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ABSTRACT: Successful identification of complex odors by
sensor arrays remains a challenging problem. Herein, we
report robust, category-specific multiclass-time series classi-
fication using an array of 20 carbon nanotube-based chemical
sensors. We differentiate between samples of cheese, liquor,
and edible oil based on their odor. In a two-stage machine-
learning approach, we first obtain an optimal subset of sensors
specific to each category and then validate this subset using an
independent and expanded data set. We determined the
optimal selectors via independent selector classification
accuracy, as well as a combinatorial scan of all 4845 possible
four selector combinations. We performed sample classifica-
tion using two modelsa k-nearest neighbors model and a
random forest model trained on extracted features. This protocol led to high classification accuracy in the independent test sets
for five cheese and five liquor samples (accuracies of 91% and 78%, respectively) and only a slightly lower (73%) accuracy on a
five edible oil data set.

KEYWORDS: chemical sensor, sensor array, carbon nanotubes, electronic nose, authentication, time series classification,
feature selection, nearest neighbors

The three major functions of the human olfaction system
are related to social communication,1,2 avoidance of

environmental hazards,3 and ingestive behavior.4−6 Our ability
to successfully differentiate between stimuli in these
applications is enabled by more than 1000 distinct olfactory
receptors (ORs).7 Activation of an OR by an odorant
generates an electronic signal that is transmitted to the
brain.8 Each OR recognizes several odorant molecules, and
each odorant molecule is recognized by several distinct ORs.
The identification of a specific odorant molecule, or mixture
thereof, is confirmed by the activation of a specific
combination of ORs.8,9 Thus, the olfaction system of humans
and animals can identify complex mixtures of chemicals and
not just pure chemicals against an odorless background.
Array-based chemical sensors follow a similar biomimetic

approach. Detection of chemical inputs is achieved through a
combination of multiple sensing channels where each channel
responds to several analytes.10,11 Single-walled carbon nano-
tube (SWCNT) chemiresistors and carbon nanotube-based
electrochemical sensors have been shown to provide suitable
platforms for array-based detection of various gases.12 Several
sensor arrays comprising CNT-based sensing channels have
been used to discriminate between single volatile organic
compound (VOC) vapors,13−18 inorganic gases,19,20 and

biological samples.21−24 However, few reports have been
published on the differentiation between food samples, among
them are the determination of caffeine content in coffee,25 the
electrochemical detection and differentiation between rice
wines,26 electrochemical determination of capsaicin content of
hot sauces,27 and chemiresistive differentiation of liquors using
multiwalled CNT/polymer composites.28,29

Herein, we differentiate between complex odors using an
array of 20 SWCNT-based chemiresistive sensors (Figure 1).
As a proof-of-principle system, we investigated samples of
different food item categoriescheese, liquor, and edible oil.
The odor compounds of these food items include distinct
combinations of a multitude of sulfur compounds, alcohols,
ketones, aldehydes, esters, organic acids, alkanes, and aromatic
compounds.30−40 We strategically designed the sensor array to
include selectors that can interact with odor compounds
containing these functional groups. In addition to the choice of
selectors, a similarly sophisticated analysis of the sensing data is
necessary to enable successful differentiation.
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Previously, classification in gas sensing applications has been
performed by discriminant factor analysis (DFA) to diagnose
disease,22 principal component analysis (PCA) to differentiate
between VOCs,13 a neural network model to differentiate
between formaldehyde and ammonia gas,19 and a support
vector machine to differentiate between NO2, NH3, EtOH, and
acetone.41 These methods generally only use a limited number
of features from the sensing response (sometimes with
additional metadata concerning the specifics of the sensing
apparatus). In contrast, we use the entire time series of the
sensor response or a large set of diverse features extracted from
the exposure-recovery cycle to perform accurate classification.
Traditional time series classification has relied on nearest

neighbor approaches via either Euclidean or dynamic time
warping-based (a means of aligning time series) distance
comparisons used to calculate a similarity between two time
series.42−44 Similarly, time series decompositions, where the
data is represented as piecewise linear45 or piecewise
polynomial segments,46 as well as feature extraction
techniques, combined with more traditional machine learning
models like random forests (RFs) or support vector
machines47 have also been proposed. Lately, ensembles of
models have become a popular choice for high performance
time series classification leveraging potentially multiple
techniques with different models.48 Often, improvement over
the simple k-nearest neighbors algorithm (KNN) is difficult,
questioning the need for these highly sophisticated methods49

that often require larger training data sets. In this study, we
found a RF model trained on features extracted from the
sensing data (featurized-RF model, f-RF) to be a highly
accurate method for analyzing time series data of very similar
food samples. This model can classify samples of cheese,
liquor, and edible oil with up to 91% accuracy.

