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Abstract—Encoder-decoder models have been commonly
used in dialogue generation tasks. However, they tend to
generate dull and generic response utterances. To tackle this
problem, we consider dialogue generation as a conditional
generation problem. For a given context history, our model can
generate different response utterances with desirable dialog
acts. Our model follows the SeqGAN framework, where the
generator takes context history and dialog act as inputs and
generates corresponding response utterances. The discrimina-
tor computes rewards by considering the quality of entire
utterance and dialog act. Our model is trained by a policy
gradient approach. To overcome the bottleneck of excessive
time complexity incurred by the Monte Carlo search for
training, we propose a local discriminator network to compute
the individual reward in one forward propagation, thereby
dramatically accelerating the training procedure. Experimental
results demonstrate that our proposed method can achieve
comparative performance with Monte Carlo search, while
reducing the training time dramatically.

Keywords-deep learning, conditional dialogue generation,
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I. INTRODUCTION

Dialogue generation is of great importance in natural

language processing research and applications. Dialogue

generation models take context history as input and generate

response utterances for the input. Usually, there are multiple

reasonable response utterances corresponding to a given

input as illustrated in Figure 1. Thus, dialogue generation

models need to provide diverse and informative responses.

With the development of deep learning, many deep models

have been developed to tackle dialogue generation tasks [1]–

[5]. These methods commonly use the encoder-decoder

architecture [6] for open-domain dialogue generation. The

encoder-decoder model represents inputs as a hidden state,

which is then used to initialize the decoder and generate

response utterances. Since the encoder-decoder network is

optimized by maximizing the likelihood, it may generate

dull and generic responses.

In this work, we propose to formulate this task as a

conditional dialogue generation problem, where the gener-

ated response utterance depends on both the context history

and the dialog act. In dialogue systems, each utterance can

be labeled with a dialog act such as “statement-opinion”,

Context:

You know you're told if you find them guilty then this is the 
choices that they have to make it’s either life or death you know.

Dialogue Act Response Utterance

statement
It seems like in some of these cases I don’t 
know that you could really have an impartial.

agree/accept Yeah, I think that’s true.

wh-question What do you mean?

acknowledge Right.

Figure 1. Illustration of the scenario where multiple reasonable response
utterances exist for a given context.

“agree”, “apology”, “open-question”, etc. If the same dia-

logue context history and different dialog acts are given,

the model should generate different response utterances

corresponding to the given dialog act. To achieve this goal,

we combine the encoder representation with the dialog act

to initialize the decoder network that generates the response

utterances. However, the encoder-decoder network trained

by maximizing the likelihood generates dull and generic

response utterances. To address this limitation, we propose

to apply the SeqGAN [7] framework for this task. Generative

adversarial networks (GANs) were proposed to capture data

distributions and generate samples. GANs can only generate

continuous data, and it is difficult to use GANs to generate

discrete text tokens. In order to apply GANs to generate

text data, SeqGAN considers the text generation procedure

as a reinforcement learning problem [8]. In SeqGAN, the

generator corresponds to the policy network, and the dis-

criminator is used to compute the reward for generated

response utterances. The SeqGAN is trained by the policy

gradient method [9]. It was shown that SeqGAN can achieve

better performance than the encoder-decoder network. To

assign each action a reward value, SeqGAN employs Monte

Carlo search in the training procedure. To compute the

reward of each token, SeqGAN needs to roll out the policy

several times. Therefore, the training of SeqGAN is very

time-consuming.
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Figure 2. Illustration of reward computation methods by Monte Carlo
search (A) and our proposed local discriminator network (B).

In this work, we propose a local discriminator network to

compute the reward for each token in the generated response

utterances and apply it to the SeqGAN framework for

conditional dialogue generation tasks. Instead of generating

the response utterance for multiple times by the rollout

approach, our proposed method can compute the reward in

one forward propagation, thereby dramatically accelerating

training as illustrated in Figure 2. We evaluate our proposed

method on the Switchboard dataset and Daily Dialog dataset.

