
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. MATH. DATA SCI. c\bigcirc 2019 Society for Industrial and Applied Mathematics
Vol. 1, No. 1, pp. 208--236

Gaussian Process Landmarking on Manifolds\ast 
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Abstract. As a means of improving analysis of biological shapes, we propose an algorithm for sampling a
Riemannian manifold by sequentially selecting points with maximum uncertainty under a Gaussian
process model. This greedy strategy is known to be near-optimal in the experimental design liter-
ature, and it appears to outperform the use of user-placed landmarks in representing the geometry
of biological objects in our application. In the noiseless regime, we establish an upper bound for the
mean squared prediction error (MSPE) in terms of the number of samples and geometric quantities
of the manifold, demonstrating that the MSPE for our proposed sequential design decays at a rate
comparable to the oracle rate achievable by any sequential or nonsequential optimal design; to the
best of our knowledge this is the first result of this type for sequential experimental design. The
key is to link the greedy algorithm to reduced basis methods in the context of model reduction for
partial differential equations (PDEs). We expect this approach will find additional applications in
other fields of research.

Key words. Gaussian process, experimental design, active learning, manifold learning, reduced basis methods,
geometric morphometrics
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1. Introduction. This paper grew out of an attempt to apply principles of the statistical
field of optimal experimental design to geometric morphometrics, a subfield of evolutionary
biology that focuses on quantifying the (dis)similarities between pairs of two-dimensional
anatomical surfaces based on their spatial configurations. In contrast to methods for statistical
estimation and inference, which typically focus on studying the error made by estimators
with respect to a deterministically generated or randomly drawn (but fixed) collection of
sample observations and on constructing estimators to minimize this error, the paradigm
of optimal experimental design is to minimize the empirical risk by an ``optimal"" choice of
sample locations, while the estimator itself and the number of samples are kept fixed [62, 6].
Finding an optimal design amounts to choosing sample points that are most informative for
a class of estimators so as to reduce the number of observations; this is most desirable when
acquiring even one observation is expensive (e.g., in spatial analysis (geostatistics) [79, 27]
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and in computationally demanding computer experiments [72]), but similar ideas have long
been exploited in the probabilistic analysis of some classical numerical analysis problems (see,
e.g., [78, 92, 65]).

In this paper, we adopt the methodology of optimal experimental design for discretely
sampling Riemannian manifolds, and we propose a greedy algorithm that sequentially se-
lects design points based on the uncertainty modeled by a Gaussian process. On anatomical
surfaces of interest to geometric morphometrical applications, these design points play the
role of anatomical landmarks, or simply landmarks, which are geometrically or semantically
meaningful feature points crafted by evolutionary biologists for quantitatively comparing large
collections of biological specimens in the framework of Procrustes analysis [39, 33, 40]. The
effectiveness of our approach on anatomical surfaces, along with more background informa-
tion on geometric morphometrics and Procrustes analysis, is demonstrated in a companion
paper [37]; though the prototypical application scenario in this paper and [37] is geometric
morphometrics, we expect the approach proposed here to be more generally applicable to
other scientific domains where compact or sparse data representation is demanded. In con-
texts different from evolutionary biology, closely related (continuous or discretized) manifold
sampling problems are addressed in [5, 53, 42], where smooth manifolds are discretized by op-
timizing the locations of (a fixed number of) points so as to minimize a Riesz functional, and
in [61, 66], which study surface simplification via spectral subsampling or geometric relevance.
These approaches, when applied to two-dimensional surfaces, tend to distribute points either
empirically with respect to fine geometric details preserved in the discretized point clouds
or uniformly over the underlying geometric object, whereas triangular meshes encountered
in geometric morphometrics often lack fine geometric details but still demand nonuniform,
sparse geometric features that are semantically/biologically meaningful; moreover, it is often
not clear whether the desired anatomical landmarks are naturally associated with an energy
potential. In contrast, our work is inspired by recent research on active learning with Gaus-
sian processes [25, 63, 45] as well as by related applications in finding landmarks along a
manifold [49]. Different from many graph-Laplacian-based manifold landmarking algorithms
in semisupervised learning (e.g., [93, 90]), our approach considers a Gaussian process on the
manifold whose covariance structure is specified by the heat kernel, with a greedy landmark-
ing strategy that aims to produce a set of geometrically significant samples with adequate
coverage for biological traits. Furthermore, in stark contrast with [30, 51] where landmarks
are utilized primarily for improving computational efficiency, the landmarks produced by our
algorithm explicitly and directly minimize the mean squared prediction error (MSPE) and
thus bear rich information for machine learning and data mining tasks. The optimality of
the proposed greedy procedure is also established (see section 4); this is apparently much less
straightforward for nondeterministic, sampling-based manifold landmarking algorithms such
as those in [32, 21, 83].

The rest of this paper is organized as follows. The remainder of this introduction motivates
our main algorithm and discusses other related work. Section 2 sets notation and provides
background materials for Gaussian processes and the construction of heat kernels on Rieman-
nian manifolds (and discretizations thereof) as well as the ``reweighted kernel"" constructed
from these discretized heat kernels; section 3 presents an unsupervised landmarking algorithm
for anatomical surfaces inspired by recent work on uncertainty sampling in Gaussian processD
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210 TINGRAN GAO, SHAHAR Z. KOVALSKY, AND INGRID DAUBECHIES

active learning [49]; section 4 provides the convergence rate analysis and establishes the MSPE
optimality; and section 5 summarizes the current paper with a brief sketch of potential future
directions. We defer implementation details of the proposed algorithm for applications in
geometric morphometrics to the companion paper [37].

1.1. Motivation. To see the link between landmark identification and active learning with
uncertainty sampling [48, 74], let us consider the regression problem of estimating a function
f : V \rightarrow \BbbR defined over a point cloud V \subset \BbbR D. Rather than construct the estimator from
random sample observations, we adopt the point of view of active learning, in which one
is allowed to sequentially query the values of f at user-picked vertices x \in V . In order to
minimize the empirical risk of an estimator \^f within a given number of iterations, the simplest
and most commonly used strategy is to first evaluate (under reasonable probabilistic model
assumptions) the informativeness of the vertices on the mesh that have not been queried,
and then greedily choose to inquire the value of f at the vertex x at which the response
value \^f (x)---inferred from all previous queries---is most ``uncertain"" in the sense of attaining
highest predictive error (though other uncertainty measures such as the Shannon entropy
could be used as well); these sequentially obtained highest-uncertainty points will be treated
as morphometrical landmarks in our proposed algorithm.

This straightforward application of the active learning strategy summarized above relies
on selecting a regression function f of rich biological information. In the absence of a natural
candidate regression function f , we seek to reduce in every iteration the maximum ``average
uncertainty"" of a class of regression functions, e.g., specified by a Gaussian process prior
[63]. Throughout this paper we will denote by GP (m,K) the Gaussian process on a smooth,
compact Riemannian manifold M with mean function m : M \rightarrow \BbbR and covariance function
K : M \times M \rightarrow \BbbR . If we interpret choosing a single most ``biologically meaningful"" function
f as a manual ``feature handcrafting"" step, the specification of a Gaussian process prior can
be viewed as a less restrictive and more stable ``ensemble"" version; the geometric information
can be conveniently encoded into the prior by specifying an appropriate covariance function
K. We construct such a covariance function in subsection 2.2 by reweighting the heat kernel
of the Riemannian manifold M , adopting (but meanwhile also appending further geometric
information to) the methodology of Gaussian process optimal experimental design [70, 72, 35]
and sensitivity analysis [71, 60] from the statistics literature.

1.2. Our contribution and other related work. The main theoretical contribution of this
paper is a convergence rate analysis for the greedy algorithm of uncertainty-based sequential
experimental design, which amounts to estimating the uniform rate of decay for the prediction
error of a Gaussian process as the number of greedily picked design points increases; on a C\infty -
manifold we deduce that the convergence is faster than any inverse polynomial rate, which
is also the optimal rate any greedy or nongreedy landmarking algorithm can attain on a
generic smooth manifold. This analysis makes use of recent results in the analysis of reduced
basis methods by converting the Gaussian process experimental design into a basis selection
problem in a reproducing kernel Hilbert space associated with the Gaussian process. To the
best of our knowledge, there does not exist in the literature any earlier analysis of this type
for greedy algorithms in optimal experimental design; the convergence results obtained from
this analysis can also be used to bound the number of iterations in Gaussian process activeD
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learning [25, 45, 49] and maximum entropy design [72, 47, 59]. From a numerical linear
algebra perspective, though the rank-1 update procedure detailed in Remark 3.2 coincides
with the well-known algorithm of pivoted Cholesky decomposition for symmetric positive
definite matrices (cf. subsection 3.2), we are not aware of similar results in that context for
the performance of pivoting. We thus expect our theoretical contribution to shed light on a
deeper understanding of other manifold landmarking algorithms in active and semisupervised
learning [93, 90, 21, 83, 30, 51]. We discuss the implementation details of our algorithm for
applications in geometric morphomerics in a companion paper [37].

