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Abstract. We demonstrate applications of the Gaussian process-based landmarking algorithm proposed in
[T. Gao, S. Z. Kovalsky, and I. Daubechies, STAM J. Math. Data Sci., 1 (2019), pp. 208-236] to
geometric morphometrics, a branch of evolutionary biology centered at the analysis and comparisons
of anatomical shapes, and compare the automatically sampled landmarks with the “ground truth”
landmarks manually placed by evolutionary anthropologists; the results suggest that Gaussian pro-
cess landmarks perform equally well or better, in terms of both spatial coverage and downstream
statistical analysis. We provide a detailed exposition of numerical procedures and feature filter-
ing algorithms for computing high-quality and semantically meaningful diffeomorphisms between
disk-type anatomical surfaces.
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1. Introduction. Computing one-to-one correspondences between objects, or registration,
plays an important role in a wide range of scientific disciplines, such as functional Magnetic
Resonance Imaging (fMRI) in medical studies [67], shape matching in computer graphics
[85], and remote sensing in geophysical sciences [58], to name just a few. When the number of
objects in the comparison is prohibitively large, or when the information encoded in each data
object is noisy or redundant, a common strategy is to reduce the comparison to alignment or
assignment between sets of extracted features, which are typically compact and informative
representations of the original data constructed with domain knowledge. Examples of this sort
include the scale-invariant feature transform (SIFT) in computer vision [52] and anatomical
landmarks in statistical shape analysis [22] and computational anatomy [39].

This paper stems from an attempt to apply principles of the statistics field of optimal
experimental design to automatically detect salient feature points on anatomical surfaces. For
the biological morphometrical data of interest to us, these feature points surprisingly resemble
the “ground truth” landmarks seasoned evolutionary anthropologists would identify as discrete
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anatomical points of correspondence. The proposed algorithm, based on successively selecting
points of maximum mean squared prediction error (MSPE) with respect to a Gaussian process
modeled on a smooth manifold or from a scattered point cloud, turns out to be intimately
connected with a class of greedy algorithms in reduced basis methods [10, 21] and enjoys
a fast rate of convergence. Interested readers may consult our companion paper [27] for
more details on these theoretical aspects. This paper demonstrates that not only do these
Gaussian process landmarks perform equally well or better compared with the ground truth
landmarks (in terms of both spatial coverage and downstream statistical analysis), but they
can also be leveraged to establish high-quality and semantically meaningful smooth bijections
(registration maps) between biological structures; shape distances induced by these maps reach
comparable explanatory power to ground truth landmarks for ordination (i.e., discriminating
species groups) purposes.

The effectiveness of the proposed Gaussian process landmarking algorithm can be intu-
itively interpreted using the analogy between Gaussian process experimental design and the
landmark selection procedure in geometric morphometrics. In a nutshell, the method we
propose considers a Gaussian process on the anatomical surface, with a variance-covariance
structure specified by the heat kernel of the underlying Riemannian manifold; the landmarks
are then selected successively, each time picking a new landmark as the point on the surface
with largest variance conditioned on all the previously selected landmarks. This procedure
is highly reminiscent of the practice of landmarking in geometric morphometrics, the subfield
of evolutionary biology focusing on quantifying the (dis-)similarities between pairs of two-
dimensional anatomical surfaces based on their spatial configurations [91]. The main objects
of study in geometric morphometrics are anatomical surfaces, such as bones and teeth, of
extinct and extant animals of particular interest to evolutionary biologists. The landmarking
procedure typically starts with manually identifying an equal number of geometrically or se-
mantically meaningful feature points, or landmarks, on each specimen in a potentially large
collection of anatomical surfaces; the landmarks are certified by domain experts to be in con-
sistent one-to-one correspondences. The methodology of landmark selection, though difficult
to articulate and still constantly under debate (see, e.g., the very recent discussions [87, 8§]
and the references therein), emphasizes a comprehensive and balanced decision between sharp
geometric features (points of application of real biomechanical forces) and points extremal
to spatial configuration (points taken “farthest away” from other points under certain met-
rics). While geometric features could be recognized in a computational geometry manner by
computing discretized curvatures, the precise meaning of “extremality” can be flexibly char-
acterized as an “uncertainty” naturally encoded into the covariance structure of a Gaussian
process with a geometry-aware kernel function. By carefully designing a curvature-reweighted
heat kernel on discrete anatomical surfaces, the proposed algorithm is thus capable of selecting
both sharp geometric features and extremal points in one single pass. Downstream Procrustes
analysis [32, 22, 33] results presented in this paper also speak of the biological relevance of
the automatically generated landmarks.

The rest of this paper is organized as follows. Section 2 provides background materi-
als on geometric morphometrics, Gaussian processes, and the Gaussian process landmarking
algorithm proposed in [27]; section 3 explains the importance of using a reweighted kernel
in the Gaussian process landmarking algorithm for our application; section 4 details all the
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numerical procedures in this application; section 5 closes with comments and discussions.
2. Background.

2.1. Geometric morphometrics: Old and new. Statistical shape analysis, often termed
geometric morphometrics in the context of comparative biology, is the quantitative analysis
of variations and correlations among biological forms through the Cartesian coordinates of
“landmarks”—Dbiologically informative, repeatable, and in some sense corresponding anatom-
ical loci—on surfaces representing anatomy of biological organisms [89, 1, 91]. In order for
the comparisons across specimens to be meaningful, practitioners in this field often require
that the landmarks be consistently annotated on each specimen in a manner reflecting the
“operational homology”! or “biological correspondence” (as discussed in [14]) across individu-
ated traits inherited from a common ancestry [55]. For instance, in the generalized Procrustes
analysis (GPA) framework [32, 22, 33, 2], the Procrustes distance between two surfaces Si,
So is computed using the following procedure:

(i) Specify two sets of operationally homologous landmarks {xél) | 1 < ¢ < L} and

{azf) | 1 < ¢ <L} on S and Sy, respectively;
(ii) Compute the distance between S; and Sy by minimizing the energy functional

e 2\ ?
(2.1) dep (S1,82) = inf (L > |7 (a2) == ) :
(=1

where E (3) is the group of rigid motions in R3.
This idea can be generalized to analyze a collection of consistently landmarked shapes, either
assuming each set of landmarks on the same shape is centered at the origin so the variational
problem is defined on a product space of orthogonal groups [33, 62, 82, 60], or estimating
the optimal orthogonal and translation group elements jointly without the overall centering
assumption [17].

The key to successfully applying the Procrustes framework in statistical shape analysis is
to obtain an equal number of consistent, operationally homologous landmarks on every shape
in a potentially enormous collection of shapes. Consistently landmarking a collection of shapes
relies crucially upon domain knowledge and tedious manual labor, and the skill to perform it
“correctly” typically requires years of professional training; even then the “correctness” can
be subject to debate among experts (see, e.g., [13] for an example on Lepilemur teeth). In
the first place, extracting a finite number of landmarks from a continuous surface inevitably
loses geometric information, unless when the shapes under consideration are easily seen to
be uniquely determined by the landmarks (e.g., planar polygonal shapes, as considered in
[40, 23]), which is rarely the case for geometric morphometricians in biology; this problem of
“inadequate coverage” motivated the introduction of semilandmarks—additional points along
curves containing critical curvature information about the morphology—to compensate for the
loss of geometry in the landmarking process. Unfortunately, the essential arbitrariness of the
semilandmarks along a curve induces additional uncertainty that needs to be quantified and

'The term “homology” in the context of evolutionary theory bears a different meaning than in modern
topology; see, e.g., [74, Part IV].
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reduced [91, section 2], especially in the absence of sharp anatomical features; the constraint
of picking an equal number of landmarks on each shape also turns out to be far too artificial
when the anatomical forms undergo complex evolutionary and developmental processes.

