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UNIFORM-IN-TIME WEAK ERROR ANALYSIS FOR
STOCHASTIC GRADIENT DESCENT ALGORITHMS VIA
DIFFUSION APPROXIMATION*

YUANYUAN FENG!, TINGRAN GAO?¥, LEI L1%, JIAN-GUO LIUY, AND YULONG LU

Abstract. Diffusion approximation provides weak approximation for stochastic gradient descent
algorithms in a finite time horizon. In this paper, we introduce new tools motivated by the backward
error analysis of numerical stochastic differential equations into the theoretical framework of diffusion
approximation, extending the validity of the weak approximation from finite to infinite time horizon.
The new techniques developed in this paper enable us to characterize the asymptotic behavior of
constant-step-size SGD algorithms near a local minimum around which the objective functions are
locally strongly convex, a goal previously unreachable within the diffusion approximation framework.
Our analysis builds upon a truncated formal power expansion of the solution of a Kolmogorov equation
arising from diffusion approximation, where the main technical ingredient is uniform-in-time bounds
controlling the long-term behavior of the expansion coefficient functions near the local minimum. We
expect these new techniques to bring new understanding of the behaviors of SGD near local minimum
and greatly expand the range of applicability of diffusion approximation to cover wider and deeper
aspects of stochastic optimization algorithms in data science.

Keywords. stochastic gradient descent; weak error analysis; diffusion approximation; stochastic
differential equation; backward Kolmogorov equation.
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1. Introduction

Stochastic gradient descent (SGD) is a prototypical stochastic optimization algo-
rithm widely used for solving large scale data science problems [1-6], not only for its
scalability to large datasets, but also due to its surprising capability of identifying
parameters of deep neural network models with better generalization behavior than
adaptive gradient methods [7-9]. The past decade has witnessed growing interests in
accelerating this simple yet powerful optimization scheme [10-15], as well as better un-
derstanding its dynamics, through the lens of either discrete Markov chains [16,17] or
continuous stochastic differential equations [18-21].

This paper introduces new techniques into the theoretical framework of diffusion
approximation, which provides weak approximation to SGD algorithms through the
solution of a modified stochastic differential equation (SDE). Though numerous novel
insights have been gained from this continuous perspective, it was previously unclear
whether the modified SDEs can be adopted to study the asymptotic behavior of SGD,
since the weak approximation is only valid over a finite time interval. In the nonconvex
case, the approximation error blows up as time goes to infinity. For example, when
the coefficient functions are bounded, the SDEs share the behaviors of random walks in
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high dimension space, which are transient. One will lose control of the system quickly
as time goes on. In the strongly convex case, the problem remains open due to the
unbounded diffusivity in the SDEs. We show in this paper that it is possible to study
an approximate solution of the modified SDE for the latter case, which admits uniform-
in-time weak error bounds and can thus be used for investigating the long-term behavior
of SGD dynamics.

We concern ourselves in this paper with the problem of optimizing an empirical loss
function f:R¢—R

1 &
f(e)zﬁszge(%yi) (1.1)

where {(zi,yi)}Nsl are the training data (z;’s and y;’s are the data and labels, respec-

tively) and £y (,3 is the loss function with parameter 6 to be learned. We will assume
local strong convexity for f through the individual loss functions {HHla(zi,yi)}f\i“l
The true gradient of f takes the form

N
VF(0) =5 D Vols (z0.91). (1.2)
S =1

The “stochastic gradient” considered in this paper are “mini-batches” subsampled from
the summands {Vly (z;,¥:)} in (1.2), properly normalized so they provide an unbiased
estimate for the true gradient. More specifically, fix a batch size parameter B €N,
1< B< Ny, and let £ be a subset of B distinct elements uniformly sampled from the
integers {1,...,Ns} without replacement, we set

VF0:0) =5 > Volo (05): (13)

Jjeg

Such constructed stochastic gradients are unbiased estimates of the true gradient in the
sense that E¢ [V f(-;¢)]=V/f.

Below, we will use x to mean the parameter # and X,, to mean the discrete iterates
in SGD, as is standard in numerical analysis of SDEs. The notation “E,” will be used
to mean expectation under the initial condition X (0) =« for SDE or X =« for the SGD
iterates. Also, = will be used to denote the set of all possible values of £, and in the
situation described above, it is the set of all subsets of {1,2,...,Ns} with size B. The
iterative stochastic numerical scheme under consideration throughout this paper is

where 7> 0 is the constant step size and V f(+;&,) is the stochastic gradient with &, € 2
being i.i.d.. We characterize the asymptotic distributional behavior of the iterates
{Xn},,>0 as n approaches infinity, by adapting tools from backward error analysis of
stochastic numerical schemes [22-27] to modified SDEs arising from the diffusion approx-
imation [18-20]. So far, asymptotic analyses for the dynamics of (1.4) have been made
possible only through the Markov chain techniques [16,17]. We also refer to [28,29]
for some convergence analysis of stochastic gradient descent methods for continuous
time models. This paper is our first attempt at fully unleashing the rich and powerful
SDE techniques for studying stochastic numerical optimization schemes in large scale
statistical and machine learning.
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1.1. Main contribution: Long-time weak approximation for SGD via
SDE. The dynamics of discrete, iterative numerical algorithms can often be better
understood from their continuous time limit, typically described by ordinary differential
equations. This perspective has been proven fruitful in the analysis of many determin-
istic optimization algorithms [30-34]. An analogy of this type of continuous-time-limit
analysis for SGD algorithms is provided by the diffusion approzimation [18,20]: in any
finite time interval, the distribution of X,, defined by the SGD dynamics (1.4) is close
to the distribution of the solution of the following SDE at time t=nn:

dX=-V f(X)+%7||Vf(X)||2 dt++/n(X)dW, (1.5)
where

Y=E¢[(VF(6)—V)R(VI(€) — V)]

is the covariance matrix of the random gradients, and W is the standard Brownian
motion [35]. In numerical SDE literature, SDE of type (1.5) is often referred to as the
stochastic modified equations; they play an important role in constructing high-order
numerical approximation schemes for invariant measures of ergodic SDEs (see, e.g.,
[24,25]). In the context of data science, diffusion approximation has been used to gain
insights into online PCA [20], entropy-SGD [36,37], and nonconvex optimization [21],
to name just a few.

Despite its effectiveness as a continuous analogy of stochastic numerical optimiza-
tion algorithms, the range of applicability of diffusion approximation is significantly
limited by its restricted validity in a finite time interval. In particular, this means that
the solution of the SDE (1.5) can be used to rigorously approximate only a finite number
(though very large) of SGD iterates (1.4), and thus can not be used in the same way as
Markov-chain-based theoretical analysis [16,38,39] to study the asymptotic behavior of
{Xn}, >0 as n—oo. This paper aims at closing this theoretical gap by extending the
validity of diffusion approximation from finite- to infinite-time horizon. To the best of
our knowledge, this is the first work that studies the asymptotic distributional behavior
of SGD from an SDE perspective.