Experimental results show that our proposed method can

achieve comparative performance with the Monte Carlo

search method, while dramatically reducing the training

time.

Our contributions can be summarized as follows:

1) We propose a conditional dialogue generation model

to generate diverse response utterances based on given

dialog acts.

2) We propose to employ a discriminator network, in-

corporating global, local, and dialog act information,

to encourage the generator to produce reasonable

responses.

3) We propose to compute the reward for each token

using a local discriminator network based on CNN,

instead of using Monte Carlo search as in prior meth-

ods. Our proposed method can compute the reward

of each token in one forward pass, thereby reducing

training time dramatically while achieving competitive

performance.

II. RELATED WORK

The encoder-decoder models [6], [10] have been suc-

cessfully applied to many natural language generation tasks

such as machine translation [11] and document summariza-

tion [12]. For dialogue generation tasks, encoder-decoder

models capture the relationship between context history and

response utterances using recurrent neural networks [13].

The encoder-decoder models are trained end-to-end by

maximizing the likelihood. However, these models usually

generate dull and generic responses.

Li et al. [2] claim that maximizing the likelihood cannot

approximate the real-world goal of chatbot development.

They consider dialogue generation tasks as a reinforce-

ment learning problem. The encoder-decoder network is

first trained by maximizing the likelihood and subsequently

improved by maximizing the reward function. The reward

function is designed to tackle the generic response problem

by considering ease of answering, information flow, and

semantic coherence. The key idea of this method is to

develop a reward function to evaluate the generated response

utterances and penalize dull and generic responses. The

manually designed reward function is still limited for a

dialogue generation system. Therefore, some researchers

propose to employ GANs frameworks and use the discrimi-

nator networks as a reward function to evaluate the response

utterances.

In [14], GANs are proposed to tackle image generation

problems and have achieved impressive performance. The

GANs framework consists of a generator network and a

discriminator network. The generator network generates im-

ages from latent representations. The discriminator is used to

distinguish real and generated images. GANs have achieved

great success on computer vision tasks [15]–[18]. Since text

tokens are discrete, it is difficult to apply GANs on natural

language processing tasks.

In [7], SeqGAN is proposed to tackle the non-

differentiable problem by considering dialogue generation

tasks as a reinforcement learning problem. In the SeqGAN,

the generation of each token is considered as an action, and

the reward of action is evaluated by a discriminator network

using the Monte Carlo search approach. The SeqGAN is

trained by a policy gradient method to encourage the gen-

erator to produce better outputs. Inspired by the Turing test,

Li et al. [3] propose to apply GANs on dialogue generation

tasks. They train the discriminator network to distinguish hu-

man generated responses and machine generated responses.

In their model, an encoder-decoder network is trained as

the generator to fool the discriminator and produce human-

like response utterances. They employ the teacher-forcing

method to make the training procedure stable. Yang et al.
[19] use a convolutional neural network as the discriminator

and achieved better performance than that of recurrent

neural networks for machine translation tasks. Instead of

distinguishing human generated utterances from machine

generated utterances, Lin et al. [20] propose to analyze and

rank a collection of human generated and machine generated

utterances. The generator is trained to produce utterances

that achieve higher ranking score than human generated

utterances.

III. THE PROPOSED METHOD

In this work, we propose a seq2seq model with a discrim-

inator network that uses different rewards for the dialogue
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Figure 3. The overall architecture of our proposed conditional dialogue
generation framework.

generation tasks. In addition, our proposed model can re-

duce the training time dramatically, while achieving very

competitive performance.