■ EXPERIMENTAL SECTION
Sensor Array. The sensing substrates are made of carbon-based

electrodes (1 mm gap width) on a polyimide support. One substrate
contains 16 individual working electrodes with a shared counter
electrode separated by a gap of 1 mm. The active material of the
sensor channels consists of SWCNTs as a transduction material and a
chemical selector (S1−S20) as a selective moiety. The active material
is deposited between the electrodes in a one- or two-step process. For
the one-step process, 1 μL of a dispersion of selectors S17, S18, or
S19 and SWCNTs in ortho-dichlorobenzene (o-DCB) was drop-
casted between the electrodes and dried in vacuo. For the two-step
process, 1 μL of a dispersion of SWCNT in o-DCB was drop-casted
between the electrodes and dried in vacuo, then 1 μL of a solution of
the selector S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14,
S15, S16, or S20 was drop-casted on top of the SWCNT layer and

again dried in vacuo. Chemical structures of the selectors and detailed
experimental procedures can be found in the Supporting Information,
and all solvents, concentrations, and dispersion parameters are listed
in Table S1.

Gas Sensing Data. During the gas sensing experiment, 0.100 V
was applied across the sensing electrodes and the resulting current
was measured as a function of time. All gas sensing data was collected
using air (approximately 40% relative humidity) as the carrier gas at a
flow rate of 100 mL/min. The sample gas was generated by heating
the food sample to 30−50 °C and collecting the headspace over the
sample at a distance of 3 cm. During the gas measurement, the active
material was exposed to the sample gas for 120 s, followed by a 600−
900 s recovery period under air flow.

Machine Learning Model Training. We used 300 s of sensing
data (120 s of exposure and 180 s of recovery) to train either a KNN
model (k = 1) that directly used the time series data or a f-RF (100
estimators) using features extracted via tsfresh. Tsfresh extracts 794
features ranging from the coefficients of a continuous wavelet
transform or fast Fourier transform to parameters like time series
length, mean, max, and median among many others.50 Data from each
selector were used to train individual models for classification using
Scikit-learn.51 The 20 selector-three-class models were trained with a
stringent 0.67: 0.33 train: test split, while the four selector-five-class
models were trained with a 0.80: 0.20 train: test split. The
combinatorial selector scan was performed on all 4845 possible
combinations of 4 out of 20 selectors. Final model accuracy was
assessed via a 50× repeated model training on randomly shuffled
train: test splits. Complete protocols for the computational analysis
and model building can be found in the Supporting Information.

■ RESULTS AND DISCUSSION
Collection of Sensing Data. To develop a sensing system

that can differentiate between complex organic odor mixtures,
the choice of selectors is critical. We assembled an array of 20
selectors including: transition metal complexes (S1, S2, S3, and
S4) to bind organic acids52 and sulfur-containing compounds,
ionic liquids (S5, S6, S7, and S8) to interact with ketones,
aldehydes, alkanes, and aromatic compounds;53 porous
polymers (S9, S10, S11, and S12) to sequester a large number
of organic vapors;54,55 cavitand molecules (S13, S14, S15, S16,
and S20) for detection of aromatic compounds and alcohols
with size exclusion properties;15,17 and metalloporphyrins (S17
and S18) to bind amines, alcohols, ketones, alkanes, and
aromatic compounds.13,56

The input data for our machine learning algorithms consist
of the chemiresistive responses of the active material to the
sample odor. We examined five categories of samples,
including cheeses (cheddar, cream cheese, Cambozola,
Mahoń, and pecorino), liquors (gin, tequila, rum, vodka, and
whiskey), and edible oils (canola, olive, coconut, toasted
sesame, and walnut oil). During the gas measurement, the
active materialSWCNT and selectorwas exposed to the
sample odor for 120 s, followed by a 600−900 s recovery
period under air flow. The response is recorded as the
conductance through the active material at a constant applied
voltage (0.100 V). Figure 2 shows the representative response
of average change in conductance normalized to the
conductance at the start of the exposure (ΔG/G0) for one
selector (S4) toward the odor of three different cheeses:
cheddar, Mahoń, and pecorino. The data used for classification
consists of all time points in the 300 s time period after the
start of the exposure (120 s of exposure, and 180 s of recovery,
purple shaded area in Figure 2).

