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Abstract—Encoder-decoder models have been commonly
used in dialogue generation tasks. However, they tend to
generate dull and generic response utterances. To tackle this
problem, we consider dialogue generation as a conditional
generation problem. For a given context history, our model can
generate different response utterances with desirable dialog
acts. Our model follows the SeqGAN framework, where the
generator takes context history and dialog act as inputs and
generates corresponding response utterances. The discrimina-
tor computes rewards by considering the quality of entire
utterance and dialog act. Our model is trained by a policy
gradient approach. To overcome the bottleneck of excessive
time complexity incurred by the Monte Carlo search for
training, we propose a local discriminator network to compute
the individual reward in one forward propagation, thereby
dramatically accelerating the training procedure. Experimental
results demonstrate that our proposed method can achieve
comparative performance with Monte Carlo search, while
reducing the training time dramatically.
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I. INTRODUCTION

Dialogue generation is of great importance in natural
language processing research and applications. Dialogue
generation models take context history as input and generate
response utterances for the input. Usually, there are multiple
reasonable response utterances corresponding to a given
input as illustrated in Figure 1. Thus, dialogue generation
models need to provide diverse and informative responses.
With the development of deep learning, many deep models
have been developed to tackle dialogue generation tasks [1]—
[5]. These methods commonly use the encoder-decoder
architecture [6] for open-domain dialogue generation. The
encoder-decoder model represents inputs as a hidden state,
which is then used to initialize the decoder and generate
response utterances. Since the encoder-decoder network is
optimized by maximizing the likelihood, it may generate
dull and generic responses.

In this work, we propose to formulate this task as a
conditional dialogue generation problem, where the gener-
ated response utterance depends on both the context history
and the dialog act. In dialogue systems, each utterance can
be labeled with a dialog act such as “statement-opinion”,
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Context:

You know you're told if you find them guilty then this is the
choices that they have to make it’s either life or death you know.

Dialogue Act Response Utterance
It seems like in some of these cases I don’t
statement . .
know that you could really have an impartial.
agree/accept | Yeah, I think that’s true.

wh-question ‘What do you mean?

Right.

acknowledge

Figure 1. TIllustration of the scenario where multiple reasonable response
utterances exist for a given context.

“agree”, “apology”, “open-question”, etc. If the same dia-
logue context history and different dialog acts are given,
the model should generate different response utterances
corresponding to the given dialog act. To achieve this goal,
we combine the encoder representation with the dialog act
to initialize the decoder network that generates the response
utterances. However, the encoder-decoder network trained
by maximizing the likelihood generates dull and generic
response utterances. To address this limitation, we propose
to apply the SeqGAN [7] framework for this task. Generative
adversarial networks (GANs) were proposed to capture data
distributions and generate samples. GANs can only generate
continuous data, and it is difficult to use GANs to generate
discrete text tokens. In order to apply GANs to generate
text data, SeqGAN considers the text generation procedure
as a reinforcement learning problem [8]. In SeqGAN, the
generator corresponds to the policy network, and the dis-
criminator is used to compute the reward for generated
response utterances. The SeqGAN is trained by the policy
gradient method [9]. It was shown that SeqGAN can achieve
better performance than the encoder-decoder network. To
assign each action a reward value, SeqGAN employs Monte
Carlo search in the training procedure. To compute the
reward of each token, SeqGAN needs to roll out the policy
several times. Therefore, the training of SeqGAN is very
time-consuming.
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Figure 2. Illustration of reward computation methods by Monte Carlo
search (A) and our proposed local discriminator network (B).

In this work, we propose a local discriminator network to
compute the reward for each token in the generated response
utterances and apply it to the SeqGAN framework for
conditional dialogue generation tasks. Instead of generating
the response utterance for multiple times by the rollout
approach, our proposed method can compute the reward in
one forward propagation, thereby dramatically accelerating
training as illustrated in Figure 2. We evaluate our proposed
method on the Switchboard dataset and Daily Dialog dataset.
Experimental results show that our proposed method can
achieve comparative performance with the Monte Carlo
search method, while dramatically reducing the training
time.