A. Conditional Dialogue Generation

In conditional dialogue generation tasks, we are given the

dialogue context, including the dialogue history, conversa-

tional floor, and meta information. We focus on dialogue

utterance in a window size of k + 1, which contains k + 1
utterances [ui, . . . , ui+k]. Then the dialogue history con-

tains k utterances, and the utterance ui+k is the response

utterance with N tokens ui+k = y = [y1, . . . , yN ]. The

conversational floor indicates whether the utterances are

from the same person. The meta information m contains

gender information, education level, etc. Each utterance in

the dataset has a dialog act label l such as “statement-

opinion”, “agree/accept”, “reject”, etc. Our goal is to train

a deep generative model Gθ(·) to optimize the utterance

distribution on the training dataset, where G is parameter-

ized by θ. The model can generate a response utterance

ui+k = Gθ([ui, . . . , ui+k−1],m, l) with a specific act label

for the given context utterances. Therefore, the proposed

model can achieve diverse dialogue generation by providing

different dialog acts.

B. Overall Architecture

Our overall architecture follows the SeqGAN [7] frame-

work as illustrated in Figure 3. The generator network Gθ(·)
is trained to generate the response utterance with a spe-

cific label l automatically. The discriminator network takes

dialogue contexts and the response utterance as input and

evaluates the quality of the entire response utterance. Since

text tokens are discrete, gradients cannot be back-propagated

through the discriminator and generator networks. Thus we

employ the policy gradient approach to train the generator.

C. Discriminator

As illustrated in [21], maximizing the likelihood suffers

from the exposure bias problem during inference procedures.

We employ the SeqGAN [7] and evaluate the entire response

utterance by a discriminator network D [22]. The discrim-

inator is required to distinguish real response utterances

and generated response utterances. In conditional dialogue

generation tasks, the discriminator network is also required

to identify whether the model generates a given dialog act

response. Therefore, the objective function of discriminator

network consists of two components. The first component

is a binary classifier to distinguish real response utterances

and generated response utterances. The loss function of the

first component is:

Lglobal = Ey[logDg(x, y,m)]. (1)

The second component is a multi-class classifier to identify

the dialog act labels of response utterances. The loss function

of the second component is:

Lcls = Ey[logDc(l|x, y,m)] (2)

Therefore, the objective function of the discriminator net-

work can be expressed as:

L = Lglobal + Lcls. (3)

D. Policy Gradient

If we use the discriminator network to evaluate the

quality of the entire response utterance, gradients cannot

be back-propagated directly since text tokens are discrete.

We employ the policy gradient method to optimize the

generator network. Conditional dialogue generation tasks

can be considered as a reinforcement learning problem [23],

where the state corresponds to the context input and tokens

that have been generated; actions correspond to taking a

word from vocabulary; and policy is the generator network.

The reward in conditional dialogue generation tasks can

be provided by the discriminator network. The objective of

the policy network is to generate a response utterance that

maximizes the expected reward as:

J(θ) = Ey∼G(x,m,l)R(x, y,m, l), (4)

where R is the reward given by a sum probability of the

response being a human generated response and correct

dialog act. We update the parameter by

θ = θ + α∇J(θ), (5)

where

∇J ≈R(x, y,m, l)∇Gθ(x,m, l)

=R(x, y,m, l)Gθ(x,m, l) log∇Gθ(x,m, l).

E. Fast Reward Calculation

In the GAN framework, the discriminator network can

only compute the reward for an entire utterance. The reward

is shared by all the actions in the generated utterance. How-

ever, it is of great importance to assign each action a different

reward. When the discriminator assigns the utterance a low

reward, this reward is shared by all actions. In this case, part

of the actions in the utterance may be appropriate, and they

should result in a higher reward. We should assign reward

for each action when generating a response utterance.

SeqGAN was proposed to apply Monte Carlo search with

a roll-out policy Gθ to evaluate the reward for each action.
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Figure 4. Diagram of the discriminator network. We develop a discriminator network to assign a reward for each token in the response utterance. The
loss function of discriminator consists of three components, including a global component, a classification loss and a local loss.

For a given response utterance with N tokens, SeqGAN

samples the tokens with the same prefix M times using the

policy Gθ when evaluating the reward for the t−th token.

Therefore, Monte Carlo search must generate the entire

utterance N × M times for an utterance with N tokens.

The training procedure of SeqGAN is time-consuming due

to the Monte Carlo search.