To mitigate both the scalability and the subjectivity issues in the existing Procrustes
analysis framework, a recent trend of research in geometric morphometrics advocates auto-
mated workflows to bypass the repetitive, laborious, and time-consuming process of manual
landmark placement; see, e.g., [2, 13, 71, 48, 12, 49, 14, 24, 86, 43, 37| and the references
therein. These techniques work directly with digitized anatomical surfaces represented as
discrete triangular meshes; numerical algorithms are combined with computer graphics and
geometry processing to provide high-throughput, landmark-free approaches for precise phe-
notyping [70, 35, 36] on the discrete triangular meshes on their entirety (often consisting of
thousands to millions of vertices in R?), without the manual landmarking stage to filter down
the number of variables using potentially biased a priori domain knowledge. Similar to the
claim made by the proponents of landmark-based morphometrics that landmark coordinates
contain more information than utilized in more traditional, measurement-based morphomet-
rics [91, section 2], the precursors of automated geometric morphometrics believe that using
whole surfaces as input passes even more information to the downstream analysis.

Despite the capability of generating high quality pairwise shape registrations, automated
geometric morphometric methods suffer from interpretability problems: since all comparisons
are performed merely pairwise, composing the obtained correspondences along a closed loop
does not give rise to an identity map in general. This lack of transitivity (see, e.g., [28, 25])
demands additional postprocessing steps to translate the pairwise results into valid input
for standard downstream phylogenetic analysis [68, 29], which bears a strong similarity to
recent studies in synchronization problems [17, 26, 66]. The loop inconsistency of pairwise
correspondences also challenges the interpretability of automated geometric morphometrics,
since it becomes virtually impossible to identify functionally equivalent regions across distinct
anatomical structures in a consistent manner. Until fully automated geometric morphometric
algorithms reach the maturity with comparable explanatory power to a human practitioner of
landmark-based geometric morphometrics, deeper and more systematic understanding of the
landmarking process still seem of great interest and value.

The methodology we propose in this paper incorporates an algorithmic landmarking pro-
cedure into the automated pairwise registration algorithms. We point out that detecting
morphometrically meaningful landmarks on anatomical surfaces in a completely unsupervised
manner is generally a daunting task, since some of the most reliable landmarks are deter-
mined by patterns of juxtapositions of tissues—termed “Type 1 landmarks” by Bookstein
[75]—which are almost always absent on the triangular meshes input to automated algorithms
[11]. The selection process is further complicated by the requirement of the consistency of
relative landmark positions across the data collected, as well as the specific functionality
of the biological organism being studied [91]. While geometry processing algorithms (e.g.,
[6, 51, 16, 15, 84]) are capable of detecting sharp geometric features characterized by metric
or topology (Bookstein’s “Type 2 landmarks” [75]), as well as producing high-quality pairwise
registrations for accurate determination of operationally homologous loci, semilandmarks and
a majority of “T'ype 3 landmarks” in Bookstein’s typology of landmarks are marked simply
for adequate and/or comprehensive coverage of the anatomical forms [75]. For instance, some
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Type 3 landmarks are included in the analysis for being “furthest away” from sharp geometric
or functional features [91]. These observations motivated us to consider algorithmic analo-
gies of geometric morphologists’ daily practice beyond the scope of computational geometry,
shedding light upon landmark identification from the perspective of Bayesian statistics quan-
tifying the “uncertainty” of morphometric analysis. As will be detailed in section 4, we will
first generate a set of candidate landmarks on each of the anatomical surfaces based on the
“uncertainty” modeled by a Gaussian process and then apply a matching scheme that filters
out noncorresponding candidate landmarks between a pair of surfaces based upon bounded
conformal distortion [47].

2.2. Gaussian processes. A Gaussian process (or Gaussian random field) on a Polish
space M with mean function m : M — R and covariance function K : M x M — R is
defined as the stochastic process of which any finite marginal distribution on n fixed points
T1,...,Tn € M is a multivariate Gaussian distribution with mean vector

my = (m(z1),...,m(z,)) € R"”

and variance-covariance matrix

K(.Tl,ﬂfl) K(‘T17:1:n)
(2.2) Ky, = : : e R™*™,
K (zp,x1) - K (xn,zy)

A Gaussian process with mean function m : M — R and covariance function K : M x M — R
will be denoted as GP (m, K). Under model Y ~ GP (m, K), given observed values y1,...,yn
at locations z1,...,xy,, the best linear predictor (BLP) [83, 76] for the random field at a new
point z is given by the conditional expectation

(23) Y (z2):=E[Y (@) |Y (1) =y1,....Y () = yn] = m (2) + kn (x) " K" (Y, — my),

where Y,, = (y1,. .. ,yn)T eR™ ky (z) = (K (z,21),... ,K(x,:z:n))T € R"; at any = € M, the
expected squared error, or mean squared prediction error (MSPE), is defined as
MSPE (z) : = E [(Y () = V* (x))2]
(2.4) —E|(Y (&) ~E[Y (2) | Y (1) = g1, .Y () = pa))?]
=K (z,2) — ky ()" K ky (),

which is a function over M. Here the expectation is with respect to all realizations Y ~
GP (m, K). Squared integral (L?) or sup (L*) norms of the pointwise MSPE are often used

as a criterion for evaluating the prediction performance over the experimental domain. In
geospatial statistics, interpolation with (2.3) and (2.4) is known as kriging.

2.3. Gaussian process landmarking. We now provide a quick summary of the Gaussian
process landmarking algorithm from [27]. The input to this algorithm is a triangular mesh
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G = (V, E, F). Denote the set of vertices V as {:171, . ,:BM} C R3, and construct the discrete

heat kernel
2
Ti— T
ox (_n =i )] |
1<i,5<n

We calculate the mean and Gaussian curvature functions n : V.— R, k : V. — R on the
triangular mesh (V, E, F') using standard algorithms in computational differential geometry
[18, 3]. On a two-dimensional surface S, Gaussian curvature k (x) at a point = € S is the
product of the two principal curvatures ki (x), ko () at z, i.e., k (x) = k1 () k2 (x), and the
mean curvature is defined as n(x) = ki () + ka (). For any A € [0,1] and p > 0, define the
value of the weight function w = w) , at each vertex x; by

(2.5) K= (Kij)lgi,jgn =

Ak (i) (1= |n (:)]”

M k@l v (@) S @)l v ()

(2.6) wyp (i) = Va; €V,

where v () is the area of the Voronoi cell centered at x; on the triangular mesh 7', W is a
diagonal matrix of size n x n with w (zy) v (x}) at its kth diagonal entry (1 < k < |V]), and K
is the discrete squared exponential kernel matrix (2.5). The parameter A controls the relative
proportion of mean and Gaussian curvatures, and the parameter p adjusts the sharpness of
the energy surfaces of mean and Gaussian curvatures before they are combined to form the
weight function. Denoting I as the diagonal matrix with weight w) , (1) at the kth diagonal
element, we define the reweighted heat kernel k,** on V x V as

Vi

(2.7) ke (i) =Y kg (@i, ) kg (@n, 25) wap (21) v (25) = (KTWK> ’

k=1 J

where the unweighted kernel &, 5 is calculated as in (2.5) but with bandwidth parameter t/2
instead of ¢, i.e.,

2
(2.8) K = (e_H Lz/zjLI ) e RIVIXIVI
1<i,j <[V

Note that, even for the trivial weight function w = 1 (i.e., when W is the identity matrix of
size |V| x |V]), (2.7) does not reduce to (2.5) since it is easy to check that K2 # K; this is
in stark contrast to the reproducing case in the continuous regime in [27, (2.8)]. Not only are
heat kernels natural choices for specifying Gaussian processes on Riemannian manifolds (see,
e.g., a brief survey in [27, section 2.1]); their infinite smoothness also ensures fast convergence
of the proposed Gaussian process landmarking algorithm; see [27, Theorem 4.6].

