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Robustness of Difference Coarrays of Sparse
Arrays to Sensor Failures—Part I: A Theory

Motivated by Coarray MUSIC
Chun-Lin Liu , Member, IEEE, and Palghat P. Vaidyanathan , Fellow, IEEE

Abstract—In array processing, sparse arrays are capable of re-
solving O(N 2 ) uncorrelated sources with N sensors. Sparse ar-
rays have this property because they possess uniform linear array
(ULA) segments of size O(N 2 ) in the difference coarray, defined
as the differences between sensor locations. However, the coarray
structure of sparse arrays is susceptible to sensor failures, and the
reliability of sparse arrays remains a significant but challenging
topic for investigation. Broadly speaking, ULAs whose difference
coarrays only have O(N ) elements are more robust than sparse
arrays with O(N 2 ) coarray sizes. This paper advances a theory for
quantifying such robustness by introducing the k-essentialness of
sensors and the k-essential family of arrays. The proposed theory is
motivated by the coarray MUltiple SIgnal Classification (MUSIC)
algorithm, which estimates source directions based on difference
coarrays. Furthermore, the concept of essentialness not only char-
acterizes the patterns of k faulty sensors that shrink the difference
coarray, but also leads to the notion of k-fragility, which assesses the
robustness of array geometries quantitatively. However, the large
size of the k-essential family usually complicates the theory. It will
be shown that the k-essential family can be compactly represented
by the so-called k-essential Sperner family. Finally, the proposed
theory is used to provide insights into the probability of change of
the difference coarray, as a function of the sensor failure proba-
bility and array geometry. In a companion paper, the k-essential
Sperner family for several commonly used array geometries will
be derived in closed form, resulting in a quantitative comparison
of the robustness of these arrays.

Index Terms—Sparse arrays, difference coarrays, the k-
essentialness property, the k-fragility, the k-essential Sperner
family.

I. INTRODUCTION

S PARSE arrays, which have nonuniform sensor spacing,
have recently attracted considerable attention in array sig-

nal processing [1]–[5]. Unlike uniform linear arrays (ULA),
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which resolve at most N − 1 uncorrelated sources with N sen-
sors, some sparse arrays are capable of identifying O(N 2) un-
correlated sources using N physical sensors. These arrays in-
clude minimum redundancy arrays (MRA) [2], nested arrays [4],
coprime arrays [5], and their generalizations [6]. This O(N 2)
property is because the difference coarray, defined as the set of
differences between the sensor locations, possesses an O(N 2)-
long central ULA segment. By analyzing the samples on the
difference coarray, quite a few direction-of-arrival (DOA) esti-
mators have been shown to resolve more uncorrelated sources
than sensors [4], [5], [7]–[12].

In practice, sensor failure could occur randomly and may
lead to the breakdown of the overall system [13], [14]. It can
be empirically observed that, for some sparse arrays, such as
MRA, faulty sensors could shrink the size of the O(N 2)-long
ULA segment in the difference coarray significantly. Further-
more, small ULA segments in the difference coarray typically
lead to degraded performance [4], [7], [8], [15]. Due to these
observations, in the past, sparse arrays were considered not to
be robust to sensor failure. However, the impact of damaged
sensors on sparse arrays remains to be analyzed, since these
observations assume specific array configurations.

The issue of sensor failure was addressed in the literature
in two respects, including 1) developing new algorithms that
are functional in the presence of sensor failure and 2) analyz-
ing the robustness of array geometries. In the first case, various
approaches have been developed, including DOA estimators
based on minimal resource allocation network [16], impaired
array beamforming and DOA estimation [17], array diagnosis
based on Bayesian compressive sensing [18], and so on [19],
[20]. However, the interplay between the array configuration
and the exact condition under which these algorithms are ap-
plicable, remains to be investigated. The second aspect assesses
the robustness of array configurations with faulty sensors [21],
[22]. For instance, Alexiou and Manikas [21] proposed vari-
ous measures to quantify the robustness of arrays while Carlin
et al. [22] performed a statistical study on the beampattern with
a given sensor failure probability. Even so, the impact of dam-
aged sensors on the difference coarray has not yet been analyzed
in a deterministic fashion, which is crucial for sparse arrays.

In this paper, we aim to investigate the influence of faulty
sensors on the difference coarray. The main focus of this paper
is not to develop new algorithms, but to analyze the robustness of
arrays. Note that the proposed theory is motivated by the coarray

1053-587X © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 21,2020 at 18:52:45 UTC from IEEE Xplore.  Restrictions apply. 



3214 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 12, JUNE 15, 2019

Fig. 1. An illustration of the essentialness property. Si and Di represent the
physical array and the difference coarray of the ith array, respectively. Elements
are marked by dots while empty space is depicted by crosses. It can be observed
that removing the sensor at 1 from Array #1 changes the difference coarray
(D2 �= D1 ). However, in Array #3, which is obtained by removing the sensor
at 2 from Array #1, the difference coarray remains the same (D3 = D1 ). We
say that the sensor at 1 is essential with respect to Array #1 while the sensor at
2 is inessential with respect to Array #1.