We point out that, though experimental design is a classical problem in the statistical liter-
ature [34, 20, 62], it is only very recently that interest in computationally efficient experimental
design algorithms has begun to arise in the computer science community [15, 7, 58, 86, 1, 2].
Most experimental design algorithms based on various types of optimality criteria, includ-
ing but not limited to A(verage)-, D(eterminant)-, E(igen)-, V(ariance)-, G-optimality, and
Bayesian alphabetical optimality, are NP-hard computational in their exact form [23, 19], with
the only exception being T(race)-optimality, which is trivial to solve. For computer scien-
tists, the interesting problem is to find polynomial algorithms that efficiently find (1 +O (\epsilon ))-
approximations of the optimal solution to the exact problem, where \epsilon > 0 is expected to be
as small as possible but depends on the size of the problem and the prefixed budget for the
number of design points; often these approximation results also require certain constraints on
the dimension of the ambient space, the number of design points, and the total number of
candidate points. Different from those approaches, our theoretical contribution assumes no
relations between these quantities, and the convergence rate is with respect to the increasing
number of landmark points (as opposed to a prefixed budget); nevertheless, similar to results
obtained in [15, 7, 58, 86, 1, 2], our proposed algorithm has polynomial complexity and is thus
computationally tractable; see subsection 3.2 for more details. We refer interested readers to
[62] for more exhaustive discussions of the optimality criteria used in experimental design.

2. Background.

2.1. Heat kernels and Gaussian processes on Riemannian manifolds: A spectral em-
bedding perspective. Let (M, g) be an orientable compact Riemannian manifold of dimen-
sion d \geq 1 with finite volume, where g is the Riemannian metric on M . Denote by dvolM the
canonical volume form M with coordinate representation

dvolM (x) =
\sqrt{} 
| g (x)| dx1 \wedge \cdot \cdot \cdot \wedge dxd.

The finite volume will be denoted as

Vol (M) =

\int 
M

dvolM (x) =

\int 
M

\sqrt{} 
| g (x)| dx1 \wedge \cdot \cdot \cdot \wedge dxd <\infty ,

and we will fix the canonical normalized volume form dvolM/Vol (M) as a reference. Through-
out this paper, all distributions onM are absolutely continuous with respect to dvolM/Vol (M).

The single-output regression problem on the Riemannian manifold M will be described as
follows. Given independent and identically distributed (i.i.d.) observations \{ (Xi, Yi) \in M \times \BbbR | 
1 \leq i \leq n\} of a random variable (X,Y ) on the product probability space M \times \BbbR , the goal ofD
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212 TINGRAN GAO, SHAHAR Z. KOVALSKY, AND INGRID DAUBECHIES

the regression problem is to estimate the conditional expectation

(2.1) f (x) := \BbbE (Y | X = x) ,

which is often referred to as a regression function of Y on X [81]. For simplicity, the joint
distribution of X and Y will always be assumed absolutely continuous with respect to the
product measure on M \times \BbbR . A Gaussian process (or Gaussian random field) on M with
mean function m : M \rightarrow \BbbR and covariance function K : M \times M \rightarrow \BbbR is defined as the
stochastic process for which any finite marginal distribution on n fixed points x1, . . . , xn \in M
is a multivariate Gaussian distribution with mean vector

mn := (m (x1) , . . . ,m (xn)) \in \BbbR n

and covariance matrix

Kn :=

\left(   K (x1, x1) \cdot \cdot \cdot K (x1, xn)
...

...
K (xn, x1) \cdot \cdot \cdot K (xn, xn)

\right)   \in \BbbR n\times n.

A Gaussian process with mean function m : M \rightarrow \BbbR and covariance function K : M \times M \rightarrow \BbbR 
will be denoted as GP (m,K). Under model Y \sim GP(m,K), given observed values y1, . . . , yn
at locations x1, . . . , xn, the best linear predictor (BLP) [79, 72] for the random field at a new
point x is given by the conditional expectation

(2.2) Y \ast (x) := \BbbE [Y (x) | Y (x1) = y1, . . . , Y (xn) = yn] = m (x) + kn (x)
\top K - 1

n (Yn  - mn) ,

where Yn = (y1, . . . , yn)
\top \in \BbbR n, kn (x) = (K (x, x1) , . . . ,K (x, xn))

\top \in \BbbR n; at any x \in M ,
the expected squared error, or mean squared prediction error (MSPE), is defined as

(2.3)

MSPE (x;x1, . . . , xn) : = \BbbE 
\Bigl[ 
(Y (x) - Y \ast (x))2

\Bigr] 
= \BbbE 

\Bigl[ 
(Y (x) - \BbbE [Y (x) | Y (x1) = y1, . . . , Y (xn) = yn])

2
\Bigr] 

= K (x, x) - kn (x)
\top K - 1

n kn (x) ,

which is a function over M . Here the expectation is with respect to all realizations Y \sim 
GP(m,K). Squared integral (L2) or sup (L\infty ) norms of the pointwise MSPE are often
used as criteria for evaluating the prediction performance over the experimental domain. In
geospatial statistics, interpolation with (2.2) and (2.3) is known as kriging.

Our analysis in this paper concerns the sup-norm of the prediction error with n design
points x1, . . . , xn picked using a greedy algorithm, i.e., the quantity

\sigma n := sup
x\in M

MSPE (x;x1, . . . , xn) ,

where x1, . . . , xn are chosen according to Algorithm 3.1. This quantity is compared with the
``oracle"" prediction error attainable by any sequential or nonsequential experimental design
with n points, i.e.,

dn := inf
x1,...,xn\in M

sup
x\in M

MSPE (x;x1, . . . , xn) .
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As will be shown in (4.10) in section 4, dn can be interpreted as the Kolmogorov width of ap-
proximating a reproducing kernel Hilbert space (RKHS) with a reduced basis. The RKHS we
consider is a natural one associated with a Gaussian process; see, e.g., [28, 55] for general in-
troductions on RKHS and [82] for RKHS associated with Gaussian processes. In Appendix A,
we include a brief sketch of the RKHS theory needed for understanding section 4.

On Riemannian manifolds, there is a natural choice for the kernel function: the heat
kernel, i.e., the kernel of the Laplace--Beltrami operator. Denote by \Delta : C2 (M) \rightarrow C2 (M)
the Laplace--Beltrami operator on M with respect to the metric g, i.e.,

\Delta f =
1\sqrt{} 
| g| 

\partial i

\Bigl( \sqrt{} 
| g| gij\partial jf

\Bigr) 
\forall f \in C\infty (M) ,

where the sign convention is such that  - \Delta is positive semidefinite. If the manifold M has no
boundary, the spectrum of  - \Delta is well known to be real, nonnegative, discrete, with eigenvalues
satisfying 0 = \lambda 0 < \lambda 1 \leq \lambda 2 \leq \cdot \cdot \cdot \nearrow \infty , and with \infty the only accumulation point of the
spectrum; when M has a nonempty boundary we assume the Dirichlet boundary condition,
so the same inequalities hold for the eigenvalues. If we denote by \phi i the eigenfunction of \Delta 
corresponding to the eigenvalue \lambda i, then the set \{ \phi i | i = 0, 1, . . . \} constitutes an orthonormal
basis for L2 (M) under the standard inner product

\langle f1, f2\rangle M :=

\int 
M

f1 (x) f2 (x) dvolM (x) .

The heat kernel kt (x, y) := k (x, y; t) \in C2 (M \times M)\times C\infty ((0,\infty )) is the fundamental solution
of the following heat equation on M :

\partial tu (x, t) =  - \Delta u (x, t) , x \in M, t \in (0,\infty ) .

That is, if the initial data is specified as

u (x, t = 0) = v (x) ,

then

u (x, t) =

\int 
M

kt (x, y) v (y) dvolM (y) .

In terms of the spectral data of \Delta (see, e.g., [68, 12]), the heat kernel can be written as

(2.4) kt (x, y) =

\infty \sum 
i=0

e - \lambda it\phi i (x)\phi i (y) \forall t \geq 0, x, y \in M.

For any fixed t > 0, the heat kernel defines a Mercer kernel on M by

(x, y) \mapsto \rightarrow kt (x, y) \forall (x, y) \in M \times M,

and the feature mapping (see (A.4)) takes the form

(2.5) M \ni x \mapsto  - \rightarrow \Phi t (x) :=
\Bigl( 
e - \lambda 0t/2\phi 0 (x) , e

 - \lambda 1t/2\phi 1 (x) , . . . , e
 - \lambda it/2\phi i (x) , . . .

\Bigr) 
\in \ell 2,
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where \ell 2 is the infinite sequence space equipped with a standard inner product; see, e.g., [64,
section II.1, Example 3]. Note in particular that

(2.6) kt (x, y) = \langle \Phi t (x) ,\Phi t (y)\rangle \ell 2 .

In fact, up to a multiplicative constant c (t) =
\surd 
2 (4\pi )

d
4 t

n+2
4 , the feature mapping \Phi t : M \rightarrow \ell 2

has long been studied in spectral geometry [11] and is known to be an embedding of M into \ell 2;
furthermore, with the multiplicative correction by c (t), the pullback of the canonical metric
on \ell 2 is asymptotically equal to the Riemannian metric on M .