We now detail the greedy landmarking procedures. Until a fixed total number of landmarks
are collected, at step (n + 1) the algorithm computes the uncertainty score ¥y on V' from
the existing n landmarks &, ...,&, by

(29) E(n-}-l) (xl) = k:})\’p (.’L’Z,QTZ) - sz)\ﬂp (I‘hg%)—r k:‘/ﬂ/\’p (é%)fé)il kzuk,p (l‘l)é-}L)
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for all x; € V', where

B (s €h) o= (60 (0 60) oo B (0060))

k;l))\‘p (517 §1> T ;UAVP (517 gn)
ke M (6a &) = : : :
k™ (Enn 1) o B (6n )

and picks the (n + 1)th landmark &, according to the rule

Ent1 = argmax X, 41 (i) -
T, €V

If more than one maximizer of ¥, ) exists, we just randomly pick one; at step 1 the al-
gorithm simply picks the vertex maximizing x +— k, > (z,z) on V. See Algorithm 2.1 for a
comprehensive description. In this paper we stick with default values A = 1/2 and p = 1 in all
examples and applications, but one may wish to alter these values to fine-tune the landscape
of the weight function for a specific application. The bandwidth parameter ¢ is set to be the
average edge length of the triangular mesh, following standard practices of manifold learning
(see, e.g., [19]). More details can be found in [27, section 3]; we only mention here that (2.6)
and (2.7) are discretizations of

p p
/ |k (€)]P dvolyy (& / In (&)|° dvoly (€)
and
(211) k;l) (x,y) :/ kt/2 (J/‘,Z) kt/2 (Z,y)U)(Z) dvoly (Z) Vl’,y €M,
M

respectively. Since Algorithm 2.1 builds upon the heat kernel and curvature of the underlying
Riemannian manifold, the landmarks are stable under isometric deformations; we expect them
to be stable across near-isometric Riemannian manifolds as well, which are objects of main
interest to applications in geometric morphometrics.

Guided by uncertainty specified through such curvature-reweighted covariance structure,
the Gaussian process landmarking often identifies landmarks of abundant biological infor-
mation; for instance, the first few Gaussian process landmarks are often highly biologically
informative and demonstrate a comparable level of coverage with the observer landmarks
manually picked by human experts. See Figure 1 for a visual comparison between the auto-
matically generated landmarks with the observer landmarks manually placed by evolutionary
anthropologists on a different digitized fossil molar.

Algorithm 2.1 greedily picks as the next landmark the point on the manifold M that max-
imizes the pointwise prediction error. This sequential optimization approach is reminiscent
of a popular approximation scheme in entropy-based experimental design [45, 64, 76]. The
key observation here is the equivalence between minimizing the conditional entropy (or max-
imizing the information gain) and maximizing the determinant of the marginal covariance
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21 ald

(a) Observer Landmarks (b) Gaussian Process Landmarks

Figure 1. Left: Observer landmarks on a digitized fossil molar of a Teilhardina (one of the oldest known
fossil primates closely related to living tarsiers and anthropoids [7]) identified manually by an evolutionary
anthropologist as ground truth, first published in [13]. Right: Landmarks picked by Gaussian process landmarking
(Algorithm 2.1). The numbers next to each landmark indicate the order of appearance. These automatically
computed landmarks strikingly resemble the observer landmarks; the 22 first Gaussian process landmarks already
capture the same features selected by an expert anthropologist: The red landmarks (numbers 1-5, 7, 8, 10, 11, 16,
19) signal sharp geometric features (cusps or saddle points corresponding to local mazimum/minimum Gaussian
curvature); the blue landmarks sit either along the curvy cusp ridges and grooves (numbers 13, 18, 20, 22) or
at the basin (number 9), serving the role often played by semilandmarks; the four green landmarks (numbers
6, 12, 15, 17) approzimately delimit the “outline” of the tooth in occlusal view. The ordering of the Gaussian
process landmarks does not affect the bounded distortion surface registration algorithm in subsection 4.2.

matrix at the design points; see, e.g., [76, section 6.2.1], [45, section 3.1], [64, section 2.2].
More concretely, if we denote the maximum entropy of a Gaussian process GP (m, K) on a
manifold M with respect to any n observations as

OPT (n):= max detK,,
{:Dl,A..,:L‘n}CM

where K, is the variance-covariance matrix defined in (2.2), and write GPL (n) for the value
of det K (X1,...,X,), where X1,..., X, are generated using Algorithm 2.1, then by the sub-
modularity of the entropy function [42] we conclude, using classic results [61], that

OPT (n) > GPL(n) > (1 —1/e) OPT (n).

In other words, the entropy of the greedy algorithm is equivalent to the maximum entropy
up to a multiplicative constant. While this general submodularity-based framework justifies
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Algorithm 2.1 GAUSSIAN PROCESS LANDMARKING WITH REWEIGHTED HEAT KERNEL

1: procedure GPL(T, L, A € [0,1], p > 0, € > 0)> Triangular Mesh 7' = (V, E), number of
landmarks L

2: K,n < DISCRETECURVATURES(T) > calculate discrete Gaussian curvature x and
mean curvature g on T

3: v <— VORONOIAREAS(T) b calculate the area of Voronoi cells around each vertex z;

4: wy,p — CALCULATEWEIGHT(k, 7, A, p,v) > calculate weight function wy , according
to (2.10)

5 W [exp(—||wi — zjlf* /)hi<ij<yv) € RVIXIV]

6: A diag (wx, (z1) v (21) ..., wa, (zv)) v (2v))) € RIVIxIV

7: E1,...,&L <0 > initialize landmark list

8: U0

9: {1

10: K + WTAW € RIVIXIVI
11: Kirace < diag (Kpy) € RV
12: while / < L +1 do

13: if / =1 then

14: Y Kirace

15: else

16: ¥ Kirace — diag (\IJT (\1! (€1, -, &), \\I')) e RVl calculate uncertainty
scores by (2.9)

17: end if

18: & + argmax X

19: U < K [:, [61,...,@“

20: (+—0+1

21: end while

22: return &q,...,&;

23: end procedure

the information-theoretic asymptotic near-optimality of Gaussian process landmarking (Al-
gorithm 2.1), in [27] we established a stronger optimality result in the context of Gaussian
processes: up to a multiplicative constant, the MSPE with respect to n Gaussian process
landmarks coincides with the optimal MSPE attainable over all sets of n points on M, for
any positive integer n € Z>o. More details about this can be found in [27, section 4].

3. The role of reweighting in the kernel construction. An essential construction in
the application of Algorithm 2.1 to geometric morphometrics is the reweighted kernel (2.11).
Intuitively, the reweighting step modifies the Euclidean heat kernel (2.5) by amplifying the
influence of locations with relatively high weights. To investigate the role played by the
reweighted kernel in greater detail, we study the behavior of the reweighted kernel in the
asymptotic regime when the number of samples increases to infinity. As will be demonstrated
in Theorem 3.1, the reweighted kernel defines a diffusion process on the manifold with a
backward Kolmogorov operator conjugate to the Witten Laplacian; the eigenfunctions of the
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Witten Laplacian are known to enjoy desired localization behavior near critical points of the
weight function.

To motivate Theorem 3.1, let us consider independent and identically distributed (i.i.d.)
(with respect to the standard volume measure) samples {z;}Y , on a closed Riemannian
manifold (M, g), as well as an arbitrary function f € C2?(M). To simplify the discussion,
assume for the moment that the samples are uniformly distributed on M with respect to the
normalized volume form on M. It is well known in manifold learning (see, e.g., [77, 19]) that,
for any x € M,

(3.1) e e — g [ ) ava

as n — oo. Denote the positive weight function (2.10) used in (2.11) by
(3.2) w(x)=e V@ V(e)>0 Veel.

Note that the normalization in (2.10) ensures that the value of the weight function is bounded
between 0 and 1, which is implied in (3.2), for numerical stability. Repeatedly using the
“law of large numbers” argument (3.1), we have the following convergence for the reweighted
kernel:

2

A Al N el
N2 Ze - Z f(z;)

—>Vl // _lla—z)2 zn —V(2) - Mf( ) dVol(z) dVol(y) a5 N — co.
(]

This motivates us to consider the asymptotic behavior of the integral operator on the right-
hand side in the asymptotic regime € — oo, a recurring theme in manifold learning (see, e.g.,
[8, 19, 78, 25]). For simplicity of notation, we will denote the integral operator with respect
to kernel K : M x M — R as

Ty f (z) == ‘ /MK(x,y)f(y) dvol (y) .

|Vol (M)

Theorem 3.1. Let M be a d-dimensional closed manifold. For any smooth functions f,V €
C>* (M) with V>0, for kernel function

(3.3) K (,y) = \Vol ; / g V@ vl (2)
we have
(3.4) M — f(x) —i—e(Af(x) —Vf($)'VV(£L‘)> +0 <€%> as e — 0,

Tre 1

where 1 stands for the constant function on M taking value 1.
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The proof of Theorem 3.1 can be found in section SM1. Theorem 3.1 indicates that a
proper normalization of the reweighted kernel (2.11) gives rise to an approximation to the
heat kernel of the backward Kolmogorov operator

L=-A+VV.V.