MUltiple SIgnal Classification (MUSIC) algorithm, which relies
on the data on the difference coarray to estimate the DOAs.
Therefore, changes in the difference coarray may hinder the
applicability of coarray MUSIC [4], [7], [8].

A sensor is said to be essential if its deletion changes the
difference coarray. Note that the essentialness property, which
was originally introduced to study the economy of sensors [23],
depends purely on the array geometry, rather than the source
parameters and the estimation algorithms. One of the main con-
tributions of this paper is to show that the essentialness property
can be used to assess the robustness of the array geometry, in
the sense of preserving the difference coarray. A generaliza-
tion of this, called k-essentialness, is then developed in order
to study the effect of multiple sensor failures on the difference
coarray. The coarray robustness is quantified using the notion of
k-fragility which is introduced later in the paper. This quantity
ranges from 0 to 1; an array is more robust if the fragility is
closer to 0.

For an array with N sensors, the size of the k-essential family
can be as large as

(
N
k

)
, which makes it challenging to analyze

and to store the complete information. To address this issue, we
introduced the k-essential Sperner family, which encodes the
information in the k-essential family with great economy.

These proposed quantities find applications in quantifying the
susceptibility of the difference coarray with respect to random
sensor failures. Note that this topic is of considerable interest
in reliability engineering [13], [14]. Our study offers several
insights into the interplay between the overall reliability, the
essentialness property, and the fragility. For instance, under mild
assumptions, the system reliability decreases as the number of
essential sensors increases.

As an example, Fig. 1 demonstrates the main idea of the es-
sentialness property. Let us consider Array #1 and its difference
coarray, as depicted on the top of Fig. 1. The sensor at 1 is
essential since its removal from Array #1 alters the difference
coarray. However, the sensor at 2 is inessential, since D3 = D1 .
This example shows that according to the sensor locations, some

sensors are more important than others, as far as preserving the
difference coarray is concerned. The essentialness property and
its connection to the robustness of the array geometry will be
developed in depth later.

Paper outline: Section II reviews the theory of sparse arrays.
Section III proposes the k-essential family while Section IV
introduces the k-fragility. Section V presents the k-essential
Sperner family. Section VI offers a number of insights into the
system reliability for the difference coarray while Section VII
concludes this paper. Parts of the results were presented in a
conference paper [24], including (a) the definitions of the k-
essentialness property and the k-fragility, (b) Theorems 1 and
2, and (c) sketches of the proofs of these theorems.

A. Remarks on Redundancy and the Proposed Theory

The proposed theory shares concepts similar to redundancy
discussed in [2], [25]. For instance, it was stated in [25] that “the
redundancy of an array may be described as the degree to which
it contains elements that can be eliminated without changing its
coarray.” This statement is closely related to the definition of
the essentialness property (Definition 3). Even so, in this paper,
this concept is developed with a different approach, as we will
elaborate in the following items.

1) The redundancy is defined as R =
(
N
2

)
/max(U), where

N is the number of sensors and max(U) is the maximum
element in the central ULA segment of the difference
coarray [2], [25]. According to this definition, the redun-
dancy R is a scalar attribute of an array. On the other
hand, in our proposed theory, the essentialness property
is a binary attribute of each individual sensor while the
maximal economy and the k-fragility are attributes of the
entire array.

2) The redundancy R explicitly takes the central ULA seg-
ment U of the difference coarray into consideration. The
set U is usually important for MUSIC-like algorithms on
the difference coarray [4], [7]–[9], [26]. Even though the
proposed theory is motivated by the coarray MUSIC algo-
rithm, the central ULA segment in the difference coarray
is not involved in the essentialness property and other de-
rived attributes.

3) The essentialness property can be interpreted as the im-
portance of each physical sensor in an array. Based on this
interpretation, we can use the essentialness property to de-
termine the implementation cost of the physical sensing
devices. On the contrary, the redundancy [2], [25] does
not reveal the importance of each sensor.

4) The redundancy R and the k-fragility Fk are both quanti-
ties characterizing the arrays. By definition, R ≥ 1 and
0 ≤ Fk ≤ 1 for any array configurations. The redun-
dancy R can be interpreted as how much the central
ULA segment of the difference coarray is away from the
largest number of positive lags

(
N
2

)
. In the proposed the-

ory, the k-fragility can be viewed as the tendency that the
difference coarray changes under sensor failures, where
the sizes and the structures of the difference coarray are
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not of primary interest. Therefore, the redundancy and
the k-fragility are different concepts.

5) In the literature, the redundancy is mainly used for design-
ing arrays with minimum redundancy [2]. In this paper,
the essentialness property and the proposed theory aim to
quantify the robustness of an arbitrary array configura-
tion. Based on this, it is possible to design novel arrays
that are as robust as ULAs and have size O(N 2) in the
difference coarray [27], [28].

6) Minimum redundancy implies maximal economy, but the
converse is not necessarily true [29, Section III]. For in-
stance, the nested array is maximally economic but its
redundancy is not minimized.