Our main technical contribution in this paper is to adopt the framework of weak
backward error analysis to the solution u=wu(z,t) =E,[p (X (t))] of the following back-
ward Kolmogorov equation associated with SDE (1.5):

P 1 1
aj;:_w.w+n(—4w|w||2-w+ 2Tr(W2u>) (1.6)
u(z,0)=¢p(z)

where we recall that E, stands for taking expectation under the initial condition
X(0)==x, Tr(A) stands for the trace of a square matrix A, ¥ =X (x) is the covari-
ance matrix as in (1.5), and Vu, V?u denote the gradient and Hessian of u=u(z,t)
with respect to the spatial variable z. The function ¢:R% —R is an arbitrary “observ-
able” of the stochastic dynamical system that characterizes properties of interest of the
iterates {X,},~,. Weak error analysis concerns the behavior of {¢(X,)},~, for any
¢ with sufficient regularity; for instance, by taking ¢ = f, we can study the asymptotic
oscillatory and/or concentration behavior of the objective values f(X,,) with respect to
the global minimum if standard convexity assumptions are imposed on f.

In a nutshell, backward error analysis is based on identifying the associated gener-
ator of a numerical scheme with the generator of a modified SDE, up to higher order
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terms in the powers of the step size . This can be achieved, e.g., by formally expand-
ing the generator of the modified SDE into a power series of the step size, and then
determining the coefficients (which are functions of the space and time variables, but
not the step size 1) of this power series using information from the numerical scheme;
it is then natural to expect that a proper truncation of this formal power series can be
used as a reasonable approximation for the iterates of the stochastic numerical scheme
(in the weak sense), even though the formal series may not converge (and thus the
solution of the SDE may not be a good approximation for the discrete iterates for all
time). As illustrated by many examples in the numerical analysis of ergodic SDEs (see,
e.g., [22-27] and the references therein), it turns out that the coefficient functions of the
formal power series capture—in a uniform-in-time fashion—the leading order behav-
ior of the discrete numerical scheme; this enables practitioners to draw conclusion on
the closeness between the invariant measure of the numerical scheme and the invariant
measure of the truncated formal series. In other words, though solutions of (1.6) can
not be used directly to capture the long-term behavior of SGD (1.4), we construct an
alternative, auxiliary function approximation of the solution of (1.6), which turns out to
be a superior weak approximation of (1.4) in the sense that the approximation error is
uniform-in-time and in higher powers of the step size 1. The time-uniformity of such a
truncated formal series approximation enables us to study the asymptotic distributional
behavior of the iterates of (1.4), thus closing the gap in the theoretical analysis between
diffusion approximation and Markov-chain-based analysis. We provide an overview for
the main steps in our analysis in the next section.

1.2. Sketch of the main approach. We consider a formal expansion of the
solution u=wu(x,t) =E, [¢ (X (¢))] of (1.6) in a power series with respect to the step size
n>0:

o0

u(x,t):anug(x,t). (1.7)

£=0
For the ease of exposition, let us introduce short-hand notations £, Lo for the differential
operators appearing in the right-hand side of (1.6):
1 1
L1:=-Vf-V, Lg::—ZV||Vf||2-V+§Tr(EV2) (1.8)
with which (1.6) can be recast into
8tu = Elu + 77;62’[1,,
u(z,0)=p(z).

Formally plugging (1.7) into (1.9) and equating terms corresponding to the same powers
of n, we can determine all coefficient functions u,, (x,t) from solving corresponding PDEs;
namely, for £=0

(1.9)

Oyup = Ly ug, (1 10)
uo(z,0) =¢(x) '

and for />1

Opup = Liug+ Loup—1,

ug(xz,0)=0. (L.11)
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Determining any uy can thus be done by inductively solving a sequence of first-order
PDEs (1.10)-(1.11). In fact, with some work we can establish exponential convergence
of each uy to its equilibrium state as ¢t approaches infinity, provided that f is strongly
convex.

We then construct an approximation for w by truncating the formal series (1.7),
yielding

N

u® (ac,t):Zneue (z,t). (1.12)

£=0

If the formal series (1.7) converges uniformly, u” is certainly a good approximation of
u up to an order O (n*1) error. The crux of our argument is that, even when the
convergence of (1.7) is not guaranteed, it turns out that we can still use {u' (z,nn)} _,
as good approximation for {E,[p(X,)]}, s, (recall that E, represents the expectation
conditioned on the initial condition Xy ==z); most notably, the O (772) error in this ap-
proximation is bounded uniformly in n, allowing us to draw quantitative conclusions on
the asymptotic distributional behavior of E, [¢(X,,)] from that of u!(x,nn). Since u!
corresponds to a measure v! independent of the test function ¢, our argument then jus-
tifies that the measure v' approximates the distribution of the SGD with second order
weak accuracy. It is very tempting to push this idea further by considering v, N >1
in place of u! and expecting it to better approximate E, [¢(X,)] up to higher orders of
error; however, our analysis indicates that in general ‘uN (x,nn) —E, [@(Xn)” =0(n?)
can no longer be improved by choosing N > 1, even though u” could be a better ap-
proximation for the solution u of the backward Kolmogorov equation (1.6) when N > 1.

The superior, uniform-in-time approximation of the truncated formal expansion to
E. [¢(X,)] is achieved by the fact that the coefficient functions u, are totally determined
by the local behavior of f and ¢ (i.e. behaviors on compact sets), whereas the solution
u of (1.6) depends on the global information and is thus harder to control. Due to
this locality, the local strong convexity of f then leads to the exponential decay of the
derivatives for the coefficient functions u,, which finally gives the uniform-in-time weak
approximation. This will become transparent after we establish Theorem 2.1. The
locality can be illustrated by a toy SDE example in one dimension with f(z)= %x2, and
Y (z)=1. Note that this SDE example is simply given to illustrate the roles of u, and
why they are local, while it is not necessarily the diffusion approximation of some SGD
iteration. In this example, SDE (1.5) corresponds to an Ornstein—Uhlenbeck process,
and the solution of (1.6) adopts the explicit integral representation

_ e~ (142n)ty2
exp( (w—ze ) )dw

u(x,t)= 55

V55

\/ﬂ/ﬂw xe~ 1+2")t+fy>exp( y?/2)dy (1.13)

where

_ n (1 7672(1+2n)t) .
2(1+42n)

We can obtain a formal expansion of u(x,t) in terms of 7 using a Taylor expansion for
@ at xze~(1+20t in the integrand of (1.13). We keep 2m terms in the Taylor expansion
and note that all odd powers of v/S vanish, which leads to the following expansion of
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error O (n™*1):

AN | 1
u(x,t)= (k) (= (+2mt Sk'—/ y*F exp(—y2/2)dy+O (n™ ).
(@0=3 e ™ ( )8t o= || ey 2)dy+0 ()

=0

The wuy’s can then be obtained by further expanding the functions about n=0 and
combining terms of equal powers. Clearly, such obtained wu,’s in this expansion will
only depend on the derivatives of ¢ at ze™!; meaning that u,(x,t) only depends on the
behaviors of ¢ inside the ball with radius |z|, whereas for any z, u(x,t) depends on the
values of ¢ in the whole space. The formal series expansion is like the Taylor series
of the function u(z,t) with respect to 7. As known, in general one can not expect the
Taylor series to converge to the original function unless the function is analytic, which
exactly resembles the difference between the solution of (1.6) and the truncated formal
series expansion (1.12): the latter maintains only the barely minimum local information
in the diffusion approximation for characterizing the asymptotic distributional behavior
of the dynamics of SGD (1.4).

Full details of our theoretical framework can be found in Section 2 and the appen-
dices.

