
manifold itself) are able to handle a wider range of tasks, or obtain improved precision or robustness for tasks
considered earlier. For instance, [8] constructed a random walk on the orientation bundle [30, §1.7] associated
with the manifold, and translated the detection of orientability into an eigenvector problem, the solution
of which reveals the existence of a global section on the orientation bundle; [9] introduced a random walk
on the tangent bundle associated with the manifold, and proposed an algorithm that embeds the manifold
into an [? space using eigen-vector-fields instead of eigenvectors (and thus the name Vector Diffusion Maps
(VDM)). Both [8] and [9] incorporate additional structures into the graph Laplacian framework: in [9] this is
an extra orthogonal transformation (estimated from local tangent planes) attached to each weighted edge in
the graph; in [8] the edge weights are overwritten with signs determined by this orthogonal transformation.
These methods are successful, partly because they incorporate more local geometry (by estimating tangent
planes) en route to dimensionality reduction. In [31] the VDM approach is used, analogously to [29], to
embed the manifold into a finite dimensional Euclidean space. Although the VDM embedding does not
reduce the dimensionality as much as standard diffusion embedding methods, it benefits from improved
robustness to noise, as illustrated by the analysis of some notoriously noisy data sets [32,33].

This paper stems from the observation that it is possible to adopt the methodology of [8,9] to tackle
problems in much broader contexts, where the local geometric information can be of a different type than
tangent spaces. For instance, many data sets carries abundant structural details on each individual object
in the data set, such as pixels in an image, vertices/faces on a triangular mesh, or a collection of persistent
diagrams [34] representing a shape. Typically, kernel eigenmap methods begin by “abstracting away” these
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details, encoding only pairwise similarities using a kernel function. The major advantage, like kernel methods
in general, is the flexibility (no need to extract explicit features) and efficiency (most kernels are easy to
compute); however, in some circumstances, the structural details may themselves be of interest. For example,
in the geometry processing problem of analyzing large collections of 3D shapes, it is desirable to enable user
exploration of shape variations across the collection, for which reducing each individual shape as a graph
vertex completely ignores its spatial configuration. Furthermore, even when sticking to pairwise similarity
scores significantly simplifies the data manipulation, the best way to score similarity (or to craft the kernel
function) is not always clear. In practice, the similarity measure is often dictated by practical heuristics,
which may be misguided for incompletely understood data.

Like ODM and VDM, HDM extends the diffusion map framework, but takes an essentially different path.
In this paper, we are most interested in the scenario in which the sample points are themselves manifolds;
the entire data set is thus modeled as a “manifold of manifolds.” To provide a mathematical model for
such consideration, we first augment the manifold underlying diffusion maps, denoted as M, with extra
dimensions. To each point 2 on M, this augmentation attaches an individual manifold, denoted as F}; since
pairwise correspondences exist between nearby individual manifolds, we assume that around each x € M
there exists an open neighborhood U such that on U the augmented structure “looks like” U x F', the product
of U with a “universal template” manifold F. Intuitively, M plays the role of a “parametrization” for the
collection of individual manifolds {F, | x € M}. Of course, the existence of such a universal template makes
sense only if the F,’s are compatible with each other in some appropriate sense (e.g. each F, should at least
be diffeomorphic to F'); however, such compatibility is not uncommon for many data sets of interest, as we
shall see in Section 2. This picture of parameterizing a family of manifolds with an underlying manifold is
reminiscent of the modern differential geometric concept of a fibre bundle, which played an important role in
the development of geometry, topology, and mathematical physics in the past century. Therefore, we shall
refer to this geometric object as the underlying fibre bundle of the data set. Adopting the terminology from
differential geometry, we call M the base manifold, the universal template manifold F' the fibre, and each
F, a fibre at x. The fibre bundle is itself a manifold, denoted as E and referred to as the total manifold.
We emphasize here that the fibre bundle setting we consider in this paper is even more general and flexible
than the principal bundle formulation in [35], which provided a unified theoretical framework for diffusion
maps and its various extensions. Whereas the principal bundle framework [35] builds upon an explicitly
specified Lie group and defines the fibre bundle as a quotient space of the group action, in the framework
of HDM the fibre bundles are trivialized by local parallel-transports. This flexibility allows us to analyze
data sets satisfying the fibre bundle assumption (see Section 2) but for which the structure group can not
be identified a priori. We shall elaborate on this in greater detail in Section 2.

A different line of research closely related to our work is the construction of adaptive cone kernels
[36,37] in the data-driven study of dynamical systems. Unlike the geometric setting in our work (or [9,35]),
the low-dimensional manifold structure lives in the phase space, and the kernels are constructed from
finite differences of time-ordered data samples. In [36], the author constructed a family of nonhomogeneous
and anisotropic family of kernels that assign higher affinity scores to more aligned velocity vectors; the
resulting diffusion processes generate paths that asymptotically “follow along” the integral curves of the
dynamical vector field. The intimate connection between the intrinsic geometry of the data and general
nonhomogeneous, anisotropic kernels is characterized in great detail in [38]. The usage of these more general
and flexible kernels is similar in spirit to our construction of the coupled diffusion operator in Section 2.2 in
the specific case when the Riemannian metric on the fibre bundle splits into the direct sum of horizontal and
vertical components; however, it is worth pointing out that the lack of a fibre bundle structure in [7,36,37]
makes these applications of anisotropic diffusions drastically different from HDM: in our terminology, these
constructions are targeted at understanding the total manifold, whereas our goal is to extract information
jointly and consistently from the total manifold and the base manifold. Specifically, our definitions of
horizontal base diffusion map (HBDM) and horizontal base diffusion distance (HBDD) in Section 3.2 are
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meaningful only at the presence of an underlying fibre bundle structure. Most strikingly, as we point out in
Remark 4.1, the HDM framework differs in an essential way from directly applying an anisotropic diffusion
kernel construction to the total manifold of the fibre bundle; the two constructions coincide only in the
very special case when the fibres are totally geodesically embedded into the total manifold. These subtle
phenomena are characterized for the first time in the diffusion geometry literature. We thus believe that the
classical differential geometric concepts of fibre bundles, Riemannian submersions, and horizontal /vertical
Laplacians, though introduced into the blossoming field of geometric data analysis only for the first time,
open new opportunities for gaining deeper understandings of real world data through the lens of diffusion
geometry.

1.2. Main contribution

The main theoretical contribution of this paper is to provide a probabilistic interpretation of HDM as
a horizontal random walk on the fibre bundle, extending the random walk picture of diffusion maps to a
broader class of geometric objects. In one step, the transition occurs either between points on adjacent but
distinct fibres, or within the same fibre. If transitions between distinct fibres depend solely on geometric
proximity specified through a metric on the total manifold F, this looks no different from a direct application
of diffusion maps on E. In contrast, HDM also incorporates the pairwise correspondences between individual
manifolds in the fibre bundle formulation, by requiring transitions between distinct fibres to follow certain
directional constraints imposed by correspondences. The resulting random walk is no longer a standard
random walk on the total manifold, but rather a “horizontal lift” of a random walk on the base manifold M.
Under mild assumptions, its continuous limit is a diffusion process on the total manifold F, infinitesimally
generated by a hypoelliptic differential operator [39]. We can then map the total manifold into a Euclidean
space using the eigenfunctions of this partial differential operator; discretely this corresponds to solving for
the eigenvectors of graph horizontal Laplacians. It turns out that, by varying a couple of parameters in its
construction, the family of graph horizontal Laplacians includes the discrete analogue of several important
and informative partial differential operators on the fibre bundle, relating the geometry of the base manifold
with that of the total manifold. Compared with [9,35], the limiting differential operators can be employed
to reveal the sub-Riemannian structures of a fibre bundle (or Riemannian submersion [40, Chapter 9]), a
task that can not be accomplished in the principal bundle framework of [9,35]. Our numerical experiments
revealed intriguing geometric phenomena, such as adiabatic limits, when embedding the fibre bundle using
eigenvectors of these new graph Laplacians; these phenomena have never been reported in any related work
within the framework of [9,35].

We note that the idea of studying diffusion processes and random walks on an “augmentation” of the
original data set, or extracting information from pairwise structural correspondences between sample points,
has appeared elsewhere as well, in several distinct fields (e.g. shape collection analysis [41], manifold align-
ment [42], and neurogeometry [43]). To our knowledge, HDM is the first theoretical framework that provides
the mathematical and statistical foundation for these research directions; in particular, like diffusion maps,
HDM enables decoupling the probabilistic treatment of sampling from the geometry of the data set.

The rest of this paper is organized as follows: Section 2 formulates the problem and discusses the fibre
bundle assumption; Section 3 describes the algorithmic construction; Section 4 contains the main technical
results of this paper, several explicit calculations on some concrete examples of fibre bundles with totally
geodesic fibres, along with a numerical example on SO(3) to validate the theoretical findings; finite sampling
results and applications to biological shape analysis problems will be pursued in Section 5 and Section 6,
respectively; Section 7 concludes with a brief discussion and propose potentially interesting directions for
future work. The differential geometry concepts essential for developing the theoretical framework, as well
as technical proofs of the main results, are postponed to the appendices.
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2. Horizontal diffusion maps on fibre bundles

In this section, we build the theoretical framework of horizontal diffusion maps, and relate it, where
appropriate, with practical considerations for data processing.

2.1. The fibre bundle assumption

We say that the data set consists of data objects, and each data object contains data points (note that
the number of data points contained in each data object may vary). Pairwise structural correspondences
exist between data objects with high similarity scores; each correspondence is defined from a source data
object (the collection of source data points) to a target data object (the collection of target data points),
and can either be a point-to-point map or a “multi-valued map” that associates a source data point with
multiple target data points. In the latter case, the correspondence may also assign similarity scores between
source and target data points. To put data objects, data points, and pairwise structure correspondences in
a unified geometric model, we resort to the following general definition of fibre bundles.

Definition 2.1 (Fibre bundle, [}4,45]). Let m : E — M be a smooth map from a total manifold E to a base
manifold M. We call the quadruple & = (E, M, F, ) a fibre bundle with fibre manifold F' if there is an open
cover {U;} of M with diffeomorphisms

gzﬁi:ﬂ*l(Ui)—)UixF

such that 7 : 7= (U;) — Uj; is the composition of ¢; with projection onto the first factor U; in U; x F. In
other words, the following diagram is commutative:

L (U) — 22— U, x F

\ /

It follows immediately from this definition that 7! (z) is diffeomorphic to F for any x € M. We denote
F, for 7=! (x) and call it the fibre over x € M. The diffeomorphism ¢; : 7=1 (U;) — U; x F is also
known as a local trivialization of the fibre bundle & over the open set U;. Unless otherwise stated, we
assume throughout this paper that M and F are orientable Riemannian manifolds so the volume form
and integration are well-defined; the dimensions of M, F' will be denoted as d = dim (M), n = dim (F),
respectively. Using the language of fibre bundles, our basic assumptions for the data set can be summarized
as follows:

1. Data points lie approximately on a fibre bundle;
2. Data points on the same data object are sampled from the same fibre.

As stated above, the data sets of interest, to which the fibre bundle assumption applies, are those with pair-
wise correspondences between data objects, or fibres in the fibre bundle. This additional piece of information
can now be easily incorporated into the fibre bundle framework: we interpret pairwise correspondences as
parallel-transports along geodesics on the base manifold M, generated by a connection (see Appendix A)
on the fibre bundle &. For our purposes, the base manifold M plays the same role as the manifold that
underlies the diffusion maps (i.e., from which data objects are drawn); additionally, we assume that each
data object x € M carries a manifold structure that is diffeomorphic to a fixed fibre manifold F'; the entire
data set can thus be interpreted as a collection of instantiations of the fibre F' (which can be viewed as a
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“template”), indexed by points on the base manifold M as {F, : x € M}. From a fibre bundle point of view,
it is natural to study the base manifold M using the extra information in the total manifold E = Ug,ep Fy.
In the remaining paper, unless otherwise specified, we assume all Riemannian manifolds are geodesically
complete.

Roughly speaking, a data set satisfies the fibre bundle assumption if the data generation process can be
viewed as first drawing fibres from the fibre bundle (equivalent to sampling on the base manifold) and then
sampling on each fibre. The fibre bundle assumption admits “inconsistency” of pairwise correspondences
as to the nature of the underlying geometry: though pairwise correspondences only exist (or are of high
fidelity) between nearby data objects, by knitting together these correspondences along “small hops” one
can still build correspondences between far-apart data objects (provided the base manifold is connected);
correspondences constructed in this manner are generally inconsistent with each other in the sense that
knitting together correspondences along different paths connecting the same data objects leads to different
correspondences. In our framework, this inconsistency would reflect the curvature and holonomy of the
connection on the fibre bundle; see Appendix A.

The concept of fibre bundles we chose to present above is but one of several equivalent definitions; some
other popular ones can be found, for instance, in [46, Chapter 3, Chapter 10]. Our choice is based not only
on the conciseness and flexibility of Definition 2.1, but also—most importantly—because there is no need to
explicitly specify a structure group. In stark contrast is the equivalent definition of principal and associated
fibre bundles, e.g. in [35, Appendix A], in which principal bundles are defined as orbit spaces of Lie group
actions, and an associated bundle is obtained from a principal bundle through representations of the Lie
group. The unification of all diffusion maps and variants in [35] is made possible by specifying the structure
groups explicitly for each particular type of diffusion maps. Nevertheless, in most practical applications of
interest to us, it is difficult to explicitly know the structure group of the fibre bundle underlying the data
set. For instance, as briefly surveyed in [47, §4.1], for some data sets it may be unrealistic to model the
correspondence relations between data objects as group elements; groupoids seem to be the more natural
abstraction in those settings. Similar consideration motivated topological data analysts to propose sheaves
as data models; see e.g. [48] and the references therein. Even in cases in which the pairwise correspondences
can be modeled as group elements, the group can be too large to manipulate efficiently, such as Lie groups
of diffeomorphisms or isometries commonly encountered in non-isometric collection shape analysis [49-52].
While it is not uncommon to perform reductions of principal bundles to reduce the structure group to smaller
subgroups whenever possible, in the discrete setting this often boils down to the difficult group theoretic
and combinatorial problem of understanding the rigidity or approximability of representations of discrete
lattices of Lie groups [53-55]. These difficulties motivated us to take an alternative path to viewing the data
sets we encountered as fibre bundles, without explicitly referring to the structure group. Fortunately, the
following classical result of R. Hermann provides us with one possible route:

Theorem 1 ([56], [0, Theorem 9.3]). Let 7 : E — M be a Riemannian submersion (cf. [40, Definition
9.8]). If E is a complete, then w: E — M is a fibre bundle.

The proof of Theorem 1 is constructive. In a nutshell, Hermann explicitly constructed local trivializations
around each z € M, by connecting points on the fibre 77! () to points on any neighboring fibre 71 () by
horizontally lifting the geodesic on M that connects x to y. Here the horizontal lifting is made possible by
the Riemannian structure on F, which canonically splits the tangent bundle of F into the direct sum of a
horizontal and vertical subbundles. As pointed out in [40, §9.E], the horizontal subbundle is an Ehresmann
connection (see Appendix A) on the fibre bundle. The structure group of the fibre bundle can then be
determined from the holonomy of the Ehresmann connection; see [40, §9.47] for more details. Obviously,
the data required in Theorem 1 to fully specify the fibre bundle structure can be provided in a slightly
different order: if we are given a Riemannian manifold M and another manifold £ but without a prescribed
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M

Fig. 2. Left: A random walk on the base manifold M jumps in one step from a point sop on M to one of its neighboring points
$1, S2, s3. Right: The horizontal lift of the same random walk from M to the fibre bundle &, which jumps in one step from a point
on fibre F, to a neighboring point on the fibre Fs , Fs,, or Fg,.

Riemannian structure, and 7 : £ — M is a smooth submersion with an Ehresmann connection on F,
then we can define a product Riemannian structure on F which imposes the orthogonality between the
horizontal and vertical subbundles of the tangent bundle TFE. It is straightforward to verify that 7 : £ — M
is a Riemannian submersion with such a Riemannian structure on E. In other words, a fibre bundle can
be defined equivalently by a smooth submersion between the total and base manifold (with appropriate
completeness assumptions), a Riemannian structure on the base manifold, and an Ehresmann connection.
We close the discussion in this section by emphasizing that, though it might appear that our fibre bundle
framework “discards” the notion of structure groups compared with the fibre bundle formulation pioneered
in [9,35], structure groups indeed are specified, just in an indirect manner.

2.2. Horizontal random walks and diffusion processes on fibre bundles

Equipped with the geometric notion of fibre bundles, we are now ready to define a random walk tailored
to a data set with pairwise correspondences. Starting from a point e € E, in one step a random walker is
allowed to jump to a neighboring ¢’ € E only 7 (¢') # 7 (e) and e, e’ can be joined by a horizontally lifted
image of a piecewise geodesic connecting 7 (e) to 7’ (e) on M. More specifically, just as a standard random
walk on M jumps from = € M to a neighbor y € M following a transition probability P (y | ), a horizontal
random walk jumps from e € F, C E to Py, (e) € F, C E with transition probability P (y | «); note in
particular that this transition probability depends only on the projections x = 7 (e) and y = 7 (Py; (e)).
In this sense, a horizontal random walk on the fibre bundle & can be viewed as “driven” by an underlying
random walk on the base manifold M (see Fig. 2 for an illustration). Passing to the continuous limit (in the
weak sense as the random walk step size approaches zero, see [57] and Section 5.1), both random walks on
the fibre bundle and the base manifold converge to diffusion processes. For the convenience of exposition,
hereafter we refer to the limit diffusion process on the fibre bundle as the horizontal lift of the limit diffusion
process on the base manifold. In the Riemannian setting, this construction is reminiscent of the notion of
stochastic parallel transport [58,59] in stochastic differential geometry.