Note that this operator is also the infinitesimal generator of the diffusion process determined
by the stochastic differential equation

dX; = —VV (X;) dt + V2dW,

where W; is the standard Wiener process defined on M. In particular, Theorem 3.1 suggests
that our construction of the reweighted kernel encodes information from the weight function
into the dynamics of the stochastic process on M.

Remark 3.2. It is interesting to compare the result of Theorem 3.1 with the related but
different kernel construction in diffusion maps [19, 59]. The integral operator in (3.4) is a
properly normalized version of integrating a smooth function against the kernel

~ ey le—wl?
Ky (z,y):= [ e 2 e e 2 dVol(z),
M

which is obtained by sandwiching exp [V (-)] with the squared exponential kernel. If we pick
a different order of sandwiching, namely, construct the kernel as

o2
Ky (0,y) i= e V@58V

Y

then a quick computation in the same spirit as [9, Theorem 1] leads to

Tk, f (2)

Ty 1 ﬂw”ﬁ(iﬁﬂw)—Vf<x>‘vv<x>)+o(e%) as € 0.

v
In other words, the infinitesimal generator differs from the one calculated in (3.4) only by
a multiplicative factor in front of the Laplace-Beltrami operator. We actually observe very
similar numerical results when replacing IN(V with Ky in Algorithm 2.1, when appropriate
bandwidth parameters are chosen. Empirically, we find the bandwidth parameter easier to
tune for kernel I?V than for Ky .

With these preparations, we now illustrate the effect of kernel reweighting by replacing
(3.2) with
(3.5) we(z)=e V@ V(z)>0 VaeM.

Note that we can always redefine the potential function V so that (3.2) is written in the form
of (3.5) for any fixed € > 0; in particular, replacing V (z) by V (z) /e does not change its
critical points. An almost identical calculation as in the proof of Theorem 3.1 leads to the
following corollary.
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Corollary 3.3. Under the same assumptions as in Theorem 3.1,

(3.6) I;;{/Zl—>f(ar)+e<Af(§c)—Vf(x)-1VV($)>+O(62> as € — 0,
V/e

where K3, /€ is obtained from (3.3) by replacing the potential V with %V.

Similar to Theorem 3.1, Corollary 3.3 shows that a proper normalization of the kernel
reweighted by (3.5) approximates the heat kernel of the operator

1
Lo:=-A+ EVV-V.

The dependence on ¢ is of particular interest. It is well known in the literature of semiclassical
analysis that eL. is conjugate to the semiclassical Witten Laplacian [90] on 0-forms:

AV,e _ Ee—V/Qe (ELE) eV/QE,

where

1
Ave= At L [VV] - %AV.

Since the eigenfunctions of Ay, corresponding to the leading small eigenvalues concentrate
near the critical points of the potential function V' for sufficiently small € > 0 (see, e.g., [38]
or [46, Theorem 3.9] for mathematically more precise statements), the eigenfunctions corre-
sponding to the leading small eigenvalues of L. also concentrate near the critical points of V'
after being multiplied by e~"/2¢, which, by the proof of Theorem 3.1, can be approximated
by the square root of the denominator of (3.6). Note that the matrix K, in Algorithm 2.1
corresponds to the integral kernel in the numerator of (3.6) if we choose A to be the diag-
onal matrix with exp [~V (v;) /€] at its ith diagonal entry, where v; is the ith vertex on the
triangular mesh; setting D to be the diagonal matrix with the ith row sum of Ky, at its ¢th
diagonal entry, the Witten Laplacian Ay, can then be approximated by D Y2K D72 up
to a scalar multiplication by the bandwidth e. We would thus expect the first few eigenfunc-
tions corresponding to the smallest eigenvalues of DY 2KfuuD*1/ 2 to concentrate near the
critical points of V. This can be easily verified with numerical experiments; see Figure 2 for
an example.

Remark 3.4. The localization effects on eigenfunctions can also be achieved by adding a
diagonal matrix, which represents a potential function on the domain of interest, to the kernel
matrix; this idea has found applications in biomedical data analysis [20] and computer graphics
[54]. The insight we gained from relating the reweighted kernel to the Witten Laplacian reveals
that the localization can be equivalently realized through a simple nonlinear procedure. This
phenomenon can be explained as follows: while adding a diagonal potential to the kernel
provides a direct discretization of the Schédinger operator Ly = —A + V, the reweighted
kernel (2.11) can be thought of as a discretization of the heat kernel of Ly by taking only
“one-hop” paths in the Feynman-Kac formula for e *v.
direction is beyond the scope of the current paper; interested readers may find useful the
works [80, 81, 34] and the references therein.

An extensive discussion in this
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Figure 2. Concentration of the eigenfunctions of the Witten Laplacian with respect to a potential function
V. The left bozed subplot illustrates the potential function V using a heat map; we constructed this potential to
have 4 wells centered around 4 cusps manually picked on a Lorisidae mandibular molar. The 4 eigenfunctions
corresponding to the 4 smallest eigenvalues of the Witten Laplacian with potential V are depicted on the 2 x 2
panel on the right; it can be read off from the colorbars that the support of each of these 4 eigenfunctions is
concentrated around critical points of V.

The connection between the reweighted kernel (2.11) and the semiclassical analysis of
the Witten Laplacian provides insights for the behavior of the Gaussian process landmarks
generated from Algorithm 2.1. Given a Gaussian process GP (m, K) defined on a manifold
M, the eigenfunctions of K—properly reweighted by their corresponding eigenvalues—give
rise to the Karhunen—Loeve basis for GP (m, K), with respect to which the sample paths of
GP (m, K) adopt expansions with i.i.d. standard normal coefficients. If the low-frequency
components of these expansions tend to concentrate at certain regions on M, when fitting an
unknown function in GP (m, K) using an active learning procedure, it could be much more
efficient if one begins with the inquiry for the function value at those regions of concentration.
After information at regions of concentration is collected to some extent, it becomes more
beneficial to also incorporate ambient information that resides in the complement of these
regions in M. Therefore, spreading landmarks on M using a Gaussian process with reweighted
kernel balances out the information prioritized by the weight function and the space-filling
experimental design strategies. The main reason for not selecting landmarks solely based
on the weight function is that the weight function can be too spurious to produce reliable,
semantically meaningful landmarks, at least for our application in geometric morphometrics;
see Figure 3 for an example of such a comparison.
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Gaussian Process Landmarking Local Weight Maximum  Geodesic Farthest Point Sampling

Figure 3. An equal number (20) of landmark points on the same surface generated using three different
strategies. Left: Gaussian process landmarks generated using Algorithm 2.1 with an exponential squared ker-
nel function reweighted by weight function w. Middle: The local mazima of the weight function used in the
reweighted kernel, which appears semantically less meaningful from the perspective of geometric morphometrics.
Right: Points produced by geodesic farthest point sampling (see, e.g., [30, 57]), a greedy algorithm commonly
used for generating uniformly sampled (or approzimately space-filling) points on a triangular mesh. Compar-
ing these three sampling approaches, Gaussian process landmarks has the advantage of tending to fill up the
manifold while prioritizing the choice of semantically meaningful features for geometric morphometrics.