1.3. Outline. In the remainder of this paper, we present our main theorems
and main proofs in Section 2, and validate our theory with numerical experiments in
Section 3. Technical lemmas and auxiliary results are deferred to the appendices. We
conclude this paper and propose future directions in Section 4.

2. Main results
We begin by stating the assumption that will be used throughout this paper (recall
that Z is the set of all possible values of the random parameters ).

ASSUMPTION 2.1.  Without loss of generality, assume f has a local minimum at the

origin x, =0. Gradients of the random functions { f(-;€) € C*(R%) | €E} provide unbi-

ased estimates for the gradient of f, i.e., B¢ [V f (2;€)]=V f (x) for all x € RY. Moreover,

we assume the following hold for the random functions. There exists Ry >0 such that

(1) Each random function f(-€) is y-strongly convez in B(z.,Ry), i.e., f(-;€) — 37| ||?
is convez for all € =;

(2) The random gradients at x,. =0 are bounded:

sngVf(O;ﬁ)ll <b<oo. (2.1)
for some b>0 and more over
160
Ry >—=:Ry. 2.2
1 3 0 (2.2)

Though our assumption on the individual f(-;£)’s appears to be strong, it is not
particularly restrictive for the most commonly encountered scenario of SGD applica-
tion where each random function f(-;€) is constructed from the same loss function
loss(ye,g(ze)) =Lo(2¢,y¢), and the only source of randomness is in the random data
(z¢,ye) sampled from an unknown data distribution. In this case, Assumption 2.1 can
be stated just once for the loss function, as done in [40]. Such an assumption on the
individual summands in the empirical loss function has also appeared previously in
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Markov-chain-based studies of stochastic gradient descent algorithms, e.g. Assump-
tion A4 in [16]. The boundedness assumption (2.1) is obviously satisfied if the loss
function fy (z;,y;) is bounded at =0 for all data (z;,y;).

In the remainder of this section, we divide our exposition of the main results into two
parts. Estimates establishing the exponential convergence of the coefficient functions
of the formal series expansion appear in Section 2.1, and their applications to studying
the asymptotic distributional behavior of SGD iterates appear in Section 2.2.

2.1. Formal series expansion. Under the local strong convexity assumption in
Assumption 2.1, the following two lemmas can be easily established. We defer the proofs
to Appendix A. In particular, the convergence in Wasserstein-2 distance in Lemma 2.2
is well-known (see, e.g., Proposition 1 in [16]); we include a simple proof in Appendix A
for completeness. In the rest of this paper, for any R>0, we denote B(0,R) for the
Euclidean ball of radius R centered at the origin (which is also the global minimum of
f by Assumption 2.1).

LEMMA 2.1.  Suppose Assumption 2.1 holds, and denote Ry=16b/3~. If R€ (Ro,R1],
set

[ 3R 3yRY/S-2R
o= 27 8b" 29DR b2

Then for any n<ng and Xo=xz € B(0,R), we have X,, € B(0,R) for all n>0. In other
words, under these assumptions the sequence generated by the SGD is uniformly bounded
in both n and &.

LEMMA 2.2. Suppose Assumption 2.1 holds, and let p, denote the law of the
n'" iterate X, of SGD (1.4). Assume suppuoC B(0,R) with R€ (Ro,R1] and denote
L=supgsup,<r||V>f(x:€)|, where (V2 f (@:8)|| is the spectral norm (largest singular
value) of the Hessian matriz V2 f (z;€). Then, when 1 is sufficiently small, ., converges
to a probability measure ™ under the Wasserstein-2 norm (Wa-norm) at exponential rate

W2 (/”'Tuﬂ-) S Cpn

for p=(1—2yn+n>L)*/2.
p yn+n

REMARK 2.1. Clearly, for different local minima around which the loss functions are
locally strongly convex, the probability measure m will be different. Since the SDEs
in diffusion approximation have a nonzero transition probability connecting any two
points in space, the diffusion approximation cannot be uniform in time for such globally
nonconvez cases. Even for such globally nonconvex loss functions, our theory indicates
that the local information of diffusion approximation is enough to capture the long-time
behavior of SGD near the local minimum. To obtain global diffusion approximation for
such nonconvex cases, one has to modify the values of the loss function outside the
region where SGD can see.

We define the S(™) operator by

(5™ ) (z):=E, [w(Xn)]:Adw(y)uTL(dy)~ (2.3)
Fixing any smooth test function ¢, we denote

U™ (z):=8Mp(x). (2.4)
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We know from [20] that S is L>-nonexpansive, and that {S(} is a semi-group gener-
ated by S such that

(M =8":=508...08 (n copies). (2.5)

Since convergence in Wasserstein distance implies weak convergence, Lemma 2.2
implies

lim U”:/ wdm. (2.6)
Rd

n—oo

However, this does not provide much precise and/or quantitative information regarding
how U™ converges to fRdgpdﬂ. An important goal of this paper is to shed new lights
on the dynamics of p, as n—oo. Within the diffusion approximation framework, it
can be shown (see, e.g., [20]) that the semi-group evolution U™ admits a weak second
order diffusion approzimation over a finite time interval [0,7], in the sense that for all
sufficiently smooth ¢ there holds

sup [|U™ (+) —u(-,nn)|| g < C(T,0,n0)n* (2.7)
n<T/n

for all n<mno, where 1o >0 is a constant, and u(x,t)=E;[¢(X(t))] is the solution of
the backward Kolmogorov Equation (1.6). Roughly speaking, SDE (1.5) can be re-
garded as the weak approximation of the SGD (1.4) over any finite time interval [0,T].
Unfortunately, the validity of this approximation for infinite time (7T'— c0) is unclear.
For nonconvex objective functions, it is known that the approximation can break down
quickly as T'— 0o. One obvious example is the situation described in Remark 2.1. For
globally and strongly convex objective functions (which generate confining dynamics
for SGD, according to Lemma 2.1), the validity of long-time diffusion approximation
is still in doubt due to the unboundedness diffusivity encoded in Y. As motivated in
Section 1.2, we will switch gears and use a truncated formal series (1.12) in place of the
solution u of (1.6) to approximate U™, for all arbitrarily large n > 0.

Before stating the main technical result concerning the exponential convergence of
the u,’s in the formal asymptotic expansion, we introduce another notation to simplify
the exposition and proof: denote

Ik:{‘]:(jlaj27"'7jk) : 1§jk Sd}
For J € I}, we denote

o’ u:=0j,...0;,u.

We write Jy <J if 87w is a partial derivative of 870w, and Jy =J —J; if 87 =970971.

REMARK 2.2. The reason that we adopt the notation 9”7 instead of the standard
multi-index notation 9% where a=(aj,...,aq) with a3 +...+ag=Fk is mainly for the
sake of clarity and simplicity of exposition. First, this convention is widely used for
tensor analysis in physics and engineering. More importantly, in Appendix B where we
prove Theorem 2.1, >~ nis 9¢(07u)? naturally has a quadratic form associated with
the Hessian matrix V2 f so that we can make use of the strong convexity. If we use 9%
notation, we will have to multiply some weight factors w, such that Z|a\: L WaOp(0%u)?
has the desired quadratic form.
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We are now ready to present our main estimates for the exponential rate of decay
for the coefficient functions in the formal series expansion (1.7). We will use P to denote
a generic polynomial whose concrete form may change from line to line. The number
of arguments for the polynomials will also be clear in the context, which we will not
emphasize.