The following is a precise description of the horizontal diffusion processes on the fibre bundle in the
language of symmetric Markov semigroups. For clarity, let us assume M and F' are both orientable. Let
kernel K : R — R=% be a smooth function compactly supported on the unit interval [0,1]. For bandwidth
parameter € > 0 and any pairs of x,y € M, define

Ko (o) = ¢ (B2

€

where dy; (-, -) stands for the geodesic distance on M. Note that K. (-, ) is non-zero only if z, y are sufficiently
close to each other under the Riemannian metric on M, due to the compactness of the kernel function K.
For any f € C* (E), define the diffusion operator H, : C*° (E) — C* (FE) as
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HEf (I,’U) = /K€ (I,y)f(y,Pyx’U) dVOIM (y)v vx € M7U S va
M

where dvoly; stands for the Riemannian volume element on M. Intuitively, at each point (z,v) € E, H.
averages the value of f on a neighborhood around (z,v) expanded by parallel-transporting (z,v) along
geodesics on M. Compared with the diffusion semigroup characterization of a diffusion process on the base
manifold, H, incorporates the extra information provided by the connection.

Variants of H. that involve the sampling density can be similarly constructed, which is useful since in
practice it is difficult to uniformly sample from M. Consider a density function p € C>° (M) with respect
to which the samples are generated. For simplicity, assume p is bounded away from zero from below, i.e.,

/p(y) dvolyr (y) =1 and p(y) >po>0 Vye M. (2.1)
M

Similar to the construction of diffusion maps [7], we can decouple the geometry of the manifold from the
influence of sampling density by normalizing the integral kernel. To this end, we set

pe(z) = / K. (2.5) p (y) dvoly ()
M

and denote for any normalization parameter « € [0, 1]

K (z,y)

(@) (4. ) —
R @) = e )

then define the horizontal diffusion operator

/ K (2,9) f (4, Pyav) p (9) dvolar (1)
He(a)f (.%‘,U) =

, Yee M,veF, (2.2)
/ K (z,y) p (y) dvolas (y)
M

for any f € C°° (FE). As we shall see later, the infinitesimal generator of H is a second order partial
differential operator in which all derivatives, as vector fields on F, are horizontal.

A different practical consideration is that pairwise correspondences can be relaxed from maps to couplings
of probability measures when fibres are discretized. Examples for such relaxed pairwise correspondences in-
clude the soft-assign Procrustes matching [60] in medical imaging, the soft maps [61] in geometry processing,
the transport plans [62,63] in optimal transportation, to name just a few. In the HDM framework, these
relaxed correspondences also define diffusion processes on the fibre bundle, now consisting of two ingredi-
ents: a horizontal lift of a diffusion process on the base manifold, composed with another diffusion process
within the fibre. In this setting, it is an interesting question to “learn” the connection from the composition
of two diffusion processes; practically, this amounts to “recovering” maps from couplings in a collection of
data objects. In some applications (see e.g. Section 6), one can also “learn” the structure of the template
fibre from the connection. Making an analogy with the terminology manifold learning, we call this type of
learning problems fibre learning. Similar to (2.2), we can write the diffusion process considered in fibre learn-
ing in the language of Markov semigroups. Let K : R2 — R=Z% be a smooth bi-variate function compactly
supported on the unit square [0,1] x [0, 1], and let € > 0,0 > 0 be bandwidth parameters. Define
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d3, (x,y) d%y (Pyav, w)) (2.3)

K5,5 (x’wva) =K ( 5
€ 1)

for (x,v) € E, (y,w) € E, where dy (-,-) ,dF, (-, -) are the geodesic distances on M, F), respectively. Assume
p € C™ (E) is a density function bounded away from zero from below, i.e.

//p(y,w) dvolr, (w)dvolys (y) =1 (2.4)
MF,

and

p(y,w) >po >0, V(y,w)eE. (2.5)

For a € [0, 1], if we set

Pes (@) = / / K. s (2,59, )p (9, w) dvolr, (w) dvolas (3),
M F,

and

Ke,5 (ZL’, vy, U})
P (z,0) pes (y, w)’

K (z,viy,w) =
then the coupled diffusion operator for all (z,v) € E can be written as

// KE(%) (z,v;y,w) f (y,w) p (y, w) dvolp, (w) dvolas (y)

M F,

/ / KL% (2, v59,w) p (3, w) dvolp, () dvolys (3)
MF,

HS f(2,0) = (2.6)

The infinitesimal generator of He(f;) has to be considered differently from that of He(a) due to the appearance
of two (instead of one) bandwidth parameters €,d. It turns out that the relative rate with which e and §

approach 0 affects the type of the infinitesimal generator associated with the diffusion process, see Section 4.
3. The HDM algorithm

In this section, we describe the manifold learning framework of HDM that extracts feature information
in a data set with pairwise similarity and structural correspondences, based on the geometric intuition
explained in Section 2. The construction of graph horizontal Laplacians and spectral embeddings apply to
any fibred graph and symmetric similarity measure satisfying the structural assumptions in this section;
the theoretical results to be presented in Section 4 and Section 5 apply to the concrete scenario where the
graph arises from sampling the fibre bundle as an embedded submanifold of an ambient Euclidean space
and the similarity measure encodes the connection information (see Section 5.1 for more details).

3.1. Graph horizontal Laplacians

The data set considered in the HDM framework is a triplet (2", p, G), where
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The total data set 2" can be partitioned into a collection of data objects Xy, -- , X,
2 =JX;, X;nXy=0foralll<j#k<n,
j=1

where each data object X is referred to as the j-th fibre of 2", which contains x; data points
X; = {xj71,$j72, ‘e ,zjﬁj} .
We call the collection of fibres the base data set
B ={X1,Xa, -, Xn},
and let 7w : 2" — % be the canonical projection from 2" to A

T: X — B

i Xj, 1<7<n,1<Ek <k
Denote the total number of points in 2~ as
K=RK1+Ke+ -+ Kn.

The mutual similarity measure p : 2 x Z — RZ0 is a symmetric non-negative function that vanishes
on each fibre, i.e.

p(&n) >0, p&n)=pn¢ VENEX

and
p(&n) =0 if&ne X; forsomel < j<n.
For simplicity of notation, we denote the restriction of p on X; x X; as
pij (s,t) == p (@i, xj) Va, s € X5, xjp € Xj.

In words, p;; is an k; X k; matrix on R, to which we will refer as the mutual similarity matriz between
X; and X;. Note that p;; = 0if i = j.

The affinity graph G = (V, E) has k vertices, with each v; s corresponding to a point z; ; € £ . Without
loss of generality, assume G is connected. (In our applications, each z; s is typically connected to several
x;j+'s on neighboring fibres.) If there is an edge between v; s and v;; in G, then z;  is a neighbor of
xj+ (and x;; is a neighbor of z; 5); X; is called a neighbor of X; (and similarly X; a neighbor of X;)
if there is an edge in G linking one point in X; with one point in X;. Implicitly, these define a graph
Gp = (VB, Ep) in which vertices of Vg are in one-to-one correspondences with fibres of 2, and Ep
encodes the neighborhood relations between pairs of fibres. Gp will be called as the base affinity graph.

With the triplet (2, p, G) specified, we detail below the construction of the graph horizontal Laplacian.

Let W € R**" be the weighted adjacency matriz of the graph G, i.e., W is a block matrix in which the
(i, 7)-th block is p;;. The (s,t) entry in W;; stands for the edge weight p;; (s,t) between v; ¢ and v, ;. Since

Pij

= pjTi, W is a symmetric matrix. Let D be the x x xk diagonal matrix in which the j-th diagonal entry
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equals to the j-th row sum of W. We define the graph horizontal Laplacian for the triplet (27, p, G) as the
weighted graph Laplacian of G with edge weights W, i.e.

L".=D-W. (3.1)

Since G is connected, the diagonal elements of D are all non-zero. Thus D is invertible and we can define
the random-walk and normalized version of L7:

LH .= p7'L" =1 - D7 'w, (3.2)
LH .= p=\2pHp=1/2 — 1 — D=2 p~1/2, (3.3)

Following [7], we can also repeat these constructions on a renormalized graph of G by setting for some
a € [0,1]

W, =D “WD (3.4)

and constructing the graph horizontal Laplacians from W, instead of W. More precisely, let D, be the k X k
diagonal matrix in which the j-th diagonal entry equals to the j-th row sum of W, and set

L7 .= D, - W,, (3.5)
LY =D 'Ll =1—-D;'W,, (3.6)
LY, =D '?LEDIY? =1 - DJV*W,D /2. (3.7)

Remark 3.1. The block structure in the matrix W is reminiscent of the graph connection Laplacian [9,
Section 3], but the constraints on the blocks are different: blocks of the graph connection Laplacian are
built from matrix representations of a Lie group, but blocks of the graph horizontal Laplacian represent
similarity between data objects and are matrices with non-negative entries. The normalization we apply to
W is the same as for standard diffusion maps [7]. Formally, the constructions of L, Lg owo and Lg{ . as
well as the embeddings derived from their eigen-decompositions, appears identical to their counterparts in
standard diffusion maps, but we will show below that the unique fibred structure of the graph G allows us
to characterize more subtle geometry in (2, p, G) than standard diffusion maps could (see Remark 4.1 and

Remark 5.1).
3.2. Spectral distances and embeddings

Spectral distances are defined via the eigen-decompositions of graph Laplacians. Since LX _ differs from

a,rw

LY, only by a similarity transformation

Q%

LH* :D1/2LH D71/2

a,rw a ’
the two Laplacians have essentially the same eigen-decomposition. We shall focus on Lg , for the rest of
this section due to its computational advantage as a real symmetric matrix.

Any right eigenvector v € R" of Lf, , defines a function on the vertices of G. By the construction of L

(X7*’
the length-x vector v, when written as the concatenation of n segments of length k1, - , K, respectively,
defines a function on each of the n fibres X1, , X,,. We assume eigenvectors are always column vectors,
and write

T T\
V= (U[l]’ e ’U[n])
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where each column vector vj; € R/ defines a function on the fibre X;. Now let

A SA <A << A

H

be the r eigenvalues of L , in ascending order, and denote the eigenvector corresponding to eigenvalue A;
as v;. By the connectivity assumption for G, we know from spectral graph theory [1] that \g = 0, Ao < A1,

and vg is a constant multiple of the column vector with all entries equal to 1; we have thus
0=X <A <A< <

By the spectral decomposition of Lf) o

k—1
LI =" N/, (3.8)
1=0
and for any fixed diffusion time t € R>Y,
; k—1
(L) =D M/, (3.9)
1=0

with the (i, 7)-th block

r—1
((Li{*)t)ij = Z )\fvz[z‘]vlT[j]- (3.10)
1=0

In general, this block is not a square matrix. Its Frobenius norm can be computed as

2 r T rk—1
t t t
ViE - ! ! 1l,m=0
_ 3.11
rk—1 k1 ( )
=Tr Z )‘f)\fn%Tn,[i]Ul[z’]UlT[j]Um[j] = Z )\f)\fnv;[i]vl[i]vf[j]vmm,
_l,m:O 1,m=0
Define the horizontal base diffusion map (HBDM) as
2
Vt: % — R"
3.12)
t/2 T (
Xj — (Al )\%2vl[j]vm[j]>0<l m<k—1
with which
2
t
H(@i*) ) = (V' (X;), V' (X)), (3.13)
ij||p

where (-,-) is the standard Euclidean inner product on R*’. Furthermore, we define the horizontal base
diffusion distance (HBDD) on £ as

duspm,: (Xi, X5) = ||V (X)) — V(X))

. (3.14)
= {VH (X)), VE(X0)) + (VH(X;), V(X)) —2{VI(X;), V(X)) )2
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From a learning point of view, the map V! : % — R~ is equivalent to the unsupervised features learned
from the data set with structural correspondences. Note also that HBDM embeds the base data set & into
a Euclidean space of dimension 2, which is of much higher dimensionality than the size of the original
data set. In practice, however, one often truncates the spectrum of graph Laplacians, thus embedding the
data set into a Euclidean of reduced dimensionality. In our numerical experiments and applications (see
Section 6), we found it is usually sufficient to retain the first O (/k) to O (k) eigenvalues. Even though
this truncation still involves higher spatial complexity than diffusion maps, our results show that HBDM
significantly outperforms DM for our purposes; we thus believe that the high-dimensional embedding is a
modest price to pay for extracting the hidden information in the structural correspondences.

In addition to handling the base data set %, HDM is also capable of embedding the total data set 2~
into Euclidean spaces. Define for each diffusion time t € RT the horizontal diffusion map (HDM)

H': 2 — R!
t t t (3.15)
zjs > (Alorg) (8), Ajvag (8) - Ae_10(e—1)p5) (5))

where v;[;) (s) is the s-th entry of the j-th segment of the [-th eigenvector, with j =1,--- ,n,s
We could also have written

j—1
vij) () =i (s; +5), wheres; =0and s; = Z kp for j > 2.
p=1

Following a similar argument as in [7], we can define the horizontal diffusion distance (HDD) on 2~ as
dHDM,t (xi,s,l'j,t) = HHt (xi,s) - Ht (xjﬁt)H . (316)

As it stands, H* embeds the total data set 2~ into a Euclidean space preserving the horizontal diffusion
distance on Z". Moreover, this embedding automatically suggests a global registration for all fibres that
respects the mutual similarity measure p; similar ideas was already implicit in [41]. For simplicity of notation,
let us write

H!:=H'| X,

for the restriction of H' to fibre X, and call this the j-th component of H'. Up to scaling, the components
of H" bring the fibres of 2 to a common “template”, such that points z; s and z;; with a high similarity
measure p;; (s,t) tend to be close to each other in the embedded Euclidean space. One can then reconstruct
pairwise structural correspondences between fibres X;, X; in the embedded Euclidean space, now between
the embedded point clouds in R**. With appropriate truncation of the spectrum of the graph horizontal
Laplacian, these reconstructed structural correspondences are the “denoised version” of the original corre-
spondences. Moreover, recalling that each X; is sampled from some manifold F}, one can often estimate a
template fibre F C R™ from the embedded images

Hf (X1)7 7H7tz (Xn)v

and extend (by interpolation) H j from a discrete correspondence to a continuous bijective map from F}
to F', then build correspondence maps between an arbitrary pair X;, X; by composing (the interpolated
continuous maps) H! with (H;)fl. Pairwise correspondences reconstructed in this manner are globally
consistent, since they all go through the common template manifold F. We discuss in greater detail an
application of HDM and HDD to a data set of shapes in geometric morphometrics in Section 6.
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4. Infinitesimal generators for horizontal and coupled diffusion operators

We are now ready to present the main technical results of this paper. First, we characterize the infinites-
imal generator of the horizontal diffusion operator H'® in (2.2).

Theorem 2. Suppose & = (E,M,F,x) is a fibre bundle, M is a smooth Riemannian manifold without
boundary, and E is equipped with the Riemannian metric (B.6). For any f € C* (E) and (z,v) € E,

lim He(a)f(as,v) — f(x,v) _ mo [AH (flﬁl_a) i fAHIjl_a] (x,v)’ (4.1)
e—0 € 2"nO pl « (1’)

where mg, mo are positive constants depending only on the base manifold M and the kernel K, Ay is the
rough horizontal Laplacian on E in (B.8), and p=pomw € C*® (E).

The proof of Theorem 2 can be found in Appendix C.

Corollary 3. Under the same assumptions as in Theorem 2, when a =1,

HYf (2,0) = f (2,0) _ mo
e—0 € 277?,0

Apf(z,v). (4.2)

Characterizing the infinitesimal generator of the coupled diffusion operator He(?

is slightly more subtle:
the generator of the diffusion process depends on the relative speed at which the two bandwidth parameters
€,0 approach 0. For clarity, we first state the result for the case when the ratio §/¢ remains bounded as

€,0 — 0.

Theorem 4 (Bounded ratio 0/¢). Suppose & = (E, M, F,7) is a fibre bundle, M is a smooth Riemannian
manifold without boundary, and E is equipped with the Riemannian metric (B.6). For any f € C* (E) and
(x,v) € E, if 6 = O (€) as € = 0, then

a Ay (fpt=) — fAap—] (z,v)
He(,(s)f(fﬂ,v)f(x,v)Jre;ZZ(l)[ H( p pz_a(x?f;) ] T,V

maa [AY (fp'~%) — fALP' ] (2,0)
2my pt—a (x,v)

(4.3)

+4 +0 (€ +ed+6%),

where mg, ma1, Moo are positive constants depending only on the total manifold E and the kernel K, Ay is
the rough horizontal Laplacian on E defined in (B.8), and AY, is the vertical Laplacian of the fibre bundle
& defined in (B.11).

For a proof of Theorem 4, see Appendix C. Note that in the distribution sense Theorem 2 can be
interpreted as a special case of Theorem 4 when 6 = o(e) as ¢ — 0. From a different point of view,
Theorem 4 can also be interpreted as [7, Theorem 2] applied on a fibre bundle (E, M, F, 7) with a family of
varying Riemannian metrics

0
957 =9" @ 9",

which is known as the canonical variation in the literature of Riemannian submersion [40, §9.G] [64, §2.7.5].
If §/e — 0, then the rescaled metric
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%gf/e = ggM ®g"
is said to approach its adiabatic limit, or taking adiabatic limits amounts to blowing up or contracting the
fibres, which is very useful in studying foliations. In the horizontal diffusion maps framework, the adiabatic
limits can be indirectly taken by adjusting the relative magnitudes of the horizontal and vertical bandwidth
parameters; see Fig. 3 for an illustration. An in-depth discussion of adiabatic limits is beyond the scope of
this paper, and we refer interested readers to [65,66] and references therein.

Corollary 5. Under the same assumptions as in Theorem 4, if the limit of the ratio §/e exists and is finite,

i.e.,
B :=1limd/e < oo,
e—0
then
(o) 11—« 11—«
H ) - ) L - L 5
lim €,6 f(x,v) = f(2,v) _ 1[ B (fp ) fLsp ](SU v) (4'4)
e—0 € 2 pl_a (]J,U)

where Lg is a second order partial differential operator on E given by

ma1 ma2 v
Lg=—""A —=Az. 4.5
B o o+ mo " (4.5)
In particular, if ms1 = Bmaos and m : E — M is a harmonic map, then L = cAgp where Ag is the

Laplace-Beltrami operator on E and ¢ a multiplicative constant. In addition, if o = 1, then

HY f (x,0) ~ f (2,0)

e—0 €

= gAEf (.I,U) .