4. Gaussian process landmarking for automated geometric morphometrics. This sec-
tion is divided into three parts. Subsection 4.1 compares Gaussian process landmarks gen-
erated from Algorithm 2.1 with “ground truth” landmarks manually picked by comparative
biologists on a real dataset of anatomical surfaces, demonstrating comparable levels of coverage
of biologically significant features. The results presented in this section provide quantitative
evidence that Gaussian process landmarks are capable of capturing geometric features en-
coding important information for comparative biologists on individual anatomical surfaces.
Subsection 4.2 adapts the image feature matching algorithm of [50] for the registration of
pairs of anatomical surfaces via matching Gaussian process landmarks computed on each
individual surface. We compare the resulting shape correspondence maps with a baseline
obtained using previously developed continuous Procrustes analysis in [2, 13]; the results
suggest that, though Gaussian process landmarks are generated on each individual shape sep-
arately, they implicitly encode operationally homologous features that can be compared and
contrasted across shapes, and such pairwise comparison results are comparable with those ob-
tained from standard Procrustes shape analysis based on “ground truth” observer landmarks.
The pairwise shape distances induced from matching landmarks are turned into ordination
plots (two-dimensional embeddings of distance matrices, commonly employed for visualizing
the “morphospace” characterizing shape variances) in section SM3; it turns out that Gaus-
sian process landmarks lead to a favorable ordination, which is in better agreement with
observations made by comparative biologists and paleontologists in the existing literature.

We remark that the idea of using landmarks to guide the computation of shape correspon-
dence maps is very natural in the geometry processing community. For instance, [65] proposes
choosing landmarks based on a conditional number quantifying the stability of the matching
problem for a pair of shapes and demonstrates significantly enhanced map quality with very
few landmarks specified in this manner; [41] generates small numbers of feature points with
large fractions of semantic correspondences between shapes and uses these points to guide
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the search for a highly complicated map composed by blending multiple simpler maps. These
methods, as well as many other state-of-the-art techniques in geometry processing, are not
suitable for general geometric morphometrics applications as they often fail to capture all
anatomical correspondences indispensable for repeatable and reliable analysis.

4.1. Unsupervised landmarking on individual anatomical surfaces. Gaussian process
landmarks are generated on each anatomical surface individually, regardless of the total size of
the shape collection; the landmarks manually selected by human experts (observers), however,
may well depend on the information gradually exposed to the human expert as he/she moves
through a collection of surfaces. It is thus surprising that the individually generated, “local”
Gaussian process landmarks bear striking similarity to the observer landmarks selected with a
certain extent of collectionwise or “global” knowledge, as illustrated in [27, Figure 2| through
an example fossil molar. This subsection is devoted to a more thorough and quantitative
comparison between Gaussian process landmarks and “ground truth” observer landmarks
placed by human experts.

We begin by collecting in Figure 4 results obtained by applying the Gaussian process
landmarking algorithm to several different types of anatomical surfaces, including a subset
of the second mandibular molars of primates (first published in [13]) and a subset of the
astragalus and calcaneus bones of tarsiers first published in [14]. It can be recognized from
Figure 4 that the algorithm is capable of consistently capturing both geometric features (“Type
3 landmarks” [75]) and semilandmarks (delineating ridges and grooves).

To quantitatively validate the biological informativeness of Gaussian process landmarks,
we use a dataset of second mandibular molars on which the “observer landmarks,” or the
landmarks manually selected by experienced comparative biologists, are readily available (see
[13]). We calculate, on each anatomical surface, the median geodesic distance from an ob-
server landmark to its closest Gaussian process landmark. This median geodesic distance
can obviously be calculated for any other type of landmarks in place of the Gaussian process
landmarks; we shall refer to it as the median observer-to-automatic landmark distance for
the sake of simplicity. We compute the median observer-to-automatic landmark distances
for a varying number of automatic landmarks, obtaining a curve that encodes the rate at
which the median observer-to-automatic landmark distances decay to zero as the number of
automatic landmarks increases. Comparing curves obtained from different automatic land-
mark generation methods then provides us with a way to evaluate how closely each type of
automation “mimics” the observer landmarks. When we perform such curve comparisons
for a large collection of surfaces in a dataset, we can in principle construct statistics (e.g.,
“mean” or “standard deviation” in the “space of curves”) along the lines of functional data
analysis (FDA) (see, e.g., [73, 72] and the references therein), but we will have to defer such
a statistically systematic treatment to future work.

Using this strategy, we compare Gaussian process landmarks with landmarks obtained
from geodesic farthest point sampling (GFPS) [30, 57], a popular downsampling technique
in automated geometric morphometrics, on a dataset of 116 second mandibular molars of
prosimian primates and closely related nonprimates first published in [13]. GFPS is known to
produce approximately uniformly distributed points on surfaces, with respect to the canonical
surface volume measure. In our numerical experiments in this subsection, we choose the first
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Figure 4. Gaussian process landmarks on several different types of anatomical surfaces. All triangular
meshes are acquired from pCT scans. Top row: Siz second mandibular molars of prosimian primates and
nonprimate close relatives, from a dataset of 116 molars first published in [13]. Middle row: Siz astragalus bones
of tarsiers from a dataset of 40 astragali first published in [14]. Bottom row: Siz calcaneus bones of tarsiers
from a dataset of 40 calcanes first published in [14]. On all three types of anatomical surfaces, Gaussian process
landmarks tend to play the roles of both landmarks and semilandmarks (cf. [91, section 2]): The curvature-
reweighted kernel promotes automatically selecting sharp peaks or saddle points on the anatomical surface; after
most of the prominent geometric features—normally recognized as Type 2 landmarks [91]—are captured, the
uncertainty-based criterion encourages the identification of semilandmark-type points along ridges and grooves.

point in GFPS to be the same as the first point obtained by Gaussian process landmarking,
to eliminate the effects of random initialization. We further compare with two additional
GFPS variants that use a predetermined set of feature points for initialization: Curv-FPS
first selects points of critical curvature and then applies geodesic farthest point sampling;
we used the setup of [13] for the detection of isolated points of locally critical Gaussian and
mean-curvatures. GP-FPS takes the k = 5 first Gaussian process landmark points and then
proceeds with geodesic farthest point sampling. As a baseline, we also calculate the median
observer-to-automatic landmark distances for completely randomly picked vertices on the tri-
angular meshes in this dataset. The results are presented in Figure 5, in which each curve is
obtained by averaging individual curves over the entire shape collection; confidence intervals
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Figure 5. Median geodesic distance from an observer landmark to its nearest automatically generated
landmark, with respect to different numbers of automatic landmarks, on a collection of 116 second mandibular
molars of prosimian primates and closely related nonprimates (see [13] for a more detailed description of
this dataset and the observer landmark acquisition). Each point on any of the three solid curves is obtained by
averaging the 116 median observer-to-automatic landmark distances over the entire dataset, and the transparent
bands represent confidence intervals of one standard deviation. The types of automatic landmarks are Gaussian
process landmarks (GP), geodesic farthest point sampling landmarks (GFPS), random landmarks uniformly
selected from the vertices of each triangular mesh, and geodesic farthest point sampling landmarks initialized
by either critical points of curvature (Curv-FPS) or the first few Gaussian process landmarks (GP-FPS). The
random landmarks are only used as a baseline in this experiment.

of one standard deviation are also plotted in shades of transparency. Figure 5 suggests that
Gaussian process landmarks consistently outperforms GFPS landmarks and the random base-
line in terms of coverage of observer landmarks. Figure SM5, provided in the supplementary
materials, includes additional quantiles of the geodesic distances between observer landmarks
and their closest landmarks obtained with each of the automatic methods. The results for
the first metatarsals and radii datasets are similar; see Figure SM5 and Figure SM4 in the
supplementary materials.