To calculate the reward for each action efficiently, we

propose to train a local discriminator network to evaluate

the utterance. The original discriminator employs a classifier

to evaluate the real and generated utterances. In order to

calculate the reward for each token in the utterance, we

can consider each evaluation procedure as a classification

task. Therefore, all the tokens in the real response utterances

are positive examples, and all the tokens in the generated

response utterances are negative examples. We employ con-

volutional layers with padding in the discriminator network

without pooling layers. The spatial size of the discriminator

output is the same as that of the input. The output channel

of the last convolutional layer is set to two. Then the

discriminator network can conduct a binary classification

and compute the individual reward for each token in the

response utterance. The loss function of local discriminator

can be expressed as

Llocal =
∑

yt

Eyt
[logD(x, yt,m, l)]. (6)

The individual reward of each token can be computed by

one forward computation. Compared with the Monte Carlo

search method, the training procedure is very efficient by

employing the local discriminator network. When computing

the reward, we consider both the entire reward and individ-

ual reward. The loss function of the discriminator can be

expressed as

L = Lglobal + Lcls + Llocal. (7)

F. Generator

Our generator network follows an encoder-decoder

framework. The input data contains context history

[ui, . . . , ui+k−1], meta information m and conversational

floor. The encoder network extracts features from inputs. The

features are then fed into the decoder network as the initial

state. We employ recurrent neural networks (RNNs) [24] in

both the encoder and decoder networks. Suppose the context

history contains T tokens [ui, . . . , ui+k−1], and we concate-

nate all the tokens together as x = [x1, . . . , xt, . . . , xT ]. We

use gated recurrent unit (GRU) [25] which can alleviate the

vanishing and exploding gradient problems [26] in this work

to encode each token as:

zt = σ(Wzxt + Uzht−1 + bz) (8)

rt = σ(Wrxt + Urht−1 + br) (9)

h
′
t = tanh(Whxt + Uh(rt ◦ ht−1) + bh) (10)

ht = zt ◦ ht−1 + (1− zt) ◦ h′
t, (11)

where ◦ represents the element-wise product operation, W ,

U , and b are parameters. To obtain a better representation

of tokens in the context utterances, we use a bidirectional

GRU (BiGRU) [27] as a context encoder to represent xt

as [
−→
ht ,
←−
ht ] by concatenating the forward hidden state and

backward hidden state as:

−→
ht =

−−−→
GRU(xt,

−−→
ht−1) (12)

←−
ht =

←−−−
GRU(xt,

←−−
ht−1), (13)

where
−→
ht is the hidden state of forward pass in BiGRU,

and
←−
ht is the hidden state of backward pass in BiGRU at

time t. Then the context representation [
−→
ht ,
←−
ht ] is fed into

another GRU encoder. The GRU network encodes the tokens

in k utterances with the corresponding conversation floor and

represents the utterances using the last hidden state he of the

GRU network.
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Figure 5. Diagram of our proposed model for conditional dialogue generation tasks. In our model, a bidirectional gated recurrent neural network is used
to represent the word token as a context encoder. Then the extracted features are fed in an encoder network using GRU. The hidden state of the last unit
is concatenated with meta feature and act label, and the combined feature is used to initialize the decoder hidden state using a fully connected layer. The
decoder network employs a GRU to generate the response utterance.

The decoder employs a GRU network to generate a

response utterance corresponding to the input context. The

decoder network represents the response utterance as the

hidden state of a GRU as:

ht = GRU(ht−1, yt), (14)

where g is a gated recurrent unit, ht is the hidden repre-

sentation of the t−th token in the response utterance, yt
is the t−th token, and ht−1 is the hidden representation of

the previous input. The initial state h0 of decoder network is

h0 = W0[he,m, l]+b0 by considering all the given input. In

addition, a softmax layer is employed to produce the output

tokens for the response utterance as:

p(yt+1|y1, . . . , yt) = softmax(b+Wht), (15)

where b is the bias and W is the projection matrix. The

encoder-decoder network can be trained by maximizing the

likelihood as:

pG(y|x,m, l) = ΠtpG(x,m, l, y1 : yt−1). (16)

G. Training

We first maximize the likelihood to pre-train the generator

network Gθ(·) using the training dataset. Then the pre-

trained network Gθ(·) is used to generate the response

utterance as negative examples to train the discriminator.