Proof. If 7 : E — M is a harmonic map, the fibres of 7 are minimal submanifolds of E (vice versa, see
e.g. [64, Lemma 2.2.4]) and Ay = A (see Remark 7.2). O

Remark 4.1. Corollary 5 clearly indicates that the coupled diffusion operator He(%) differs from the
anisotropic diffusion operators considered in [21,7] and the dynamical system literature [36,37] in an essen-
tial way: in general, when the fires are not totally geodesic submanifolds of the fibre bundle, the infinitesimal
generator (4.5) will never equal to the Laplace-Beltrami operator of the total manifold, regardless of the
relative ratio between § and e — even when the two constants in front of Ay and AY, coincide. This is
essentially due to the difference between the rough horizontal Laplacian Ay and the bona fide “horizontal
Laplacian” A commonly encountered in sub-Riemannian geometry and Riemannian submersions; see Re-
mark 7.2 for more details. The HDM framework is thus by no means a straightforward application of the
anisotropic diffusion maps to the total manifold of the fibre bundle.

In order to state the result for the case when the ratio §/e is not asymptotically bounded as ¢ — 0, let
us define the fibre average of any function f € C* (F) as

() (2) = [ f(a0) dvole, () (4:6)

whenever the integral converges. If (f) (x) exists for all x € M (e.g. when the fibre is compact or f is
integrable), obviously (f) € C* (M).
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)

Consider now the probability density function p in the definition of HC(O; . The fibre average (p) is a

probability density function on M, since
/(p> (z) dvolys (z) = //p(a:,v) dvolp, (v)dvolys (x) = 1.
M MF,

Note that (p) is bounded away from 0 from below according to our assumption (2.5). We can thus divide p
by (p) and define the conditional probability density function on E as

p(v|z):= @) (4.7

The name comes from the observation that p (v | 2) defines a probability density function when restricted
to a single fibre:

/ p(2,0) dvolp, (v)

_Fe _
/p(v | z) dvolp, (v) = D@ =1.
Fy

The last piece of notation we need for Theorem 6 is
(@) = [ £@0)p(w | o) dvolr, (0), (18)
Fy

for any function f € C'° (E). We shall refer to (f), as the fibre average of f with respect to the probability
density function p.

Theorem 6 (Unbounded ratio 0/¢). Suppose & = (E,M,F,m) is a fibre bundle, M is a smooth Rieman-
nian manifold without boundary, and E is equipped with the Riemannian metric (B.6). Define v := d/e
(equivalently 6 = ve). For any f € C* (E) and (z,v) € E, as ¢ — 0,

lim Hg%)ef (x,v)

y— 00

_ my [Awr ((Fpp) =) = (NpBar(p)' =] (@) , (4.9)
= e (@) + €2m6 )= (z) +0(e?),

where my, mb are positive constants depending only on the base manifold M and the kernel K, Aps is the
Laplace-Beltrami operator on M, (p) is the fibre average of the probability density function p, and (f), is
the fibre average of f with respect to the density p. In particular, if o« =1, then

!
my

. 1)
lim HE. = (1) () + 5

y—00 ’

Ay {f)p+ 0O (€%).

The proof of Theorem 6 can be found in Appendix C. Intuitively, Theorem 6 states that if the vertical
bandwidth parameter 6 — oo then the coupled diffusion operator contains little information about the
fibres. Comparing Theorem 6 with Theorem 4, one can see that in general

it BereS @)~ f@w) o HEG (@) ~ f (2,0)
lim lim # lim lim

b
e—0y—o00 € Y—00 €0 €
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thus an asymptotic expansion of H 5(,6:5) f (x,v) for small €, ¢ is not well-defined without careful consideration
of the behavior of §/¢ if it is not asymptotically bounded.

Remark 4.2. The subtlety in the characterization of the infinitesimal generator He(:? speaks of the pecu-
liarity of the nonhomogeneous, anisotropic diffusion processes considered in [7,67], at the presence of an
underlying fibre bundle structure. These phenomena not only indicate that the horizontal and coupled
diffusion operators are capable of unveiling richer geometric structures in complex real world data sets,
but also imply that additional care has to be taken when tuning the bandwidth parameters in practice —
the flexibility in choosing the appropriate relative scale between d and e adapts the HDM framework to a
myriad of scenarios in which the relative importance of the structural information in the data objects vary
drastically. The dependence of the infinitesimal generators on the ratio /e is also reminiscent of recent
trends of studying “big data” in high-dimensional statistics [68,69], where new paradigms of estimation and
inference arise as the ratio between the number of features and the number of samples becomes unbounded
asymptotically.

5. Finite sampling results on unit tangent bundles

The algorithm and theoretical results discussed so far are very general — we assumed that the diffusion
kernel (2.3) is constructed from abstract, geodesic distances on the base and fibre manifolds. This section
investigates the finite sampling aspects of horizontal diffusion maps, which connects the discrete, graph
construction in Section 3 with the continuous, infinitesimal characterization in Section 4. We focus on
analyzing the finite sample rate of convergence for unit tangent bundles, the fibre bundle with compact fibres
that is as prevalent as manifolds. This is a subbundle of the tangent bundle TM (which is non-compact)
defined as

UTM := [ Sar  Se:={v € TuM | g, (v,v) =1} C T, M.
xeM

In particular, UTM is a hypersurface of T'M equipped with a metric induced from TM. The volume form
on UTM with respect to the induced metric

d® (z,v) = dvolg, (v) dvolys (z)

is often known as the Liouville measure or the kinematic density [70, Chapter VII]. It is the only invariant
measure on UTM under geodesic flows. The coupled diffusion operator on UTM can be written with the
Liouville measure:

/ K (z,0:9,w) f (y,w) p (y,w) dO (y, w)

Hé(%)f (Z’,’U) _uTM

, VfeC*(UTM).
K') (@,0:9,0) p (y,w) dO (y,w)
UTrmM

The horizontal and vertical Laplacians on UTM can be defined from A%, and AY,, by extending f €
C>* (UTM) to C* (TM) and restricting the result back to UT'M. Therefore, for any f € C* (TM), if
0 =0 (e),

mar [Afmy (fp' %) = FAGp' ] (2,0)

HS) f(2,0) = f(z,0) +e

2mg pt=e (z,0)
AV 1—a) _ AV 1-a
g Bl ln L) o)
0 )
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This is consistent with the conclusion obtained in [71, Chapter 3].

The theory of HDM on tangent and unit tangent bundles are parallel to each other, but a general theory
for sampling from fibre bundles of arbitrary fibre type will find it easier to consider sampling from the
unit tangent bundle due to the compactness of its fibres. Sampling from tangent bundles is special, since
its fibres are vector spaces and thus determined by estimating a basis; this is considered in [9, §5]. We
thus study the behavior of HDM on unit tangent bundles under finite sampling. In this section, we first
consider sampling without noise, i.e. where we sample exactly on unit tangent bundles; next, we study the
case where the tangent spaces are empirically estimated from samples on the base manifold. The latter
scenario is a proof-of-concept for applying HDM to general fibre bundles in practical situations where data
representing each fibre are often acquired with noise. The proofs of Theorem 9 and Theorem 10 can be found
in Appendix D. In Section 5.2, we shall demonstrate a numerical experiment on SO(3) (the unit tangent
bundle of the 2-sphere in R3) that addresses the two sampling strategies. Throughout this section, recall
from Remark 7.2 that Ay = AH,, since the fibres of UTM are totally geodesic.

5.1. Rate of convergence from finite samples

5.1.1. Sampling without noise
We begin with some assumptions and definitions. Assumption 7 includes our technical assumptions, and
Assumption 8 specifies the noiseless sampling strategy.

Assumption 7.

(1) t: M < RP is an isometric embedding of a d-dimensional closed Riemannian manifold into R? | with
D> d.

(2) Let the bi-variate smooth kernel function K : R2 — RZ% be compactly supported within the unit square
[0,1] x [0, 1]. The partial derivatives 0, K, ;K are therefore automatically compactly supported on the
unit square as well. (In fact, a similar result still holds if K and its first order derivatives decay faster
at infinity than any inverse polynomials; to avoid technicalities and focus on demonstrating the idea,
we use compactly supported K.)

Assumption 8. The (Np x Np) data points

x1,1, T1,2, R L1,Np
X211, T2 2, R L2 Np
INg,1, TNg,2, ", <INg,Np

are sampled from UTM with respect to a probability density function p (x,v) satisfying (2.5), following a

two-step strategy: (i) sample Np points &, ,&n, i.i.d. on M with respect to (p), the fibre average of
p on M; (i) sample Np points xj1,---,2j N, on S¢; with respect to p (- | &;), the conditional probability
density.

Definition 5.1.

(1) Fore >0, >0and 1 <i,j < Np, 1 <r,s< Np, define

16 — &1 11Pe; e, — 25611 .
. K , y LF ],
€,0 (xi,ra xj,s) = d

K €
07 ZZ]?
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where P, ¢, + S¢; — Sg; is the parallel transport from S¢, to Se;. Note the difference between K. ;s and

A

K. s defined in (2.3): K. 5 uses Euclidean distance while K s uses geodesic distance.
(2) For 0 < o < 1, define

Np Np
ﬁe,é (Ii,r) = Z ZKE,(S (mi,mxj,s)

j=1s=1

and the empirical a-normalized kernel K’gé

IA{e,é (zi,rv xj,s)
Pes (@ir) D25 (2.6)

K25 (xi,2),5) = 1<i,j<Np,1<rs<Np.

)

(3) For 0 < a<1land f € C* (UTM), denote the a-normalized empirical horizontal diffusion operator by

Npg Np

Z Z K5 (xir,js) [ (25,5)
A j=1s=1
Hesf (wir) = Np Np

DD K5 (@i wja)

j=1s=1

Theorem 9 (Finite sampling without noise). Under Assumption 7 and Assumption 8, if

(i) 6=0(€) ase = 0;

. Np _
Nllglgoo N—B*BG (0,00),
Np—oc0

then for any x;, with 1 <i < Np and 1 <r < Np, as € — 0 (and thus 6 — 0), with high probability

o B ‘ mar | Am [0 %] (@) ‘ App* = (i)
s = e it | S ) Sl
mao A[‘;TM [f'pl—a} (xi,r) . ) AETMpl_O‘ (xi,r) (51)
* 62m0 P (z4,) f (@) pl= (x4 )

+0 (62 +0% + OglNg%(%) ,

where

1
0, =1-

4 a1 [Np
1 1§ 1 4] —
+e€ No

The proof of Theorem 9 is deferred to Appendix D.

Remark 5.1. Theorem 9 reflects the difference in the finite-sample rate of convergence between considering
horizontal diffusion and standard diffusion on the total manifold of the fibre bundle. For instance, in the
special case € = §, by [72], the variance error associated with the standard diffusion maps on the total
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manifold is O ( N, 172 1/2 ¢~ (2d- 1)/2, while the variance error in (5.1) is O (9*_1N31/26_d/42. This is

another evidence demonstratlng the difference between horizontal diffusion maps and standard diffusion

maps on the total manifold of the fibre bundle; see also Remark 4.1.

5.1.2. Sampling from empirical tangent spaces

In practice, it has been shown in [9] that, under the manifold assumption, a local PCA procedure can be
used for estimating tangent spaces from a point cloud; we are using PCA here as a procedure that determines
the dimension of a local good linear approximation to the manifold, and also, conveniently, provides a good
basis, which can be viewed as a basis for each tangent plane. To sample on these tangent spaces, it suffices to
repeatedly sample coordinate coefficients from a fixed standard unit sphere; each sample can be interpreted
as giving the coordinates of a point (approximately) on the tangent space. Parallel-transports will take the
corresponding point that truly lies on the tangent space at £ to the tangent space at (, another point on the
manifold. This new tangent space is, however, again known only approximately; points in this approximate
space are characterized by coordinates with respect to the local PCA basis at (. We can thus express the
whole (approximate) parallel-transport procedure by maps between coordinates with respect to PCA basis
at & to sets of coordinates at (; these changes of coordinates incorporate information on the choices of basis
at each end as well as on the parallel-transport itself.

Let us now describe this in more detail, setting up notations along the way. Throughout this section,
Assumption 7 still holds. Let {&1,--- ,&n,} be a collection of i.i.d. samples from M; then the local PCA
procedure can be summarized as follows: for any §;, 1 < j < Np, let &;,,--- ,§;, beits k nearest neighboring
points. Then

Xj=1[& — & & — &l

is a D x k matrix. Let Kpca be a positive monotonic decreasing function supported on the unit interval,
e.g. the Epanechnikov kernel [73]

Kpca (u) = (1 - ) x{0,1),

where x is the indicator function. Fix a scale parameter epca > 0, let D; be the £ x k diagonal matrix

o €5 — &l €5 — &l
D; = diag (\/KC ( ]—Epcjx >, ",\/KPCA< J—EPCZ ))

and carry out the singular value decomposition (SVD) of matrix X;D; as

X;D; = U3,V

An estimated basis B; for the local tangent plane at §; is formed by the first d left singular vectors
(corresponding to the d largest singular values in X;), arranged into a matrix as follows:

B — [u(.l),~-~ ,ug-d) c RDxd.

Note that the intrinsic dimension d is generally not known a priori. The authors of [9] proposed a procedure
that first estimates local dimensions from the decay of singular values in 3; and then sets d to be the median
of all local dimensions; [74] proposed a different approach based on multi-scale singular value decomposition.

Once a pair of estimated bases B;, B; is obtained for neighboring points &;,¢;, one estimates a parallel-
transport from Tg, M to Te, M as
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Oj; == argmin ||O — B! B; ,
ol | J ZHHS
where |[|-||4g is the Hilbert-Schmidt norm. Though this minimization problem is non-convex, it has an
efficient closed-form solution via the SVD of B,' B;, namely

0ji =UV", where B] B; =UXV" is the SVD of B} B;.

It is worth noting that O;; depends on the bases; it operates on the coordinates of tangent vectors under
B; and Bj, as explained above. Oj; approximates the true parallel-transport P, ¢, (composed with the
bases-expansions) with an error of O (epca), in the sense of [9, Lemma B.1].

We summarize our sampling strategy for this section (with some new notations) in the following definition.

Definition 5.2.

(1) Let {&1, - ,&ng} be a collection of samples from the base manifold M, i.i.d. with respect to some
probability density function p € C* (M). For each &;, 1 < j < Np, sample N points uniformly
from the (d — 1)-dimensional standard unit sphere S%~! in R¢, and denote the set of samples as €; =
{¢j1,--+ ,¢j,Np}, where each ¢; ¢ is a d x 1 column vector. Using the basis B; estimated from the local
PCA procedure, each c; s corresponds to an “approximate tangent vector at £;”, denoted as

Tjs 1= Bjcjs.

We use the notation .} for the unit sphere in the estimated tangent space (i.e., the column space of
Bj). Note that the 7; 1, ,7; n, are uniformly distributed on .7;.

(2) By [9, lemma B.1], for any B, there exists a D x d matrix @}, such that the columns of @Q); constitutes
an orthonormal basis for ¢,T¢, M and

HBj - QJ'HHS =0 (GPCA) .

We define the tangent projection from 1, Se; to the estimated tangent plane as

Tis > Tjs = 7QjQ;rTj’s
J»S 7,8 HQJQ;rTLbH
This map is well-defined for sufficiently small epca, and then it is an isometry. Its inverse is given by
Tisht> Tis = BjBJT Tis
J,S 2,8 HBJB]T?%SH .

Note that we have
75,5 = Tisll < Cepca

for some constant C' > 0 independent of indices j,s. Since we sample each .#; uniformly and the
projection map 7; s — 7 s is an isometry, the points {7, 1,--- ,7; v, } are also uniformly distributed on
S¢;. The points

T1,1, Ti,2, ', TI1,Np
72,1, T2,2, Tty T2,Np
TNp,1;, TNp2, ''°> TNg,Np
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are therefore distributed on UT'M according to a joint probability density function p on UTM defined

as
p(z,v)=p(x), V(zr,v)eUTM.

As in Assumption 8, we assume p satisfies (2.5), i.e.,

0<pm <p(z,v)=p(x) <py <oo, VY(x,v)eUTM

for positive constants p.,, pas-
Fore>0,>0and 1<i,j < Npg,1<r s< Np, define

(3)
K (H& - €j||2’ 10ji¢ir — Cj,s||2> i
%,5 (?i,rv?j,s) = € d
Oa i = j7
where Oj; is the estimated parallel-transport from T, M to Tg, M.
(4) For 0 < a <1, define
Np Np
ée,é (?i,r) = Z Zf%/e,é (?i,r;?j,s)
j=1s=1

and
Hes (Tir,Tj o
0 (Tir:Tj.s) 1<4,7<Np,1<r,s<Np.

KTy Tig) = —= S
o8 (TorsToe) = o ) 8% (7).

(5) For0<a<1land f € C* (UTM), denote
Np Ng

SN A (T Tis) (Tis)

o _ =1 s=1

G,Jf (T'i’7’> = 2 Ng Np .

Z Z Ji/e% (?i,h F]'75)

j=1s=1

Theorem 10 (Finite sampling from empirical tangent planes). In addition to Assumption 7, suppose

2
(1) epca =0 (NBd+2> as Np — 00;

(i) Ase—0,0=0/(c) and 6 > (EECA_g_e%);

(iii)
) Np
lim — =p¢€(0,00).
Np—o0 NB
NF — 00
Please cite this article in press as: T. Gao, The diffusion geometry of fibre bundles: Horizontal diffusion maps, Appl. Comput.