The comparisons in Figure 5, Figure SM3, Figure SM4, and Figure SM5 are all con-
ducted between the Gaussian process landmarks and the expert observer landmarks manually
prepared in [13]. These landmarks were treated as “golden standards” accepted by domain ex-
perts, as shown in [13] and subsequent domain applications in geometric morphometrics [2, 28].
It is interesting to investigate the reproducibility and stability of these observer landmarks—
will Gaussian process landmarks be close to landmarks manually selected by an independent
evolutionary anthropologist following the same landmarking protocol (e.g., prefixed ordering
and/or number of landmarks of each type in the typology summarized in subsection 2.1 for
ensuring the reproducibility of landmark-based geometric morphometrics; see, e.g., [11, 91])?
To this end, we collected six additional sets of observer landmarks on the molar teeth in Fig-
ure 1, picked by independent human experts following the landmarking protocol detailed in
the supplementary materials of [13], and compared them with the observer landmarks in [13]
and the Gaussian process landmarks. The result is shown in Figure 6. Additional views of
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this example are provided in the supplementary materials; see Figure SM6. It is clear from
these figures that observer landmarks following the same protocol can be robustly reproduced,
especially for geometric features and semilandmarks. A thorough investigation of the stability
and reproducibility of observer landmarks is beyond the scope of this paper, but the experi-
mental results in Figure 6 and Figure SM6 suggest that Gaussian process landmarks resemble
independent observer landmarks under the same protocol as in [13].

I Expert [13]
I :xpert B.
I Gxpert W.
Expert F.
Expert H.
Expert R.
[N Expert S.

(@) (b)

Figure 6. (a) Observer landmarks placed by multiple human experts on the fossil molar of Teilhardina in
Figure 1. Landmarks obtained in [13], shown in black, were identified manually by an evolutionary anthropologist
and used throughout this paper as ground truth. Siz additional sets of landmarks are shown in multiple colors;
these landmarks were provided by experts guided to manually place landmarks following the same landmarking
scheme, so as to capture the same morphological features; see Figure SMT for a visualization of the landmarks
provided by each individual expert. Cyan-shaded areas depict the smallest geodesic disk enclosing each group of
observer landmarks. (b) Gaussian process landmarks computed with Algorithm 2.1 are shown in red along the
cyan disks representing the distribution of human expert landmarks. This further ezemplifies the potential of
the first few Gaussian process landmarks in identifying biologically informative feature points.

4.2. Surface registration via matching Gaussian process landmarks. We demonstrate
in this subsection the benefit of using Gaussian process landmarks for establishing corre-
spondences between pairs of surfaces. In particular, although Gaussian process landmarks
are obtained independently on each surface, they turn out to encode geometrically signifi-
cant features—shared more often among similar or related shapes—that are recognized as
“operational homologous” [14] loci by comparative biologists. In order to obtain biologically
meaningful correspondences, we use reduced bandwidth parameter in the discrete heat kernel
when applying Algorithm 2.1 that is between 3/5 of the bandwidth parameter used to gener-
ate the illustrative Figure 1. Statistical analysis also suggests that these correspondence maps
reach explanatory power comparable to that of observer landmarks placed by human experts,
in terms of induced shape distances. The comparison between the morphospaces characterized
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by these shape distances is deferred to section SM3.

4.2.1. Experimental setup and methodology.

Bounded distortion Gaussian process landmark matching. Let S, S2 be two-dimensional
disk-type surfaces (conformally equivalent to planar disks by the uniformization theorem; see,
e.g., [2, 48, 49]), and let 5%1), e (Lll) € 57 and 5%2), e (ng) € Sy be two sets of Gaussian
process landmarks computed using Algorithm 2.1 on S7 and So, respectively. Note that the
algorithm we present in this subsection works equally well for L1 # Lo, though we choose
L1 = Ly = 40 throughout this paper to simplify the discussion. Adopting the approach
suggested in [50] for feature-based image matching, we devise the following two-step approach
for establishing geometrically consistent matchings between the two sets of Gaussian process
landmarks:

(1) Parametrization: For each surface S; (j = 1,2) we follow [79, 44] to compute an
as-isometric-as-possible (AIAP) two-dimensional parametrization, which is a diffeo-
morphism ®; : S; — Q; C R? from S; to a connected planar domain (2; minimizing
the (discretization of the) isometric distortion energy

(4.1) F(¢) = / (\w (@) + | Vg (x)f) dvolyy ().

J

Each landmark féj ) is mapped to a unique corresponding point Céj ) = P, (ggj )) €q;C
R?. where

®; := argmin F' (¢).
¢ZSj—)R2

Since both “left-handed” and “right-handed” shapes exist in our dataset (as illustrated
in Figure 4), we attempt two parametrizations—with or without reflection—for each
surface and keep only the orientation that leads to a smaller Procrustes score (see (4.3)
below). A byproduct of this implementation detail is a consistent rearrangement of
the surface orientations.

(2) Bounded distortion matching: Following [50], we search within the set of planar diffeo-
morphisms between ; and Qs with conformal distortion [47] bounded by a prefixed
constant K > 1. This algorithm strives to find a maximal subset of geometrically
consistent correspondences within an initial set of candidate matches. In the extreme
case of K = 1, the search is constrained within the set of strictly angle-preserving
(conformal) maps for the continuous isometric distortion energy and the set of planar
rigid transformations for the discretized isometric distortion energy; we select K = 1.5
in this experiment to slightly enlarge the search space of candidate maps.

As input to this matching algorithm, for each Gaussian process landmark Cél) on

(2)

S1, we choose T' > 2 Gaussian process landmarks ( .,CXZT as initial putative

10
candidate matches from the Gaussian process landmarks {CJ@) | 1 < j < Ly} on
So; the algorithm then searches for the bounded distortion map ¥ : €7 — s that
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approximately minimizes the mismatch count

L1 T 0
> 355w (¢) e

{=1 k=1

where, following the notations of [50], ||-|° denotes the mixed (2,0)-norm

o (c) - 2 - { 00 () # ¢

0 otherwise.

In practice, we follow [50] and approximate the mixed (2, 0)-norm with a mixed (2, p)-
norm with p decreasing during the optimization. The initial candidate matches in our
experiments are generated by comparing the wave kernel signature (WKS) [5] of the
Gaussian process landmarks; the T' Gaussian process landmarks on Sy with WKSs

(measured in Euclidean distances) most similar to that of each {él) € Sp are selected

as {Céat | 1 <t < T}. Ideally, “incorrect” initial matches, which potentially lead to
large conformal distortions, will be filtered out by minimizing (4.2) under the bounded
conformal distortion constraint. Our implementation uses 7' = 2; see Figure 7(b) for
an illustrative example.

The pairwise registration algorithm outputs a subset of 1 < L < min{L;, L2} one-to-one

correspondences fél) ~ 552), ¢ =1,...,L, from the initial L1T candidate Gaussian process
landmark matches; the number of matched landmarks, L, is automatically determined by the
final bounded distortion map and could be vary between different pairs of surfaces. See Fig-
ure 7(c),(d) for an illustrative example. A final step in this algorithm pipeline “interpolates”
the L pairs of matched Gaussian process landmarks to obtain a diffeomorphism between the
surfaces S1 and Sa; see Figure 7(d) for an illustrative example. For this purpose, we use
the technique developed in [79, 44] which computes a map ¥ : Q; — Qs that minimizes the

isometric distortion energy (4.1) subject to the L linear equality constraints ‘i/(fél)) = 552)
(1 < ¢ < L) representing the “sparse” correspondences between Gaussian process landmarks.
The composition fi2 = 3~ o U o &; finally produces the desired map f : S; — S that ap-
proximately minimizes the mismatch count (4.2). This last interpolation step is indispensable
for the purpose of interpretability (producing full-surface registrations for visual comparisons)
as well as evaluation (inducing shape Procrustes distances for ordination; see section SM3).
Figure 7 outlines the complete workflow of landmark matching and surface registration for a
pair of molars’ surfaces from [13]; a few examples are shown in Figure 8.