Our contributions can be summarized as follows:

1) We propose a conditional dialogue generation model
to generate diverse response utterances based on given
dialog acts.

We propose to employ a discriminator network, in-
corporating global, local, and dialog act information,
to encourage the generator to produce reasonable
responses.

We propose to compute the reward for each token
using a local discriminator network based on CNN,
instead of using Monte Carlo search as in prior meth-
ods. Our proposed method can compute the reward
of each token in one forward pass, thereby reducing
training time dramatically while achieving competitive
performance.

2)

3)

II. RELATED WORK

The encoder-decoder models [6], [10] have been suc-
cessfully applied to many natural language generation tasks
such as machine translation [11] and document summariza-
tion [12]. For dialogue generation tasks, encoder-decoder
models capture the relationship between context history and
response utterances using recurrent neural networks [13].
The encoder-decoder models are trained end-to-end by
maximizing the likelihood. However, these models usually
generate dull and generic responses.
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Li et al. [2] claim that maximizing the likelihood cannot
approximate the real-world goal of chatbot development.
They consider dialogue generation tasks as a reinforce-
ment learning problem. The encoder-decoder network is
first trained by maximizing the likelihood and subsequently
improved by maximizing the reward function. The reward
function is designed to tackle the generic response problem
by considering ease of answering, information flow, and
semantic coherence. The key idea of this method is to
develop a reward function to evaluate the generated response
utterances and penalize dull and generic responses. The
manually designed reward function is still limited for a
dialogue generation system. Therefore, some researchers
propose to employ GANs frameworks and use the discrimi-
nator networks as a reward function to evaluate the response
utterances.

In [14], GANs are proposed to tackle image generation
problems and have achieved impressive performance. The
GANs framework consists of a generator network and a
discriminator network. The generator network generates im-
ages from latent representations. The discriminator is used to
distinguish real and generated images. GANs have achieved
great success on computer vision tasks [15]-[18]. Since text
tokens are discrete, it is difficult to apply GANs on natural
language processing tasks.

In [7], SeqGAN is proposed to tackle the non-
differentiable problem by considering dialogue generation
tasks as a reinforcement learning problem. In the SeqGAN,
the generation of each token is considered as an action, and
the reward of action is evaluated by a discriminator network
using the Monte Carlo search approach. The SeqGAN is
trained by a policy gradient method to encourage the gen-
erator to produce better outputs. Inspired by the Turing test,
Li et al. [3] propose to apply GANs on dialogue generation
tasks. They train the discriminator network to distinguish hu-
man generated responses and machine generated responses.
In their model, an encoder-decoder network is trained as
the generator to fool the discriminator and produce human-
like response utterances. They employ the teacher-forcing
method to make the training procedure stable. Yang er al.
[19] use a convolutional neural network as the discriminator
and achieved better performance than that of recurrent
neural networks for machine translation tasks. Instead of
distinguishing human generated utterances from machine
generated utterances, Lin et al. [20] propose to analyze and
rank a collection of human generated and machine generated
utterances. The generator is trained to produce utterances
that achieve higher ranking score than human generated
utterances.

III. THE PROPOSED METHOD

In this work, we propose a seq2seq model with a discrim-
inator network that uses different rewards for the dialogue
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Figure 3. The overall architecture of our proposed conditional dialogue
generation framework.

generation tasks. In addition, our proposed model can re-
duce the training time dramatically, while achieving very
competitive performance.