In this paper we focus on Gaussian processes on Riemannian manifolds with heat kernels
(or ``reweighted"" counterparts thereof; see subsection 2.2) as covariance functions. There are
at least two reasons for heat kernels to be considered as natural candidates for covariance
functions of Gaussian processes on manifolds. First, as argued in [18, section 2.5], the abun-
dant geometric information encoded in the Laplace--Beltrami operator makes the heat kernel
a canonical choice for Gaussian processes; Gaussian processes defined in this way impose nat-
ural geometric priors based on randomly rescaled solutions of the heat equation. Second, by
(2.6), a Gaussian process on M with a heat kernel is equivalent to a Gaussian process on the
embedded image of M into \ell 2 under the feature mapping (2.5) with a dot product kernel; this
is reminiscent of the methodology of extrinsic Gaussian process regression (eGPR) [50] on
manifolds---in order to perform Gaussian process regression on a nonlinear manifold, eGPR
first embeds the manifold into a Euclidean space using an arbitrary embedding, then performs
Gaussian process regression on the embedded image following standard procedures for Gaus-
sian process regression. This spectral embedding interpretation also underlies recent work on
constructing Gaussian priors, by means of the graph Laplacian, for uncertainty quantification
of graph semisupervised learning [13].

2.2. Discretized and reweighted heat kernels. When the Riemannian manifold M is a
submanifold embedded in an ambient Euclidean space \BbbR D (D \gg d) and sampled only at
finitely many points \{ x1, . . . , xn\} , we know from the literature of Laplacian eigenmaps [9, 10]
and diffusion maps [26, 76, 77] that the extrinsic squared exponential kernel matrix

(2.7) K = (Kij)1\leq i,j\leq n =

\Biggl( 
exp

\Biggl( 
 - \| xi  - xj\| 2

t

\Biggr) \Biggr) 
1\leq i,j\leq n

is a consistent estimator (up to a multiplicative constant) of the heat kernel of the manifold
M if \{ xi | 1 \leq i \leq n\} are sampled uniformly and i.i.d. on M with appropriately adjusted
bandwidth parameter t > 0 as n \rightarrow \infty ; similar results hold when the squared exponential
kernel is replaced with any anisotropic kernel, and additional renormalization techniques can
be used to adjust the kernel if the samples are i.i.d. but not uniformly distributed on M ;
see, e.g., [26] for more details. These theoretical results in manifold learning justify using
extrinsic kernel functions in a Gaussian process regression framework when the manifold is
an embedded submanifold of an ambient Euclidean space; the kernel (2.7) is also used in [91]
for Gaussian process regression on manifolds in a Bayesian setting. Nevertheless, one may
use other discrete approximations of the heat kernel in place of (2.7) without affecting ourD
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theoretical results in section 4, as long as the kernel matrix K is positive (semi)definite and
defines a valid Gaussian process for our landmarking purposes.

The heat kernel of the Riemannian manifold M defines covariance functions for a family
of Gaussian processes on M , but this type of covariance function depends only on the spectral
properties of M , whereas in practice we would often like to incorporate prior information
addressing relative high/low confidence of the selected landmarks. For example, the response
variables might be measured with higher accuracy (or, equivalently, the influence of random
observation noise is damped) where the predictor falls on a region on the manifold M with
lower curvature. We encode the relative high/low confidence of measurements into a smooth,
positive weight function w : M \rightarrow \BbbR +, defined on the entire manifold, whereby the higher
values of w (x) indicate a relatively higher importance if a predictor variable is sampled near
x \in M . Since we assume M is closed, w is bounded below away from zero. To ``knit"" the
weight function into the heat kernel, notice that by the reproducing property we have

(2.8) kt (x, y) =

\int 
M

kt/2 (x, z) kt/2 (z, y) dvolM (z) ,

and we can naturally apply the weight function to deform the volume form, i.e., define

(2.9) kwt (x, y) =

\int 
M

kt/2 (x, z) kt/2 (z, y)w (z) dvolM (z) .

Obviously, kwt (\cdot , \cdot ) = kt (\cdot , \cdot ) on M \times M if we pick w \equiv 1 on M , using the expression (2.4) for
heat kernel kt (\cdot , \cdot ) and the orthonormality of the eigenfunctions \{ \phi i | i = 0, 1, . . . \} . Intuitively,
(2.9) reweighs the mutual interaction between different regions on M such that the portions
with high weights have a more significant influence on the covariance structure of the Gaussian
process onM . Results established for GP (m, kt) can often be directly adapted for GP (m, kwt ).

In practice, when the manifold is sampled only at finitely many i.i.d. points \{ x1, . . . , xn\} 
on M , the reweighted kernel can be calculated from the discrete extrinsic kernel matrix (2.7),
with t replaced with t/2,

(2.10) Kw =
\bigl( 
Kw

ij

\bigr) 
1\leq i,j\leq n

=

\Biggl( 
n\sum 

k=1

e
 - \| xi - xk\| 2

t/2 \cdot w (xk) \cdot e
 - 

\| xk - xj\| 
2

t/2

\Biggr) 
1\leq i,j\leq n

= K\top WK,

where W is a diagonal matrix of size n \times n with w (xk) at its kth diagonal entry, for all
1 \leq k \leq n, and K is the discrete squared exponential kernel matrix (2.7). It is worth pointing
out that the reweighted kernel Kw no longer equals the kernel K in (2.7) even when we
set w \equiv 1 at this discrete level. Kernels similar to (2.9) have also appeared in [22] as the
symmetrization of an asymmetric anisotropic kernel.

Though the reweighting step appears to be a straightforward implementation trick, it
turns out to be crucial in the application of automated geometric morphometrics: when the
reweighted kernel is adopted, the landmarking algorithm in section 3 produces biologically
much more representative features on anatomical surfaces. We demonstrate this in greater
detail in [37].D
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3. Gaussian process landmarking. We present in this section an algorithm motivated by
[49] that automatically places ``landmarks"" on a compact Riemannian manifold using a Gaus-
sian process active learning strategy. Let us begin with an arbitrary nonparametric regression
model in the form of (2.1). Unlike standard supervised learning in which a finite number of
sample-label pairs is provided, an active learning algorithm can iteratively decide, based on
memory of all previously inquired sample-label pairs, which sample to query for label in the
next step. In other words, given sample-label pairs (X1, Y1) , (X2, Y2) , . . . , (Xn, Yn) observed
up to the nth step, an active learning algorithm can decide which sample Xn+1 to query for the
label information Yn+1 = f (Xn+1) of the regression function f to be estimated; typically, the
algorithm assumes full knowledge of the sample domain, has access to the regression function
f as a black box, and strives to optimize its query strategy so as to estimate f in as few steps
as possible. With a Gaussian process prior GP (m,K) on the regression function class, the
joint distribution of a finite collection of (n+ 1) response values (Y1, . . . , Yn, Yn+1) is assumed
to follow a multivariate Gaussian distribution Nn+1 (m (X1, . . . , Xn+1) ,K (X1, . . . , Xn+1)),
where

(3.1)

m (X1, . . . , Xn+1) =
\bigl( 
m (X1) , . . . ,m (Xn+1)

\bigr) 
\in \BbbR n,

K (X1, . . . , Xn+1) =

\left(   K (X1, X1) \cdot \cdot \cdot K (X1, Xn+1)
...

...
K (Xn+1, X1) \cdot \cdot \cdot K (Xn+1, Xn+1)

\right)   \in \BbbR (n+1)\times (n+1).

For simplicity, the rest of this paper will use the shorthand notation

(3.2) X1
n =

\bigl( 
X1, . . . , Xn

\bigr) 
\in Mn, Y 1

n =
\bigl( 
Y1, . . . , Yn

\bigr) 
\in \BbbR n

and

(3.3)
Kn,n = K (X1, . . . , Xn) \in \BbbR n\times n,

K
\bigl( 
X,X1

n

\bigr) 
=
\bigl( 
K (X,X1) , . . . ,K (X,Xn)

\bigr) \top \in \BbbR n.

Given n observed samples (X1, Y1) , . . . , (Xn, Yn), at any X \in M , the conditional probability
of the response value Y (X) | Y 1

n follows a normal distribution

N (\xi n (X) ,\Sigma n (X)) ,

where

(3.4)
\xi n (X) = K

\bigl( 
X,X1

n

\bigr) \top 
K - 1

n Y 1
n ,

\Sigma n (X) = K (X,X) - K
\bigl( 
X,X1

n

\bigr) \top 
K - 1

n,nK
\bigl( 
X,X1

n

\bigr) 
.

In our landmarking algorithm, we simply choose Xn+1 to be the location on the manifold M
with the largest variance, i.e.,

(3.5) Xn+1 := argmax
X\in M

\Sigma n (X) .