THEOREM 2.1.  Assume Assumption 2.1 holds, n<ng and R€ (Ry,R1], for Ry>0,
Ry, >0 and 19 >0 defined as in Lemma 2.1. Recall that x* =0 is the unique minimum

of f.
(i) For an arbitrary test function ¢ € C1(R?), ug satisfies

sup  |ug(z,t) —p(0)| < Rll@llcr(o,rye” " (2.8)
z€B(0,R)

In addition, if o€ C*(B(0,R)) and f € C¥*1(B(0,R)) for some integer k> 1, then

sup sup 107 uo(w,t)| < P(Illcx (o my o o ) e (2:9)
JeI,z€B(0,R)

(ii) For any n>1, if the test function € C?"*1(B(0,R)) and f€C?"*2(B(0,R)),
then for any v <7,

sup  |un (2,t) — @n|
2€B(0,R)

SP(H‘P”C%H(B(O,R))a||f||C2"+2(B(O,R))>HZHC?"*(B(O,R)))6_’7/7:’ (2.10)
where
@n::/ Loun—1(0,s)ds. (2.11)
0
In addition, if o € C**2"(B(0,R)) and f € Ck¥T1+2"(B(0,R)) for some k> 1, then
for any v <7,

sup  sup |07y, (2,t)|
JelxzeB(0,R)

SP(||$0||ck+2n(B(o,R)),||f||cfc+1+2n(B(o,R))7||EHckﬂnfz(B(o,R)))6ﬂ (212

The proof of Theorem 2.1 is quite technical; we defer full details to Appendix B.
We state an immediate corollary of Theorem 2.1 to close this subsection.

COROLLARY 2.1. Under the same assumptions as in Theorem 2.1, the truncated
formal series u™ defined in (1.12) “approzimately satisfies” the backward Equation (1.6)
in the sense that

AulN = (Lq +7]£2)uN—77N+1£2uN. (2.13)

Consequently, if o€ C*+2N(B(0,R)) and f € C?**+1+2N(B(0,R)) for some k>1, we
have

sup |OFulN — (L1 +nLy)*uN| <C(N,R)e™ /2N +1 (2.14)
z€B(0,R)
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where C(N,R) = QN x <||<P||C%+2N(B(0,R))v [fllc2r1+2v (B0,R))» ||2HC%(B(0,R))) for some
polynomial Qn .

It is clear from Theorem 2.1 that all the coefficient functions w, (x,t) depend only
on the information of f and ¥ inside the ball B(0, ||z||), in the sense that the bound does
not change if we modify the values of ¢, f, and a outside B(0,||z|). Thus u, reflects
the “local information” of w. This is in stark contrast with the solution of (1.6) at z,
which inevitably depends on the values of ¢ outside B(0,||z||) due to the parabolicity
of the second order PDE (1.6). As explained in Section 1.2, this is due to the fact that
the u, (x,t)’s are essentially the “Taylor expansion coefficients” of u with respect to
the step size. This is also the reason that we referred to (1.7) as only a formal series
expansion: in general the Taylor series need not converge to the original function. See
also the Ornstein—Uhlenbeck process example in Section 1.2 for a concrete example.

2.2. Dynamics of SGD with constant step size. In this subsection we
apply the results from Section 2.1 to study the asymptotic distributional behavior of
the SGD dynamics (1.4). Throughout the rest of this subsection, we always assume
that X, € B(0,R) and R satisfies the condition of Lemma 2.1. The confining nature of
the dynamics allows us to choose very general functions as test functions, e.g., smooth
functions that grow exponentially as ||x|| — oo, for the weak approximation results to
hold. This is because we can always modify the part of the test function outside of
B(0,R). More precisely, we have

LEMMA 2.3. Under Assumption 2.1, given any test function ¢ € C*(R?) for some
k€N, we can choose ¢ € CF (Rd) compactly supported such that

8llcrmey < Cllellor (Bo,r))
and
Ey [p(Xn)] =E: [¢(Xn)], Vz € B(0,R).

Similarly, in the formal series expansion (1.7) for the diffusion approximation, replacing
© with ¢ does not change any of the coefficient functions ue(z,t),x € B(0,R),£>0.

Lemma 2.3 is a simple consequence of transport Equations (1.10)-(1.11). Notably,
we emphasize again that the locality of the coefficient functions wg(z,t) is in stark
contrast with the solution of the backward Kolmogorov Equation (1.6), since (1.6) has
diffusion effects which are global. Lemma 2.3 indicates we can focus on test functions
compactly supported near the local minimum we care about. The main result of this
paper is the following.

THEOREM 2.2.  Assume Assumption 2.1 holds, n<ng and R€ (Ry,R1], for Ry>0,
Ry >0 and no >0 defined as in Lemma 2.1. If f(-;€) € CT(B(0,R)) and ¢ € C®(B(0,R)),
then u =ug+nuy approzimates the dynamics of SGD (1.4) with weak second order, in
the sense that there exists a positive constant C (i, f,R) independent of n such that

sup  |E, [0 (Xn)]—u' (z,nn)| < Cle, f,R)7*. (2.15)
2€B(0,R)

Proof. By Lemma 2.3, we can assume without loss of generality that ¢ is com-
pactly supported and |[¢||crgay < Crll@llcr (0, r)) for sufficiently large k. Let us recall
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the notation U"(z) =E, [¢(X,)] and that S: L> (R%) — L*> (R?) forms the semi-group
S(n) = 8™ Thus,

U™ (2) =E(U" (z =V f(2;€))) = SU" ().

Noticing that U™ (z) =S"¢(z) and p(z) =u™ (z,0), by a telescoping sum we have

n

U™ () =™ (a,nm) =) 8" (Su™ (x,(j— 1)n) —u™ (2, jn)).

j=1

By the fact that S is L* nonexpansive,
U™ (@) =™ (z,nm) | <Y [[SuN (2, (= 1)) —u™ (@, jm) || e - (2.16)

We fix N =1 and for the sake of convenience, we introduce

tj=jn. (2.17)

By Corollary 2.1, it holds for ¢t € [t;_1,t;] that

t t
ul(x,t):ul(x,tj_l)—l-/ (L4 +77E2)u1(a:,s)ds—772/ Louy(z,s)ds. (2.18)
ti_1 t;

J—

Substituting this expression of u! into the right-hand side (and repeatedly for some
terms), one has

@tj1) + (E—t") Lo (,tj1) +n(t —t") Loul (2,851)

(t—t")2LTu" (2,t 4 +77/ / (Lo(L1+nL2)+ L1 Lo)ut (z,7)dTds

tj1Jti 1

/ / L2(Ly4+nLy)ut dzdrds —n / Louyds
ti—1Jtj1 -1

7772/ / (L14nL2)Lourdrds —n / / / £2£2u1 dzdrds. (2.19)
ti 1

Hence,

ul (z,t) =u'(
Ll
2

[ (. n) =z, (G = D) = (L1 o)t (2, (= D) — 2Lt (2, (G~ )

4
S (Z sup <81u1|+|afu1|>>- (2.20)
Eltj—1,t;] IZl:EGB(O,R)

By Theorem 2.1,

2
! (. gn) — ! (G = D)) = (a4 nlo)u’ (2, (G = D) = T-Lu! (. (G~ D)
C(f,o, R)nPe 70D/, (2.21)