A. Conditional Dialogue Generation

In conditional dialogue generation tasks, we are given the
dialogue context, including the dialogue history, conversa-
tional floor, and meta information. We focus on dialogue
utterance in a window size of k£ -+ 1, which contains & + 1
utterances [u;,...,u;+k]. Then the dialogue history con-
tains k utterances, and the utterance u;y; is the response
utterance with N tokens uw; p = y = [y1,...,yn]. The
conversational floor indicates whether the utterances are
from the same person. The meta information m contains
gender information, education level, etc. Each utterance in
the dataset has a dialog act label [ such as ‘“‘statement-
opinion”, “agree/accept”, “reject”, etc. Our goal is to train
a deep generative model Gy(-) to optimize the utterance
distribution on the training dataset, where G is parameter-
ized by 6. The model can generate a response utterance
Witk = Go([uiy ..., uirr—1],m,1) with a specific act label
for the given context utterances. Therefore, the proposed
model can achieve diverse dialogue generation by providing
different dialog acts.

B. Overall Architecture

Our overall architecture follows the SeqGAN [7] frame-
work as illustrated in Figure 3. The generator network Gy (-)
is trained to generate the response utterance with a spe-
cific label [ automatically. The discriminator network takes
dialogue contexts and the response utterance as input and
evaluates the quality of the entire response utterance. Since
text tokens are discrete, gradients cannot be back-propagated
through the discriminator and generator networks. Thus we
employ the policy gradient approach to train the generator.

C. Discriminator

As illustrated in [21], maximizing the likelihood suffers
from the exposure bias problem during inference procedures.
We employ the SeqGAN [7] and evaluate the entire response
utterance by a discriminator network D [22]. The discrim-
inator is required to distinguish real response utterances
and generated response utterances. In conditional dialogue
generation tasks, the discriminator network is also required
to identify whether the model generates a given dialog act
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response. Therefore, the objective function of discriminator
network consists of two components. The first component
is a binary classifier to distinguish real response utterances
and generated response utterances. The loss function of the
first component is:

ey

The second component is a multi-class classifier to identify
the dialog act labels of response utterances. The loss function
of the second component is:

Las = Eyllog D (1]x,y, m)]

Eylobal = Ey [1Og Dg ({L‘, Y, m)} .

(@)

Therefore, the objective function of the discriminator net-
work can be expressed as:

L= Eglobal + Ecls~ (3)

D. Policy Gradient

If we use the discriminator network to evaluate the
quality of the entire response utterance, gradients cannot
be back-propagated directly since text tokens are discrete.
We employ the policy gradient method to optimize the
generator network. Conditional dialogue generation tasks
can be considered as a reinforcement learning problem [23],
where the state corresponds to the context input and tokens
that have been generated; actions correspond to taking a
word from vocabulary; and policy is the generator network.
The reward in conditional dialogue generation tasks can
be provided by the discriminator network. The objective of
the policy network is to generate a response utterance that
maximizes the expected reward as:

‘](0) = EyNG(z,m,l)R(%%mJL (4)

where R is the reward given by a sum probability of the
response being a human generated response and correct
dialog act. We update the parameter by

0=0+avJo), Q)

where

VJ=R(z,y,m,)VGy(z,m,l)
=R(z,y,m,)Go(xz,m,1)log VGg(x,m,1).

E. Fast Reward Calculation

In the GAN framework, the discriminator network can
only compute the reward for an entire utterance. The reward
is shared by all the actions in the generated utterance. How-
ever, it is of great importance to assign each action a different
reward. When the discriminator assigns the utterance a low
reward, this reward is shared by all actions. In this case, part
of the actions in the utterance may be appropriate, and they
should result in a higher reward. We should assign reward
for each action when generating a response utterance.

SeqGAN was proposed to apply Monte Carlo search with
a roll-out policy Gy to evaluate the reward for each action.
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Figure 4. Diagram of the discriminator network. We develop a discriminator network to assign a reward for each token in the response utterance. The
loss function of discriminator consists of three components, including a global component, a classification loss and a local loss.

For a given response utterance with N tokens, SeqGAN
samples the tokens with the same prefix M times using the
policy Gy when evaluating the reward for the ¢t—th token.
Therefore, Monte Carlo search must generate the entire
utterance N x M times for an utterance with N tokens.
The training procedure of SeqGAN is time-consuming due
to the Monte Carlo search.