Notice that this successive procedure of ``landmarking"" X1, X2, . . . on M is independent of the
specific choice of regression function in GP (m,K) since we only need the covariance function
K : M \times M \rightarrow \BbbR .D
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3.1. Algorithm. The main algorithm of this paper, an unsupervised landmarking pro-
cedure for anatomical surfaces, will use a discretized, reweighted kernel constructed from
triangular meshes that digitize anatomical surfaces. We now describe this algorithm in full
detail. Let M be a two-dimensional compact surface isometrically embedded in \BbbR 3, and de-
note by \kappa : M \rightarrow \BbbR , \eta : M \rightarrow \BbbR the Gaussian curvature and (scalar) mean curvature of M .
Define a family of weight function w\lambda ,\rho : M \rightarrow \BbbR \geq 0 parametrized by \lambda \in [0, 1] and \rho > 0 as

(3.6) w\lambda ,\rho (x) =
\lambda | \kappa (x)| \rho \int 

M
| \kappa (\xi )| \rho dvolM (\xi )

+
(1 - \lambda ) | \eta (x)| \rho \int 

M
| \eta (\xi )| \rho dvolM (\xi )

\forall x \in M.

This weight function seeks to emphasize the influence of high curvature locations on the surface
M on the covariance structure of the Gaussian process prior GP

\bigl( 
m, k

w\lambda ,\rho 

t

\bigr) 
, where k

w\lambda ,\rho 

t is the
reweighted heat kernel defined in (2.9). In this paper we stick with simple kriging (setting
m \equiv 0 in GP (m,K)), and in our implementation we use default values \lambda = 1/2 and \rho = 1
(but one may wish to alter these values to fine-tune the landscape of the weight function for
a specific application).

For all practical purposes, we only concern ourselves with M being a piecewise linear sur-
face, represented as a discrete triangular mesh T = (V,E) with vertex set V =

\bigl\{ 
x1, . . . , x| V | 

\bigr\} 
\subset 

\BbbR 3 and edge set E. We calculate the mean and Gaussian curvature functions \eta , \kappa on the tri-
angular mesh (V,E) using standard algorithms from computational geometry [24, 3]. The
weight function w\lambda ,\rho can then be calculated at each vertex xi by

(3.7) w\lambda ,\rho (xi) =
\lambda | \kappa (xi)| \rho 

| V | \sum 
k=1

| \kappa (xk)| \rho \nu (xk)

+
(1 - \lambda ) | \eta (xi)| \rho 

| V | \sum 
k=1

| \eta (xk)| \rho \nu (xk)

\forall xi \in V,

where \nu (xk) is the area of the Voronoi cell of the triangular mesh T centered at xi. The
reweighted heat kernel k

w\lambda ,\rho 

t is then defined on V \times V as

(3.8) k
w\lambda ,\rho 

t (xi, xj) =

| V | \sum 
k=1

kt/2 (xi, xk) kt/2 (xk, xj)w\lambda ,\rho (xk) \nu (xk) ,

where the (unweighted) heat kernel kt is calculated as in (2.7). Until a fixed total number of
landmarks is collected, at step (n+ 1) the algorithm computes the uncertainty score \Sigma (n+1)

on V from the existing n landmarks \xi 1, . . . , \xi n by

(3.9) \Sigma (n+1) (xi) = k
w\lambda ,\rho 

t (xi, xi) - k
w\lambda ,\rho 

t

\bigl( 
xi, \xi 

1
n

\bigr) \top 
k
w\lambda ,\rho 

t

\bigl( 
\xi 1n, \xi 

1
n

\bigr)  - 1
k
w\lambda ,\rho 

t

\bigl( 
xi, \xi 

1
n

\bigr) 
\forall xi \in V,D
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where

k
w\lambda ,\rho 

t

\bigl( 
xi, \xi 

1
n

\bigr) 
:=

\left(   k
w\lambda ,\rho 

t (xi, \xi 1)
...

k
w\lambda ,\rho 

t (xi, \xi n)

\right)   ,

k
w\lambda ,\rho 

t

\bigl( 
\xi 1n, \xi 

1
n

\bigr) 
:=

\left(   k
w\lambda ,\rho 

t (\xi 1, \xi 1) \cdot \cdot \cdot k
w\lambda ,\rho 

t (\xi 1, \xi n)
...

...

k
w\lambda ,\rho 

t (\xi n, \xi 1) \cdot \cdot \cdot k
w\lambda ,\rho 

t (\xi n, \xi n)

\right)   ,

and picks the (n+ 1)th landmark \xi n+1 according to the rule

\xi n+1 = argmax
xi\in V

\Sigma (n+1) (xi) .

If there are more than one maximizer of \Sigma (n+1), we just randomly pick one; at step 1 the

algorithm simply picks the vertex maximizing x \mapsto \rightarrow k
w\lambda ,\rho 

t (x, x) on V . See Algorithm 3.1 for a
comprehensive description.

Remark 3.1. Algorithm 3.1 can be easily adapted to work with point clouds (where con-
nectivity information is not present) and in higher dimensional spaces, which makes it ap-
plicable to a much wider range of input data in geometric morphometrics as well as other
applications; see, e.g., [37]. For instance, it suffices to replace step 4 of Algorithm 3.1 with a
different discrete curvature (or another type of ``importance score"") calculation procedure on
point clouds (see, e.g., [69, 29]), and replace step 5 with a nearest-neighbor weighted graph
adjacency matrix construction. In this paper we require the inputs to be triangular meshes
with edge connectivity only for ease of the statement, as computation of discrete curvatures
on triangular meshes is much more straightforward.

Remark 3.2. Note that, according to (3.9), each step adds only one new row and one new
column to the inverse covariance matrix, which enables us to perform rank-1 updates to the
covariance matrix according to the block matrix inversion formula (see, e.g., [63, section A.3])

K - 1
n =

\biggl( 
Kn - 1 P
P\top K (Xn, Xn)

\biggr)  - 1

=

\biggl( 
K - 1

n - 1

\bigl( 
In - 1 + \mu PP\top K - 1

n - 1

\bigr) 
 - \mu K - 1

n - 1P

 - \mu P\top K - 1
n - 1 \mu 

\biggr) 
,

where

P =
\bigl( 
K (X1, Xn) , . . . ,K (Xn - 1, Xn)

\bigr) 
\in \BbbR n - 1,

\mu =
\Bigl( 
K (Xn, Xn) - P\top K - 1

n - 1P
\Bigr)  - 1
\in \BbbR .

This simple trick significantly improves the computational efficiency because it avoids directly
inverting the covariance matrix when the number of landmarks becomes large as the iteration
progresses.

Before we delve into the theoretical aspects of Algorithm 3.1, let us present a few typical
instances of this algorithm in practical use. A more comprehensive evaluation of the appli-
cability of Algorithm 3.1 to geometric morphometrics is deferred to [37]. In a nutshell, theD
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Algorithm 3.1 Gaussian process landmarking with reweighted heat kernel.

1: procedure GPL(T , L, \lambda \in [0, 1], \rho > 0, \epsilon > 0) \triangleleft Triangular Mesh T = (V,E), number of
landmarks L

2: \kappa , \eta \leftarrow DiscreteCurvatures(T )  \triangleleft calculate discrete Gaussian curvature \kappa and
mean curvature \eta on T

3: \nu \leftarrow VoronoiAreas(T )  \triangleleft calculate the area of Voronoi cells around each vertex xi
4: w\lambda ,\rho \leftarrow CalculateWeight(\kappa , \eta , \lambda , \rho , \nu )  \triangleleft calculate weight function w\lambda ,\rho according

to (3.7)

5: W \leftarrow 
\biggl[ 
exp

\biggl( 
 - \| xi  - xj\| 2

\bigg/ 
\epsilon 

\biggr) \biggr] 
1\leq i,j\leq | V | 

\in \BbbR | V | \times | V | 

6: \Lambda \leftarrow diag
\bigl( 
w\lambda ,\rho (x1) \nu (x1) , . . . , w\lambda ,\rho 

\bigl( 
x| V | 

\bigr) 
\nu 
\bigl( 
x| V | 

\bigr) \bigr) 
\in \BbbR | V | \times | V | 

7: \xi 1, . . . , \xi L \leftarrow \emptyset  \triangleleft initialize landmark list
8: \Psi \leftarrow 0
9: \ell \leftarrow 1

10: K\mathrm{f}\mathrm{u}\mathrm{l}\mathrm{l} \leftarrow W\top \Lambda W \in \BbbR | V | \times | V | 

11: K\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e} \leftarrow diag (K\mathrm{f}\mathrm{u}\mathrm{l}\mathrm{l}) \in \BbbR | V | 

12: while \ell < L+ 1 do
13: if \ell = 1 then
14: \Sigma \leftarrow K\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}

15: else  \triangleleft calculate uncertainty scores by (3.9)
16: b\leftarrow solve linear system \Psi [[\xi 1, . . . , \xi \ell ] , :] b = \Psi 
17: \Sigma \leftarrow K\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}  - diag

\bigl( 
\Psi \top b

\bigr) 
\in \BbbR | V | 

18: end if
19: \xi \ell \leftarrow argmax\Sigma 
20: \Psi \leftarrow K\mathrm{f}\mathrm{u}\mathrm{l}\mathrm{l} [:, [\xi 1, . . . , \xi \ell ]]
21: \ell \leftarrow \ell + 1
22: end while
23: return \xi 1, . . . , \xi L
24: end procedure