Selector Analysis on Three-Class Data Sets. When
designing a sensor array, including sensor channels that have
insignificant signal or the same signal for all samples weakens

Figure 1. Schematic of sensing device with carbon-based electrodes
deposited on a polyimide substrate. The active layer of SWCNTs and
selectors is deposited between the electrodes. All 20 selectors are
listed in Table S1.
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the overall performance of the array. To ensure we only use
selectors that have high predictive performance, we identified
which of the 20 selectors demonstrates the highest accuracy in
differentiating between the food samples. For this, we collected
12 sets of sensing data for each one of the 20 selectors and for
three items from each category (2160 individual sensing
traces). To evaluate the classification utility of the selectors in
our sensor array, we built two models. The first model was the
f-RF model trained on a set of features extracted using the
tsfresh computational package50 from each selector time series.
The second model directly leverages the time-dependent
nature of the data via a KNN model for which a Euclidean
distance metric was used to measure time series similarity.
Importantly and in contrast to typical analyses, both models
rely on data from both the initial exposure and recovery time
period, as the curvature and absolute values for both of these
periods provides valuable time-based patterns. The models are
used to differentiate between three food items from each
category: for cheese, the classes include cheddar, Mahoń, and
pecorino; for liquor, the classes include rum, vodka, and
whiskey; and for edible oil, the classes include canola, olive,
and walnut.
Each of the 20 selectors was analyzed independently using

both models on held-out test sets; 67% of the collected data
sets were used for training the model (training set) and the

Figure 2. Example of sensing response for one selector (S4) toward
cheddar, Mahoń, and pecorino. The response is represented as a
change in conductance normalized to the conductance at the start of
the exposure (ΔG/G0). The exposure starts at t = 60 s and ends at t =
180 s (marked by dashed vertical lines). The response is an average of
12 separate sensing experiments; the blue/green shaded areas
represent the standard deviation of the response. The purple shaded
area represents the data used for classification.

Figure 3. (a, b) Selector accuracies for both the (a) f-RF and (b) KNN models using single selectors for differentiating between cheddar, Mahoń,
and pecorino cheese. The shaded, gray area corresponds to random guessing (33% accuracy), selectors with accuracies around this threshold do not
assist in this particular application. (c, d) Example results from the combinatorial selector scan for both the (a) f-RF and (b) KNN models on the
cheese data set (cheddar, Mahoń, and pecorino) using combinations of four selectors. Plotted are the top three (1−3), three medium (2423−
2425), and the bottom three (4843−4845) combinations. Each selector combination was trained 27 times; the average accuracies and standard
deviations are plotted.
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remaining 33% were used to test the model (test set). The
models assign the samples of the test set into classes, such as
cheddar, Mahoń, and pecorino for the cheese samples.
The accuracy for each selector was then calculated as the

fraction of correct assignment made by the f-RF or KNN
model corresponding to that selector:

accuracy
number of correct assignments

number of total assignments
=

Figure 3a and b shows the accuracies for f-RF and KNN
models when differentiating between three cheese samples
(Figure S13 shows analogous graphs for liquor and edible oils).
Selectors that performed well in an f-RF model often showed
high accuracies in the KNN model, suggesting the importance
of specific selectors for each use case. Similarly, selectors
showing near random performance in one model, often display
commensurate classification ability in the other model. S4 for
example, demonstrates reasonable test set accuracy for
classification of the three cheeses using the f-RF (0.78 ±
0.20) and the KNN (0.69 ± 0.14) model. Between different
data sets (cheese vs liquor for instance) different selectors
exhibit high performance; selectors working well in one use-
case may have lower classification ability in another (Figure
S13). This observation can be ascribed to the difference in
chemical makeup of the items in these categories. One of the
selectors showing high accuracy in the cheese use-case is S4, a
nickel bis(ortho diiminosemiquinate) known to detect organic
acids.52 S5 and S6 are two methylimidazolium-based ionic
liquids, 1-(2-(2-(2-hydroxyethoxy)ethoxy)ethyl)-3-methylimi-
dazolium chloride and 1-(nonyl)-3-methylimidazolium hexa-
fluorophosphate, designed to interact with aldehydes and
ketones.53 Organic acids, aldehydes, and ketones are all
important aroma compounds with moderate volatility, which
can be found in the odor of cheese.31,57,58