Evaluation metrics and the baseline. We demonstrate the rich taxonomic information cap-
tured by the maps output from the proposed bounded distortion Gaussian process landmark
matching (GP-BD) algorithm by comparing the shape Procrustes distances induced by maps
computed from GP-BD with those obtained by the same feature matching methodology but
alternative choices of landmarking schemes. For any correspondence map f : S; — Sa, we
define the Procrustes distance induced by f as

(4.3) dp (f) = (min /51 If () = R(2)]* dvols, (’l?)>é ;

ReEs
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(b) © (d)

Figure 7. The outline of our approach to landmark matching and surface registration. (a) Gaussian process
landmarks computed using Algorithm 2.1 on two surfaces. (b) Planar parameterizations of the surfaces that
minimize (4.1), overlaid with putative landmark matches (indicated by purple lines). (c) Bounded-distortion
correspondences: A subset of geometrically consistent matches computed by approzimately minimizing (4.2).
(d) Pairs of corresponding Gaussian process landmarks found by bounded distortion matching, illustrated by
spheres with matching colors. (e) Texture-map visualization of a correspondence map interpolating the landmark
correspondences depicted in (d).

where E3 stands for the rigid motion group in R3. The distance dp (f) measures the spa-
tial registration error induced by the map f between the two surfaces. To ensure that the
Procrustes distances induced by the various methods listed in Table 1 are comparable, we nor-
malize each surface to have unit surface area. When the map f is the continuous Procrustes
map produced from the algorithm presented in [2], dp gives exactly the continuous Procrustes
distance between S7 and Ss.

The alternatives considered in this section include two other different types of Gaussian
process landmarks (GP,w-BD and GPgu-BD) with alternative kernel functions (different
from (2.7)), two different strategies of utilizing the “ground truth” user-placed observer land-
marks (GT-BD and GT?-BD) as “oracles” representing the “ideal” landmarks for feature
matching, as well as the baseline continuous Procrustes maps (CPM) reported in [2, 13]; Ta-
ble 1 provides a summary of these variants. Specifically, GPgu.-BD and GP,w-BD are based
on Gaussian processes with the standard squared exponential kernel (2.5) and the trivially
weighted kernel (setting w =1 in (2.11)), respectively. GT-BD simply replaces the GP land-
marks with “ground truth” (GT) landmarks, which then follows through with candidate se-
lection via WKS and bounded distortion maps based feature matching filtering (BD-filtering);
GT2-BD also takes ground truth landmarks as inputs, but skips the candidate selection by
setting the ground truth correspondences between observer landmarks as candidate matches,
though BD-filtering still applies and prunes out potential “geometrically incompatible” corre-
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Table 1
The pairwise surface registration methods compared in subsection 4.2 and section SM3. BD-filtering stands
for bounded distortion maps based feature matching filtering. GP stands for “Gaussian process.” GT stands
for “Ground Truth,” i.e., those landmarks placed by experienced comparative biologists.

Abbreviation | Description of the pairwise surface registration method

GP-BD BD-filtering for GP landmarks computed with Algorithm 2.1

GPguc-BD BD-filtering for GP landmarks with the standard Euclidean heat kernel
(2.5)

GP,w-BD BD-filtering for GP landmarks with nonweighted kernel (w = 1in (2.7))

GT-BD BD-filtering for GT landmarks

GT?-BD BD-filtering for GT landmarks, also using the ground truth correspon-
dences as candidate initial matches

CPM Continuous Procrustes Maps (CPM) computed using the method of
[13, 2]

spondences leading to large conformal distortions. A detailed description of observer landmark
acquisition can be found in [13].

The shape distances will be compared in several different ways. We will first compare
cumulative distributions of the pairwise shape distance values, followed by two statistical
tests addressing (i) the correlation between each automatic shape distance and the observer-
determined landmarks Procrustes distance (ODLP), and (ii) the capability of each shape
distance at distinguishing taxonomic groups. A qualitative but more intuitive comparison of
the morphospaces [56] characterized by these shape distances will be deferred to supplementary
materials section SM3, in the form of ordination plots (two-dimensional embedding of the
shape distance matrices as visual representations for shape variances across species groups).
The discussion in section SM3, however, is oriented slightly more towards readers with some
background in comparative biology.

4.2.2. Comparison results. We compared the pairwise surface registration methods listed
in Table 1 on three different datasets of anatomical surfaces: (i) 116 second mandibular molars
of prosimian primates and closely related nonprimates; (ii) 57 proximal first metatarsals of
prosimian primates, New and Old World monkeys; (iii) 45 distal radii of apes and humans.
Detailed descriptions of all three datasets can be found in [13]. We computed correspondences
between each pair of surfaces within this dataset, totaling in over 13,000 correspondence maps
for dataset (i), over 1, 500 for dataset (ii), and nearly 1,000 for dataset (iii). Figure 8 shows ex-
ample pairs of surfaces, visualizing correspondence maps induced by GP-BD correspondences
as well as the baseline CPM maps. These examples illustrate typical differences between maps
computed from GP-BD and CPM along with their Procrustes distances; GP-BD maps often
offer an improvement over CPM in terms of both visual quality and their ability to relate
biologically meaningful and operationally homologous regions.

Comparing cumulative distributions of distance values. We first provide a crude comparison
across the various methods listed in Table 1. Figure 9 plots the cumulative distributions
of Procrustes distances induced by each type of pairwise registration method in Table 1,
which serves as a direct comparison of the proportions of pairwise correspondences for which
the Procrustes distance dp (4.3) is below a given threshold. The figure further includes a
curve for the observer-determined landmarks Procrustes (ODLP) distances, computed using
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Source

GP-BD

CPM

0.092

0.099

(b) (c) (d)

Figure 8. Correspondence maps and induced Procrustes distances: Texture overlaid on the Source surface
(top Tow) is mapped by f : S1 — Sa so as to visualize correspondence. The second row (GP-BD) shows maps
induced by correspondences established between Gaussian process landmarks computed with Algorithm 2.1. The
bottom row (CPM) compares the baseline continuous Procrustes maps. GP-BD outperforms CPM in examples
(a)—(c), where in the map it establishes a better correspondence between morphological features of the surfaces;
example (d) shows a case in which GP-BD is outperformed by CPM. The inset values are the Procrustes
distances dp associated with each map.

the standard Procrustes analysis between sets of corresponding landmarks manually placed by
human experts [13]. Recall from subsection 4.2.1 that the surface areas are normalized so as to
ensure that Procrustes distances induced by different shape correspondences are comparable.

Noticeably, the cumulative distribution of GP-BD distances most closely resembles that of
GT-BD, obtained by replacing the Gaussian process landmarks with the ground-truth observer
landmarks (but otherwise using exactly the same algorithm involving WKS and BD-filtering).
Also, GP-BD outperforms GP,w-BD (Gaussian process with a trivially weighted kernel) and
GPpruc-BD (Gaussian process with the standard Euclidean heat kernel). This comparison
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Procrustes Distance

Figure 9. Comparing GP-BD to the alternative methods listed in Table 1. Each curve represents the pro-
portion of correspondences, among a collection of 116 surfaces, for which the Procrustes distance dp falls below
a given threshold. The cumulative distribution of GP-BD distances most closely resembles that of GT-BD,
which utilizes the ground truth observer landmarks. It falls short of GT®-BD and the Observer-Determined
Landmarks Procrustes (ODLP), both of which rely additionally on the “ground truth” correspondences between
observer landmarks. In terms of producing more relatively smaller distances between the shape pairs (which
is favorable by the correlation between smaller distances and enhanced morphometric interpretability reported
n [28]; also suggested by the cumulative distribution curves of ODLP, GT*-BD, and GT-BD), GP-BD out-
performs the baseline continuous Procrustes maps (CPM), as well as variants of Gaussian process landmarks
with alternative kernel constructions, GPn,w-BD (Gaussian process landmarks with a nonweighted kernel) and
GPguc-BD (Gaussian process landmarks with a standard Euclidean heat kernel).

suggests that the Gaussian process landmarks computed with Algorithm 2.1 provide a good
proxy for geometrically significant features needed to determine meaningful correspondences
between surfaces.

Expectedly, GP-BD falls short compared to distances that rely on both the ground-truth
observer landmarks and their true correspondences (i.e., GT2-BD and ODLP). Comparing
GP-BD to the baseline continuous Procrustes maps (CPM) in terms of distance distributions
is equivocal as the two curves in Figure 9 cross each other when the Procrustes distance thresh-
old is about 0.15. Nonetheless, comparing GP-BD to CPM indicates that the former produces
more pairwise correspondences with shape distances less than 0.1 (at which the vertical gap
between the two curves reaches its maximum). This, along with the correlation reported
in [28] between smaller continuous Procrustes (cP) distances and better morphometric in-
terpretability of the associated maps, implies that Gaussian process landmarks potentially
lead to more stable and interpretable comparative biological analysis if combined with other
globally transitive geometric morphometric methods.