To calculate the reward for each action efficiently, we
propose to train a local discriminator network to evaluate
the utterance. The original discriminator employs a classifier
to evaluate the real and generated utterances. In order to
calculate the reward for each token in the utterance, we
can consider each evaluation procedure as a classification
task. Therefore, all the tokens in the real response utterances
are positive examples, and all the tokens in the generated
response utterances are negative examples. We employ con-
volutional layers with padding in the discriminator network
without pooling layers. The spatial size of the discriminator
output is the same as that of the input. The output channel
of the last convolutional layer is set to two. Then the
discriminator network can conduct a binary classification
and compute the individual reward for each token in the
response utterance. The loss function of local discriminator
can be expressed as

£local = Z ]Eyt [10g D($> Yt, M, l)] (6)

Yt

The individual reward of each token can be computed by
one forward computation. Compared with the Monte Carlo
search method, the training procedure is very efficient by
employing the local discriminator network. When computing
the reward, we consider both the entire reward and individ-
ual reward. The loss function of the discriminator can be
expressed as

L= ['global + Ecls + ['local~ (7)

F. Generator

Our generator network follows an encoder-decoder
framework. The input data contains context history
[Wi, ..., Ui+k—1], meta information m and conversational
floor. The encoder network extracts features from inputs. The
features are then fed into the decoder network as the initial
state. We employ recurrent neural networks (RNNs) [24] in
both the encoder and decoder networks. Suppose the context
history contains T tokens [u;, ..., u;t+r—1], and we concate-
nate all the tokens together as © = [x1,...,2¢,...,2x7]. We
use gated recurrent unit (GRU) [25] which can alleviate the
vanishing and exploding gradient problems [26] in this work
to encode each token as:

z = o(W.xy+Uhi_q +0,) (8)
re = o(Wexy+ Uphy_q +by) 9)
h, = tanh(Whze+ Un(riohe—1)+by)  (10)
he = zohi_1+(1—2)oh,, (11)

where o represents the element-wise product operation, W,
U, and b are parameters. To obtain a better representation
of tokens in the context utterances, we use a bidirectional
GRU_>(BiGRU) [27] as a context encoder to represent x;
as [h¢, he] by concatenating the forward hidden state and
backward hidden state as:

i = GRU(xehi1) (12)
e = GRO(wi,hyy), (13)

where E) is the hidden state of forward pass in BiGRU,
and h; is the hidden state of backward pass in BiGRU at
time ¢. Then the context representation [hq, h:] is fed into
another GRU encoder. The GRU network encodes the tokens
in k utterances with the corresponding conversation floor and
represents the utterances using the last hidden state k. of the
GRU network.
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Figure 5.

Diagram of our proposed model for conditional dialogue generation tasks. In our model, a bidirectional gated recurrent neural network is used

to represent the word token as a context encoder. Then the extracted features are fed in an encoder network using GRU. The hidden state of the last unit
is concatenated with meta feature and act label, and the combined feature is used to initialize the decoder hidden state using a fully connected layer. The

decoder network employs a GRU to generate the response utterance.

The decoder employs a GRU network to generate a
response utterance corresponding to the input context. The
decoder network represents the response utterance as the
hidden state of a GRU as:

ht = GRU(htfl, yt), (14)
where ¢ is a gated recurrent unit, h; is the hidden repre-
sentation of the {—th token in the response utterance, y;
is the t—th token, and h;_; is the hidden representation of
the previous input. The initial state ho of decoder network is
ho = Wo[he, m, ]+ bo by considering all the given input. In
addition, a softmax layer is employed to produce the output
tokens for the response utterance as:

P(Ya1|y1, - - -, ye) = softmax(b+ Why), (15)

where b is the bias and W is the projection matrix. The
encoder-decoder network can be trained by maximizing the
likelihood as:

pG(y|I7m: l) = Hth(I7m7 l>y1 : yt71)~ (16)