Gaussian process landmarking algorithm picks the landmarks on the triangular mesh succes-
sively, according to the uncertainty score function \Sigma at the beginning of each step; at the end
of each step the uncertainty score function gets updated, with the information about the newly
picked landmark incorporated into the inverse covariance matrix defined as in (3.4). Figure 1
illustrates the first few successive steps on a triangular mesh discretization of a fossil molar of
primate Plesiadapoidea. Empirically, we observed that the updates on the uncertainty score
function are mostly local; i.e., no abrupt changes of the uncertainty score are observed away
from a small geodesic neighborhood centered at each new landmark. Guided by uncertainty
and a curvature-reweighted covariance function, the Gaussian process landmarking often iden-
tifies landmarks of abundant biological information; for instance, the first Gaussian process
landmarks are often highly biologically informative and demonstrate a comparable level of
coverage with observer landmarks manually picked by human experts. See Figure 2 for aD
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Figure 1. The first eight landmarks picked successively by Gaussian process landmarking (Algorithm 3.1)
on a digitized fossil molar of Plesiadapoidea (extinct mammals from the Paleocene and Eocene epochs of North
America, Europe, and Asia [75]), with the uncertainty scores at the end of each step rendered on the triangular
mesh as a heat map. In each subfigure, the preexisting landmarks are colored green and the new landmark is
colored red. At each step, the algorithm picks the vertex on the triangular mesh with the highest uncertainty
score (computed according to (3.4)) and then updates the score function.

visual comparison between automatically generated landmarks and observer landmarks man-
ually placed by evolutionary anthropologists on a digitized fossil molar different from the one
illustrated in Figure 1.

3.2. Numerical linear algebra perspective. Algorithm 3.1 can be divided into two phases:
lines 1--10 focus on constructing the kernel matrix K\mathrm{f}\mathrm{u}\mathrm{l}\mathrm{l} from the geometry of the triangular
mesh M ; from line 11 onward, only numerical linear algebraic manipulations are involved. In
fact, the numerical linear algebra part of Algorithm 3.1 is identical to Gaussian elimination
(or LU decomposition) with a very particular ``diagonal pivoting"" strategy, which is different
from standard full or partial pivoting in Gaussian elimination. To see this, first note that the
variance \Sigma n (X) in (3.4) is just the diagonal of the Schur complement of the n\times n submatrix
of K\mathrm{f}\mathrm{u}\mathrm{l}\mathrm{l} corresponding to the n previously chosen landmarks X1, . . . , Xn, and recall from [80,
Ex. 20.3] that this Schur complement arises as the bottom-right (| V |  - n) \times (| V |  - n) block
after the nth elimination step. The greedy criterion (3.5) then amounts to selecting the largest
diagonal entry in this Schur complement as the next pivot. Therefore, the second phase of
Algorithm 3.1 can be consolidated into the form of a ``diagonal-pivoted"" LU decomposition,
i.e., K\mathrm{f}\mathrm{u}\mathrm{l}\mathrm{l}P = LU , in which the first L columns of the permutation matrix P reveal the location
of the L chosen landmarks. In fact, since the kernel matrix we choose is symmetric and positive
semidefinite, the rank-1 updates in Remark 3.2 most closely resemble the pivoted CholeskyD
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Figure 2. Left: Sixteen observer landmarks on a digitized fossil molar of a Teilhardina (one of the oldest
known fossil primates closely related to living tarsiers and anthropoids [8]) identified manually by evolutionary
anthropologists as ground truth, first published in [16]. Right: The first 22 landmarks picked by Gaussian process
landmarking (Algorithm 3.1). The numbers next to each landmark indicate the order of appearance. The Gaus-
sian process landmarks strikingly resemble the observer landmarks: the red landmarks (Number 1--5, 7, 8, 10,
11, 16, 19) signal geometric sharp features (cusps or saddle points corresponding to local maximum/minimum
Gaussian curvature); the blue landmarks sit either along the curvy cusp ridges and grooves (Number 13, 18,
20, 22) or at the basin (Number 9), serving the role often played by semilandmarks (cf. [37, section 2.1]); the
four green landmarks (Number 6, 12, 15, 17) approximately delimit the ``outline"" of the tooth in occlusal view.

decomposition (see, e.g., [43, section 10.3] or [41]). Identical to these classical pivoting-based
matrix decomposition algorithms, the time and space computational complexities of the main
algorithm in Algorithm 3.1 are thus O

\bigl( 
L3
\bigr) 
and O

\bigl( 
n2
\bigr) 
, respectively, where n is the total

number of candidate points and L is the desired number of parameters. Note that these
complexities are both polynomial and comparable with those in the computer science literature
[15, 58, 86, 1, 2]. This numerical linear algebraic perspective motivates us to investigate
variants of Algorithm 3.1 based on other numerical linear algebraic algorithms with pivoting
in future work.

4. Rate of convergence: Reduced basis methods in reproducing kernel Hilbert spaces.
In this subsection we analyze the rate of convergence of our main Gaussian process land-
marking algorithm from section 3. While the notion of ``convergence rate"" in the context
of Gaussian process regression (i.e., kriging [56, 79]) or scattered data approximation (see,
e.g., [87] and the references therein) refers to how fast the interpolant approaches the trueD
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function, our focus in this paper is the rate of convergence of Algorithm 3.1 itself, i.e., the
number of steps the algorithm takes before it terminates. In practice, unless a maximum
number of landmarks is predetermined, a natural criterion for terminating the algorithm is
to specify a threshold for the sup-norm of the prediction error (2.3) (i.e., the variance (3.5))
over the manifold. We emphasize again that, although this greedy approach is motivated by
the probabilistic model of Gaussian processes, the MSPE is completely determined once the
kernel function and the design points are specified, as is the greedy algorithmic procedure.
Our analysis is centered around bounding the uniform rate at which the pointwise MSPE
function (2.3) decays with respect to the number landmarks greedily selected.

To this end, we observe the connection between Algorithm 3.1 and a greedy algorithm
studied thoroughly for reduced basis methods in [14, 31] in the context of model reduction.
While the analyses in [14, 31] assume general Hilbert and Banach spaces, we apply those
results to a reproducing kernel Hilbert space (RKHS), denoted as HK , naturally associated
with a Gaussian process GP (m,K); as will be demonstrated below, the MSPE with respect
to n selected landmarks can be interpreted as a measurement of distance from a point to an n-
dimensional subspace in \scrX K , where the subspace is determined by the selected landmarks. We
emphasize that, though the connection between the Gaussian process and RKHS is well known
(see, e.g., [82] and the references therein), we are not aware of existing literature addressing
the resemblance between the two classes of greedy algorithms widely used in Gaussian process
experimental design and reduced basis methods.

We begin with a brief summary of the greedy algorithm in reduced basis methods for a
general Banach space (X, \| \cdot \| ). The algorithm strives to approximate all elements of X using
a properly constructed linear subspace spanned by (as few as possible) selected elements from
a compact subset F \subset X; thus the name ``reduced"" basis. A popular greedy algorithm for
this purpose generates successive approximation spaces by choosing the first basis f1 \in F
according to

(4.1) f1 := argmax
f\in F

\| f\| 

and, successively, when f1, . . . , fn - 1 are picked already, by choosing

(4.2) fn+1 := argmax
f\in F

dist (f, Vn) ,

where

Vn = span \{ f1, f2, . . . , fn\} 

and

dist (f, Vn) := inf
g\in Vn

\| f  - g\| .

In words, at each step we greedily pick the function that is ``farthest away"" from the set of
already chosen basis elements. Intuitively, this is analogous to the farthest point sampling
(FPS) algorithm [38, 54] in Banach spaces, with a key difference in the choice of the distanceD
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between a point p and a set of selected points \{ q1, . . . , qn\} : in FPS such a distance is defined
as the maximum over all distances \{ \| p - qi\| | 1 \leq i \leq n\} , whereas in reduced basis methods
the distance is between p and the linear subspace spanned by \{ q1, . . . , qn\} .

The Gaussian process landmarking algorithm fits naturally into the framework of reduced
basis methods as follows. Let us first specialize this construction to the case when X is the
RKHS HK \subset L2 (M), where M is a compact Riemannian manifold and K is the reproducing
kernel. A natural choice for K is the heat kernel kt (\cdot , \cdot ) : M \times M \rightarrow \BbbR with a fixed t > 0 as in
subsection 2.1, but for a submanifold isometrically embedded into an ambient Euclidean space
it is common as well to choose the kernel to be the restriction to M of a positive (semi)definite
kernel in the ambient Euclidean space such as (2.7) or (2.10), for which Sobolev-type error
estimates are known in the literature on scattered data approximation [57, 36]. It follows from
standard RKHS theory (see, e.g., (A.5)) that

(4.3) HK = span

\Biggl\{ \sum 
i\in I

aiK (\cdot , xi) | ai \in \BbbR , xi \in M, card (I) <\infty 

\Biggr\} 
,

and by the compactness of M and the regularity of the kernel function, we have for any x \in M

\langle K (\cdot , x) ,K (\cdot , x)\rangle HK
= K (x, x) \leq \| K\| \infty ,M\times M <\infty ,

which justifies the compactness of

(4.4) F := span \{ K (\cdot , x) | x \in M\} 

as a subset of HK since HK embeds into L2 (M) compactly [4, 67]. In fact, since we only
used the compactness of M and the boundedness of K on M \times M , the argument above for
the compactness of F can be extended to any Gaussian process defined on a compact metric
space with a bounded kernel. The initialization step (4.1) now amounts to selecting K (\cdot , x)
from F that maximizes