174 UNIFORM-IN-TIME WEAK ERROR FOR SGD VIA DIFFUSION APPROXIMATION

In the meanwhile, applying Taylor expansion to
Sul(z,(j —1)n) =E [u*(z —nV f(z,£)),(j —1)n] and applying Theorem 2.1 gives

Su' (2, (= 1)n) —u' (z,(j = 1)) = (L1 +nLo)u’ (z,(j — 1)) — %213113(9?7 (G=1)n)
<C(fy,R)n’e 10~ 1n/2, (2.22)
Combining (2.21) and (2.22), we have
|Su' (2, (j —1)n) —u' (2, jn)| < C(f,0, Ry’ "0~ D1/2
and thus the right-hand size of (2.16) can be further bounded by
U™ (&) = ' (2, nm)| < C(f, 0, R)n*

for some positive constant C(f,, R) independent of n. This completes the proof. ]

The key contribution of Theorem 2.2 is the extension of the range of applicability
of diffusion approximation (2.7) from finite time interval [0,7] to infinite time. A di-
rect consequence is the following description of the “weak expansion” of the stationary
distribution of the dynamics (1.4).

COROLLARY 2.2. Under the same conditions as in Theorem 2.2, we have for all
nz %log(l/n) that

sup  [Eqp(Xn)—0(0)[= sup [U"(z)—¢(0)[<C(p, [, R)n
2€B(0,R) 2€B(0,R)

for some positive constant C (o, f,R). Moreover, the probability measure in Lemma 2.2
satisfies

/Rﬂdﬂfso(()) — 1| <Cn?,

where @1 =limy_ oo ur(z,t) = fooo Loug(0,5)ds is independent of x.

The conclusion follows immediately from noting that, for n >n=tlog(n=1),

|u' (z,nm) —0(0)] = [ug (z,nm) +nuy (z,n1) — p(0)| < C(f, 0, R)1.

In particular, if we choose ¢p= f, Corollary 2.2 tells us that SGD descends the value of
a strongly convex objective function to an O(n) neighborhood of the global minimum
in only O(nillog(nfl)) time. Measured in the time scale of diffusion approximation,
where t =n7 in u! (x,nn), this is equivalent to saying that the SGD dynamics reduces the
objective value to O(n) away from the global minimum within time nn=0 (log(1/7)),
which is exponentially fast, as well known.

At last, we remark that if Xy starts with a measure g instead of Xg=ux, then
S (uo+nu1)(t,z)po(dz) will approximate Ep(X,,) uniformly in time. We may further
rewrite the quantity as

[ wotet+mam(n = [ el tmd).  @23)

Rd

with v, respectively satisfying (see Appendix C for a formal derivation):

8tV0—V'(VfI/O):O, Vo(O):/J,()7 (224)
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and
1 ) 1
(9tV1 -V (nyl) = ZV . (VHVfH Vo) + §8ij(§]ijuo), Vl(O) =0. (225)
Theorem 2.2 then implies that v! := vy +nvy or % approximates the distribution

of X,, with second weak order, where M (v) means the total mass of v:

M(v) ::/Rd dv.

REMARK 2.3. The weak order of approximation O (172) in Theorem 2.2 is optimal in
the sense that no higher order approximation error can be achieved by choosing N > 1 in
(1.12), although the formal truncated series u" may better approximate the Kolmogorov
Equation (1.6). This is because the diffusion approximation itself is only a weak second
order approximation for SGD [20, Theorem 2.2]. Higher order approximation for the
SGD dynamics requires higher derivatives of w in the PDE (1.6), but it no longer
describes a diffusion process (solutions of It6 equations).

3. Numerical experiments

In this section we demonstrate the approximation power of the truncated formal
series (1.12) with numerical experiments for some one-dimensional (d=1) examples. We
consider SGD schemes

fae)=1 @)+ 50, weR (31)

where f:R—R is locally strongly convex near one of its local minima, and £ is a
Rademacher random variable that assigns equal probability 1/2 to both —1 and +1.
Following the definitions in (1.8), we have explicitly

Li=—f"(z)0s, ,Cg:—%f’(x)f”(x)@x+é8§. (3.2)

The first two terms in the formal series expansion (1.7) can be determined by solving
the two first order PDEs sequentially: First solve

Oyuo+ [ (2) Opug (z,t) =0
uo(w,0) = p(2) 3.3)
to get

uo (,t) = ¢ (0 (2,1)), (3.4)

where z (x,t) is the intercept of the characteristic line passing through (x,t) eR x Ry.
We then use (3.4) to solve

1 1
Orur + f' () Opun (,t) = —§f’ () f" () Opuo + gaiuo
up(2,0)=0

(3.5)

which gives

f'(x)

uy (z,t) = — %f/ (o () ¢ (o (gc’t))logm
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1, " / ' 4
+§f (l‘O(xat))f (mO(xat))@ ('rO(x’t))/zo(m,t) [fl(g)ﬁ

1, , 1 o1
*Ef( 0( at))w( 0( 7t)){[f/(f£0(f£,t))]2 [f’(l‘)]Q}

1 2 ¢ dg
31 @) (o et) [ | (36)
8 o) [ (€))°
Details of this computation can be found in Appendix D.
ExXAMPLE 3.1. We consider a simple example
1, 1
f(a:)—Eac — 5 (3.7)

The stochastic gradient updates are
n
Xn+1 =X, _nvf(Xn§§n) = (1 _n)Xn - 5 (1 _fn)

where {&,},,~¢ are i.i.d. standard Rademacher random variables. The limiting distri-

bution of this Markov chain is identical to that of Xm:nZ;.;o@j (1—n)? where the
0;’s are i.i.d. Bernoulli(1/2) random variables. The infinite series converges whenever
n€(0,1), but the stationary distribution is drastically different for different values of
n [41, §2.5]: If n=1/2, X is uniformly distributed on [0,1]; if 1/2<n<1, the distri-
bution of X is singular (supported on a set of Lebesgue measure 0); if 0<n<1/2, for
some values of n the stationary distribution is singular, but it has also been established
that for almost all n€(0,1/2) the stationary distribution is absolutely continuous. We
are most interested in the regime n € (0,1/2) where 1 is small.

We choose several different test functions ¢ to verify the order of the weak approzi-
mation error between U™ (x) =K, [¢(X,)] and u' =ug+nu; established in Theorem 2.2.
The results are summarized in Figure 3.1 and Figure 3.2.

2 .
o(z) = 10z* () = e
102
— —slope = 2.11 ; — —slope = 2.14
0 -
e e
- -
- -
= < = -
= 2 = -
- S -
s 4 R 4
8 Pl 5 e
= 4 = Pid
3 0 - 3 ~
| L P
—_ P — “
B - B e
= . S .
£ - £
S - S e
= - = -
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- -
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0 //’ -
- "
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0
o 2 = 2 o pes P »
Step Size n Step Size n

F1G. 3.1. Log-log plots numerically verifying the weak second order diffusion approximation estab-
lished in Theorem 2.2, using example (3.7) and two different test functions ¢. For each ¢, we fic =1
and nn=>5, then let n vary in {2_4,2_3,2_2,2_1,20}‘ We use a Monte—Carlo simulation to evaluate
U™ (x) =By [ (Xn)], by averaging ¢ (X,) over 103 independent trajectories starting from Xo==z. The
slopes of the fitting lines are close to 2, which justify the second order approximation established in
Theorem 2.2.