G. Training

We first maximize the likelihood to pre-train the generator
network Gp(-) using the training dataset. Then the pre-
trained network Gyg(-) is used to generate the response
utterance as negative examples to train the discriminator.
When the pre-training of generator and discriminator is
completed, we employ the discriminator to evaluate the
reward for each token in the response utterance and train
the generator using policy gradient approach. The generator
and discriminator are trained alternatively to achieve better
performance. The algorithm is summarized in Algorithm (1).
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Algorithm 1: Training procedure for our proposed
method.
e Pre-train the generator using equation (16) on
training dataset.
e Generate the response utterances using the
pre-trained generator as negative examples.
e Pre-train the discriminator using positive and
negative examples by equation (7).
while not converged do
e Generate the response utterance using
generator Gy(-).
e Calculate the reward for each token in
response utterance using discriminator.
e Train the generator using policy gradient by
equation (5).
e Generate the response utterances using the
pre-trained generator as negative examples.
e Train the discriminator using positive and
negative examples by equation (7).

IV. EXPERIMENTS

In this section, we conduct a conditional dialogue gener-
ation experiment on the Switchboard dataset and compare
the performance of our proposed method with that of the
sequence to sequence (seq2seq) generator and SeqGAN
using Monte Carlo search method.

A. Dataset

We apply our proposed method on the Switchboard 1
Release 2 Corpus dataset [28] and Daily Dialog dataset [29].
The Switchboard dataset contains 2400 two-sided telephone



Table 1
THE DIALOG ACT DISTRIBUTION IN THE SWITCHBOARD DATASET.

Dialog act Percent ‘ Dialog act Percent

statement-non-opinion 37.64 statement-opinion 12.79

acknowledge 21.54 abandon 12.26

yes-no-question 3.15 agree/accept 2.76

appreciation 2.32 others 7.54
Table IT

THE DIALOG ACT DISTRIBUTION IN THE DAILY DIALOG DATASET.

Dialog act _ Percent | Dialog act Percent
inform 45.74 question 28.65
directive 16.34 commissive 9.27

conversations. Each conversation in the dataset is assigned
with a topic, and the dataset contains 70 topics. The meta
information includes education levels and the genders of
speakers. The preprocessing procedure is the same as that in
[4], including tokenizing using NLTK [30], removing false
tokens, and constructing frequent word vocabulary. In the
dataset, each utterance is labeled with dialog acts [31], and
there are 42 different dialog acts in the Switchboard dataset.
The Daily Dialog dataset contains 13,118 multi-turn human-
human dialogue annotated with dialog acts. There are 4
different dialog acts in the Daily Dialog dataset. The dialog
act distributions for the two datasets have been shown in
Tables I and II.

B. Experimental Settings

In the experiment, the context window size is set to 10.
All tokens in utterances are processed by a word embedding
layer. The size of word embedding is set to 200. We initialize
the word embedding with the Glove embedding [32], which
is pre-trained on Twitter dataset. The hidden size of context
encoder is set to 600. The hidden sizes of encoder and
decoder networks are set to 300 and 400, respectively. We
employ the Adam [33] optimization method to train the
encoder-decoder network. The learning rate of Adam is set
to 0.001, and the gradient clip is set to 5. The batch size
is set to 30 for training. All the weights in the network are
initialized from a uniform distribution in [—0.08, 0.08].

Our discriminator follows the convolutional neural net-
work architecture [22], which contains convolution, max-
pooling, and fully connected layers. We employ 1D convo-
lutional layers with kernel sizes of 2, 3, 4, and 5 to extract
features at different scales. The number of output channels
is set to 200 for all the convolutional layers. The outputs
of different convolutional layers are concatenated together
and processed by a pooling layer. We apply a dropout layer
after the pooling layer, and the dropout rate is set to 0.4. The
numbers of output nodes in fully connected layers are set to
2 and number of dialog act (42 for Switchboard dataset and
4 for Daily Dialog dataset) to compute the global loss and
classification loss, respectively. We apply a convolutional

layer on the concatenated feature map to compute the local
loss.