Statistical tests comparing the distance matrices. We now provide a more thorough com-
parison, using nonparametric statistical tests, for the shape distance matrices induced by the
various methods listed in Table 1. Treating the OPLD (observer-determined landmarks Pro-
crustes distance) matrix as a proxy for the “ground truth” accepted among geometric morpho-
metricians (cf. [13]), we first compare the correlation between each automatically computed
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shape distance matrix with ODLP using the Mantel correlation test [53]; the explanatory
power of the shape distances (in terms of the ability to distinguish taxonomic groups) is then
compared using a variant of the multivariate analysis of variance (MANOVA) for distance
matrices.

Due to the dependence of entries in a distance matrix (e.g., constrained by the triangular
inequality), assessments of correlation between distance matrices, or between a distance matrix
and a (continuous or categorical) variable, often involve repeatedly permuting the rows and
columns of the distance matrix (see, e.g., [69, 63, 31] and the references therein). Table 2
demonstrates the results of Mantel correlation analysis [53] between the distance matrices
computed in this paper against the ODLP distance matrix. In all Mantel tests in this paper,
we set the number of permutations to 9999 since it is recommended in [4] that at least 5000
permutations should be done for tests with an a-level of 0.01. GT-BD and GT2-BD correlate
best with ODLP, which is as expected since they both rely directly on the same set of observer-
determined landmarks used for computing the ODLP distances; their high correlation with
ODLP justifies the use of bounded distortion maps for capturing biologically meaningful
and corresponding geometric features. GP-BD outperforms CPM, which is consistent with
our observation in Figure 9 that a majority (over 80%) of the distance values computed
from GP-BD are more similar in distribution to the distances computed with ground truth
landmarks. The advantageously higher correlation of GP-BD over GPg,. and GPw illustrates
the importance of reweighting in the kernel construction.

Table 2

Correlation coefficients output from Mantel correlation analysis for the various distances computed in this
paper versus ODLP distances, for three different datasets. See Table 1 for the list of abbreviations; mote that
we omitted “-BD” for the sake of space. The relatively high correlations of GT-BD and GT2-BD versus ODLP
are not surprising due to their direct dependence on the observer-determined landmarks; the first 2 columns
can thus be viewed as performance upper bounds when “oracle landmark correspondences” are provided. For all
three datasets, the distance matriz computed from GP-BD correlates better with ODLP than CPM, as well as
almost all of its variants, which is consistent with the CDF plot Figure 9 and the ordination plots in Figure SM8
and speaks of the advantages of matching anatomical surfaces with Gaussian process landmarks. The P-values
of all results are < 0.01.

GT GT? CPM GP  GPgpuc GPaw
Molars 0.7042 0.7563 | 0.6647 | 0.6870 0.6135 0.6257
First metatarsals | 0.7371 0.8326 | 0.4887 | 0.7318 0.6607 0.7117
Radii 0.3273 0.4909 | 0.1775 | 0.3231 0.2510 0.2746

In addition, we perform permutational multivariate analysis of variance (PERMANOVA)
[4] for the distance matrices computed in this paper, with the taxonomic groups shown in
the ordination plots (Figure SMS8; see detailed explanations in section SM3) as the treatment
effects for the molar dataset; for the first metatarsal and radius datasets, we use family
and species groups as treatment effects, respectively. The results are presented in Table 3.
The purpose of this test is to quantitatively compare the power of differentiating taxonomic
groups for these distance matrices. The pseudo F-statistics in PERMANOVA are a properly
normalized ratio between among-group and within-group sum of squared distances. The
statistical significance is then calculated from the fraction—among sufficiently many shuffles
of the rows and columns of the distance matrix—of the permutation instances that produce
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a higher pseudo F-ratio. While all distance matrices demonstrate statistically significant
pseudo F-ratios in this test, the GT-BD distance matrix leads the board of pseudo F-ratios,
indicating its superior ability to separate taxonomic groups; the GP-BD distance matrix and
its two variants consistently outperform CPM in terms of pseudo F-ratios, verifying again
the improved quality of pairwise anatomical surface registrations as well as the induced shape
Procrustes distances.

Table 3

Pseudo F'-ratios output from PERMANQOVA for various distance matrices computed in this paper for three
different datasets. See Table 1 for the list of abbreviations; note that we omitted “-BD” for the sake of space.
The number of groups for the molar dataset is 30, equaling the number of polygonal regions in the ordination
plot in Figure SM8; the numbers of groups for first metatarsals and radius are 8 (families) and 4 (genuses),
respectively. The first column refers to observer-determined landmarks Procrustes (ODLP) distances calculated
in [13] as a baseline; the first 3 columns can thus be viewed as performance upper bounds when “oracle landmark
correspondences” are provided. For all three datasets, the pseudo-F ratio of the GP-BD distance matrix is better
than or at least comparable to the oracles. All distance matrices are statistically significant in terms of their
powers of separating species groups: the P-values of all results are < 0.01.

ODLP GT GT? [CPM | GP GPgruc GPow
Molars 12.26 16.70 1390 | 9.42 | 16.26 11.15  12.99
First metatarsals | 20.30 29.87 18.12 | 6.38 | 32.85 19.17  21.82
Radii 9.19 11.89 9.03 | 5.59 9.09 6.35 8.04

5. Discussions. In this paper, we apply the uncertainty-based landmark generating algo-
rithm proposed in [27] to three-dimensional geometric morphometrics. The algorithmically
produced landmarks resemble biologists’ landmarks selected with expert knowledge, provid-
ing adequate coverage for both geometric features and semantically “uncertain” regions on
the anatomical surfaces of practical interest. We tested the applicability of this landmarking
procedure for various tasks on real datasets.

The Gaussian process landmarking algorithm presented in this paper takes one anatomical
surface as input at one time, which is not exactly consistent with the methodology of geometric
morphometricians. In fact, these biologists do not simply place landmarks on individual
surface; rather, they are trained to take into consideration an entire collection of shapes, so
as to consistently place landmarks that are in joint correspondence. In standard practice,
landmarking a new anatomical surface typically involves repeated comparisons with all the
other surfaces in the collection, and the already placed landmarks on a surface are still subject
to change upon future knowledge acquired from landmarking more surfaces. It would be highly
interesting to adapt our algorithm to accommodate for this type of groupwise comparison
strategies as well.

Though geometric approaches in general lack the ability to recognize Type 1 landmarks
(recall Bookstein’s typology reviewed in subsection 2.1), we think that the similarities between
Gaussian process landmarks and user-selected Type 2 and Type 3 landmarks call into question
user-based landmarks. In particular, we found the ordination plots to be as successful as, and
in some ways superior to, the user-based landmarks in reflecting previous ideas about shape
affinities. While F-ratios were highest in the user-determined sample, we note that it is
highly likely that, for any underdetermined landmarks (e.g., the Type 1 landmarks, Type 3
landmarks, or when trying to place Type 2 landmarks on eroded features like blunted cusp
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tips), biologists will tend to minimize variance within species. In other words, if there is not
enough geometry to allow consistent placement of a point, users are likely to unconsciously
choose a positioning that visually maximizes similarity to other members of the species. Given
the likely bias towards minimizing within-group error by biologists during landmarking, it is
quite remarkable that the Gaussian process approach comes so close to the “ground truth”
and exceeds by so much the other automated methods in terms of F-ratio. In user-placed
landmarks, there is also the question of how many and which landmarks were chosen, not to
mention whether different users are as accurate in placing the same landmarks. Finally, there
is the limitation that any traditional landmark used must be present in every specimen of the
sample. Given the challenges of the traditional user-based approach, and the demonstrated
ability of Gaussian process to emulate qualitatively and quantitatively Type 2 and Type 3
landmarks, we believe the Gaussian process landmarking algorithm has great potential to be
an alternative, automated approach to such landmarks.

Software. MATLAB code for the surface registration algorithm is publicly available at
https://github.com/shaharkov/GPLmkBDMatch.
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