\| K (\cdot , x)\| 2HK
= \langle K (\cdot , x) ,K (\cdot , x)\rangle HK

= K (x, x) ,

which is identical to (3.5) when n = 1 (or, equivalently, line 14 in Algorithm 3.1); furthermore,
given n \geq 1 previously selected basis functions K (\cdot , x1) , . . . ,K (\cdot , xn), the (n+ 1)th basis
function will be chosen according to (4.2), i.e., fn+1 = K (\cdot , xn) maximizes the infimum

inf
g\in \mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}\{ K(\cdot ,x1),...,K(\cdot ,xn)\} 

\| K (\cdot , x) - g\| 2HK
= inf

a1,...,an\in \BbbR 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| K (\cdot , x) - 
n\sum 

i=1

aiK (\cdot , xi)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

HK

= inf
a1,...,an\in \BbbR 

K (x, x) - 2
n\sum 

i=1

aiK (x, xi) +
n\sum 

i=1

n\sum 
j=1

aiajK (xi, xj)

(\ast )
=K (x, x) - K

\bigl( 
x, x1n

\bigr) \top 
K - 1

n,nK
\bigl( 
x, x1n

\bigr) 
,(4.5)
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where the notation is as in (3.2) and (3.3), i.e.,

K
\bigl( 
x, x1n

\bigr) 
:=

\left(   K (x, x1)
...

K (x, xn)

\right)   , Kn,n :=

\left(   K (x1, x1) \cdot \cdot \cdot K (x1, xn)
...

...
K (xn, x1) \cdot \cdot \cdot K (xn, xn)

\right)   .

The equality (\ast ) follows from the observation that, for any fixed x \in M , the minimizing vector
a := (a1, . . . , an)

\top \in \BbbR n satisfies

K
\bigl( 
x, x1n

\bigr) 
= Kn,na \leftrightarrow a = K - 1

n,nK
\bigl( 
x, x1n

\bigr) 
.

It is clear at this point that maximizing the rightmost quantity in (4.5) is equivalent to fol-
lowing the greedy landmark selection criterion (3.5) at the (n+ 1)th step. We thus conclude
that Algorithm 3.1 is equivalent to the greedy algorithm for reduced basis methods in HK ,
an RKHS modeled on the compact manifold M . The following lemma summarizes this obser-
vation for future reference.

Lemma 4.1. Let M be a compact Riemannian manifold, and let K : M \times M \rightarrow \BbbR be a
positive semidefinite kernel function. Consider the RKHS HK \subset L2 (M) as defined in (4.3).
For any x \in M and a collection of n points Xn = \{ x1, x2, . . . , xn\} \subset M , the orthogonal
projection Pn from HK to Vn = span \{ K (\cdot , xi) | 1 \leq i \leq n\} is

Pn (K (\cdot , x)) =
n\sum 

i=1

a\ast i (x)K (\cdot , xi) ,

where a\ast i : M \rightarrow \BbbR is the inner product of vector (K (x, x1) , . . . ,K (x, xn)) with the ith row of\left(   K (x1, x1) \cdot \cdot \cdot K (x1, xn)
...

...
K (xn, x1) \cdot \cdot \cdot K (xn, xn)

\right)   
 - 1

.

In particular, a\ast i has the same regularity as the kernel \Phi for all 1 \leq i \leq n. Moreover,
the squared distance between K (\cdot , x) and the linear subspace Vn \subset HK has the closed-form
expression

(4.6)

PK,Xn (x) : = \| K (\cdot , x) - Pn (K (\cdot , x))\| 2HK

= min
a1,...,an\in \BbbR 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| K (\cdot , x) - 
n\sum 

i=1

aiK (\cdot , xi)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

HK

= K (x, x) - K
\bigl( 
x, x1n

\bigr) \top \left(   K (x1, x1) \cdot \cdot \cdot K (x1, xn)
...

...
K (xn, x1) \cdot \cdot \cdot K (xn, xn)

\right)   
 - 1

K
\bigl( 
x, x1n

\bigr) 
,

where

K
\bigl( 
x, x1n

\bigr) 
:= (K (x, x1) , . . . ,K (x, xn))

\top \in \BbbR n.D
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Consequently, for any Gaussian process defined on M with covariance structure given by
the kernel function K, the MSPE of the Gaussian process conditioned on the observations
at x1, . . . , xn \in M equals the distance between K (\cdot , x) and the subspace Vn spanned by
K (\cdot , x1) , . . . ,K (\cdot , xn).

The function PK,Xn : M \rightarrow \BbbR \geq 0 defined in (4.6) is in fact the squared power function in
the literature on scattered data approximation; see, e.g., [87, Definition 11.2].

The convergence rate of greedy algorithms for reduced basis methods has been investi-
gated in a series of works [17, 14, 31]. The general paradigm is to compare the maximum
approximation error incurred after the nth greedy step, denoted as

(4.7) \sigma n := dist (fn+1, Vn) = max
f\in F

dist (f, Vn) ,

with the Kolmogorov width (cf. [52]), a quantity characterizing the theoretical optimal er-
ror of approximation using any n-dimensional linear subspace generated from any greedy or
nongreedy algorithms, defined as

(4.8) dn := inf
Y

sup
f\in F

dist (f, Y ) ,

where the first infimum is taken over all n-dimensional subspaces Y of X. When n = 1, both
\sigma 1 and d1 reduce to the\infty -bound of the kernel function onM\times M , i.e., \| K\| \infty ,M\times M . Note that
by definitions (4.7) and (4.8) both sequences \{ \sigma n | n \in \BbbN \} and \{ dn | n \in \BbbN \} are monotonically
nondecreasing since V1 \subsetneqq V2 \subsetneqq \cdot \cdot \cdot ; see also [14, section 1.3]. In [31] the following comparison
between \{ \sigma n | n \in \BbbN \} and \{ dn | n \in \BbbN \} was established.

Theorem 4.2 ([31, Theorem 3.2] (the \gamma = 1 case)). For any N \geq 0, n \geq 1, and 1 \leq m < n,
there holds

n\prod 
\ell =1

\sigma 2
N+\ell \leq 

\Bigl( n

m

\Bigr) m\biggl( n

n - m

\biggr) n - m

\sigma 2m
N+1d

2n - 2m
m .

This result can be used to establish a direct comparison between the performance of greedy
and optimal basis selection procedures. For instance, setting N = 0 and taking advantage of
the monotonicity of the sequence \{ \sigma n | n \in \BbbN \} , one has from Theorem 4.2 that

\sigma n \leq 
\surd 
2 min
1\leq m<n

\| K\| 
m
n
\infty ,M\times M d

n - m
n

m

for all n \in \BbbN . Using the monotonicity of \{ \sigma n | n \in \BbbN \} , by setting m = \lfloor n/2\rfloor we have the even
more compact inequality

(4.9) \sigma n \leq 
\surd 
2 \| K\| 

1
2
\infty ,M\times M d

1
2

\lfloor n/2\rfloor \forall n \in \BbbN , n \geq 2.

If we have a bound for \{ dn | n \in \BbbN \} , inequality (4.9) can be directly invoked to establish a
bound for \{ \sigma n | n \in \BbbN \} at the expense of comparing \sigma n with d2n; in the regime n\rightarrow \infty we may
even expect the same rate of convergence at the expense of a larger constant. We emphasizeD
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here that the definition of \{ dn | n \in \BbbN \} only involves elements in a compact subset F of the
ambient Hilbert space HK ; in our setting, the compact subset (4.4) consists of only functions
of the form K (\cdot , x) for some x \in M , and thus

(4.10)

dn = inf
x1,...,xn\in M

sup
x\in M

dist (K (\cdot , x) , span \{ K (\cdot , xi) | 1 \leq i \leq n\} )

= inf
x1,...,xn\in M

sup
x\in M

\Bigl[ 
K (x, x) - K

\bigl( 
x, x1n

\bigr) \top 
K - 1

n,nK
\bigl( 
x, x1n

\bigr) \Bigr] 
.

To ease notation, we will always denote Xn := \{ x1, . . . , xn\} as in Lemma 4.1. Write the
maximum value of the function PK,Xn over M as

(4.11) \Pi K,Xn := sup
x\in M

PK,Xn (x) .

The Kolmogorov width dn can be put in this notation as

(4.12) dn = inf
x1,...,xn\in M

\Pi K,Xn .

The problem of bounding \{ dn | n \in \BbbN \} thus reduces to bounding the infimum of \Pi K,Xn over
all n-dimensional linear subspaces of F .