C. Evaluation

Evaluating the quality of generated responses is a chal-
lenge for dialogue generation tasks. In this work, we focus
on a conditional dialogue generation task in which the
generated response utterances must belong to the given
dialog act. Therefore, we employ a dialog act classifier to
evaluate our generated responses. If our generated responses
belong to the given dialog act, the classifier can identify
the dialog act correctly. In addition, we also evaluate our
response utterances with the BLEU score. The Switchboard
dataset only provides one response utterance for a given con-
text input. However, there are multiple reasonable response
utterances corresponding to a given context input. In order to
evaluate the response utterance with multiple references, we
use the information retrieval technology in [4] to construct a
reference list, which contains 10 candidates from the same
topic. We compute the BLEU1 to 4 [34] to evaluate the
similarity between the generated utterances and references.

D. Accuracy of Dialog Act

We quantitatively evaluate the generated response utter-
ances by measuring the accuracy of dialog act. We employ a
deep convolutional network [22] for dialog act classification.
The model is trained on the training dataset to recognize the
dialog act of each utterance, and it achieves 82.55% accuracy
on the Switchboard test dataset and 77.35% on the Daily
Dialog test dataset for dialog act classification, respectively.
We generate response utterances on the test dataset using
the seq2seq generator, SeqGAN with Monte Carlo search,
and our proposed method.

The results of classification accuracy are shown in Table
VI. We can observe from the results that both SeqGAN
and our proposed method achieve better classification ac-
curacy than seq2seq generator. The discriminator network
in SeqGAN and our proposed model can provide the reward
of classification accuracy. The reward can encourage the
generator to produce response utterances with a specific
dialog act. The classification accuracy of our proposed
model is very close to that of the SeqGAN using Monte
Carlo search. However, Monte Carlo search is very time-
consuming. In the experiment, the rollout number of Monte
Carlo search is set to 10. For a response utterance with N
tokens, the Monte Carlo search approach takes 10+ N times
forward propagation computations to assign each token an
individual reward. Our proposed method can complete this
procedure in one forward propagation, and our computation
time is independent of the length of response utterances.

We extract features from the deep convolutional network
for dialog act classification and visualize these features using
TSNE [35]. The visualization results are shown in Figure 6
and Figure 7 for the two datasets. There are 42 dialog acts



Table 11T
THE RESPONSE UTTERANCES GENERATED BY DIFFERENT MODELS FOR THREE EXAMPLES ON THE SWITCHBOARD DATASET. ONLY ONE UTTERANCE
IS SHOWN IN EACH CASE DUE TO SPACE CONSTRAINTS.

Example 1-Topic: NEWS MEDIA
Context: Well, I can discuss a lot of the news that we have but I feel that that’s not part of our responsibility.
Target (acknowledge): Right.

Model Response utterance
seq2seq generator Yeah.
SeqGAN with MC-search Yeah.
Our proposed method Right.

Example 2-Topic: TRIAL BY JURY
Context: I don’t know. I look at the people who get excused and it’s supposed to be a jury of your peers and I'm not sure it always is.
Target (statement-opinion): And it is a huge burden to put on people who don’t know the law.

Model Response utterance

seq2seq generator And it’s not that it’s not going to be a deterrent.

SeqGAN with MC-search It’s not that bad that it’s not fair to have to have to go ahead and get it.

Our proposed method And i don’t know if it’s a problem or not but I think it’s a law that’s important.

Example 3-Topic: AIR POLLUTION

Context: And you know they say that the coal we burn here in Indiana is responsible for a large part of the acid rain that they have up in New
York state and in Canada and all that.

Target (statement-opinion): And it’s just you know it’s ridiculous when we could be spending the money to develop the technology to you know
clean up some of these.

Model Response utterance

seq2seq generator
SeqGAN with MC-search
Our proposed method

You know it’s not that bad that they’re not doing that they’re not going to be able to handle it.
And I think that’s what they’re doing it’s not going to be a problem that they’re going to be aware of it.
And I think the air conditioning is part of the issue of anyone.