Harmon. Anal. (2019), https://doi.org/10.1016/j.acha.2019.08.001




YACHA:1332

24 T. Gao / Appl. Comput. Harmon. Anal. ess (sees) see—see

Then for any 7, with1 <i< Np and 1 <r < Np, as € — 0 (and thus § — 0), with high probability

o f (7 oy omen (Al [0 i) L Ay et (T
Hesf Tor) = £ (Tur) +€277i(1) UTA;[_a (Ti ].) —f (Tir) U;iw—a (F,(.) .
i 522 Al [fpl_a] (Ti,r) () AY P (Fir) (5.2)
2my pl= (Tir) pi= (71,

_1 1
+0 (62 Fed+ 62+ 0 N2 § 457 (eI%CA +e%)) :

where

1
0, =1-

¢ a1 [Np
1 151 4] —
+€ No

We give a proof of Theorem 10 in Appendix D.
5.2. Numerical experiments

The unit tangent bundle is of special interest since UTM is a compact Riemannian manifold whenever
M is compact, enabling finite sampling and numerically validating Theorem 4 and Theorem 6. We present
in below a numerical experiment on SO(3), the unit tangent bundle of the standard two-dimensional sphere
in R3, along with an analysis of sampling errors on general unit tangent bundles. In the first step, we
uniformly sample Np = 2,000 points {{1,- -+ ,&n, } on the unit sphere S, and find for each sample point
the Kp = 100 nearest neighbors in the point cloud. Next, we sample Np = 50 vectors of unit length
tangent to the unit sphere at each sample point (which in this case is a circle), thus collecting a total of
Np x Ng = 100,000 points on UT'S? = SO(3), denoted as

{zjs[1<j<Np,1<s<Np}.

The horizontal diffusion matrix H is then constructed as an Ng x N block matrix with block size Ng X Np,
and H;; (the (4, j)-th block of H) is non-zero only if the sample points §;, {; are each among the K p-nearest
neighbors of the other; when Hj; is non-zero, its (r,s)-entry (1 < r,s < Np) is non-zero only if Pe;, ¢ 2,
and z; ¢ are each among the K = 50 nearest neighbors of the other, and in that case for all § # j

2 . — . 2
H;; (r,s) = exp l_ <”§1 ;51” 4 HP@-,&Z’Z; mLSH >] 7 (5.3)

where the choices of €, will be explained below. The diagonal blocks are set to zero as in Definition 5.1.
Note that for the unit sphere S? the parallel-transport from T, S? to T, 52 can be explicitly constructed
as a rotation along the axis & x &;. Finally, we form the a-normalized horizontal diffusion matrix H, by

H;j(r,s)

(Ha)ij (r,s) = No Np *  Nn Np as (5.4)
<Z Z Hz‘l (’I”7 m)) (Z Z ij (T, TL)>
=1 m=1 k=1n=1
and solve the eigenvalue problem
(D’%HQD’%) U=UA (5.5)
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Fig. 3. Bar plots of the smallest 36 eigenvalues of I — D™'H, with a = 1, = 0.2, and varying § values (sampling without noise).
Left: When § < e, H:,(; approximates the heat kernel of Ago(?,), of which the multiplicities of largest eigenvalues are 1,6,13,---;

Middle: When § = ¢, Hsl,a approximates the heat kernel of Ago(s), of which the multiplicities of largest eigenvalues are 1,9, 25, - - -
Right: When § > ¢, Helya approximates the heat kernel of Ag2, of which the multiplicities of largest eigenvalues are 1,3,5,---.

where D is the (NgNp) X (NgNp) diagonal matrix with entry (k, k) equal to the k-th column sum of H,:

NpNpg

D(k,k)= Y Hu(kv),
v=1

and A is a diagonal matrix of the same dimensions. Throughout this experiment, we fix a = 1, ¢ = 0.2 and
choose various values of § ranging from 0.0005 to 50, and observe the spacing of the eigenvalues stored in
A.

The purpose of this experiment is to investigate the influence of the ratio v = /e on the spectral behavior
of graph horizontal Laplacians. As shown in Fig. 3, the spacing in the spectrum of these graph horizontal
Laplacians follow patterns similar to the multiplicities of the eigenvalues of corresponding Laplacians on
SO(3) (governed by the relative size of § and €). In Fig. 3(a), § < ¢, hence the graph horizontal Lapla-
cian approximates the horizontal Laplacian on SO(3) (according to Theorem 4 and Corollary 5), in which
the smallest eigenvalues have multiplicities 1,6, 13, --; in Fig. 3(b), 6 = O (€), hence the graph horizontal
Laplacian approximates the total Laplacian on SO(3) (again, according to Theorem 4 and Corollary 5), with
eigenvalue multiplicities 1,9, 25, - - ); in Fig. 3(c), > ¢, hence the graph horizontal Laplacian approximates
the Laplacian on the base manifold S? (according to Theorem 6), with eigenvalue multiplicities 1,3,5,---).
Note that in Fig. 3(c) we fixed € and pushed 0 to oo, which essentially corresponds to the limit process in
(4.9) rather than (4.1). Moreover, if in each figure we divide the sequence of eigenvalues by the smallest non-
zero eigenvalue, the resulting sequence coincides with the list of eigenvalues of the corresponding manifold
Laplacian up to numerical error. For a description of the spectrum of these partial differential operators,
see [75, Chapter 2].

Similar numerical results have been observed for sampling from empirically estimated tangent spaces; we
refer interested readers to [71, §3.5.2].

6. Application to automated geometric morphometrics

The HDM framework can be applied to any data set with pairwise structural correspondences. In many
applications, such structural correspondences are readily available through a registration procedure, and
have been used to compute similarity scores or distances between objects of interest. In this section, we
sketch the application of HDM to automated geometric morphometrics. In a nutshell, this is an unsupervised
learning problem with heterogeneous or unorganized data, for which feature engineering is particularly
difficult; moreover, it is hard to apply kernel methods due to the lack of an informative kernel function.
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Fig. 4. A second mandibular molar of a Philippine flying lemur (Cynocephalus volans), represented as a point cloud (left), wireframe
(middle), and a piecewise linear surface (right).

We expect problems arising from machine learning, pattern recognition, and computer vision facing similar
difficulties to benefit from the proposed approach.

Geometric morphometrics is the quantitative analysis of shape variation and their correlation with other
traits for biological organisms. For instance, it is often of interest to geometric morphometricians to under-
stand quantitatively the amount of the shape variation explained by geometric features within a collection
of shapes. They typically select equal numbers of consistently homologous landmark points on each sur-

face [76], corresponding to a mental model of a latent “template,”

of which every individual shape is an
instantiation. In statistical shape analysis, this landmark-based approach is developed in the framework of
Procrustes analysis [77]). Obviously, such an analysis is limited by the knowledge of landmark placement.
From a mathematical point of view, extracting a limited number of landmarks from a continuous surface
inevitably loses geometric information, unless when the shapes under consideration are solely determined
by the landmarks (e.g. polygonal shapes, as considered in [78] [79]), which is rarely the case for geomet-
ric morphometricians in biology; from a practical point of view, the requirement that an equal number of
landmarks must be chosen on each shape is sometimes unrealistic due to the complex evolutionary and
developmental process. Manually placing landmarks on each shape among a large collection is also a tedious
task, and the skill to perform it “correctly” typically requires years of professional training; even then the
“correctness” or the number of landmarks one should fix for a collection of shapes can be subject to debate
among experts. These difficulties are gradually and continuously being addressed by a recent trend that
advocates automated workflows to bypass the repetitive, laborious, and time-consuming process of manual
landmark placement on large collections of 3D digitized anatomical surfaces (see [20,80-86,71,87-91] and
references therein).

The digitized morphological data set contains hundreds of triangular meshes (see Fig. 4) of diverse
size, topology, and quality, each representing an anatomical surface reconstructed from MicroCT images.
In [20], the authors introduced Continuous Procrustes Distance (CPD) between surfaces with disk-type
topology, and used conformal parameterization (uniformization) to design a fast algorithm that computes
automatically (without landmarks) distances between pairs of morphological surfaces that would be at least
as effective, for species discrimination, as Procrustes distances computed from user-defined landmarks [80].
Upon computing a distance between pairs of surfaces, the algorithm in [20] minimize an energy functional
depending on the pair, over an admissible set of correspondence maps; the distance is indeed the value of
the functional at the optimal correspondence map (Fig. 1). This approach has recently been followed by
other authors as well [86].

Detailed inspection of the optimal correspondence maps generated from the algorithm [20] showed that
some of them presented serious anomalies, such as reversed alignments of the anteroposterior/buccolingual
axes [89]. It may seem surprising that the algorithms, despite sometimes producing these erroneous maps,
nevertheless were sufficiently successful in capturing sample geometry to achieve the success rate reported
in [80]. As we extend the algorithm in [20] in different directions, the correspondence maps became an
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important explicit goal of the algorithm, as opposed to an interesting by-product. While CPD automates
the traditional Procrustes analysis, the optimal correspondence maps parallel the landmark-identification
procedure performed mentally by geometric morphometricians. Moreover, these maps provide detailed in-
formation about correlations, often not fully retained when an energy functional summarizes a similarity
measure, between functional or developmental regions on different shapes.

HDM is a natural algorithmic framework for unsupervised learning from structural correspondences maps.
In this section, we apply HDM to a data set consisting of 50 discretized triangular meshes of the second
mandibular molar of prosimian primates and nonprimate close relatives. The 50 meshes are evenly divided
into 5 genus groups: Alouatta, Ateles, Brachyteles, Callicebus, and Saimiri; each mesh contains about 5,000
vertices and 10,000 faces. We compute first all pairwise CPD and correspondence maps, then all pairwise
Horizontal Base Diffusion Distance (HBDD) from the distances and maps. The 50 x 50 distance matrices
are finally embedded into R? for comparison via multi-dimensional scaling (MDS).

The HBDD is constructed from CPD as follows. For each pair of triangular meshes S;, S; in the data
set, denote their CPD as d;;, and the optimal correspondence from S; to S; as f;;. Note that d;; = d;; and
fij = fﬁl. In the first step, we discretize each surface area measure u; = dvols; into a linear combination
of Dirac delta measures supported on vertices of S;, where each vertex of S; is assigned 1/3 of the surface
area of its one-ring neighborhood. We then soften each bijective smooth map f;; into a transport plan matrix
w;;, the s-th row of which records the transition probability from vertex x; . of S; to each vertex on Sj;
moreover, the specific softening we choose here allows each ;s to jump (in one step) only to the three
vertices of the unique' triangular face on S; that contains fi; (z;5). If z;, is a vertex on S; that can be
reached from x; ; in one step of the random walk, we set the transition probability between z; ; and z;

2
o ( i @is) = ) |

proportional to

€F

where ep is a prescribed positive constant playing the role of the vertical bandwidth parameter ¢ in (2.6).
For this specific data set, we choose e = 0.001 which is the order of magnitude of the average distance
between adjacent vertices on each mesh in the data set. Next, we construct the horizontal diffusion matrix
H as a 50 x 50 block matrix, with block (i, j)

2
H i) = exp (—i) ~w;; if S; is within the Np-neighborhood of S;,
0 otherwise.

We chose for this data set Ng = 4 and eg = 0.03. These parameters are picked empirically, where 0.03 is
usually the maximum CPD between surfaces that belong to the same species group. We then construct the
normalized graph horizontal Laplacian Lf, . from H_ asin (3.7), and solve for its largest 100 eigenvalues and
corresponding eigenvectors. From this eigen-decomposition we compute the horizontal base diffusion map
(HBDM) as in (3.12), obtaining an embedding of the data set into R("2") = R49%0, Though this embedding
is still high dimensional, it is only 1/3 of the original dimensionality (approximately 5000 x 3 = 15000). The
HBDD between each pair S;,S; is then defined as the Euclidean distance between their images embedded
in R49%0 as in (3.14). For comparison, we also embed the standard Diffusion Distance matrix in to R? using

MDS. As shown in Fig. 5, HBDD demonstrates the most clear pattern of species clusters among the three

L It is conceivable that fij (zi,s) could fall on the edge shared by two triangles in S;, or even on a vertex of S; shared by more
than 2 triangles. While this rarely happens in practice, in our implementation for this application we resolve such conflicts by
assigning f;; (z;,s) randomly to any of the qualified triangles. This is because we express f;; (z;,s) as a barycentric combination
of the vertices of the triangle to which it is assigned, and thus the softening is in fact independent of the specific choice made.
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Fig. 5. Embeddings of CPD (left), DM (middle), and HBDD (right) matrices into R® using Multi-dimensional Scaling (MDS). (For
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
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Fig. 6. Phylogeny of the 5 species groups Alouatta, Ateles, Brachyteles, Callicebus, and Saimiri. HBDD (see Fig. 5) reflects the
dietary categories but not the phylogeny.

distances. It is even more interesting to notice that HBDD reflects the dietary groups within the data set
(see Fig. 6): folivores Alouatta (red) and Brachyteles (green) are adjacent to each other in the rightmost
panel of Fig. 5, so are frugivores Ateles (blue) and Callicebus (purple); the insectivore Saimiri (yellow) is
far from the other herbivorous groups.

For applications in geometric morphometrics, a major advantage of HDM over persistence-diagram-based
methods is the morphological interpretability. This interpretability amounts to a globally consistent man-
ner to identify corresponding regions on each shape in the data set and is potentially useful for subsequent
studies of the evolutionary and developmental history. In standard morphologists’ practice, such correspon-
dences are assessed visually and manually; recent progress in techniques for generating and analyzing digital
representations led to major advances [92-94] but still require the input of anatomical landmarks from the
user. In contrast, by spectral clustering on the point cloud embedded into R'%® by HDM, we can easily
obtain a globally consistent segmentation for all surfaces, see Fig. 7.

7. Discussion and future work

This paper introduced horizontal diffusion maps (HDM), a novel semi-supervised learning framework
for the analysis and organization of a class of complex data sets, in which individual structures at each
data point carry abundant information that can not be easily abstracted away by a pairwise similarity
measure. We also introduced the fibre bundle assumption, a generalization of the manifold assumption, and
showed that under this assumption HDM provides embeddings for both the base and the total manifold;
furthermore, the flexibility of the HDM framework enables us to view VDM and the standard diffusion
maps (DM) as special cases. The rest of the paper focused on analyzing the asymptotic behavior of HDM,
with convergence rate estimated for finite sampling on unit tangent bundles. These results provide the
mathematical foundation for HDM on fibre bundles, and motivate further studies concerning both wider
applicability and deeper mathematical understanding of the algorithmic framework. We conclude this paper
by listing a few potential directions for further exploration.
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Fig. 7. Automated landmarking: consistent segmentation of 50 lemur teeth by spectral clustering in the Euclidean space to which
HDM embeds. From the top row to the bottom row: Alouatta, Ateles, Brachyteles, Callicebus, Saimiri.

1)

Spectral Convergence of HDM. The convergence results in this paper are pointwise; as in [28,35], we
believe that it is possible to show the convergence of the eigenvalues and eigenvectors of the graph
horizontal Laplacians to the eigenvalues and eigenvectors of the manifold horizontal Laplacians, thus
establishing the mathematical foundation for the spectral analysis of the HDM framework. Moreover,
the horizontal diffusion maps differ from diffusion maps and vector diffusion maps in that the fibres tend
to be registered to a common “template”, which, to our knowledge, is a new phenomenon addressed
here for the first time.

Spectral Clustering and Cheeger-Type Inequalities. An important application of graph Laplacian is
spectral clustering (graph partitioning). In a simple case, for a connected graph, the eigenvector corre-
sponding to the smallest positive eigenvalue of the graph Laplacian partitions the graph vertices into
two similarly sized subsets, in such a way that the number of edges across the subsets is as small as
possible. In spectral graph theory [1], the classical Cheeger’s Inequality provides upper and lower bounds
for the performance of the partition; recently, [95] established similar results for the graph connection
Laplacian, the central object of VDM. We believe that similar inequalities can be established for graph
horizontal Laplacians as well, with potentially more interesting behavior of the eigenvectors. For in-
stance, we observed in practice that the eigenvector corresponding to the smallest positive eigenvalue
of the graph horizontal Laplacian stably partitions all the fibres in a globally consistent manner.
Multiscale Analysis and Hierarchical Coarse-Graining. Multiscale representation of massive, complex
data sets based on similarity graphs is an interesting and fruitful application of diffusion opera-
tors [96,24]. Based on HDM, one can build a similar theory for data sets possessing fibre bundle
structures, providing a natural framework for coarse-graining that is meaningful (or even possible)
only when performed simultaneously on the base and fibre manifolds. Moreover, since the horizontal
diffusion matrix is often of high dimensionality, an efficient approach to store and compute its powers
will significantly improve the applicability of the HDM algorithm. We thus expect to develop a theory
of horizontal diffusion wavelets and investigate their performance on real data sets with underlying fibre
bundle structures.

Software Matlab code accompanying this paper can be found at https://github.com/trgaol0/HDM.
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Appendix A. Fibre bundles and connections

There are different ways to define a connection on a fibre bundle. For the sake of generality, we adopt
here the treatment in [45] or [97] from a Riemannian submersion point of view; see also [40,64] for more
detailed discussions.

For any fibre bundle & = (E, M, F, ), the bundle projection map 7 : E — M descends canonically to
its differential dm between tangent bundles TE and TM, defining linear surjective homomorphisms between
tangent planes T E and T} ()M for any e € E. We denote VE for the vertical bundle, a sub-bundle of TE
defined as the kernel of the differential map drw : TE — TM. A horizontal bundle HE is a sub-bundle of TE
that is supplementary to VE in the sense that TE = HE & VE, or equivalently

T.E=H,E®V,E forallecE.

Here H.FE, V. E stand for the fibres of HE, VE above e € E, respectively; we shall refer to H.FE, V. E as the
horizontal tangent space and vertical tangent space at e € E for future convenience, and denote

A :TE — HE, Vv :TE —VE (A1)

for the corresponding horizontal projection and wvertical projection. Note that although VFE is canonically
defined, the choice of HE is arbitrary at this point. Since dﬂ"HeE : HeE — T ()M is a linear isomorphism,
for any tangent vector u € T ()M there exists a unique tangent vector u € H.E such that dr. (7) = u;
we call u the horizontal lift of u. Furthermore, we know from simple ODE theory (and the smoothness of
HE) that for any vector field X € T' (M, TM) there exists a unique horizontal lift X € I (E, HE) such that
dre (Xe) = Xyn(e) for all e € E.