When the pre-training of generator and discriminator is

completed, we employ the discriminator to evaluate the

reward for each token in the response utterance and train

the generator using policy gradient approach. The generator

and discriminator are trained alternatively to achieve better

performance. The algorithm is summarized in Algorithm (1).

Algorithm 1: Training procedure for our proposed

method.
• Pre-train the generator using equation (16) on

training dataset.

• Generate the response utterances using the

pre-trained generator as negative examples.

• Pre-train the discriminator using positive and

negative examples by equation (7).

while not converged do
• Generate the response utterance using

generator Gθ(·).
• Calculate the reward for each token in

response utterance using discriminator.

• Train the generator using policy gradient by

equation (5).

• Generate the response utterances using the

pre-trained generator as negative examples.

• Train the discriminator using positive and

negative examples by equation (7).

IV. EXPERIMENTS

In this section, we conduct a conditional dialogue gener-

ation experiment on the Switchboard dataset and compare

the performance of our proposed method with that of the

sequence to sequence (seq2seq) generator and SeqGAN

using Monte Carlo search method.

A. Dataset

We apply our proposed method on the Switchboard 1

Release 2 Corpus dataset [28] and Daily Dialog dataset [29].

The Switchboard dataset contains 2400 two-sided telephone
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Table I
THE DIALOG ACT DISTRIBUTION IN THE SWITCHBOARD DATASET.

Dialog act Percent Dialog act Percent

statement-non-opinion 37.64 statement-opinion 12.79
acknowledge 21.54 abandon 12.26
yes-no-question 3.15 agree/accept 2.76
appreciation 2.32 others 7.54

Table II
THE DIALOG ACT DISTRIBUTION IN THE DAILY DIALOG DATASET.

Dialog act Percent Dialog act Percent

inform 45.74 question 28.65
directive 16.34 commissive 9.27

conversations. Each conversation in the dataset is assigned

with a topic, and the dataset contains 70 topics. The meta

information includes education levels and the genders of

speakers. The preprocessing procedure is the same as that in

[4], including tokenizing using NLTK [30], removing false

tokens, and constructing frequent word vocabulary. In the

dataset, each utterance is labeled with dialog acts [31], and

there are 42 different dialog acts in the Switchboard dataset.

The Daily Dialog dataset contains 13,118 multi-turn human-

human dialogue annotated with dialog acts. There are 4

different dialog acts in the Daily Dialog dataset. The dialog

act distributions for the two datasets have been shown in

Tables I and II.

B. Experimental Settings

In the experiment, the context window size is set to 10.

All tokens in utterances are processed by a word embedding

layer. The size of word embedding is set to 200. We initialize

the word embedding with the Glove embedding [32], which

is pre-trained on Twitter dataset. The hidden size of context

encoder is set to 600. The hidden sizes of encoder and

decoder networks are set to 300 and 400, respectively. We

employ the Adam [33] optimization method to train the

encoder-decoder network. The learning rate of Adam is set

to 0.001, and the gradient clip is set to 5. The batch size

is set to 30 for training. All the weights in the network are

initialized from a uniform distribution in [−0.08, 0.08].
Our discriminator follows the convolutional neural net-

work architecture [22], which contains convolution, max-

pooling, and fully connected layers. We employ 1D convo-

lutional layers with kernel sizes of 2, 3, 4, and 5 to extract

features at different scales. The number of output channels

is set to 200 for all the convolutional layers. The outputs

of different convolutional layers are concatenated together

and processed by a pooling layer. We apply a dropout layer

after the pooling layer, and the dropout rate is set to 0.4. The

numbers of output nodes in fully connected layers are set to

2 and number of dialog act (42 for Switchboard dataset and

4 for Daily Dialog dataset) to compute the global loss and

classification loss, respectively. We apply a convolutional

layer on the concatenated feature map to compute the local

loss.