EXAMPLE 3.2. We now consider a more complicated example in which the gradient V f
is monlinear. Set

f(z)= %:ﬂ +0.123 (3.8)
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FiG. 3.2. Visual comparison of u'(z,nn) and U™ (x) for ¢ (z)=sin(z) over (z,t) € [~4,4] x [0,2],
with n=0.01. Each U™ (x) is evaluated over 10* independent trajectories generated from the gradient
dynamics associated with (3.7).

o(z) = 102>

— — slope = 2.28

— — slope = 1.99 i

[U" () = u' (2, nn)|
AN
\
U™ (z) — ul(z,nn)|
AN

> o)
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Fic. 3.3. Log-log plots numerically verifying the weak second order diffusion approximation estab-
lished in Theorem 2.2, using example (3.8) and two different test functions ¢. For each ¢, we fit x=1
and nn=>5, then let n vary in {274,273,272, 271 20}, We use a Monte—Carlo simulation to evaluate
U™ (z) =Eg [p(Xn)], by averaging »(Xn) over 108 independent trajectories starting from Xo=1z. The
slopes of the fitting lines are close to 2, which justify the second order approximation established in
Theorem 2.2.

and the stochastic gradient updates can be written as
X1 =X =0V (Xuia) = (1=1) X~ 0.39X2 = ¢

where {&,},,~¢ are i.i.d. standard Rademacher random variables. We choose the same
test functions ¢ as in Evample 3.1. The results are summarized in Figure 3.5.

4. Conclusion

In this paper, we establish uniform-in-time weak error bounds for diffusion approxi-
mation of SGD algorithms, under the local strong convexity assumption for the objective
functions. To this end, we adapted the idea of backward error analysis in numerical
SDEs, and used a truncated formal series expansion with respect to the constant step
size for the backward Kolmogorov equation associated with the modified SDE—instead
of the solution itself—to approximate the SGD iterates for arbitrarily long time. This
enables us to draw quantitative conclusions for the weak asymptotic behavior of the
SGD iterates from estimates of the coefficient functions of the truncated formal ex-
pansion, which is the first result of this type for diffusion-approximation-based SGD
analysis. We believe the tools developed in this paper have great potential in gener-
alizing the range of applicability of diffusion approximation to many other stochastic
optimization algorithms in data science, such as SGD with non-constant step size and
momentum-based acceleration techniques.
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Appendix A. Proofs of technical lemmas in Section 2.1.
Proof. (Proof of Lemma 2.1.) By (1.4), we have

X * = 1 X012 =20 (V£ (X0:6) = VF(05€)) - X 402 [V F (X3 )| — 20V £(0:€) - X,
<[ Xull* =291 X0 |* 407 (0471 Xn])> =20V £(0:€) - X, (A1)
where we applied the strong convexity of f(+;€) in the last inequality and the fact that
IVf (X3 &) S IV F(0:60) [+ 7| X0 ] Sb+7[X0 ]
When [| X, || <&, (A.1) can be further controlled by
2 °R?
4

R2
X1 [)* < (1= 2ym) - +0°6 +° bR+ +nbR.

Noting that —%’mRQ —&—772@ < —%’ynRz, we find

R? 3R
[ X ])? < = +77IR(—§ +nb) +nb(nb+ R)

R2 3R 11R __,
STt <

When £ <|X,|<R, we have

R2
X1 I” < |1 Xnll? + (—2yn+129%) - = +29bRy? +17°b* + 2nbR

4
3vR?
< (Xl 4+ (20— Z (29D RAD) <| X

Thus the conclusion follows. O

Proof. (Proof of Lemma 2.2.) Consider two copies of the chain
Yn+1:Yn7nvf(Ynafn)a Zn+1:Zn7nvf(va§n) (AQ)

The two chains are coupled through the random variable &,. This means that they pick
the same function to compute the gradient at every iteration n. Meanwhile, each chain
has the same asymptotic distributional behavior as the SGD. We then have

E|[|Yor1 = Zural* =E Yo = Zall* = 20E (Yo = Zn) - (Vf (Yas6n) = V. (Z0,60))]

For the second term, we use conditional expectation to deduce that

E[(Ya—2n)- (VI (Y0,&n) =V (Zn:&n))]
E[(Y —Z ) ]E[vf(ynagn)_Vf(Znagn)‘Ym;Zm7m§n”
E

(Y —2Zn)- (Vf(Yn)_vf(Zn))]Z’VEHYn_Znuz-
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The last term is upper bounded by

PEIVS (Ybn) =V (Znsn) |* <0° LE|Y,, — Zuf.
Therefore, it follows that

E|[Yn41— Zni1l® < (1= 2yn+0° L)E|| Y, — Zn[.

Now, if n<2vy/L?, then 0<1—2yn+n?L%?<1. We claim that under this choice of 7,
the law of X, is a Cauchy sequence under the Wy norm. In fact, for any € >0, we can
pick m >0 such that (2R)?(1—2yn+n2L?)™ < €2 /4. For n>m, we pick Yy to have the
same distribution as Xy and Zy to have the same distribution as X,,_,,. Then, Y,, has
the same distribution as X, while Z,, has the same distribution as X,,. Moreover,

E|[Yin — Zm|” < (1 =29 +72L?)™E||Yo — Zo||” < €% /4. (A3)

It follows that
1/2
(EYim—Znl?) "~ <e/2

We recall that the Wasserstein-2 distance is given by
1/2
Walp)=(_int [ ) (A1)
YEI(u,v) JRd xRd

where II(u, ) means the set of all the joint distributions v whose marginal distributions
are p and v respectively. Since the joint distribution of (Y, Zy,) is in II(pp, ptm), one
finds Wa(pin, tm) < €/2. This means that u, is a Cauchy sequence, and it holds for some
probability distribution 7 that

lim Wy (g, m)=0.

n—00

Finally, we obtain from (A.3) that

Wa (s ) < (1= 29+ 0> L)\ E Yo — Zo||* < C(1—2yn+3>L)™/?,

where C is independent of m,n (the second moment of X, _,, is uniformly bounded).
The conclusion follows from taking the limit n — co. |

Appendix B. Proof of the exponential decay estimates.

Proof. (Proof of Theorem 2.1.) The genesis of the exponential decay rates of
the uy’s can be traced back to the following simple yet important observation: Suppose
y(t) satisfies

J=-Vf(y) (B.1)
with y(0) ==, then ||y(¢)| is a non-increasing function and
ly@)l < lly(0) ] e~ (B-2)

We now begin our proof. First by the method of characteristics [42, Theorem 5.34],
one notices that ug satisfies

Opup+V f(x)-Vug=0, (B.3)
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uo(z,0) = p(x). (B.4)

Let y be the function in (B.1) with y(0) =2 € B(0,R). And for any given T >0, ¢t €[0,T7,
define z(t):=y(T' —t). Then it follows that

uo(z(t),t) = ¢(2(0)), vt€[0,T7].
Consequently, we have ug(z,t) =¢(y(t)), Vt >0. Hence,

uo(x,t) — 0(0)| < IVl Lo ((0,r) V()| < Rll@llcr (B0, rye "
For the estimate of derivatives, we use induction. When k=1, following from Equa-
tions (B.3) and (B.4), we have
0 |Vuo|® = —2Vuo- V2 f-Vug —Vf-V||Vu|>  and  ||Vue(z,0)|* = [ Ve(z)|.
Since f is strongly convex,
9lIVuo|l” < =27 Vuo |* = V£ -V [ Vuo|*. (B.5)

Recall y(t) which was defined in equation (B.1) and z(¢f)=y(T'—t). By chain rule,
equation (B.5) yields that 4 ||Vuo(z(t),t)]|* < —2v||Vuo(z(t),t)||?, which by Gronwall’s
inequality further yields

Vo (2(t),6)| < €™ [[Vuo(2(0),0) e~ [[Vo(2(0))], Vt€[0,T].
This then yields

IVu0(z, Dl <~ [y < 170l e o, mpe ™"
<lellcrso,rye™ ", Vt>0,2€ B(0,R).