In the rest of this paper, a path v : [0,T] — FE is horizontal if all tangent vectors along ~ are in HE.
Given a path ¢: [0,T] — M, a horizontal lift of ¢ is any horizontal path ¢ in E that projects to ¢ under the
bundle projection m, i.e. moc = c¢. Again, by horizontally lifting the tangent vector field along the path from
TM to HE and solving the ODE system (where the overline again stands for horizontally lifted tangent
vectors)

dé dc
—=(=), t T
7 (dt) € [0,7]

we can uniquely lift any piecewise smooth path ¢ in M starting at = (e) € M to a horizontal path ¢ in E
starting at e € E, at least locally around c(0). We call HE a Ehresmann connection [97], or connection
hereafter, if any path in M starting at m € M can be globally horizontally lifted to F with any given initial
point e € E satisfying e € 7= (m). Such a lifting property is guaranteed, for instance, on any Riemannian
submersion 7 : F — M with geodesically complete total space E, in which case the submersion is known
to be a locally trivial fibration [56].

We shall focus on Ehresmann connections so that the horizontal lift of any path in M is uniquely
determined once the starting point on F is specified. Therefore, given a smooth curve 7 : [0,T] — M that
connects 7 (0) to v (T") on M, there exists a smooth map from F, (o) to F,,(r (at least when vy (0) and ~ (T')
are sufficiently close), defined as
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Fy) 2 e 7. (T) € Fyry,

where 7. denotes the horizontal lift of v with starting point p. We call this construction of maps between
fibres, obviously depending on the choice of path ~, the parallel transport along v (with respect to the
connection), and denote P, : F, — F, for the parallel transport from fibre F to fibre Fy,. When v is a
unique geodesic on M that connects x to y, we drop the superscript v and simply write Py, : I, — F}. For
future reference, we give the precise definition of the operator Py, here.

Definition 7.1 (Parallel transport on fibre bundles). Let & = (E, M, F, ) be a fibre bundle, x € M, v € F,,
and U a geodesic normal neighborhood of x on the base manifold M. For any y € U, denote the geodesic
distance between x and y as ds (z,y). Let 7 : [0,ds (z,y)] = M be the unique unit-speed geodesic on M
connecting = to y, i.e., 7 (0) = x,v (da (x,y)) = y; let 4 be the unique horizontal lift of v starting at v € F,
ie.,

{”7’ (t)=7"(t), te(0,du(zy),

The parallel-transport of v from x to y, denoted as Py, v, is defined as

Pyov =7 (dy (2,y)) € Fy.

The probabilistic interpretation of HDM (and even VDM) implicitly depends on lifting from the base
manifold a path that is continuous but not necessarily smooth. Though this can not be trivially achieved
by the ODE-based approach, stochastic differential geometers developed tools appropriate for tackling this
technicality (see e.g. [98, §5.1.2]).

Appendix B. Horizontal and vertical Laplacians
Assume (M M ) is a d-dimensional Riemannian manifold, and denote VM for the canonical Levi-Civita

connection on M. The Laplace-Beltrami operator on M, or Laplacian for short, is the analogy of the usual
Laplace operator on the Euclidean space defined by

Ay f (z) = Trace VMV f ()

for all f € C* (M), x € M. For an orthonormal local frame {X1,---, X4} near x € M, Ajp; can also be
written as
d d d
Af (@)=Y (VE VLX) () = Y X3 (o) [ S VALX; (@) ) /(). (B.1)
j=1 j=1 j=1

If we further pick the frame to be a local geodesic frame centered at € M, then v%j Xy (x) = 0 for all
1 < j,k < d and thus Ajy; takes the following sum-of-squares form

d
Anf(w) = X;f(x). (B.2)
j=1

The infinitesimal generator of the horizontal diffusion (2.2) turns out to be a differential operator on E that
is a “horizontal lift” of A, in a sense to be made clear later in this section. To characterize this infinitesimal
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generator, let us first introduce a Riemannian metric on E that is adapted to the connection H E. For any
x € M, recall from Section 2.1 that F, (the fibre at point = € M) is a Riemannian submanifold of F, thus

vertical tangent vectors at e € m7~! (z) can be canonically identified with tangent vectors to F; if each F,
is equipped with a Riemannian metric ¢*=, we define for any U,V € V,E

9" (U.V)=g" (U V). (B.3)
For any X,Y € H.FE, by the linear isomorphism between H.F and T, M we define
g7 (X,Y) = g™ (dn. (X),dm. (V) (B.4)

where g™ stands for the Riemannian metric on M. Finally, impose orthogonality between H,E and V. E
by setting for any X € H.E, U € V.E

g¥ (X,U) =0. (B.5)

The smoothness of g¥ with respect to e € E follows from the smoothness of g™ and g*=. In other words, g¥
is constructed so as to make the decomposition TE = HE @ VE orthogonal. Some authors [66,99] abbreviate
this construction as

For future convenience, let us use superscripts to denote the horizontal and vertical components of tangent
vectors to F, i.e. for any Z € T,.E

zZ=z"+2zv

where Z" ¢ H,E, ZV € V,E are uniquely determined due to the direct sum decomposition T,E =
H.E® V.E. Thus for any W, Z € T.E

9" (W, Z) = g™ (dme (WH)  dme (27)) + g™ (WY, ZV) .

We also write the horizontal and vertical components of the gradient of any smooth function f € C* (E)
as

vir.=wnt, vr=wp". (B.7)

Let V¥ denote the Levi-Civita connection with respect to g¥. Define the rough horizontal Laplacian Ag
on E for f € C (F) as the following second order partial differential operator:

Apf(e) = Trace (VEVHf)H (e) forallee€E. (B.8)

Let {X1, -+, X4} be the horizontal lift of an orthonormal frame {X1,---, X4} near 7 (e) = x € M. Since
g% (X;,Xy) = g™ (X;, Xy,) for 1 < j,k < d, the tangent vectors X; (¢’),--+, X4 (¢’) form an orthonormal
basis for H./ E for all ¢’ sufficiently close to e. We can write (B.8) in terms of these horizontally lifted vector
fields as

d
Anf(e)=Y"9" (VEVT.X;)
= (B.9)
d B d \H
=YX @ - [ X (VEX) | f.
j=1 j=1

Please cite this article in press as: T. Gao, The diffusion geometry of fibre bundles: Horizontal diffusion maps, Appl. Comput.
Harmon. Anal. (2019), https://doi.org/10.1016/j.acha.2019.08.001




YACHA:1332

T. Gao / Appl. Comput. Harmon. Anal. sss (sees) eee—see 33

Loosely speaking, Ay is the “horizontal lift” of Ay from M to E, since (B.9) can be obtained from (B.1)
_ _\H
by replacing each X; with its horizontal lift X; and noting that <V)E?VXJ~> is the horizontal lift of VQ(/[, X;
J J

(see e.g. [56, Proposition 3.1]). More precisely, for any g € C* (M), denote g = gonm € C* (E), then for
any e € F and z = 7 (e) € M we have

Anig (@) = Dug(e). (B.10)

Remark 7.1. When E = O (M) is the frame bundle of M, the rough horizontal Laplacian Ay coincides with
the Bochner horizontal Laplacian Apapy in stochastic differential geometry [59, Chapter 3]. The classical
Eells-Elworthy-Malliavin approach intrinsically defines a Brownian motion on manifolds as a horizontal
Brownian motion on O (M) generated by Ap(ar).

Remark 7.2. In general, the rough horizontal Laplacian Ay differs from the concept of “horizontal Lapla-
cian” commonly seen in sub-Riemannian geometry by a mean curvature term [99,100]; the two types of
horizontal Laplacian coincide only when the fibres of £ are minimal submanifolds of E. In fact, for any
f € C> (E), the Laplace-Beltrami operator on E with respect to g splits into two parts

Apf = Trace VEV f = Trace VEV f 4 Trace VEVY f

Define the horizontal Laplacian A% and the vertical Laplacian AY, as

AR f = TraceVEVH AV f:= Trace VEVVf, (B.11)
then

Ap = AH £ AV (B.12)
Recalling the definition of Ay from (B.8), we have
AR f = Trace (VEVHf)H + Trace (VEVHf)V
= Apf + Trace (VEVHf)V
and A = Ay if and only if
Trace (VEVHf)V =0 forall f€C™(E)

which turns out to be equivalent to the requirement that F, are minimal submanifolds of E for all x € M.
This holds, for instance, when all fibres of the Riemannian submersion 7 : E — M are totally geodesic, a
scenario of great theoretic interest since it implies that all fibres are isometric [56]; we do not make such
an assumption in the HDM framework since this particularly simple case is obviously too restricted for
practical purposes.

Remark 7.3. For any # € M and e € 7! (2), if {X3, -+, X4} is a geodesic frame on M near x, then the
horizontal lifts {X 1, " ,Xd} near e also constitute a “horizontal geodesic frame” in the sense that

_\H
(V;Eg,Xk) (e)=0, foralll<jk<d,

which simplifies (B.9) into a sum-of-squares form analogous to (B.2)
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Apf(e (e) forall feC™(F). (B.13)

H'Mm

Remark 7.4. We make the observation that the vertical Laplacian AY%, which turns out to characterize the
“vertical component” of the coupled diffusion operator HS(O:S) on the fibre bundle, coincides with the Laplace-
Beltrami operator on each fibre F,. This fact will be needed in the proof of Theorem 4 in Appendix C.

More precisely, for any f € C* (E) and e € E,

A%f(e) = [Ar, (f | Fre)] () = Trace (VZVY 1) (B.14)

At a first glance this might seem a bit surprising since one may expect a mean curvature term in A}
from (B.11) (as is the case for AX):

A} f = Trace VEVY f = Trace (VEVVf)H + Trace (VEVVf)V . (B.15)
However, the first trace term in (B.15) vanishes for the following reason. Let {Xi,---, X4} be a local
horizontal orthonormal frame around e € E, and {Uy,---,U,} a local vertical orthonormal frame (recall

that dim (F) = n); {X1, -+, X4,Uy,---, Uy} is then a local orthonormal frame on E. We have

d d

Trace (VEVY 1) = 371 (v%}ijf)H,X +Z (VEVYNT 0 = Z<(v§jvvf)H,Xj>
Jj=1 j=1
d d d v
=S UVE VLX) = (VY -VE X = (v Y - (VE X)) =0,
j=1 j=1 j=1

where the last equality follows from [101, Lemma 2]:

\4 1
(V5X) =5, X)" =0 foral1<j<d

In the remaining section we consider horizontal and coupled diffusion operators on a few classical exam-
ples. All fibre bundles in this section are Riemannian submersions with totally geodesic fibres, for which, as
explained in Remark 7.2, the rough horizontal Laplacian Ay equals to the horizontal Laplacian AH. See
[99] [40, §9.F] for more details about Riemannian submersions with totally geodesic fibres.

Example 11 (Heisenberg group). The Heisenberg group
HZ ! = {(x,y,z) eER™ ! |z cR",ycR", 2z € R}

is essentially R?"*! endowed with the following group structure:

1
—(131'92—332'311))-

(1,91, 21) - (z2,Y2,22) = (1‘1 +x2,y1 +Y2,21 + 22+ 2

The projection

7 H? P 5 R?
(z,y,2) — (z,y)
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is a Riemannian submersion with totally geodesic fibres [99]. Since H?"*! is complete, it follows from [56,
Theorem 1] that (H?***1 R2?,R, ) is a fibre bundle. In fact, H?"*! is a Lie group, and its Lie algebra of
left invariant vector fields at (x,y, z) is spanned by

These invariant vector fields define a connection on H?"*! in the sense of Ehresmann [97]. The horizontal
and vertical Laplacians on H?"t! with respect to this connection are

i L DN ” >

Apznns = D |53+ 55+ (@5 +Y5) 55—y : ’

Hzn+1 Z 8x2+8y2+4(xj+yj)azz yj@:c‘(‘)z—kx]ay-@z
j=1 J J ’ ’
82

A]‘I./]IQn-f—l:@'

By Theorem 4, for any f € C* (H?*"*1),if 6 = O (e),

mai [Aﬁ2"+1 (fplia) - fAﬁanpl*a] (z,v)
2mo i (z,v)

HS f (2,0) = f(2,0) +e

ma22 [Aﬂ‘jp"“ (fp'=) - fA]I‘ngnﬂplia] (z,v)
2my pl= (z,v)

+0

+0(+ei+6).
When n = 1, this is consistent with the conclusion obtained in [71, Chapter 4].

Example 12 (Tangent bundles). Tangent bundles play an important role in Riemannian geometry. For a
closed d-dimensional Riemannian manifold (M, g), its tangent bundle TM is defined as

™ = H T, M
x€eM

equipped with a natural smooth structure (see e.g. [102]). In a local coordinate chart (U;xy,---,zq) of
M, {E; =0/0x; |1 <j<d} is a local frame on M, and we write v € T, M as v = v; E; (z). A local
trivialization on U can be chosen as

(x,v) = (21, ,Taq, 01, ,vq), YeeUweTl,M,

and the corresponding basis for T{, ., TM can be written as

o }
Ox, (@w) )

Let ng be the connection coefficients of the Levi-Civita connection on M. The horizontal subbundle of
TTM determined by this connection is

0
(:c,'u)7 ’ aa:d

9
(:c,v), 81}1

9
(z,v)7 ’ 8vd

0
B
I (2) vy

3’()5

, j:1-~-,d}.
(2.)

The metric (B.6) on TM given by this construction is the Sasaki metric [103,104]. The horizontal and
vertical Laplacians acts on any f € C*® (TM) as

HTM = [] HTuowM= ][ Sp&ﬂ{%
J

(z,0)eTM (z,0)ETM (@v)
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1 R S (R 9 ik () (21 o of
Mlpef ) = <= (G =12, @) [V @) (52 - Tyl
41 0 \/ jk af \ _ ik >*f
g(x)la_vj< 9(=)lg (x)a_w>_g @) Fosoun

According to Theorem 4, for any f € C*° (TM), if § = O (e),

A¥Mf (ac,v) =

(@) . ma1 [A:/}{M (fplfa) - quHMplia] (z,v)
He)é f (I’,’U) - f (:L‘7U) + 62m0 pl_a (LL', ’U)

ma2 [A¥M (fplfa) - fA¥Mp1*O‘} (z,v)

2+ ed +6%).
e P4 (z,0) +O(e + €d + )

+0

This is consistent with the conclusion obtained in [71, Chapter 3].
Appendix C. Proofs of Theorem 2, Theorem 4, and Theorem 6

Throughout this appendix we assume the Einstein summation convention unless otherwise specified. Our
starting point is the following lemma, in reminiscent of [7, Lemma 8] and [9, Lemma B.10].

Lemma 13. Let & : R — R be a smooth function compactly supported in [0,1]. Assume M is a d-dimensional
compact Riemannian manifold without boundary, with injectivity radius Inj (M) > 0. For any € > 0, define
kernel function

P (z,y) =@ <M> (C.1)

€

on Mx M, where d3, (-,-) is the geodesic distance on M. For sufficiently small € satisfying 0 < € < /Inj (M),
the integral operator associated with kernel ®.

(©9)(2) = [ @ (o) g W) dvolas 0 (©2)

has the following asymptotic expansion as € — 0:

Nl

(P g) (z) =€ {mog (z) + e% <AMg (x) — éScalM () g (z)) +0 (62):| , (C.3)

where mg, my are constants that depend on the moments of ® and the dimension d of the Riemannian
manifold M, Ay is the Laplace-Beltrami operator on M, and Scal™ (z) is the scalar curvature of M at x.

Proof. Consider geodesic normal coordinates near x € M. Let {ey,---,eq4} be an orthonormal basis for
T.M, (s1,- -+ ,sq) the geodesic normal coordinates, and write 7 = dps (x,y). Then 72 = s + - -- + s2. Note
that

/ P (z,y) g (y) dvolar (y) = / ® (M) g (y) dvoln (y)

M Bﬁ(z)

_ / @(é)g(s) dvolas (s)

B (0)
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where

G(s)=g(s1, -+ ,5a) =goexp, (sie1 +---+ s4€q),

dvolys (s) = dvolps (s1,+ -, Sqa) = dvolys (exp, (s1e1 + -+ + sqeq)) -

By a further change of variables
(C.5)

we have

/ q>(f)g<s> dvolas (s) = [ ()3 (es) dvolus (ve5). (C.6)

B :(0) B1(0)

On the other hand, in geodesic normal coordinates the Riemannian volume form has asymptotic expansion
(see e.g. [105])

1
dvolps (1, ,84) = [1 — BRM () skse + O (7“3)} dsy -+ -dsq (C.7)

where Ry, is the Ricci curvature tensor
R (2) = " Ryiej () .
Thus
dvolys (Vesy, -+, esa) = [1 _ %RM () x30 + O (637"3)} €33, - ddg. (C.8)

In the meanwhile, the Taylor expansion of g (s) near x reads

SN 99 1 8% 5
g(s)—g(o)+8—%(0)53+§m(0)8k85+0(7”)
and thus
. N g , .\ . 1 8% L 53
G(Ves) = (x)+\/2.8—(9j(0)8j+6-§83k655 (O)SkSg-i-O(E 7 ) (C.9)

By the symmetry of the kernel and the domain of integration B (0),

/ <I>(F2)§jd§1"'d§d20 forall 1 <j<d,

B1(0
© (C.10)

/ q)(ﬁ)gkgedgl-.-dgdzo firall 1 <k #/¢<d.

B1(0)

Combining (C.4)—(C.10), we have
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/<I>e (z,y) g (y) dvoly (y) = / @ (%) g (Vesn, -, Vesa) dvolar (vVes3)

_ [gm [ o@a53 (S0 twnaw) [ o@daro

B1(0) = By (0)

Note that O (63/ 2) term vanishes again by symmetry (the same argument given in [72, §2] applies). Define
constants

@ (#%) 71 dr,
B (0) (C.11)
my = / ® (72) (31) d3y---d3q forany k € {1,---,d}.