C. Evaluation

Evaluating the quality of generated responses is a chal-

lenge for dialogue generation tasks. In this work, we focus

on a conditional dialogue generation task in which the

generated response utterances must belong to the given

dialog act. Therefore, we employ a dialog act classifier to

evaluate our generated responses. If our generated responses

belong to the given dialog act, the classifier can identify

the dialog act correctly. In addition, we also evaluate our

response utterances with the BLEU score. The Switchboard

dataset only provides one response utterance for a given con-

text input. However, there are multiple reasonable response

utterances corresponding to a given context input. In order to

evaluate the response utterance with multiple references, we

use the information retrieval technology in [4] to construct a

reference list, which contains 10 candidates from the same

topic. We compute the BLEU1 to 4 [34] to evaluate the

similarity between the generated utterances and references.

D. Accuracy of Dialog Act

We quantitatively evaluate the generated response utter-

ances by measuring the accuracy of dialog act. We employ a

deep convolutional network [22] for dialog act classification.

The model is trained on the training dataset to recognize the

dialog act of each utterance, and it achieves 82.55% accuracy

on the Switchboard test dataset and 77.35% on the Daily

Dialog test dataset for dialog act classification, respectively.

We generate response utterances on the test dataset using

the seq2seq generator, SeqGAN with Monte Carlo search,

and our proposed method.

The results of classification accuracy are shown in Table

VI. We can observe from the results that both SeqGAN

and our proposed method achieve better classification ac-

curacy than seq2seq generator. The discriminator network

in SeqGAN and our proposed model can provide the reward

of classification accuracy. The reward can encourage the

generator to produce response utterances with a specific

dialog act. The classification accuracy of our proposed

model is very close to that of the SeqGAN using Monte

Carlo search. However, Monte Carlo search is very time-

consuming. In the experiment, the rollout number of Monte

Carlo search is set to 10. For a response utterance with N
tokens, the Monte Carlo search approach takes 10∗N times

forward propagation computations to assign each token an

individual reward. Our proposed method can complete this

procedure in one forward propagation, and our computation

time is independent of the length of response utterances.

We extract features from the deep convolutional network

for dialog act classification and visualize these features using

TSNE [35]. The visualization results are shown in Figure 6

and Figure 7 for the two datasets. There are 42 dialog acts
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Table III
THE RESPONSE UTTERANCES GENERATED BY DIFFERENT MODELS FOR THREE EXAMPLES ON THE SWITCHBOARD DATASET. ONLY ONE UTTERANCE

IS SHOWN IN EACH CASE DUE TO SPACE CONSTRAINTS.

Example 1-Topic: NEWS MEDIA
Context: Well, I can discuss a lot of the news that we have but I feel that that’s not part of our responsibility.
Target (acknowledge): Right.
Model Response utterance
seq2seq generator Yeah.
SeqGAN with MC-search Yeah.
Our proposed method Right.

Example 2-Topic: TRIAL BY JURY
Context: I don’t know. I look at the people who get excused and it’s supposed to be a jury of your peers and I’m not sure it always is.
Target (statement-opinion): And it is a huge burden to put on people who don’t know the law.
Model Response utterance
seq2seq generator And it’s not that it’s not going to be a deterrent.
SeqGAN with MC-search It’s not that bad that it’s not fair to have to have to go ahead and get it.
Our proposed method And i don’t know if it’s a problem or not but I think it’s a law that’s important.

Example 3-Topic: AIR POLLUTION
Context: And you know they say that the coal we burn here in Indiana is responsible for a large part of the acid rain that they have up in New
York state and in Canada and all that.
Target (statement-opinion): And it’s just you know it’s ridiculous when we could be spending the money to develop the technology to you know
clean up some of these.
Model Response utterance
seq2seq generator You know it’s not that bad that they’re not doing that they’re not going to be able to handle it.
SeqGAN with MC-search And I think that’s what they’re doing it’s not going to be a problem that they’re going to be aware of it.
Our proposed method And I think the air conditioning is part of the issue of anyone.