Hence inequality (2.9) is verified for k=1. By induction, we assume for any k<m,
inequality (2.9) holds. Next we study the case for k=m+1. For J € I,, 41, we differen-
tiate equation (B.3) by 97 and get 0;07ug+0”(Vf-Vug)=0. Then multiplying both
sides by 07uy and summing over all J € I,,,;1 gives

d
atq):—2 Z Za']’ll()a'](aifaiuo)u

JE€IL iy i=1

where v=3 ",/ (07up)?. We note that the right-hand side can be splitted into the
sum of three terms according to the general Leibniz rule in calculus. And then the
above equation becomes

d
o< =2n+1)yw-Vf-Vo-2>" " 0wy > 070:f0" 0. (B.6)

i=1 JE€Im41 Jo<J,|Jo|>2

Here is a brief explanation of the above inequality (B.6). For ke{l,---,m+1}, jr €
{1,---,d}, putting the first order derivative 9;, on 0;f and 9’ ~{7*} on 9;uq, we would
obtain

m-+1 d

—2 Z Z Z 8Ju08jk8if8"’{j’“}8iuo,

J€lm41 k=1 i,jrp=1
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which is a quadratic form associated with the Hessian matrix V2f. This also explains
why we do not use the traditional definition of multi-index in our paper (the question
related to Remark 2.2). By the strong convexity of f, the above term is bounded above
by

m—+1 d

=2 D D0 D 07 o),

J€Imi1 k=1 ijk=1

which can be further bounded above by —2(m+1)yv. Putting all the J derivatives on
O;ug yields the second term —V f-Vwv. For the third term, we only need to consider the
remaining terms due to the Leibniz rule. Hence the validity of (B.6) has been proved.

For the last term in (B.6), we use Young’s inequality and the induction assumption,
then derive that

O < —2myv—Vf- VU+P(||90”C"”(B(O,R))a ||f\|cw+2(3(o,3))) e 2"

We also note that |v(x,0)| <||¢llcm+1(B0,r)), for € B(0,R). Hence we get

v(2(1),) SP(H@HCmH(B(mR))a||f||0m+2(3(o7R))>672%7 vte[0,77].

This then gives

v(z,t) < P(||<P||Cm+1 (B(0,R))> \|f||cm+2(3(o,R))) e 2", vt >0.

Hence result (2.9) is proved.
Now we start to study w,. The equation which u,, satisfies is the following

6tun + Vf -Vu, = £2un717
U (x,0)=0.

Based on this, we could write down a formula for wu,,

un(x,t):/o Lotn_1(y(s),t—s)ds. (B.7)

Here we recall that y satisfies Equations (B.1) with y(0) =z € B(0,R) and thus (B.2).
Consider n=1. For convenience, we denote

g(z,t) = Loug(z,t).

Intuitively, the limiting behavior of u (z,t) is determined by g(0,t). We now verify this.
Recalling the definition of the operator Lo (1.8), we have
sup (|g(z,t)[+|Vg(z,t)]) < O(”f”Cf’(B(O,R)) + ||E||01(B(0,R))) lluollcs(B(o,r))
2€B(0,R)
et

(B.8)

SP(”‘JOHCB(B(O,R))v||f||C4(B(O,R))7||E||Cl(B(O,R)))

where the last inequality followed from (2.9). It follows that sup,cp (o, g)|u1(2,?)] is
uniformly bounded in ¢. Moreover, we further split u; as

ul(m,t)z/o g(O,t—s)ds—i—/O (9(y(s),t—s)—g(0,t—s))ds. (B.9)
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The second term is controlled directly by (B.8) as

/(g(y(s)i—s)—g(ovt—s))ds S/ IVg(-st =)l Lo (B0, r)) ¥ (5)| ds
0 0

t

SC/ e V(t=8) =75 g
0

=Cte < C’e*'ylt,

where C:P(|\<P||CS(B(0,R))7||fHC4(B(0,R))>HZHCl(B(o,R))) for some polynomial P and

the last inequality followed from te=7t < C/(')e~7"t for any +' < 7.
Regarding the first term in (B.8), we know that it converges to

(oo}
(pl:/ g(O,S)dS,
0

with the exponential rate. Hence, overall, we have

[ui (z,t) — 1 SP(HSOHC?’(B(O,R))a I fllcBo,r)) ||Z||01(B(O,R))>e_’y/t~ (B.10)
For the derivatives of u;, we notice that
d
04 [|Vus[|* = =2Vuy - V2f-Vuy = V-V [V [|* 42 951105 (Laug). (B.11)
j=1

Also we notice that

Slzp )|3j(£2uo(=’fat))| < C(||f||c3(B(o,R)) + HE”Cl(B(O,R))) luollcs (B0, r))-
z€B(0,R

We use this in (B.11), and for the first term we use strong convexity of f as well, then
get

0, | Vur|? < = 29| Vur |* = V £ -V | Vg ||

d
+2 " [0ju P(H@Hcs(B(o,R))a||f||c4(B(o,R))7Hzﬂcl(B(o,R)))eﬂt-

j=1

We then apply Young’s inequality to further get that, for any v’ <, there exists a
polynomial P in [|¢llcs(s(o,r)), | fllca(so,r)) and [Ellc1(po,r)) such that

0| Vur|® < =29 |V |* =V f -V [[Vua ||
JrP(||90||C3(153(0,R))7||f||c4(13(0,1:z))’||E||cl(B(o,R)))6*27?
Hence it holds that

sup |[|Vuy(x,t)]| < P<||<P||03(B(0,R))7 I fllcss ||E||01(B(O,R))) e 7, (B.12)
2€B(0,R)

For the higher derivatives of u;, the analysis goes similarly as that of uyg. We also
use induction here. Assume for any k<m, (2.12) holds. For k=m+1, we denote

w:ZJeIm+1(8Ju1)2 and get

d
Ow<—2m+1)yw—Vf-Vw-2> " Y 9wy > 970, f0" "o

i=1JEIm4+1 Jo<J,|Jo|>2
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+2 Z (07 u1)07 (Eguo)

J€lmin
< *2%)*Vf'Vw+P<||<P\|CWL+3(B(0,R)), ||f||Cm+4(B(O,R))7HZ||CW+1B(O,R))6727 ‘.
From this we get

sup  w(z,t) < P<||90||CM+3(B(0,R)), Il fllem+aBo,Rr))> HEHCMH(B(O,R)))672”’%-
z€B(0,R)
This shows that (2.12) is true for n=1, k=m+1. Hence (2.12) holds for all derivatives
of Uuy.
The analysis for n>2 is similar to the case n=1 and can be performed using
induction. This completes the proof. ]

Appendix C. Formal derivation of the equations of the measures. In this
section, we aim to derive the Equations (2.24)-(2.25) in a formal way. Observe that vy is
a probability measure so the equation of 1y can be derived from the empirical measure
+37,6(x— X;(t)) where each X; satisfies the transport Equation (B.1). However, this
cannot be generalized to the equation of v;. Hence we adopt another different formal
derivation as follows.