3
S
Il
\
A
\/
U
Vo0
_
&
m
IsH
|
Sy
QU
i
O\H

Then

/ B, (1) g () dvolys (y)

M
_ 4 [mog( r) 2 (AMg( ) — %ScalM (x)g(:z:)) +0 (62)} ,

where we used the fact that in geodesic normal coordinates

=Apg(x ZRM = Scal (). O

ww‘bl

Before applying Lemma 13 to compute the infinitesimal generators of H'* and He(f;), we need more local

information about f (z, Pyov) near (x,v). To this end, let {X1,---, X4} be a local geodesic frame on U at
x, and denote {Xl, e ,Xd} for the horizontal lift of this frame; in addition, let {Vi,---,V,} be vertical
vector fields on E such that

{X1(e), -+, Xale), Vi(e), -+, Vu ()}

constitutes an orthonormal basis for all e in a sufficiently small neighborhood of (x,v) contained in 7= (U).
Write {91, 0t qb"} for the 1-forms dual to the vector fields {Xl, e Xy Ve ,Vn}, ie.,

07 (X)) =61, 67 (Vi) =0,
6™ (Xx) =0, &™ (Vo) =47,

forall 1< j,k<d, 1<{m<n.
If v is a unit speed geodesic on M starting at x, recall from Definition 7.1 that ¢ — P, ,v is the unique
horizontal lift of v with starting point v € F, i.e.,

¥ (t) = Py) v

Since 7 is horizontal, ¢™ (3’ (¢)) = 0 for all 1 < m < n and thus (adopting Einstein summation convention)
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Y () =6 (¥ () X, (t). (C.12)

By [56, Proposition 3.1], 4 (¢) is a geodesic on E, thus

0= VE WY ()= [0 (7 ()] K () + 00 (3 (1)) 0% (3 (1) VE, () X, (1),

which implies

T[] X (1) = =07 (7 (0)0° (V (£) VE, (n X5 (). (C.13)

In particular, the right hand side of (C.13) is horizontal. It follows that

% [67 (7 ()] X; (1) = =67 (7 (1) 6" (7' (1) AV, (yX; (1)
=07 (7 () 0* (7 () (VE, (1 Xi (0, K ()50 X: (0)
=07 (7 (1)) 0" (7 (1)) (VX () X; (1), X (£)) 0y Xii (1) ,

where 47 is the horizontal projection as defined in (A.1). By linear independence,

d - i /= — j
S [0 ()] = =0 (7 (#) 0 (7 (1) T3, (v (1)) , (C.14)
where I/, are the connection coefficients for the frame {X1,---, X4} on M
= (VX X;,Xi), V1<ijk<d.

Setting t = 0 in (C.14) to get

dt ‘t:o

[0/ (7 ()] = 6" (' (0)) 6" (¥ (0)) T, (7 (0)) = 0 (C.15)

where I‘gk (x) = 0 since we picked {X; | 1 < j < d} as a geodesic frame at z.
Now for any f € C*> (E) write

FO =FEF®) =F (v (), Pyyav) -

Using (C.12) and (C.15), the first and second derivatives of f () at ¢ = 0 can be written as

F1(0) =67 (7' (0)) X;£ (0),
07O X (1) + 07 (7(0) 0 (7 (0) X X; £ (0)
= 0" (7(0) 0" (¥ (0) XX f (0).

Furthermore, if we denote 7* : A*M — A*E for the pullback map, and write {47 | 1 < j < d} for the dual
1-forms to the geodesic frame {X; | 1 < j < d} on M, then 6/ = n*¢J for all 1 < j < d and
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07 (' (0)) = 747 (¥ (0)) = %’ (+/(0)).

Thus (8" (¥ (0)),---,6% (3 (0))) is v/ (0) represented in the geodesic normal coordinate system associated
with the geodesic frame {X; | 1 < j < d}. If we write o; = 67 (3/(0)) and s; (t) = to; forall j =1,--- ,d,
then Z?:l 0]2 =1 and (s1,---,8q) are the geodesic coordinates of vy (t) on M with respect to the geodesic

frame {X; | 1 < j < d}. With this notation,
f'(0) = 0, X, £ (0),
F"(0) = 0103, X; X3, f (0).
Using (C.12), (C.15), and f” (t), it is straightforward to compute the third order derivative of f at ¢t = 0:
7 (0) = UinUkXinka (0),

hence the Taylor expansion of f (¢) near t = 0 is

2 3
J0) = FO)+170)+ 51" (0)+ 51" (0)+0 (1)

, , (C.16)

_ ¢ _ o
=f ({L‘,U) + tO'ijf (I/U) + EUiJkXika ({L‘,U) + EUinUk:Xinka (37,’[)) + O (t4) .
This expansion immediately leads to the following lemma:

Lemma 14. Following Lemma 13, let Py, : F, — F, be as defined in Definition 7.1. For any f € C™ (F)
andv € F,, as e — 0,

/q)e (337 y) f (y7 wav) dVO]M (y)
M (C.17)

— 3 {mof(x,v) + 6% Agf(z,v) — %ScalM (z) f(x,v)} +0 (62)} )

where mqg, mo are constants, ScalM () is the scalar curvature of M at x, and Ap is the rough horizontal
Laplacian on E defined in (B.8).

Proof. Let U C M be a geodesic normal neighborhood around =z € M, and ¢ sufficiently small that any
point in U can be connected to z with a geodesic of length less than €!/2. Let {X; |1 <j <d} be a geodesic

frame on E, s1,--- , 84 geodesic normal coordinates on U with respect to this geodesic frame, and
d 5.
r>0, 7“2228?, UjZTJ forall 1 <j <d.
j=1

Following the proof of Lemma 13, let §;,7 be as defined in (C.5) and use (C.16) in place of (C.12),

/<I>E (z,y) f (y, Pyyv) dvolps (y) = / @ (72) f (Ves,v) dvolar (Ve3)

M B1(0)

= f(z,v) / ) (FQ) dvolys (Ves) + e%Xjf (z,v) / 5,0 (FQ) dvolys (Ve3)
B1(0) B1(0)
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+ gXika(x,'U) / 8:5,® (72) dvolys (Ve 3)
B1(0)
o
+EXZX]X'kf(:r,v) / 5i8;8,® (7*) dvolpys (Ve3) + O ().

B1(0)

Again by symmetry of these integrals and (C.7), this reduces to

d
€t [mof (x,v) — %mQScalM (z) f (x,v) + %mg ZX,%f (z,v) + O (€%)
k=1

— 5 [mof (z,v) +e% (AHf(z,v) - %ScalM (x)f(x,v)) +0 (eQ)] ;

where mq, mg are constants defined in (C.11), and

as explained in (B.13). O
We are now ready to give the proof of Theorem 2.
Proof of Theorem 2. By the definition of H in (2.2), for any f € C* (E),

/ K (2,y) £ (4, Pov) p (y) dvolas ()
He(a)f (LE,U) = pud

[ K @) p @ dvolur ()
M

/Ke (z,y) f (y, Pyov) p (y) e * (y) dvolas (y)

M
/ K. (z,) p (4) p=° () dvolyy (y)
M

By Lemma 13,

pe (y) = / K. (2,5) p (n) dvola (1)
M

ol

= €

{mop (y) + e% (AMp (y) — %ScalM (y)p (y)) +0 (62)} :

Using this expansion of p. and applying Lemma 13 to the denominator of He(a)7

/ K, (2,9) p (4) p® () dvolys (4)

(1—a)d

1
U e lmopla (2) + 75 (AMpla () = 3Scal™ (z) p == @)
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—ac2p " (@) (AMp (z) - %ScalM (z)p (x)) +0 ()

Similarly, apply Lemma 14 to the numerator of He(a) to get

/ K. (2,4) | (4 Py) p () p=® (4) dvolys (1)
M

(1—a)d

- eTmOa{mO (fp' %) (z,v)
m2 -« 1 M 11—«
+ €5 [AH (fp" =) (z,v) — §Scal (z) (fp'~) (m,v)}
— ae%f (z,v)p~“ () (AMp () — %ScalM (a:)p(x)) +0 (62) }
Noting that p = p o7 and by (B.10)

AHﬁlia = A]\4]7170(7

a direct computation (plus assumption (2.1) for the density p) concludes

mo [Au (f0'%) — fAEP ] (z,v)
2mg pt—o (x,v)

H f (2,0) = f(2,0) + ¢ +0(&),
whence (4.1) follows. O

We now turn to the proof of Theorem 4. The basic idea is to apply Lemma 13 and Lemma 14 repeatedly
in both vertical and horizontal directions.

Lemma 15. Suppose & = (E, M, F,x) is a fibre bundle, M is a smooth closed Riemannian manifold with

Inj (M) > 0, and E equipped with the Riemannian metric (B.6). Assume dim M = d and dim F' = n. Let
K. 5 be defined as in (2.3) with € € (O,Inj (M)Z), 0 = O (e). For any function f € C*® (E),

— ctot {mof (2,0) + 2 (AHf () — 5Seal™ () £ &, v)) (C.18)

where mg, Mo1, Moz are positive constants depending only on the kernel K and the fibre bundle, ScalM,
Scal’™ are scalar curvatures of M, F, respectively, and Ag, AY, are defined in (B.8) and (B.11).
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Proof. By definition of K s,

// Kes (z,03y,w) f(y,w) dvolp, (w) dvoly (y)

M F,

T d? Pyev,w
://K (d?W( ,y)’ A 5 )> [ (y,w) dvolg, (w) dvolas (y).
MF,

€

For any fixed y € M, apply Lemma 13 to the inner integral over F, with

&y (x,y) dE, (p.0)

€

then the constants mg, ma will depend on d3, (z,y) /e. More specifically, if we set

My (r?) = / K (r?,p%)doy ---db,, M (r*) = / 01K (%, p*) dby - - - db,,,

B} (0) BrO
M3 (TQ) = / Q%K <T2ap2) dal e dana Where p2 = ZG?
BT (0) =

and recall from (B.14) that A}, coincides with Ap, if one restricts a smooth function in C*° (E) to F),, then

Lemma 13 leads to

/K6,5 (Jf, v Y, ’LU) f (y7 w) dVOle (w)
Fy

_ 53{M0 (d}"w (::,y)) £ (s Pout) + gMz (d?w (ezv,y)) "

1 d?
[Ag f (9, Pyuav) = 58cal’™ (Pyov) f (y,Pymv)] +0 (52M3 (M(fy)» }
Now integrate over M and apply Lemma 14 multiple times:

/Mo (M) f (Y, Pyzv) dvolas (y)
M

_ {mo f(@0) + e (AHf (,0) — 3Seal (z) f <x,v)) +0 <e2)} :

2
/ M, (M) {AE f(y, Pyav) — %Sca]Fy (Py2v) f (v, wav)} dvolys (y)
M

[N

=€

{m22 [Ag f(x,0) — %ScalF” (0) f (x,v)} 1o (e)} ,

) » d
where the constants mg, ma1,mag are determined by (writing r? = Y P 3?)

mgo = / My (rz) dsy - -dsq,
B{(0)
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ma1 = / Mo (1) sidsy -~ dsa, mag = / My (r?) dsy -~ dsa.
B(0) B{(0)
Therefore

// K5,5 (x,v;y,w) f(yaw) dVOle (UJ) dVOlM (y)
M F,

:egég{mof (z,v) —|—€T (AHf (z,v) — —ScalM( )f(a:,v)>

ma2

—|—(5— <Agf (x,v) — %Scal& (v)f(a:,v)) + 0 (€ +ed+6°%) } O

Proof of Theorem 4. Note that

[ [ £ @) £ @00 (00) dvolr, () dvolas ()
a MF,
He(,é)f(xav) = @
// KE% (z,v;y,w) p (y,w) dvolp, (w) dvolys (y)
MF,

(C.19)
/ / Kes (2,039,0) f (5, w) pg (3, 0) p (3, w) dvols, (w) dvolas ()

//Kﬂg z,v;y,w) p_ 5 (Y, w) p (y, w) dvolp, (w) dvolas (y)

Applying Lemma 15 to p. s to get

Pes (y,w) = €26%  mop (y,w) + e ( App (v, )—lScalM(y)p(va)
2 3

1
+ (5— <Agp (y,w) — §ScalF’f (w) p (y, w)) + 0 (€ +ed+6°) }
Using this and applying Lemma 13, Lemma 14 to the denominator and numerator of (C.19) respectively

// Kes (z,05y,w) p_§ (y,w) p (y, w) dvolp, (w) dvolas (y)
MF,

Ca —o)n A 11—« 1

- ey e (S s o)
AV -« 1 1

mao ED (.’L‘, U) _ —SC&IFE (1’) — e maq ((E7 ’U) AHp (.'13, U) _ —ScalM (LL')

2mg pl=o (z,v) 3 3

2my p(z,v)
maos (A¥p(z,v) 1 P 9 9
_ E _ = 1F=
a52m0 ( (@.0) 3Sca (w) | + O (¢ +eb+6%) »,

+90

[ [ Fes @050 £ (000055 (910) 0 0) dvolr, () dvolag (1)
MF,
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(1—a)d _(1—a)n H (fpl_a) (x,v)

I T L e —a mor [ A _1 M
=e = 0 = my *(fp' )(“fv“){lJreQmO( P (w0 30 (x)>

Moo Ag (fpl_a) (33,1}) _l Fy x O[E@ T, v AHp(SC,’U) _1 M T
+52m0< IZEOICE ”) e 0 (S~ )

v
g2 App(z,v) EScalF“' (w) ) +0 (62 +65+52) )
2WLO p(.’IJ,’U) 3

Combining these two expansions, a direct computation concludes

may [AH (fpl_a) - fAle_a] (z,v)
2mo pt= (z,v)

mMa22 [Ag (fpl_a) - ngpl_a} (z,v)
27n0 plia (21771))

He(é)f(x v) = f(x,v)+e

+0

+0(€+ed+6%). O

Proof of Theorem 6. Since P, ,v does not depend on 7,

d2 P, v, w
lim pe~e (z,v) = lim // ( a:,y AT )>p(y,w) dvol (w) dvolps (y)

y—00 y— 00 Y€

/K<d2 ,o) [/p w) dvol ( )]dvolM ).

Fy

Define
K (o) = K (B0 e (Bl ) Tl gy = el
p

By direct computation,

[E @) [ 7w 2D <w>] () () dvolay ()

lim H, O‘)f(m v) =

o JEE @) ) ) v )
M (C.20)
JEE @) (90 ) ) (ol o)
_ M
JEE (@) ) ) v )
M
By [7, Theorem 2], as € — 0
W 0) =y o)+ 2 L2 U000 ) )
where
my = K (r?)dsy---dsa, mjy= / K (r?) sidsy - -dsq. O
B{(0) B(0)
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Appendix D. Proofs of Theorem 9 and Theorem 10

In this appendix, we prove the two finite sampling theorems on unit tangent bundles in Section 5.1

following the paths paved by [27,106,72,9]. Recall from Section 5.2 that for any f € C*° (UTM)

)

| K @) £ 4w plw) d0 ()
HS) f (2,0) ="

E') (2, 0;9,w)p (y,w) dO (y, w)
UTM

where dO (x,v) = dvolg, dvolys (v) is the Liouville measure. Since S, is a unit ball in T, M, we shall also
write do, = dvolg, for convenience.

D.1. Sampling without noise

The following lemma builds the bridge between the geodesic distance on the manifold and the Euclidean
distance in the ambient space.

Lemma 16. Let + : M < RP be an isometric embedding of the smooth d-dimensional closed Riemannian
manifold M into RP. For any x,y € M such that dys (z,y) < Inj (M), we have

B (,9) = (@)~ 1 @)1 + 35 (o) IO, 0) + 0 (s (2.9)) (D.1)

where § € T, M, ||0]|, =1 comes from the geodesic polar coordinates of y in a geodesic normal neighborhood

of x:
y=exp,rd, r=dy(z,y).
Proof. See [107, Proposition 6]. O

For proving Theorem 9, it is convenient to introduce the “Euclidean distance version” of the diffusion
operators introduced in Section 2.2. Note that in Definition 5.1 the hat “~” is used for empirical quantities;

for the remainder of this appendix, the tilde “~” will be used for quantities in the definition of HE(O‘) and

HE(O;) with Euclidean distance in place of geodesic distance. For instance,’

N —ul? P, ey — wl?
&mmwm=Koxmﬁ”%5”ﬂ7
€

25675 (Z,’U) = / K€75 (x,v;y,w)p(y,w) de (y,U)) 5
UTM

Fa) (o _ Koo (@,03y,w)
Ke,6 (.73, v Y, w) - ﬁa (.’E 1)) o ( U)),
€,0 ) pe,& Y,

and eventually

2 Note that here Kéf? = f(if’g), but this equality no longer holds in next subsection where IA{E(,‘? is constructed from estimated

parallel-transports.
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/ K (z,viy,w) f (y,0) p (y, w) dO (y, w)

A f (w,v) =

K (2, 0:9,w) p (y,w) 4O (y,w)
UTM

The next step is to establish an asymptotic expansion of type (4.3) for ﬁg?. We deduce the following
Lemma 17, the “FEuclidean distance version” of Lemma 13, from Lemma 16 and Lemma 13 itself.

Lemma 17. Let ® : R — R be a smooth function compactly supported in [0,1]. Assume M is a d-dimensional
closed Riemannian manifold isometrically embedded in RP, with injectivity radius Inj (M) > 0. For any
€ > 0, define kernel function

b (1,y) = @ <u> (D.2)

€

on M x M, where ||| is the Buclidean distance on RP. If the parameter € is sufficiently small such that
0 < e < +/Inj(M), then the integral operator associated with kernel @,

(809) (@)= [ @ (@) g ) dvolas () (03)

M

has the following asymptotic expansion as € — 0
. d m
(99) @) = € [mog (@) + €52 (Aarg (2) + B (2) g (@) + O (1) (D-4)
with

1

E(z)= f§ScalM (x) + d(d+2)

o 4@

where mg, my are constants that depend on the moments of ® and the dimension d of the Riemannian
manifold M, Ay is the Laplace-Beltrami operator on M, Scal™ (z) is the scalar curvature of M at x, and
A (x) is a scalar function on M that only depends on the intrinsic dimension d and the second fundamental

form of the isometric embedding v : M — RP.