Table IV
THE RESPONSE UTTERANCES GENERATED BY DIFFERENT MODELS FOR TWO EXAMPLES ON THE DAILY DIALOG DATASET. ONLY ONE UTTERANCE IS
SHOWN IN EACH CASE DUE TO SPACE CONSTRAINTS.

Context: A: How may I help you? B: Could you cancel a check for me? A: What’s the problem ? B: I wrote the check out for way too much.
Target (question): How much ?

Model Response utterance

seq2seq generator
SeqGAN with MC-search
Our proposed method

Ok. Here you go.
How much do you owe me ?
How much do you have for ?

Context: A: Really ? I thought Barcelona was going to win. They are a much better team than Madrid. B: If Barcelona had played as they
normally do, they should have won. what happened? A:Their goalkeepers got injured after the first goal, but he kept on playing anyway. B: That
explains it .

Target (question): How many more games are left this season?

Model Response utterance

seq2seq generator How many more games are we playing ?
SeqGAN with MC-search How many more games are left this season ?
Our proposed method How many more games are left ?

Table V
THE RESPONSE UTTERANCES GENERATED FOR A GIVEN CONTEXT HISTORY USING DIFFERENT DIALOG ACTS. ONLY ONE UTTERANCE IS SHOWN IN
EACH CASE DUE TO SPACE CONSTRAINTS.

Context: A: Why not go again to celebrate out one - year anniversary ? We can go to the same beach , stay in the same hotel and enjoy a dinner
in the same restaurant . B: Are you kidding ? Can you afford it ? Do you think we can get a room on such short notice ? A: Never mind that ,
I'll take care of it. Are you available next week ? B: Yeah , I think so . A: Ok . I'll make the arrangements. It will be great .

Target (inform): Wonderful ! I’ll start packing our suitcases.

Act Response utterance

inform Great ! I'll take it .

question Great ! That’ll do my best . How do we start doing this house ?
commissive Great ! I'll start looking forward to help about hotels .

in the Switchboard dataset. We only visualize the top 4
frequent dialog acts. We can observe from the results that

model can generate response utterances with a desired dialog
act.

the response utterances with the same dialog act are close
to each other. The visualization results demonstrate that our



Table VI
CLASSIFICATION ACCURACY OF EACH MODEL ON THE SWITCHBOARD
AND DAILY DIALOG TEST DATASET. THE HIGHEST CLASSIFICATION
ACCURACY IS IN BOLD.

DataSet ‘ Baseline ~ MC-search ~ Our model
Switchboard 77.74 83.99 83.16
Dailydialog 76.21 76.35 77.76
O statement-non-opinion
o O acknowledge
statement-opinion
.Y O  abandoned

Figure 6.
with top 4 frequent dialog acts in the Switchboard dataset. The features are
extracted from the deep convolutional network for dialog act classification.

TSNE visualization of dialog act for test response utterances

E. Time Complexity Analysis

We compare the training time of Monte Carlo search and
that of our proposed method. These models are trained by
using NVIDIA GeForce GTX Titan XP Graphics Cards, and
the training time is shown in Table VII. The rollout number
for Monte Carlo search is set to 10 in the experiments. If the
length of all utterances in the dataset is equal to 10, Monte
Carlo search costs 100 times more training time than our
proposed method.

F. Similarity Analysis

When the response utterances contain some key tokens,
the key tokens can encourage the classifier to produce
correct predictions. Therefore, we compute the BLEU score
to evaluate the similarity between response utterances and
references. Table VIII and Table IX shows the results of
BLEU score on Switchboard and Daily Dialog dataset. We
can observe from the results that our proposed model can
achieve better performance than seq2seq generator.

G. Qualitative Analysis

We randomly select generated response utterances on the
Switchboard and Daily Dialog test dataset using seq2seq
generator, SeqGAN with Monte Carlo search and our pro-
posed model. The response utterances are shown in Table III
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Figure 7. TSNE visualization of dialog act for test response utterances
in the Daily Dialog dataset. The features are extracted from the deep
convolutional network for dialog act classification.