Combinatorial Selector Scan. While using each selector
individually led to moderate success in classification, we
suspected that using combinations of multiple selectors will
enable classification with higher fidelity. To exhaustively
determine an optimal set of selectors for model building,
analysis, and collection of additional data sets, we trained and
tested f-RF and KNN models on all possible combinations of 4
selectors (4845 combinations).
The combinatorial analysis revealed many selector combi-

nations with similar scores, nonetheless common trends
emerged internal to a data set category (Figure 3c,d, Figure
S15). These trends often mapped to the results from the
individual selector analysis. Across item categories, different
selector combinations showed varying levels of usefulness for
each individual classification problem (Figure S15), high-
lighting the need for tuning the selector panel when confronted
with a new category of interest.
Focusing only on the highest accuracy selector combination

in all three item categories, the f-RF models typically
outperformed the simpler KNN models (Figure 4). We
propose that this results from the extraction of more
descriptive temporal features not accounted for in an isolated
time point-to-time point distance calculation used in the KNN
model in combination with a more expressive random forest
model. Indeed, PCA on the features extracted from the three-
item data sets often showed a degree of class separability using
only the first three principal components (Figure S16).

On the basis of the information from the combinatorial
selector analysis (Figure 3c and d), along with that of the
individual selector analysis (Figure 3a and b), we picked four
selectors for follow up analysis and validation for each sample
category. For the cheese use-case, we identified S4, S5, S6, and
S20 as a high-performing selector combination. We performed
the analogous combinatorial analysis for the other two use-
casesliquor and edible oilto identify use-case specific high-
performing selector combinations (Figures S13 and S15). The
selector combinations for liquor (S7, S8, S12, and S15) and the
selector combination for edible oil (S5, S7, S8, and S13) both
consist of three methylimidazolium-based ionic liquids and one
calix[4]arene. The combinatorial approach leads to higher
classification accuracy across all use-cases and both models.
For example, the maximum test set accuracy for a single
selector when differentiating between cheddar, Mahoń, and
pecorino cheese is 0.79 ± 0.12 (S6), whereas the combinatorial
approach reaches 0.94 ± 0.08 (f-RF). Moving forward, all
analysis was performed using the combinatorial approach.

Optimal Selector Combination Performance on
Independent Five-Class Data Sets. With our optimized
combination of selectors in hand, we significantly increased the
difficulty of the classification problem by expanding the
number of items in each category from three to five. Notably,
there is the question whether the chosen selector combination
can have utility for not only the presecreended items, but also
for additional items from the same category. For cheese, the
expanded selection includes cheddar cheese, Mahoń, Cambo-
zola, cream cheese, and pecorino; for liquor, the expanded
selection includes rum, vodka, whiskey, gin, and tequila; and
for edible oil, the expanded selection includes canola, olive,
walnut, coconut, and toasted sesame oil. For this validation of
our methodology, we collected new sets of data for all samples
and retrained all models.
Even for these expanded item categories, the newly trained

models show high levels of classification accuracy (Table 1).
Between the three item categories, cheese was the easiest to
classify with a test set accuracy of 0.91, followed by liquor at
0.78, with oil being the most challenging with a reasonable
accuracy of 0.73 when using the f-RF model. The simpler
KNN model displayed a reduced performance across the board
with an accuracy of 0.73 for the cheese data set, while much
lower values near 0.40 were observed for the liquor and oil
data. These values are still significantly higher than that of