Proof. Since we already established Lemma 13, it suffices to expand the difference

/ [cb (M> " (M)] g (y) dvola (3). (D.5)

Put y in geodesic polar coordinates in a geodesic normal neighborhood of x € M:
y =exp,rf, withr=dy(z,y),0 € T,M,|0|, =1,
and denote the geodesic normal coordinates around z as (s1,--- , $4). By Lemma 16,
2 1 2

thus
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(12 o (e

—or (Bl (@) + o (DR,

€

(D.6)

Recall that ® is supported on the unit interval, which implies that in (D.5) only those y € M satisfying
|z — y|| < Veordy (z,y) < /e are involved. According to Lemma 16, for sufficiently small € > 0, ||z — y|| <
Ve implies dps (z,y) < 24/€, thus the higher order error in (D.6) is indeed

0 <w> =0 <W§)8> =0(&).

€
Therefore,
2 2
T — d5, (x,
/l@ (—' = > —o (el y))] 9 (v) dvolys (1)
M
1 d?, (x, d
— 5 [ (M) e @ vty )+ F0(@) )
M
1 (TN 2 4 2
= 1o i} - 2 ||T1(0,0)]|” g (y) dvolys (y) + €2 - O (e ) .
M
In geodesic normal coordinates (s1,- -, Sq),

o (Z) 6.0 o ) dvolss )
o (D.8)

2
1
= / P’ (%) rIIL(0,0))7 g (s) |1 — ERM (z) skse+ O (r®) | dsy - - - dsq.
B 2(0)

Using the Taylor expansion of g (s) around s = 0 and the symmetry of the integral, (D.8) reduces to

[ v (5) oot ds - ds,

B 2(0)

2
+ / P’ (i) I8, 0)]> O (r?) dsy - dsa

B (0)

1
=€? - 2g (2) / ||H(9,9)\|2d0/<1>’ (72) 7+dF 4 €2 - O (%) .
S1(0) B

Let mgy be the constant as in Lemma 14, wy_; the volume of the standard unit sphere in R%. Note that

1
wd_l/fb(fz)FdeT = / ® (#%) #2ds" - - - d5? = mad.
0 B1(0)
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Let A (x) be the average of the length of the second fundamental form over the standard unit sphere, i.e.,

1
A =—— [ |0 a.
S1(0)

Integrating the term involving @’ (f2) by parts to get

€% - e2g (z) / |\H(0,9)||2d9/<1>’ (%) PHidF = —es ~e2%d(d+2)g(I)A(x). (D.9)
S1(0) 0
Therefore,
2 2 T
[l <—”$‘€y' ) " (—dMi ’y’)] g (5) dvolay (v)
M
— ¢ [e%d(d—i— 2) A(z) g (z) + O (62)} ,
and thus
(Beg) (@) = e [mog (@) + €722 (Barg (2) + B () g (0)) + O ()]

where

E(z):= —%Scal () + 1—12d(d+ 2)A(z). O

Remark 7.5. The only difference between the conclusions in Lemma 17 and Lemma 13 is that the scalar
function F (z) takes the place of the scalar curvature Scal™ (z); one can check, essentially by going through
the proof of Theorem 4, that the proof still works through, due to the cancellation of the terms involving
E (z). In fact, applying Lemma 17 repeatedly, one has

/ée (l‘, y) f (ya ZDy,zU) dvolyy (y)
J (D.10)

d

— €2 {mof (x,'u) + e% [AHf (:L',U) + E; (:,C) f ({,C,U)} +0 (62)} )

and
/ Keﬁ ($7U§y7w)9(y7w) o (yaw)
UTM
d _d—1 m2i1 H
=€26 2 < mog(z,v) + ET [AUTMQ (%U) +Ei(x)g (37’?/)] (D.11)
+ 5% [AETMg (z,v) + Es -g(x,v)] +0 (62 + 52) },
where
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1 d(d+2 1
By (&) = —Scal™ (&) + dd+2) / |TIar (6,0)]% d9
3 12 Wd—1

S1(0)

only depends on the scalar curvature Scal™ and the second fundamental form II,; of the base manifold M
at &, and

(d—1)(d+1)
12

1 1
By = —=Scal® + : / |TLs (0,6)|* do
3 Wd—2

S1(0)
is a constant because
Scal® = (d—1)(d—2), |Hs(8,0)°=1 for any unit tangent vector 6.

These expansions are essentially the equivalents of Lemma 14 and Lemma 15 for K 4. Using (D.10), (D.11)
and picking § = O (€) as € — 0, a version of Theorem 4 holds true when Ke(o(;) is replaced with f(e(‘?, i.e., as
€ — 0 (and thus 6 — 0),

I=al (g, v
mai lAH [fp ]( ) )—f(x,v)

i7(e) _
He,é f(l',’l)) _f(x7v)+62m0 pl_a (.’13,’[1)

Appt=? (z,v)
pt=e (z,v)

(D.12)
App' = (z,v)

1)
* pt= (z,v)

~ f () LO(E e+ 7).

2m0 pl—a (I,U)

Mag lAg [fpl_a} (z,v)

As we shall see below, this observation is the key to establishing estimates for the bias error in the proof of
Theorem 9.

Before we present the proof of Theorem 9, we establish a large deviation bound for our two-step sampling
strategy. Recall from Assumption 8 that we first sample Np points &1, -« , &y, 1.1.d. with respect to (p) on
the base manifold M, then sample N points on each fibre Sg; i.i.d. with respect to p (- | ;). The resulting
Np x Np points on UTM

x1,1, T1,2, R L1,Np
x2,1, x2.2, tty X2 Np
INp,15 INp,2, "5 <INg,Np

are generally not i.i.d. sampled from UTM. This forbids applying the Law of Large Numbers directly to
quantities that take the form of an average over the entire unit tangent bundle, such as

Np Np

1 N
NgNg Z Z K6,5 ('ri,ra mj,s) f (xj,s) .

j=1s=1

However, due to the conditional i.i.d. fibrewise sampling, it makes sense to apply the law of large numbers
to average quantities on a fixed fibre, e.g.,

Np

e D Ko @5 £ (@5) — Bz [Res (010 (65, 2)) 1 (65, 2)]
s=1

where E 7 stands for the expectation with respect to the “fibre component” of the coordinates of the points
on S¢,. Explicitly,
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Ez [Kes (i, (§5,)) f (&) /Kea i, (&5, w0)) [ (&5, w)p(w ] &) dog, (w) .

Next, note that &;,--- ,&n, are i.i.d. sampled from the base manifold M, the partial expectations

Np

{EZ[ Kes (i (&5 ))f(fjaz)]}jzl

are i.i.d. random variables on M with respect to (p). Thus

~ ZEZ [Ke,ﬁ (xi,m (§j7Z)> f (£j>Z>} — EY [EZ [Ke,d (xi,m (}/7 Z)) f (}/7 Z)]] 5

j=1
where
(B2 [Res (20 (Y, 2)) £ (Y, 2)]]

Ey
/ Res (250, (€5,w)) £ (4,0) p (w | ) doy (w) dvolyy (1)

ng

- / / Res (i (6, )) £ (4,0) p (9, w) doy (w) dvolas (1)

M Se;

This gives

Np Ng
lim lim ZZK Tir, T T
Np 00 Np oo NB - €,0 0,7 Js)f( ]75)

j=1s5=1

- / / Ros (1.0 (6, 0)) £ (4,10) p (3, w) doy (w) dvolar (1)

in which the two limits on the left hand side do not commute in general. Thus it is natural to consider
iterated partial expectations rather than expectation on the entire UTM. From now on, we denote Ey,E»
as Eq, Es for simplicity.

Definition 7.2. Let p be a probability density function on UTM, and

x) = z,w)doy (w v $:p(ac7v)
<p><>s/p<, o, (w). plo|2) =T

be as defined in (4.6), (4.7). For any f € C* (M) and g € C* (S¢), £ € M, define

Eif = /f y) dvolas (y)

E$g = /gos,w)p(w ) doe (w).

Se

Definition 7.3. Let p be a probability density function on UTM. We call a collection of Ng x N real-valued
random functions
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{X;s]1<j<Np,1<s<Np}
Procrustean with respect to p on UTM, if

(i) For each 1 < j < Np, the subcollection {Xj, |1 <s < Np} are i.i.d. on S¢; for some §; € M, with
respect to the conditional probability density p (- | &;);
(if) The points {{; | 1 < j < Np} are i.i.d. on M with respect to the fibre average density (p) (-).
Due to (7.3), we can drop the dependency of X; ; with respect to s and simply write
9] 9] 9] 9]
EyX; =E'X;,, EyX::=EJX,.
Similarly, because of (7.3) we can write

EiE2X = EiES' X, Ei(E2X)” =K, (ESX;).

Lemma 18. Let {X;,|1<j < Np,1 <s < Np} be a collection of Procrustean random functions with re-
spect to some density function p on UTM . If

|Xj75‘ S M07

Engj‘ < M, [E;EoX| < My a.s. forall1<j < Np,1<s< Np,
then for anyt >0 and 0 <6 <1,
Np Np

P NBlNF Z > Xjo—EiEoX >t

j=1s=1

1

Np _
<D ey - .
j=1 [

& &y \°
EY X2 - (ES X;) ] +

(1—6)> Npt?
1
3

(Mo+ M) (1—-0)t

1
Z02Npt?
2 B

+ exp 5 5 1
{Iﬁ:l (E2X)? — (E1Eo X) } + 5 (M + My) 0t

Proof. Note that for any 6 € (0, 1)

Np Np

1
Xjo—EiEoX > ¢
1 NB NF 1 NB 5
<P Xjo——Y E¥X,; > (1-6)t
= NBNF;Z; 25 NBZI 2 J ( )
Jj=1s= J=
1 &
+P N—BZngXj—E1E2X>9t =: (I) + (II).
j=1

Since

’]Engj ~E\EoX| < My + M,
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by Bernstein’s Inequality [108, §2.2],

Np
m=rS (ng‘Xj - IEllEgX) > ONpt
j=1
1
592N3t
<expq —

1
[]El (E2X)? — (]ElEzX)Q} + 5 (M + My) 0t
For (I), a union bound plus Bernstein’s Inequality gives

Np

=P Z( ZXJS EY X >>(1—9)N3t
<Z]P’{Z( ngXj)>(19)NFt}

s=1

1
Np ~ (1—0)° Npt?

<) expy - 2
|

,_ N7 1
ES X2 — (IEEJX]-) } + 5 (Mo + M) (1 - 6)t

The conclusion follows from combining these two bounds. O

Remark 7.6. Intuitively, the second term in the bound comes from the sampling error on the base manifold,
and is thus independent of 6 and Np; the first term in the bound comes from accumulating fibrewise
sampling error across all Np fibres.

Proof of Theorem 9. We first establish the result for o = 0. In this case, K'e(,og) (,)=Kes ("), and

Np Npg
Z Z Ke,6 (xi,rwrj,s) f (xj,s)
(0 j=1s=1
A f (i) =
ZZKE,(S (xi,ryxj,s)
j=1s=1
Np Np 2 2
1€ — &1 1Py 65ir — 355l
v ZZK( st o)
o j=1s=1
N Np Nr 2 2 )
1€ — &l ||P5 &Tir — Tjs||
K = ’
o Lk (1 .

Jj=1s=1

Since {xj’s}iv:’vl are i.i.d. with respect to p (- | §;), by the law of large numbers, for each fixed j =1,--- , Np,
as Np — 00,

lim
NF—N)oNF 7
s=

1 i |1 ||Pj7 iLir — Ly,

= &% N Pe e, i — wl|?
_ /K<§z f]” 7|| @@mé w| >f(§j7w)p(w|€j)da£j (w).

ng
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Note that {¢; };VzBl are i.i.d. with respect to (p), it follows again from the law of large numbers that

Np 2 2
: 2 : € — &l ||P£J,§1x““ xj,SH
Nggoo Np iz NF—>oo NF K ( ’ 1) f (37],5)

i =yl [Py, wir — wl|?
=[x (PR et =t £ () d0 ().

UTM
where we used p (y,w) = (p) (y)p (w | y). For f =1,

Ngp 2 2
1 j : % P, 7,7 i,
hm K Hg g]” ) || £J7€1{L‘ x]7 ||
Np—oo NB NFHOO NF (S

gifyz Paixivrin
— K(H - I° 1P 5 Y, w) de (g, w).

UTM

Therefore,

lim  lim H(O5 flxiy) = f{e(g)f (i)

NB*)OO NFHOO

— (e M Al D) (i) . Afrp (i r)
— (o) + eyt | SO ) g, ) Somat (i)

o [ e S o)

The last equality makes use of the assumption § = O (€) as € — 0 and Remark 7.5. This establishes the bias
error for the special case @ = 0 and it remains to estimate the variance error. To this end, denote

N

Fj7$ = RE,B (xi,Ta zj,s) f (xj,s) y Gj,s = Ke,5 (xi,r,xj,s)

for any fixed z; , € UTM. Note that F; s =0, G; s =0 forall s=1,--- , Ng, by Definition 5.1 (5.1); by the
compactness of UTM we have the following trivial bounds uniform in j, s:

[Fjsl S I o 1flloo s 1G] < N1K o

Thus we already have

. (0) E,EoF
N;lglgloo N;lrlglooH 5f(l'z T) - ]El]EQG,

and would like to estimate

p(Ng, N, B) = P { Zj Y Fjs  E{EF ﬁ}

— >
YOI DI - e

for sufficiently small 5 > 0. An upper bound for

P > 2 Fis EEF <3
5,5 G EiESG
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can be obtained in a similar manner. Since G; s > 0,

(550 Fr) EiBsG — (5,5, Gp) EAESF
(Zj Es Gj,S) E,E.G

=P ZZF] E,E,G — ZZGJ,S E,EoF > ZZGJ,S E,E>G
J 8 j s j s

> B

p(Np,Np,3) =P

Denote
Y—j,s = ijSElEQG — ijs]El]EQF +p (]El]EQG — Gj73) E,E-G,

then it is easily verifiable that E1EoY; =0 forall 1 <j < Np,1<s< Np, and

1 .
p(Np, Ny ) =P § 5 ijZYJ > B (E1EaG)

By Lemma 18, bounding this quantity reduces to computing various moments. Define
X]‘ = Eg}/j,

then Xy, -, Xy, are i.i.d. on M with respect to (p), and E;X; = 0 for 1 < j < Ng. Furthermore,
X1, -+, XN, are uniformly bounded. To find this bound explicitly, note that

|X;| = |E2Y;| = [(EoF;) E1EoG — (EoG,) E1EoF + 8 (E1E.G — Eo2G;) E1ExG|
< |(EoF}) E1EoG| + |(EoG) E1EoF| + 8 (E1E2G) + B|E2Gy| |E1ELG,
and recall from Lemma 17 and Remark 7.5 that

d .d—1
2

57) . E.EsG =0 (6%5%) :

thus
X < Cebat=t 4 5 (efg0t 4 edot )

where C' is some positive constant depending on the pointwise bounds of K, p, and f. Since we will be
mostly interested in small 8 > 0, let us pick 8§ = O (62 + el + 52) and rewrite the upper bound as

X, < Ce2597t, C=C (||l 1f oo mpar) > 0. (D.13)
We then need to bound Elij. Since
E X7 = [El (IEQFJ-)Q} (E,E2G)? + [El (JEQGJ-)Q] (E,EoF)?
— 2E1 [(E2F)) (E2G;)] (B1E2F) (E1E2G) + 52 (E1E2G)? [JE1 (E2G)? — (E1E»G)?

+ 26 (E1E»G) [El (E2G)?E,EoF — (E,EG)E, (E2Fj]E2Gj)} :

Please cite this article in press as: T. Gao, The diffusion geometry of fibre bundles: Horizontal diffusion maps, Appl. Comput.
Harmon. Anal. (2019), https://doi.org/10.1016/j.acha.2019.08.001




YACHA:1332

56 T. Gao / Appl. Comput. Harmon. Anal. sss (sess) ese—see
it suffices to compute the first and second moments of EoF}, EoG; for 1 < j < Ng. By (D.11),
4 d-1 m
E\EoF = €25 {mo [fp] (zir) + € 221 (A [FP] (i) + B1 (&) [£P) (i)
m
+6—2 (AET]V[ [fp] (zip) + B - [fp] (zir)) + O (€ + €6 + 6°) }7
d—
EE.G = 6%(571 {mop (.Z‘Z',T) +e€ (AUTMp (gjz r) + F (fz)p (xi,r))
M22 AV 2 2
+ 5— (Alqnp (i) + Eop (w,4)) + O (€ + €6 + 67) }
Using the notation and applying Lemma 17 once

n0)__rle) [ e,

D@~ Bor@o)  |por

Bt — W{MO (I&- —€£j||2> [@{fﬂ] (Pey.c.i)
o (155 (st ] 5[] rcn ot}

where My (+), M> (+) are functions depending only on the kernel K, as in the proof of Lemma 15. By a direct

pv]z) =

we have

computation using Lemma 17,

E, (EoF})°
2 2 2
= egad‘l{mi) [é?];p")ﬂ'] (UCM) m221 (AUTM [é{;%] (xi,r) + Ey (fi) l%] (a:”)>

+ oy 9] a1) (A | o1 )+ o [l @) + 0 (@ v ) |,

where m(, mb;, mb, are positive constants determined by the kernel function K and dimension d:

d
my = / M¢ (7‘2) ds' - ds?, TZZZ(Sk)Z

B{(0) =
My = / My (%) (31)2 ds' - ds?,  mhy = / My (r?) My (r?) ds ds?
B{(0) B{(0)
Setting f =1,
E (E2G;)’
¢ g1 p2 / p2 p2
bt s b - 52 (8t [z 6 1100 [ 755 )

} (i) + Ea - [L] (a:i,r)> + 0 (€ +ed+6°) }

/ ) \4 _ b
+ 5m22p (xz,r) (AUTM |:<p> om <p> om
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Similarly,

. [(E> ) (EoGy)] = e%d-l{ma fra e

re (AUTM [ Hmaeme [GE])

o | o | ) 4 10 ) Al | 2| i)

+2F5 - [pj;pj } Ti )+O(62+e5+52)}.
)

Take 5 =0 (e + € + 02) so that O (f) and O (ﬂ2) terms are absorbed into
(0] [6%52((171) (62 +ed + 52)} .
Direct computation using

A (£29) + PP A9 — 2 Al (F9) = 2||VEmi f|[ g

gives
E\X? = [Eq (B2F))] (BAE2G)” + [E1 (B2G)?| (EoEF)?
— 2K, [(E2F)) (E2G))] (E1EoF) (E1E2G) + O (€2 + 6%)
4

= 6‘252(d_1){€m3m121 [(];)D—ow} Tir) HVUTMfH2 (i) +O (62 +e€d+ 52) }

< % §2d-1) (C'e+ 0O (¢ + €6+ 6%))
where

m(2)m/21p%/1 vaTMino

C' = > 0.