When M is an open, bounded subset of a standard Euclidean space, upper bounds for
\Pi K,Xn are often established---in a kernel-adaptive fashion---using the fill distance [87, Chapter
11]

(4.13) hXn := sup
x\in M

min
xj\in Xn

\| x - xj\| ,

where \| \cdot \| is the Euclidean norm of the ambient space. For instance, when K is a squared
exponential kernel (2.7) and the domain is a cube (or, more generally, the domain should
at least be compact and convex, as pointed out in [85, Theorem 1]) in a Euclidean space,
Wendland [87, Theorem 11.22] asserts that

(4.14) \Pi K,Xn \leq exp

\biggl[ 
c
log hXn

hXn

\biggr] 
\forall hXn \leq h0

for some constants c > 0, h0 > 0 depending only on M and the kernel bandwidth t > 0 in
(2.7). Similar bounds have been established in [89] for Mat\'ern kernels, but the convergence
rate is only polynomial. In this case, by the monotonicity of the function x \mapsto \rightarrow log x/x for
x \in (0, e), we have, for all sufficiently small hXn ,

dn = inf
x1,...,xn\in M

\Pi K,Xn \leq exp

\biggl[ 
c
log hn
hn

\biggr] 
,

where

(4.15) hn := inf
Xn\subset M, | Xn| =n

hXn

is the minimum fill distance attainable for any n sample points on M . We thus have the
following theorem for the convergence rate of Algorithm 3.1 for any compact, convex set in a
Euclidean space.D
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Theorem 4.3. Let \Omega \subset \BbbR D be a compact and convex subset of the D-dimensional Euclidean
space, and consider a Gaussian process GP(m,K) defined on \Omega , with the covariance function
K being of the squared exponential form (2.7) with respect to the ambient D-dimensional
Euclidean distance. Let X1, X2, . . . denote the sequence of landmarks greedily picked on \Omega 
according to Algorithm 3.1, and define for any n \in \BbbN the maximum MSPE on \Omega with respect
to the first n landmarks X1, . . . , Xn as

\sigma n = max
x\in \Omega 

\Bigl[ 
K (x, x) - K

\bigl( 
x,X1

n

\bigr) \top 
K - 1

n K
\bigl( 
x,X1

n

\bigr) \Bigr] 
,

where the notation K
\bigl( 
x,X1

n

\bigr) 
and Kn are defined in section 3. Then

(4.16) \sigma n = O

\biggl( 
\beta 

\mathrm{l}\mathrm{o}\mathrm{g} h\lfloor n/2\rfloor 
h\lfloor n/2\rfloor 

\biggr) 
as n\rightarrow \infty 

for some positive constant \beta > 1 depending only on the geometry of the domain \Omega and the
bandwidth of the squared exponential kernel K; hn is the minimum fill distance of n arbitrary
points on \Omega (cf. (4.15)).

Proof. By the monotonicity of the sequence \{ \sigma n | n \in \BbbN \} , it suffices to establish the con-
vergence rate for a subsequence. Using directly (4.9), (4.12), (4.14), and the definition of hn
in (4.15), we have the inequality for all \BbbN \ni n \geq N :

\sigma 2n \leq 
\surd 
2 \| K\| 

1
2
\infty ,\Omega \times \Omega exp

\biggl[ 
c

2

log hn
hn

\biggr] 
=
\surd 
2 \| K\| 

1
2
\infty ,\Omega \times \Omega \beta 

\mathrm{l}\mathrm{o}\mathrm{g} hn
hn ,

where \beta := exp (c/2) > 1. Here the positive constants N = N (\Omega , t) > 0 and c = c (\Omega , t) > 0
depend only on the geometry of \Omega and the bandwidth of the squared exponential kernel. This
completes the proof.

Convex bodies in \BbbR D are far too restricted as a class of geometric objects for modeling
anatomical surfaces in our main application [37]. The rest of this section will be devoted to
generalizing the convergence rate for squared exponential kernels (2.7) to their reweighted
counterparts (2.10) and, more importantly, for submanifolds of the Euclidean space. The
crucial ingredient is an estimate of the type (4.14) bounding the sup-norm of the squared
power function using fill distances, tailored for restrictions of the squared exponential kernel

(4.17) K\epsilon (x, y) = exp

\biggl( 
 - 1

2\epsilon 
\| x - y\| 2

\biggr) 
, x, y \in M,

as well as the reweighted version

(4.18) Kw
\epsilon (x, y) =

\int 
M

w (z) exp

\biggl[ 
 - 1

2\epsilon 

\Bigl( 
\| x - z\| 2 + \| z  - y\| 2

\Bigr) \biggr] 
dvolM (z) , x, y \in M,

where w : M \rightarrow \BbbR \geq 0 is a nonnegative weight function. Note that when w (x) \equiv 1, for all x \in M
the reweighted kernel (4.18) does not coincide with the squared exponential kernel (4.17)---not
even up to normalization---since the domain of integration is M instead of the entire \BbbR D; norD
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does it seem to work to na\"{\i}vely enclose the compact manifold M with a compact, convex
subset \Omega of the ambient space and reuse Theorem 4.3 by extending/restricting functions
to/from M to \Omega , since the samples are constrained to lie on M, but the convergence will be
in terms of fill distances in \Omega . Nevertheless, the desired bound can be established using local
parametrizations of the manifold, i.e., working within each local Lipschitz coordinate chart
and taking advantage of the compactness of M .

We will henceforth impose no additional assumptions, other than compactness and smooth-
ness, on the geometry of the Riemannian manifold M . In the first step we refer to a known
uniform estimate from [87, Theorem 17.21] for power functions on a compact Riemannian
manifold.

Lemma 4.4. Let M be a d-dimensional C\ell compact manifold isometrically embedded in \BbbR D

(where D > d), and let \Phi \in C2k (M \times M) be any positive definite kernel function on M \times M
with 2k \leq \ell . There exists a positive constant h0 = h0 (M) > 0 depending only on the geometry
of the manifold M such that, for any collection of n distinct points Xn = \{ x1, . . . , xn\} on M
with hXn \leq h0, the following inequality holds:

\Pi \Phi ,Xn = sup
x\in M

P\Phi ,Xn (x) \leq Ch2kXn
,

where C = C (k,M,\Phi ) > 0 is a positive constant depending only on the manifold M and the
kernel function \Phi . This of course further implies for all hn \leq h0 that

inf
Xn\subset M, | Xn| =n

\Pi \Phi ,Xn \leq Ch2kn ,

where hn is the minimum fill distance of n arbitrary points on \Omega (cf. (4.15)).

Proof. This is essentially [87, Theorem 17.21], with the only adaptation being that the
definition of the power function throughout [87] is the square root of the P\Phi ,Xn in our definition
(4.11).

Lemma 4.4 suggests that the convergence of Algorithm 3.1 is faster than any polynomial
of hn. The dependence on hn can be made more direct in terms of the number of samples n
by the following geometric lemma.

Lemma 4.5. Let M be a d-dimensional C\ell compact Riemannian manifold isometrically
embedded in \BbbR D (where D > d). Denote by \omega d - 1 the surface measure of the unit sphere in \BbbR d,
and by Vol (M) the volume of M induced by the Riemannian metric. There exists a positive
constant N = N (M) > 0 depending only on the manifold M such that

hn \leq 
\biggl( 
2d+1d

\omega d - 1
Vol (M)

\biggr) 1
d

\cdot n - 1
d for any \BbbN \ni n \geq N .

Proof. For any r > 0 and x \in M , we denote by BD
r (x) the (extrinsic) D-dimensional

Euclidean ball centered at x \in M and set Br (x) := BD
r (x) \cap M . In other words, Br (x) is a

ball of radius r centered at x \in M with respect to the ``chordal"" metric on M induced from
the ambient Euclidean space \BbbR D. Define the covering number and the packing number for MD
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with respect to the chordal metric balls by

N (r) := N (M, \| \cdot \| D , r)

:= min
n\in \BbbN 

\Biggl\{ 
M \subset 

n\bigcup 
i=1

Br (xi) | xi \in M, 1 \leq i \leq n

\Biggr\} 
,

P (r) := P (M, \| \cdot \| D , r)

:= max
n\in \BbbN 

\Biggl\{ 
n\bigcup 

i=1

Br/2 (xi) \subset M,Br/2 (xi) \cap Br/2 (xj) = \emptyset 

\forall 1 \leq i \not = j \leq n
\bigm| \bigm| \bigm| xi \in M, 1 \leq i \leq n

\Biggr\} 
.

By the definition of fill distance and hn (cf. (4.15)), the covering number N (hn) is lower
bounded by n; furthermore, by the straightforward inequality P (r) \geq N (r) for all r > 0,
we have

n < N (hn) \leq P (hn) ;

i.e., there exists a collection of n points x1, . . . , xn \in M such that the n chordal metric balls\bigl\{ 
Bhn/2 (xi) | 1 \leq i \leq n

\bigr\} 
form a packing of M . Thus

n\sum 
i=1

Vol
\bigl( 
Bhn/2 (xi)

\bigr) 
\leq Vol (M) <\infty ,

where the last inequality follows from the compactness of M . The volume of each Bhn/2 (xi)
can be expanded asymptotically for small hn as (cf. [46])

(4.19) Vol
\bigl( 
Bhn/2 (x)

\bigr) 
=

\omega d - 1

d

\biggl( 
hn
2

\biggr) d
\Biggl[ 
1 +

2 \| B\| 2x  - \| H\| 
2
x

8 (d+ 2)

\biggl( 
hn
2

\biggr) 2
\Biggr] 
+O

\Bigl( 
hd+3
n

\Bigr) 
as hn \rightarrow 0,

where \omega d - 1 is the surface measure of the unit sphere in \BbbR d, B is the second fundamental form
of M , and H is the mean curvature normal. The compactness of M ensures the boundedness
of all these extrinsic curvature terms. Pick n sufficiently large so that hn is sufficiently small
(again by the compactness of M) to ensure

Vol
\bigl( 
Bhn/2 (x)

\bigr) 
\geq \omega d - 1

2d

\biggl( 
hn
2

\biggr) d

.