Table IV
THE RESPONSE UTTERANCES GENERATED BY DIFFERENT MODELS FOR TWO EXAMPLES ON THE DAILY DIALOG DATASET. ONLY ONE UTTERANCE IS

SHOWN IN EACH CASE DUE TO SPACE CONSTRAINTS.

Context: A: How may I help you? B: Could you cancel a check for me? A: What’s the problem ? B: I wrote the check out for way too much.
Target (question): How much ?
Model Response utterance
seq2seq generator Ok. Here you go.
SeqGAN with MC-search How much do you owe me ?
Our proposed method How much do you have for ?

Context: A: Really ? I thought Barcelona was going to win. They are a much better team than Madrid. B: If Barcelona had played as they
normally do, they should have won. what happened? A:Their goalkeepers got injured after the first goal, but he kept on playing anyway. B: That
explains it .
Target (question): How many more games are left this season?
Model Response utterance
seq2seq generator How many more games are we playing ?
SeqGAN with MC-search How many more games are left this season ?
Our proposed method How many more games are left ?

Table V
THE RESPONSE UTTERANCES GENERATED FOR A GIVEN CONTEXT HISTORY USING DIFFERENT DIALOG ACTS. ONLY ONE UTTERANCE IS SHOWN IN

EACH CASE DUE TO SPACE CONSTRAINTS.

Context: A: Why not go again to celebrate out one - year anniversary ? We can go to the same beach , stay in the same hotel and enjoy a dinner
in the same restaurant . B: Are you kidding ? Can you afford it ? Do you think we can get a room on such short notice ? A: Never mind that ,
I’ll take care of it. Are you available next week ? B: Yeah , I think so . A: Ok . I’ll make the arrangements. It will be great .
Target (inform): Wonderful ! I’ll start packing our suitcases.
Act Response utterance
inform Great ! I’ll take it .
question Great ! That’ll do my best . How do we start doing this house ?
commissive Great ! I’ll start looking forward to help about hotels .

in the Switchboard dataset. We only visualize the top 4

frequent dialog acts. We can observe from the results that

the response utterances with the same dialog act are close

to each other. The visualization results demonstrate that our

model can generate response utterances with a desired dialog

act.
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Table VI
CLASSIFICATION ACCURACY OF EACH MODEL ON THE SWITCHBOARD

AND DAILY DIALOG TEST DATASET. THE HIGHEST CLASSIFICATION

ACCURACY IS IN BOLD.

DataSet Baseline MC-search Our model

Switchboard 77.74 83.99 83.16
Dailydialog 76.21 76.35 77.76

statement-non-opinion
acknowledge
statement-opinion
abandoned

Figure 6. TSNE visualization of dialog act for test response utterances
with top 4 frequent dialog acts in the Switchboard dataset. The features are
extracted from the deep convolutional network for dialog act classification.

E. Time Complexity Analysis

We compare the training time of Monte Carlo search and

that of our proposed method. These models are trained by

using NVIDIA GeForce GTX Titan XP Graphics Cards, and

the training time is shown in Table VII. The rollout number

for Monte Carlo search is set to 10 in the experiments. If the

length of all utterances in the dataset is equal to 10, Monte

Carlo search costs 100 times more training time than our

proposed method.

F. Similarity Analysis

When the response utterances contain some key tokens,

the key tokens can encourage the classifier to produce

correct predictions. Therefore, we compute the BLEU score

to evaluate the similarity between response utterances and

references. Table VIII and Table IX shows the results of

BLEU score on Switchboard and Daily Dialog dataset. We

can observe from the results that our proposed model can

achieve better performance than seq2seq generator.

G. Qualitative Analysis

We randomly select generated response utterances on the

Switchboard and Daily Dialog test dataset using seq2seq

generator, SeqGAN with Monte Carlo search and our pro-

posed model. The response utterances are shown in Table III

inform
question
directive
commissive

Figure 7. TSNE visualization of dialog act for test response utterances
in the Daily Dialog dataset. The features are extracted from the deep
convolutional network for dialog act classification.