1
Wq—_1Pm

Note that O (6) terms do not show up in this bound, intuitively because X; = E,Yj is already the
expectation along the fibre direction, which “freezes” the variability controlled by the fibrewise bandwidth

J.

It remains to bound
w2 - (357’
for each 1 < j < Np. Since we picked 3 = O (€2 + € + 6?),
V| = |FjsE1EoG — Gy E\EoF + B (E1EoG — Gs) E1E2G| < Ce26°%
where
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is a positive constant. Again taking advantage of § = O (62 +ed + 52), we have

E»Y} — (E>Y))* = {E2Fa‘2,s - (EQFj)Q} (EiE2G)” + [E2G§,s - (]EQGj)Q:I (B EoF)®
+2[(E2Fy) (E2Gj) — Eo (Fj5Gjs)]) (E1E2F) (B EG)
+0 18207 (2 4 65 + 6%)]

Note that

but

(E2Fjs)® =0 (6771), (ExGyy)® =0 (877"), (E2Fy) (E2Gy) =0 (6771),
the leading order error term in EpY? — (EoY;)? is

(E2F2,) (E1E2G)” + (E2G2,) (E1EoF)? — 2B (F}oGs) (E1EoF) (E1E2G).

By Lemma 17,

d—1 [ ~— 2
E,F2, =57 {MO [ﬁ—p} (Pe, e,wi0)

p)om
85 s ] it [ 2] e 00}

Similarly,

#0082 + 8- (7)) () +0 ) ),

(p)om

d=1 | ~ p
Eo (Fj’st’s) =4 2 {MO |:<p'>f—o7'r:| (ng,giazw)

Since the kernel K is compactly supported and f is Lipschitz (UTM compact), the difference f (ng’gixi’,«) -
[ () is of order O (d (&5,&)) = O (e%) Thus

’(EQFJ%S) (EAE2G)? + (E2G2,) (B1EoF)? — 2B, (F) .Gy ) (EAEF) (El]EQG)’

< el§™ T (Cle+ C"5), C'>0,0" >0

and

3(d—1)

ESY? — (IEngj)Q -0 (edé = (e + 5)) .

If we let C7, CY be constants such that
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Clei5s < |EEyG| < Cllets
then for any 6 € (0,1), by 8 =0 (62 + el + 52) and Lemma 18,

p(NB>NFa6> S

(1—0)% Npeds“s* g2 02 Npet g2 } (D.14)
Npexp .

— p +expq —
Cy (e+5)+0<65 (e2+52)) { Cae+ O (€2 + 62)

As pointed out in Remark 7.6, the second term in this bound is the sampling error on the base manifold;
the noise error resulted from this term is of the order

0 [(NBegl)‘i] —o(nptet),

which is in accordance with the convergence rate obtained in [72]. The first term in the bound reflects the
accumulated fibrewise sampling error and grows linearly with respect to the number of fibres sampled, but
can be reduced as one increases N accordingly (which has an effect of reducing fibrewise sampling errors).
The choice of 0 is important: as 6 increases from 0 to 1, the first term in the bound decreases but the
second term increases. One may wish to pick an “optimal” 8 € (0, 1), but this does not make sense unless
one chooses €, 0, Np appropriately so as to make the sum of the two terms smaller than 1. Let us consider
0. € (0,1) satisfying

(1—0,)° Npe®ss = 62Nge?, (D.15)
or equivalently
a.da-1 |[Np
ghat [ 2E
Y 6. “
eisT 2L = &0, = No_ (D.16)
No o 1=6. 1+ edstst [NF
¢ OF
Np

Setting 0 = 6, in (D.14), we have for some C' > 0

02Npet 52 02N rned 32
p(NB7NF76)S(NB+1)eXp{— VY B€ ﬁ }_ex <_ «+VBE€ 6

Clet o) Clere) 1B Ne U) S

Since

. Np
1im =
Np—o0 log Np

)

for any fixed €, we have p(Np, Nr,3) — 0 as Ngp — 00, as long as one increases Np accordingly so as
to prevent 8, from approaching 0 or 1; for instance, this is the case if the assumption (9) in Theorem 9 is
satisfied:

N
lim —~ =f€(0,00). (D.18)

Np—o© NB

NF*)OO

This completes the proof for the pointwise convergence of f[e(%) f in probability.
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We now turn to the general case o # 0. Recall that

NBNFA NBNFA J? X )f(JC)
SN RE i) f ) Y P Tin i) T
@) j=1s=1 i ea x”)peé(gjjs)
H€76 f(xi’r) - Np Np = Np Np A )
ZZKE(O:S) (i, Tj,) ZZ Kes (i, s
j=1s5=1 ’ o 1p65 x”peé(x],)
where
Np Np
ﬁ(ﬂfj,s) = K. s (xj,57$k,t).
k=1 t=1

By the law of large numbers,

1 1 ~
Jim i L) = / Res (2i0,m) p (1) dO ()
UTM

=p(z;,) =Eq1E [f(e,é (Tj,55 )] :

Therefore, as Ng — oo, Np — 00, we expect ]i(og)f (x;,) to converge to

| ES @ () 0 (510)

UTM — _ He(,ofs)f(mi,r)
| &S @irnyp )0 (5.
UTM
=f (i) + et At [P0 (@ir) _ f (i) Ainyp’ * (i)
' 2mq pl=« (xi,r) ' pl-« (mz}r)

mas [ Al [fplfa] (@ir) AVt (z40) 9 2
44 — f(z;, : 4+ 0O (e + €6 +067),
2mq ( pr=e (i) f (@ir) Pl (xi) (4 )

which gives the same bias error O (62 +ed + (52) as in the a = 0 case.
It remains to estimate the variance error. By

Np Ng
ZZKE ) xz 7y Lj, s) ?(l'j,s) f (xj,s)
A j=1s=1
Hngf (xivr) = Np Np ’
DY Kes (@i as) g (25,5
j=1s=1
and
N Ng Np Np
2D Koo @irsws) B @3 £ (@3e) - D20 Ko (@i 23) B (@3) ()
j=1s=1 Jj=1s=1
N Np h Npg Np
S Kes (@i wj6) Dog (x).6) DD Kes (i w5,0) Pog (w.)
j=1s=1 j=1s=1
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Np Np
SN R (i) [NEINEIB5 (@5.0) = Bog (250)] S (w55)
_J=1 s=1
B Ng Np

Z Z Kes (@i, 5,s) NpNpp § (,5)
j=1s=1

Np Npg

+ Z Z Kcs (xi,T‘v xj,s)];;? (-rj,s) f (xj,s) X
j=1s=1
_ [ -
=D R @i wi) [NENEDS (@1.6) = Bog (255)]
j=1s=1
NB NF NB NF
Z Z Ke,5 (xi,rv xj,s) NBNaﬁe ? (‘rj,s) Z Z Ké,é (xi,'r'a xj,s)ﬁ;? (xj,s)
L \Jj=1s=1 j=1s=1 1
=: (4) +(B),
thus if we estimate (A), (B) by controlling the error
[NENED.S (250) = Bog (1))
then it suffices to estimate the variance error caused by
-1
AR Ko (@i 50) S (@50) | [QASA_ Kes (@i, 250)
e 7,154 ],8 7,8 e i,myLj,s

2.2 5 (2:) P > 5 (220) 5 (2, : (D.19)
j=1s=1 pe(s 1T)p55(]$) j=1s=1Pes xzr)pgts(xj,S)

Our previous proof for the special case & = 0 can then be applied to (D.19): the only adjustment is to

replace the kernel K’Eﬁ (z,y) in that proof with the a-normalized kernel

Kﬁ,& (.’E, y)
Des (z) Des (y)

We would like to estimate the tail probability

P{NlN De,s (x; )ﬁe,es(l?j,s)>ﬂ}7

but since pe s (z;5) = O (egé%), it is not lower bounded away from 0 as €,§ — 0. We thus estimate the
following tail probability instead:

1 _d o d-1 .
Q(NB7NF7B) = € 20 2 pe,é(xj,s)_e 25 =R p66($33)>ﬂ
NgNp
1 _ d d—1
= P { e (@30 ~ o (030 > 40°7 5}
B
where

Np Np

peé x_]S ZZKeS Tj sy Tk, t) ﬁe,é (:L'j,s) =EE, [Ke,é (xj,sa')] .
k=1 t=1
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Noting that for some positive constant C' = C (||K|| ., , Pa, Pm, d)

‘}7{575 (xi,raxj,s)| § ||K||oo’ |]E2 [ xl 7yt :|| < C6
[EsEs [Res (i ]| < Ceds'T

and by direct computation
ES [Res (@ir )] = 0(6°7) ) Ea [EaKes (@i, )] = 0 (F5771)

Lemma 18 and 8 = O (62 +ed + 52) gives

_ p)2 dsd—1 2 9 dsdel a2
q(NB’NFvﬁ)SNBeXP{—(I 6) Need™ }—I—exp{_w}

20,65 20, €5 51
1—0)2 Npels®s" 52 02Npes 32
:NBexp{—( ) 2516 ﬂ }+exp{—72fgl i }

for C7 > 0 some constant. A simple union bound gives

P {‘NBN pezs(l'] s) ﬁe,é (‘ijs) >€§5d;15}
(1= 8)° Npe's™s 7 62 Npe? 5 D.2
. T o0, (D.20)
< NpNr [ Bexp{ 20, + exp T
2Npet 32
TR {_%} setting 0 = 0, as in (D.15).
1

We are interested in seeing how this bound compares with the bound in (D.17). As Ng, Np — oo, as long
as (D.18) holds,

2 4 92
Np (N + 1) Npexp { - 2NB€2 5
20,
02Npe? 32
C(e+9)

(Np +1)exp {—

NBNFexp{ 92N36252 |:216'10'(61+5):|} — oo for small €, 6,

thus the bound in (D.17) is asymptotically negligible compared to the bound in (D.20). This means that
1
when a # 0 the density estimation in general slows down the convergence rate by a factor (e + §) %, which is

consistent with the conclusion for standard diffusion maps on manifolds [106,9]. Therefore, for probability
at least

2 4 52
1- Np (NB-i-l)NFexp{—M}

20,

we have

Please cite this article in press as: T. Gao, The diffusion geometry of fibre bundles: Horizontal diffusion maps, Appl. Comput.
Harmon. Anal. (2019), https://doi.org/10.1016/j.acha.2019.08.001




YACHA:1332

T. Gao / Appl. Comput. Harmon. Anal. ess (sees) eee—ses 63

Np Nr

Ae xzmxjs f Zj s
Sy fe ) f(2,s)

=1 s=1 peg xzr)pg(s(xjs)

- FIE( 5)f(xi 7‘) <pB

%%Keé xzrasz)peg(xjs)
J=1s=1 (wz r)p675 (x],s)
as well as
1 _
NpNp ——De5 (T)s) — Des (Tj,6)| < 6%6%5 forall 1 <j < Np,1<s< Npg.

Note that by our assumption
0<pm<p(z,v) <py <oco forall (x,v) € UTM
there exist constants C7,Cs such that
_do_d-1
0<Cr<e 28 7 Peslxjs) <Co<o0.

For sufficiently small 3, we also have

1
0<C < 6~ . s) < Oy < 00.
1 NBNF Rl P 5(% ) 2 < 00
Thus
aml N =1 dcd=t 1 _ 8
NBNFp6,6 (xJ»S) pe,6 (-f],s) < €20 2 B C%6d5d71 - 0126%(5%

and (A), (B) can be bounded as

s 2 N5 wag
<C(a) ) . a( d 1) 4 d—1 =0,
() o (o) Gty o
C2acadga(d-1) 2 B 2271 aCs | fll
B < i o (o) s = gl L2
CiVe=2d 2 Coe26 2 C?e26 C1

Since C7, Cy only depend on the kernel function K, the dimension d, and p,,, pas, these bounds ensure that

ﬁe(%)f (Tir) = ﬁe(fs)f (zir)| < CPB
with probability at least
02Npe?
1— Ng(Ng+1) Npexp _GNper57 |
2C4

where constants C, C; only depend on the kernel function K, the dimension d, and p,,, pas- This establishes
the conclusion for all « € [0,1]. O
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D.2. Sampling from empirical tangent spaces

The following two lemmas from [9] provide estimates for the error of approximating parallel-transports
from local PCA. We adapted these lemmas to our notation; note that the statements are more compact
than their original form since we assume M is closed.

__2
Lemma 19. Suppose Kpca € C?((0,1]). If epca = O | Ng ** ), then, with high probability, the columns of

the D x d matriz O; determined by local PCA form an orthonormal basis to a d-dimensional subspace of
3
RP that deviates from 1. Ty, M by O (GI%CA), in the following sense:

; To. _ 3 ) _ ~atz
i 076: = Olhus =0 () =0 (3,7 ). (D.21)

where ©; is a D x d matrixz whose columns form an orthonormal basis to v, Ty, M. Let the minimizer if
(D.21) be

0; = argmln 10 0; — Ol|r, (D.22)
0€0(d)
and denote by Q; the D X d matriz
Qi :=0;0]. (D.23)

The columns of Q; form an orthonormal basis to 1.1y, M, and

10 = Qillr = O (epca) , (D.24)

where ||-||p is the matriz Frobenius norm.

Proof. See [9, Lemma B.1]. O

Lemma 20. Consider points x;,x; € M such that the geodesic distance between them is O (e%). For epca =

in the following sense:

i, Lj

_ 2
(0] (NB a2 ) , with high probability, O;; approzimates Py

05 X; = (4 Py, X () s g ()}, + O (ePCA n e) . forallX €T (M,TM), (D.25)

where {u, (xl)};izl is an orthonormal set determined by local PCA, and
X = (X (23) s (2)), € R™
Proof. See [9, Theorem B.2]. O

Proof of Theorem 10. By Definition 5.2 (5.2),

OﬂB Tir

Ojiciy =
3iCir B

By Lemma 20,
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OjiBiT?i)T = Bj (ng,ngZ r) + 0 (EPCA + €%>

thus

OleTFiT‘ _ B]T (ng,ﬁi?i,’r‘) ( % é)
T2 I T R G T

where we used || B (Pe, &, Tir)|| < ||Pe,.c.Tir|| =1 and

B Finllp — 1| = 1B Tille = Q7 i ll| < | B Fir — QT 7|
<|B) = Qi |[g = O(epca) .
Thus
BT (P{ §-Fi T) 1 3 BTFjs
O'ici,r_c',s:%—kO(Q +6§>* j_a
’ ’ 1B/ i roa 1B 7.
= Pfj,ﬁi?z‘,r - ?j,s + O (61%CA + 6%) s
1
‘HOjiCi,r - Cj,s||2 - ||P§j’5f” - Fj’SHQ‘ =0 ( 1§CA + 6%)
and
i (V= &I° 10sies = sl _ (16— &I [ PoeTir =T
€ ’ ) € ) §
3 3
oK <|si — gl ||Pe 7o —mn?) 0 (cpen +¢})
€ ’ ) 5 :

Thus for any function g € C*° (UTM) we have

/ Hes (Fiomim) g (n) 4O ()
UTM

7 — dod=1_9q 1 3
= [ ResFirm g n)d0 () + €255 710 (ehoy +€2).

UTM

Following the notation used in the proof of Theorem 9, by the law of large numbers

1
li li :
i i e (Tir)

=E1Es [Kes (Fir, )] +e57 710 (EPCA+€2>

=EEq [Zes (Tirs )]

hence we expect %(?) f (Tir) to converge to

A7)+ 0 (67 (chen+ )

H _ — o f—
_ mar | A [f0%] (Fir) _ A T (Tir)
= f (Tiﬂ") +e 1— (= - f (Tiﬂ“) 11— (=
2myg P (Tir) P (Tir)
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A‘leMplia (Ti,r)
plia (?i,r>

M2 AZTM [fpl_a] (Tir)
2WLO plia (?i,r>

- f (?i,r)

+6
+O(E+e5+6%)+0 (6‘1 (eéCA+e%>>.

In fact, noting that

0 (5‘1 (eéCA + e%)>

s (Ti) e (P i) +
B E e e—— L = Y a1 - - DPes \Tiry Ty, — ’
AT NN T AT NN T e

we have
A5 INENE AL (T 7 0)

= 5@ NENZUK ) (7o 70) + 0 (57 (ehon +€4) ).

€

Consequently,

Np Nr
DD KE TirTia) £ (Ti) 1
‘%pef?)f (Tir) = = +0 <5_1 (€1§>cA + 6%))

Np Nr

Z Z f{e(:? (Fi,ra Fj,s)

j=1s=1

=1 f @)+ 0 (57 (hon +€4)).

Under the assumption that

1
61t (el?,CA—i—e%) — 0 ase—0,

we can apply Theorem 9. This completes the proof of Theorem 10. O
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