Figure 4. Selector scan results showing only the highest accuracy
selector combinations for each use case.
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random guessing (0.2) for a five-class problem. This again
highlights the additional important information contained in
the time series that a simple point-to-point distance measure-
ment does not capture. Further, these results speak to the
chemical compositions of the odor of the different samples,
suggesting the volatiles in oil to be more similar between
samples than those of cheese, making the classification
problem more challenging.
Analyzing the average time course values for each sample

and selector often revealed only subtle differences between the
different classes with several notable cases. Typically, the
overall shape of the selector response curve was similar
between samples of a category (with differences in the
response amplitude). For example, in the five-cheese data,
the Cambozola cheese displayed similar temporal dynamics,

but with a much higher selector response (Figure 5, purple
line).
It should not be overlooked, however, that several visually

distinct temporal traces were observed (S4 and S20 in the
cheese data, Figure 5a and d; S7 in the liquor data, Figure
S17a; S13 in the edible oil data, Figure S18d). In line with the
lower accuracy of the five-oil data, the time course analysis
revealed that many of the oils had overlapping temporal
behavior in both the exposure and recovery periods with only
subtle differences in the curvature. It is this subtle difference
that the featurization protocol most likely leverages to gain a
reasonable (0.73) accuracy but something the KNN Euclidean
distance cannot overcome (0.36), leading to its significantly
lower performance.

Extracted Feature Analysis. We took two approaches to
better understand the extracted features, the first is a
dimension reduction (PCA), while the second is a feature-
by-feature importance analysis. PCA of extracted features of
the five-class data sets again revealed decreased class
separability going from cheese to liquor and finally to oil
(Figure 6, Figure S19, S20, S21). As expected from the time
course analysis, Cambozola cheese showed complete separa-
tion (along PC1). Nonetheless, after reduction of the sensing
data to just a handful of principal components we observe
significant overlap between the majority of the cheese classes
(Figure 6). More class overlap was observed for the liquor
samples, with gin and whiskey displaying the most separability

Table 1. Optimal 4-Selector Test Set Accuracya Analysis on
the Five-Class Classification Problems for Both the f-RF and
KNN Models

cheese
(S4, S5, S6, S20)

liquor
(S7, S8, S12, S15)

oil
(S4, S7, S9, S13)

f-RF 0.91 ± 0.05b 0.78 ± 0.08 0.73 ± 0.07
KNN 0.73 ± 0.06 0.40 ± 0.09 0.36 ± 0.08

aAverage accuracies are calculated via 50 f-RF or KNN models trained
and tested on shuffled data splits. bError values are standard
deviations.

Figure 5. Sensing response for (a) S4, (b) S5, (c) S6, and (d) S20 toward five cheeses. The response is represented as a change in conductance
normalized to the conductance at the start of the exposure (ΔG/G0). Each exposure starts at t = 60 s and ends at t = 180 s (marked by dashed
vertical lines). Each response is an average of 40 separate sensing experiments, the shaded area represents the standard deviation of the response.

ACS Sensors Article

DOI: 10.1021/acssensors.9b00825
ACS Sens. 2019, 4, 2101−2108

2105

http://pubs.acs.org/doi/suppl/10.1021/acssensors.9b00825/suppl_file/se9b00825_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acssensors.9b00825/suppl_file/se9b00825_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acssensors.9b00825/suppl_file/se9b00825_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acssensors.9b00825/suppl_file/se9b00825_si_001.pdf
http://dx.doi.org/10.1021/acssensors.9b00825


from the other examples (Figure S20). Finally, in the edible oil
data, nearly all classes showed significant overlap along the first
two principal components, again corroborating the reduced
model performance.
To better understand the f-RF models, we identified the

features with the highest contribution to the prediction
process. Figure 7 shows the 16 overall most important

featuresout of 794 total featuresused in the f-RF model
for the classification of five different cheeses. As expected from
our findings of the PCA, no single feature can be used solely
for classification with many features showing less than 1%
feature importance. This observation holds true for all three
categories (Figures 7, S23, and S24).
The feature importance analysis also demonstrates that

simple, descriptive features like maximum and minimum

values, average values, and area under curve are not sufficient
to perform this discriminative task (Table S2). In fact, the
majority of the features used are coefficients from either a
continuous wavelet transform (cwt features) or a fast Fourier
transform (fFt features).

■ CONCLUSION
In this work, we demonstrated the classification of several
complex odors using a chemiresistive sensing array in
combination with a two-step machine learning approach. In
doing so, we propose a general method for object classification
that may be applied to a host of other challenging problems.
With this method, we were able to differentiate between food
samples with up to 91% accuracy. We envision this work to
guide future research in two ways (1) our selector panel can be
used to tackle a number of other challenging gas sensing
problems, such as disease diagnostics, hazard detection, and
food authentication, or (2) this general approach can also be
used to quickly identify selectors from a large panel of potential
molecules.
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