It then follows from (4.19) that

n\omega d - 1

2d

\biggl( 
hn
2

\biggr) d

\leq Vol (M) \Rightarrow hn \leq 
\biggl( 
2d+1d

\omega d - 1
Vol (M)

\biggr) 1
d

\cdot n - 1
d .

We are now ready to conclude that Algorithm 3.1 converges faster than any inverse poly-
nomial in the number of samples with our specific choice of kernel functions, regardless of the
presence of reweighting.D
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(a) Reweighted kernel (4.18) (b) Euclidean kernel (4.17)

Figure 3. Log-log plots illustrating the convergence of MSPEs with respect to the number of Gaussian
process landmarks produced using the reweighted kernel (4.18) or the Euclidean kernel (4.17), for a collection
of 116 second mandibular molars of prosimian primates and closely related nonprimates [16, 37]. Each point on
either curve is obtained by averaging the 116 MSPEs over the entire dataset, and the transparent bands represent
pointwise confidence bands of two standard deviations. For both plots we vary the number of landmarks from 1
to 150; the total number of vertices on each of the 116 triangular meshes vary around 5000. For both plots, the
MSPE decays linearly for sufficiently large n on a log-log scale, suggesting exponential convergence with respect
to the number of Gaussian process landmarks.

Theorem 4.6. Let M be a d-dimensional C\infty compact manifold isometrically embedded in
\BbbR D (where D > d), and let \Phi \in C\infty (M \times M) be any positive definite kernel function on M .
For any k \in \BbbN , there exist positive constants N = N (M) > 0 and Ck = Ck (M,\Phi ) > 0 such
that

\sigma n \leq Ckn
 - k

d \forall n \geq N.

Equivalently speaking, Algorithm 3.1 converges at rate O(n - k
d ) for all k \in \BbbN but with constants

possibly depending on k.

Proof. Use Lemmas 4.4 and 4.5 and the regularity of the kernel function \Phi .

It is natural to conjecture that a rate of convergence faster than the conclusion of The-
orem 4.6, for instance, an exponential rate of convergence, should hold for the reweighted
kernel (4.18), or at least for the Euclidean radial basis kernel (4.17); this can be empirically
validated with numerical experiments; see, e.g., the log-log plots in Figure 3 depicting the
decay of MSPE (i.e., \sigma 2

n) with respect to the increasing number of landmarks (i.e., n). Un-
fortunately, Theorem 4.6 is about as far as we can get with our current techniques, unless we
impose additional assumptions on the regularity of the manifolds of interest. It is tempting to
proceed directly as in [87, Theorem 17.21] by working locally on coordinate charts and citing
the exponential convergence result for radial basis kernels in [87, Theorem 11.22]; unfortu-
nately, even though kernel K\epsilon is of radial basis type in the ambient space \BbbR D, it is generally
no longer of radial basis type in local coordinate charts, unless one imposes additional re-
strictive assumptions on the growth of the derivatives of local parametrization maps (e.g., allD
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coordinate maps are affine). We will not pursue the theoretical aspects of these additional
assumptions in this paper.

Remark 4.7. The asymptotic optimality of the rate established in Theorem 4.6 for Gaus-
sian process landmarking follows from Theorem 4.2. In other words, the Gaussian process
landmarking algorithm leads to a rate of decay of the \infty -norm of the pointwise MSPE that is
at least as fast as any other landmarking algorithm, including random or uniform sampling on
the manifold. In our application of comparative biology that motivated this paper, it is more
important that Gaussian process landmarking is capable of identifying biologically meaningful
and operationally homologous points across the anatomical surfaces even when the number of
landmarks is not large (n\ll \infty ); see [37] for more details. A more thorough theory explaining
this advantageous aspect of Gaussian process landmarking will be left for future work.

5. Discussion and future work. This paper discusses a greedy algorithm for automat-
ically selecting representative points on compact manifolds, motivated by the methodology
of experimental design with Gaussian process prior in statistics. With a carefully modified
heat kernel specified as the covariance function in the Gaussian process prior, our algorithm
is capable of producing biologically highly meaningful feature points on some anatomical sur-
faces. Application of this landmarking scheme for real anatomical datasets is detailed in the
companion paper [37].

A future direction of interest is to build theoretical analysis for the optimal experimental
design aspects of manifold learning: whereas existing manifold learning algorithms estimate
the underlying manifold from discrete samples, our algorithm concerns economical strategies
for encoding geometric information into discrete samples. The landmarking procedure can
also be interpreted as a compression scheme for manifolds; correspondingly, standard manifold
learning algorithms may be understood as a decoding mechanism. Our theory is also of
potential interest in adaptive matrix sensing and image completion problems, in which sensing
procedures and subsampling schemes can be designed to collect more information for ease of
reconstruction. Some related works of this type include [7, 84, 86] and the references therein.

The current paper stems from an attempt to impose Gaussian process priors on diffeomor-
phisms between distinct but comparable biological structures, with which a rigorous Bayesian
statistical framework for biological surface registration may be developed. The motivation
is to measure the uncertainty of pairwise bijective correspondences automatically computed
from geometry processing and computer vision techniques. We hope this MSPE-based se-
quential landmarking algorithm will shed light on generalizing covariance structures from a
single shape to pairs or even collections of shapes for collection shape analysis.

Appendix A. Reproducing kernel Hilbert spaces. For any positive semidefinite symmet-
ric kernel function K : M \times M \rightarrow \BbbR defined on a complete metric measure space M , Mercer's
theorem [28, Theorem 3.6] states that K admits a uniformly convergent expansion of the form

K (x, y) =

\infty \sum 
i=0

e - \lambda i\phi i (x)\phi i (y) \forall x, y \in M,
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where \{ \phi i\} \infty i=0 \subset L2 (M) are the eigenfunctions of the integral operator

TK : L2 (M)\rightarrow L2 (M) ,

TKf (x) :=

\int 
M

K (x, y) f (y) dvolM (y) \forall f \in L2 (M) ,

and e - \lambda i , i = 0, 1, . . . , ordered so that e - \lambda 0 \geq e - \lambda 1 \geq e - \lambda 2 \geq \cdot \cdot \cdot , are the eigenvalues of this
integral operator corresponding to the eigenfunctions \phi i, i = 0, 1, . . . , respectively. Regression
under this framework amounts to restricting the regression function to lie in the Hilbert space

(A.1) HK :=

\Biggl\{ 
f =

\infty \sum 
i=0

\alpha i\phi i

\bigm| \bigm| \bigm| \bigm| \alpha i \in \BbbR ,
\infty \sum 
i=0

e\lambda i\alpha 2
i <\infty 

\Biggr\} 

on which the inner product is defined as

(A.2) \langle f, g\rangle HK
=

\infty \sum 
i=0

e\lambda i \langle f, \phi i\rangle L2(M) \langle g, \phi i\rangle L2(M) .

The reproducing property is reflected in the identity

(A.3) \langle K (\cdot , x) ,K (\cdot , y)\rangle HK
= K (x, y) \forall x, y \in M.

Borrowing terminologies from kernel-based learning methods (see, e.g., [28, 73]), the eigen-
functions and eigenvalues of TK define a feature mapping

(A.4) M \ni x \mapsto  - \rightarrow \Phi (x) :=
\Bigl( 
e - \lambda 0/2\phi 0 (x) , e

 - \lambda 1/2\phi 1 (x) , . . . , e
 - \lambda i/2\phi i (x) , . . .

\Bigr) 
\in \ell 2

such that the kernel value K (x, y) at an arbitrary pair x, y \in M is given exactly by the inner
product of \Phi (x) and \Phi (y) in the feature space \ell 2, i.e.,

K (x, y) = \langle \Phi (x) ,\Phi (y)\rangle \ell 2 \forall x, y \in M.

This interpretation leads to the following equivalent form of the RKHS (A.1):

(A.5)

HK =

\Biggl\{ 
f =

\infty \sum 
i=0

\beta i \cdot e - \lambda i/2\phi i = \langle \beta ,\Phi \rangle \ell 2
\bigm| \bigm| \bigm| \bigm| \beta = (\beta 0, \beta 1, . . . , \beta i, . . . ) \in \ell 2

\Biggr\} 

= span

\Biggl\{ \sum 
i\in I

aiK (\cdot , xi) | ai \in \BbbR , xi \in M, card (I) <\infty 

\Biggr\} 
.

In other words, the RKHS framework embeds the Riemannian manifold M into an infinite
dimensional Hilbert space \ell 2 and converts the (generically) nonlinear regression problem on
M into a linear regression problem on a subset of \ell 2. We refer interested readers to [11, 44, 88]
for more discussions of this type of embedding in the nonlinear dimension reduction literature.D
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