Table VII
COMPARISON OF TRAINING TIME BETWEEN THE MONTE CARLO

SEARCH AND OUR PROPOSED METHOD FOR ONE EPOCH.

Metrics MC-search Our model

Time 62.5 hour 0.4 hour

for Switchboard dataset and Table IV for Daily Dialog

dataset. From Table III, We can observe that the three

models can generate good response utterances when the

dialog act is easy to represent such as acknowledge, accept.

If the model is required to generate more complex response

utterances, SeqGAN and our proposed model can achieve

better performance. In the third example in Table III, the

seq2seq model generates good tokens at the beginning of the

utterance. When the seq2seq model generates an undesired

token, it suffers from the “exposure bias” problem and fails

to generate good utterances afterwards. SeqGAN and our

proposed model are trained with discriminators to alleviate

the effect of “exposure bias” problem. Therefore, these two

models can outperform the seq2seq model. Our proposed

model is more time-efficient than the Monte Carlo search

approach.

We can observe from Table IV that our proposed model

can generate response utterances corresponding to the given

dialog acts when employing the classification reward in the

discriminator network. For the first example in Table IV, the

given dialog act is “question”. The seq2seq model generates

a response utterance which belongs to “inform”. Since we

employ classification reward in SeqGAN and our proposed

model, these two models can provide response utterances

with correct dialog act. Compared with MC-search method,

our proposed method can generate response utterances with a

better understanding of context history. For the second exam-
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Table VIII
PERFORMANCE OF EACH MODEL ON SIMILARITY MEASURES FOR

SWITCHBOARD DATASET. THE HIGHEST SCORE IN EACH ROW IS IN

BOLD. NOTE THAT OUR BLEU SCORES ARE NORMALIZED TO [0, 1].

Metrics Baseline Our model MC-search

BLEU-1 0.4561 0.4558 0.4527
BLEU-2 0.3937 0.3971 0.3946
BLEU-3 0.3506 0.3560 0.3495
BLEU-4 0.3384 0.3453 0.3336

Table IX
PERFORMANCE OF EACH MODEL ON SIMILARITY MEASURES FOR

DAILY DIALOG DATASET. THE HIGHEST SCORE IN EACH ROW IS IN

BOLD. NOTE THAT OUR BLEU SCORES ARE NORMALIZED TO [0, 1].

Metrics Baseline Our model MC-search

BLEU-1 0.4830 0.4900 0.4875
BLEU-2 0.3644 0.3725 0.3693
BLEU-3 0.2736 0.2829 0.2784
BLEU-4 0.2090 0.2193 0.2135

ple in Table IV, all the three models can generate response

utterances that belong to the “question” category. However,

the seq2seq model generates the response utterance without

understanding the context history. We employ the discrimi-

nator to distinguish human generated and machine generated

response utterances. The discriminator network encourages

the model to generate response utterances that are close to

the human generated utterances. Therefore, our proposed

model can generate better response utterances based on the

given context history.

Providing diverse response utterances is of great impor-

tance for dialogue generation models. Our proposed model

can generate different response utterances based on the given

dialog acts. The results have been shown in Table V. We can

observe from the results that our proposed model can provide

different response utterances based on the given dialog acts.

V. CONCLUSION

In this work, we propose to employ an encoder-decoder

model to tackle conditional dialogue generation tasks. The

model takes the context history, meta information, and dialog

act as input and generates a response utterance with a

desirable dialog act. To alleviate the effect of “exposure bias”

problem, we employ a SeqGAN framework and evaluate

the entire utterance by considering the global similarity and

the dialog act. The SeqGAN uses Monte Carlo search to

assign each token in the utterance an individual reward,

which is very time-consuming for the training procedure.

We propose a local discriminator network to compute the in-

dividual reward for each token by one forward propagation.

Experimental results demonstrate that our proposed model

can achieve similar performance, while reducing training

time dramatically.
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