According to u(x,t) =E,p(X(t)), we expect up to be written as

uo(x,t) = /Rd o(y)Go(dy,t;x).

According to the definition of vy, one has

nlet) = [ Goltia)p(da).

and thus Go(dy,t;x) means the Green’s function for the evolution of vy with initial
condition X (0)=uz, or §(-—x). By the equation of ug(x,t), it is easy to find that Gy
satisfies

0hGo(- t;2)+V f(x) V.Go(-,t;2)=0. (C.1)

Due to the Markovian property of the dynamics, we can easily infer that the measure
1 satisfies

vo(t)= | Gol-t—siy)vo(dy;s) = T, wvo(+5). (C.2)
Rd

Here, It(g)s is the evolution operator. Using (C.1), one finds

0 | Go(-,t—s;z)vo(dx;s) +/ vo(dz;s)V f (x)- VIIt(E)Sﬁ(- —x)=0

R4 R4
or
on(t)~ [ V- (VHadass) )20, ~a) =0.
Rd
Since It(g)s is independent of z, the second term is then reduced to

- / Vo (VH@wo(dass) ) Z0,8( —2) = L2, / V.- (VI @nodais) )o(-—a)
=T V- (Vfro(9)).
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Taking ¢t — s, one obtains the equation for vy.
Similarly, let G1(-,;x) satisfy the following inhomogeneous equation

1 1
WG1(-,t;2)+V f(x) Vi Gi(-,t;x) :—ZV||Vf||2~V1G0(~,t;x)+§Tr(EVZGO(-,t;m)),

Gl(-,();x) =0.
(C.3)

Then, we have
ul(wvt)Z/Rdso(y)Gl(y,t;w)dy, (C.4)
and
Vl(-,t):/RdGl(-,t;m)uo(dx). (C.5)

By the linearity, one has
V1(~,t):/ Gy (- t—si2)vo(dz,s) + T 01 (-, 5). (C.6)
Rd

The first term arises from (C.5) with zero initial data while the second term is from
the homogeneous part with initial data v4(-,s). Setting t—t—s in (C.3), multiplying
vo(dz,s) and integrating, one has

Oy G1(-,t—s;2)v(dz,s) — g G1(t—s;2)V-(Vf(x)v(de,s))

R4

1 1

Clearly, the second term It(g)sz/l(',s) satisfies
T (1) = V- (VST (5)) =0.

Adding up the above two equations and taking ¢ — s yields
1 1
O —V - (V)= 1v.(V||Vf||2uo)+ 5aij(zijyo).

REMARK C.1. The generalization to v, for n>2 is more involved and the equation
for v, is similar to v1. The key relation is some analogue of (C.6), given by v, (-,t)=
S o) G-, t—8;@)Vp—m(da,s) due to linearity. (In fact, one may also expand the
Fokker-Planck equation for the diffusion approximation in terms of 7 to obtain the
equations for v,. However, this type of derivation does not give the inisight into the
dynamics.)

Appendix D. Computations for the numerical examples. In this appendix
we include detailed computations used in the numerical examples in Section 3, where
the domain is assumed to be one-dimensional (d=1). Note that ug is determined by
the initial value problem

Oyug + f (2) Opug (z,8) =0,

uo(x,0) =p(x). (D-1)
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The equation of the characteristic lines is
dz

P =f'(z(t) (D.2)
which gives
Cde(t) [T de
) f’(af(t))_/;m(m) () 0:3)

where xg=xq(x,t) is the intercept of the characteristic line passing through the point
(x,t) eRx R>q. Therefore,

uo (z,t) = (xo (x,t)). (D.4)
Using implicit differentiation rules, one can easily deduce from (D.3) that
"(zo(z,t
Oxo(z,t)=—f" (0 (2,1)), 0z%¢ (amt)zw
f'(x)
with which one easily verifies that (D.4) is the solution of the initial value problem

(D.1).
Furthermore, u; is determined by the initial value problem
Oyuy + f' (2) Opuy (m,t) = Loug (z,1),

up(2,0)=0. (D-3)

Without loss of generality, we will assume > = % which is the variance of a Bernoulli
random variable with parameter p=1/2. Using (D.4) and (1.8), we have

Lato (2,1) == 34" @) " (2)Dati (2,0) + 50Puo

t)
— %f’ (w0 (2,£)) ¢’ (w0 (,1)) £ (z”éa% [W

"(zo (z 2
a5 [P D oy )

in which the middle term in the right-hand side can be further expanded into

(@) f" (0 (2,1)) Qoo (2,) — f (w0 (2,1)) " ()
[f (2))?
I (o (&, ) 1" (o (1)) — f (2)]
[f ()

The equation of characteristic lines for (D.5) is the same as (D.3). Using the boundary
condition u; (z,0) =0, we have

_/tﬁzuo (z(t),t)dt
"(z0) ' (xo / f(x(t)dt+= f (zo)p (mo)/o f//(fﬁ/)(;él)/)(]g(t))dt

[EETD

£/ (o (0,1)

= 3¢/ (o (@,1)

) , dt
51 @l W/o @)

—(1) + (1) + (111),
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where we adopted the simplifying notation xg =z (x(t),t) for the constant along the
characteristic line z = (t). By means of (D.2), we can further simplify the three terms
on the right-hand side:

x

ar=—§f%xwg¥mm)/ ggkgf«gnm::—gf%xww%mwk%

)

(IH):f[f/(l'o)]ZgO//(xO)/ W

f' ()
f' (o)’

dg,

| =

Therefore,
f' (@)
f/ (1’0 (I,t))

f/(xo(a;t))¢/(xo(agt))J/m( t).f”<xofitzéii;.f"<f>(i

[f@dmﬂqu%“”»/ini;f

Alternatively, we can also write u; in the following equivalent form:
f' (@)
f/ (xo (I7t))

f’(xo (x,t))f”(CUO (x,t))@l(xo (xat))/i " [f’(j(lg)]g

I (o (z,t) ¢’ (z0 (x’t))/x( £) [JJ:'H((;)])Bd5

(2o (z 20" (z0 (z ’ de
[f(M,wnw<o<¢»LMmﬂﬁ@W
S
I/ (w0 (1))

f/(xO (x,t))f”(l‘O (x,t))@/(wo (-r7t))/r( 9 [f/if)]zi

&ﬂmmmdmuﬁ% T }

8
=
|
I

s ( (o (2,1)) @' (w0 (x,1))log

)

+
|~ ool N

§

+

U1 (.%',t) = f/ (l’o (33775))@/ (xO (.%',t))log

_|_

+
0| —= NI~ ol 0l ol N

f'(@o(2,1)) ¢ (20 (1)) log

_|_

[/ (zo ()] [f (2)]
d¢
[

1 2 r
—[f (o (z,t "(xo(x,t
5l o o) [
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