Table VII
COMPARISON OF TRAINING TIME BETWEEN THE MONTE CARLO
SEARCH AND OUR PROPOSED METHOD FOR ONE EPOCH.

Metrics | MC-search
[ 62.5 hour

Our model
0.4 hour

Time

for Switchboard dataset and Table IV for Daily Dialog
dataset. From Table III, We can observe that the three
models can generate good response utterances when the
dialog act is easy to represent such as acknowledge, accept.
If the model is required to generate more complex response
utterances, SeqGAN and our proposed model can achieve
better performance. In the third example in Table III, the
seq2seq model generates good tokens at the beginning of the
utterance. When the seq2seq model generates an undesired
token, it suffers from the “exposure bias” problem and fails
to generate good utterances afterwards. SeqGAN and our
proposed model are trained with discriminators to alleviate
the effect of “exposure bias” problem. Therefore, these two
models can outperform the seq2seq model. Our proposed
model is more time-efficient than the Monte Carlo search
approach.

We can observe from Table IV that our proposed model
can generate response utterances corresponding to the given
dialog acts when employing the classification reward in the
discriminator network. For the first example in Table IV, the
given dialog act is “question”. The seq2seq model generates
a response utterance which belongs to “inform”. Since we
employ classification reward in SeqGAN and our proposed
model, these two models can provide response utterances
with correct dialog act. Compared with MC-search method,
our proposed method can generate response utterances with a
better understanding of context history. For the second exam-



Table VIII
PERFORMANCE OF EACH MODEL ON SIMILARITY MEASURES FOR
SWITCHBOARD DATASET. THE HIGHEST SCORE IN EACH ROW IS IN
BOLD. NOTE THAT OUR BLEU SCORES ARE NORMALIZED TO [0, 1].

Metrics ‘ Baseline  Our model ~ MC-search

BLEU-1 0.4561 0.4558 0.4527

BLEU-2 0.3937 0.3971 0.3946

BLEU-3 0.3506 0.3560 0.3495

BLEU-4 0.3384 0.3453 0.3336
Table IX

PERFORMANCE OF EACH MODEL ON SIMILARITY MEASURES FOR
DAILY DIALOG DATASET. THE HIGHEST SCORE IN EACH ROW IS IN
BOLD. NOTE THAT OUR BLEU SCORES ARE NORMALIZED TO [0, 1].

Metrics \ Baseline  Our model =~ MC-search
BLEU-1 0.4830 0.4900 0.4875
BLEU-2 0.3644 0.3725 0.3693
BLEU-3 0.2736 0.2829 0.2784
BLEU-4 0.2090 0.2193 0.2135

ple in Table IV, all the three models can generate response
utterances that belong to the “question” category. However,
the seq2seq model generates the response utterance without
understanding the context history. We employ the discrimi-
nator to distinguish human generated and machine generated
response utterances. The discriminator network encourages
the model to generate response utterances that are close to
the human generated utterances. Therefore, our proposed
model can generate better response utterances based on the
given context history.

Providing diverse response utterances is of great impor-
tance for dialogue generation models. Our proposed model
can generate different response utterances based on the given
dialog acts. The results have been shown in Table V. We can
observe from the results that our proposed model can provide
different response utterances based on the given dialog acts.

V. CONCLUSION

In this work, we propose to employ an encoder-decoder
model to tackle conditional dialogue generation tasks. The
model takes the context history, meta information, and dialog
act as input and generates a response utterance with a
desirable dialog act. To alleviate the effect of “exposure bias”
problem, we employ a SeqGAN framework and evaluate
the entire utterance by considering the global similarity and
the dialog act. The SeqGAN uses Monte Carlo search to
assign each token in the utterance an individual reward,
which is very time-consuming for the training procedure.
We propose a local discriminator network to compute the in-
dividual reward for each token by one forward propagation.
Experimental results demonstrate that our proposed model
can achieve similar performance, while reducing training
time dramatically.
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