II. REVIEW OF SPARSE ARRAYS

Assume that D monochromatic and far-field sources with
wavelength λ impinge on a one-dimensional sensor array, where
the sensor locations are nλ/2. Here n belongs to an integer set S.
Let θi ∈ [−π/2, π/2] and Ai ∈ C be the DOA and the complex
amplitude of the ith source, respectively. The array output of
the linear sensor array S, denoted by xS, is modeled as

xS =
D∑

i=1

AivS(θ̄i) + nS ∈ C
|S|, (1)

where vS(θ̄i) � [ej2π θ̄i n ]n∈S is the steering vector and nS is the
noise term. The normalized DOA is defined as θ̄i � (sin θi)/2 ∈
[−1/2, 1/2]. The notation |S| denotes the cardinality of the set
S. It is assumed that the sources and the noise are zero-mean and
uncorrelated. Namely, if s � [A1 , . . . , AD ,nT

S
]T , then we have

E[s] = 0 and E[ssH ] = diag(p1 , . . . , pD , pnI), where pi and
pn are the powers of the ith source and the noise, respectively.
Under these assumptions, the covariance matrix of xS becomes
[4]:

RS = E[xSxH
S ] =

D∑

i=1

pivS(θ̄i)vH
S (θ̄i) + pnI. (2)

Next we will define the difference coarray D as follows:
Definition 1: The difference coarray of a linear array S is

defined as D � {n1 − n2 : n1 , n2 ∈ S}.
Based on Definition 1, vectorizing (2) and averaging over

duplicated entries lead to the autocorrelation vector xD on the
difference coarray:

xD =
D∑

i=1

pivD(θ̄i) + pne0 ∈ C
|D|, (3)

where e0 is a column vector with 1 in the middle (the (|D| +
1)/2-th element) and 0 elsewhere.

Note that (3) can be regarded as the output defined on the
difference coarray, instead of that on the physical array (1). If
sensor locations are designed properly, the size of the difference
coarray can be much larger than the size of the physical array.
In particular, |D| = O(|S|2). This property makes it possible
to develop coarray-based DOA estimators that resolve more
uncorrelated sources than sensors and achieve higher spatial
resolution [4], [5], [7], [8].

Next we will define some useful quantities regarding the
difference coarray. The central ULA segment of D, denoted
by U, is the longest ULA in D that includes the entry 0. In
other words, U � {m : {0,±1, . . . ,±|m|} ⊆ D}. The small-
est ULA containing D is denoted by V � {m ∈ Z : min(D) ≤
m ≤ max(D)}. An integer h is said to be a hole in the difference
coarray if h ∈ V but h /∈ D. A difference coarray is hole-free if
D = U.

Definition 2: The weight function w(m) of a linear array S

is defined as the number of sensor pairs with coarray index m.
That is, w(m) =

∣
∣{(n1 , n2) ∈ S

2 : n1 − n2 = m}∣∣.
It is known that the difference coarray plays a significant role

in DOA estimation based on (3). For instance, the performance
of coarray MUSIC relies on U [4], [8], [15], [26]. In addition,
the performance of any unbiased DOA estimator using sparse
arrays is known to be limited by the difference coarray [15],
[30], [31].

Now let us review some existing array geometries and their
difference coarrays. First, the ULA with N sensors [1] is denoted
by the set SULA � {0, 1, . . . , N − 1}. The difference coarray
for ULA is DULA = {±0,±1, . . . ,±(N − 1)}. It can be shown
that |DULA | = 2N − 1 = O(N). Next, the nested array [4] is
defined as

Snested � {1, 2, . . . , N1 ,

(N1 + 1), 2(N1 + 1), . . . , N2(N1 + 1)}, (4)

where N1 and N2 are positive integers. The difference coarray
of the nested array is Dnested = {0,±1, . . . ,±(N2(N1 + 1) −
1)}. In particular, Dnested has no holes. Given N sensors, if
N1 and N2 are approximately N/2, the size of the difference
coarray can be shown to be |Dnested | = O(N 2) [4]. Finally, the
coprime array [5] is parameterized by a pair of integers (M,N)
whose greatest common divisor is 1. The sensors for the coprime
array are located at

Scoprime � {0, M, . . . , (N − 1)M,

N, 2N, . . . , (2M − 1)N}. (5)

It can be shown that the difference coarray for the coprime array
has holes [5] and the largest central ULA segment is Ucoprime
= {0,±1, . . . ,±(MN + M − 1)} [6]. Namely, |Ucoprime | =
2MN + 2M − 1 = O(MN), and there are |Scoprime | = N +
2M − 1 = O(M + N) physical sensors.

For some sparse arrays, such as minimum redundancy arrays
(MRA) [2], minimum hole arrays (MHA) [32], and Cantor ar-
rays [33], the sensor locations cannot be readily expressed in
closed-form. The MRA and MHA are typically constructed us-
ing integer programming [2], [32], whereas the Cantor arrays
can be constructed recursively [23], [33]. For the details of these
arrays, the interested readers are referred to [2], [23], [32] and
the references therein.

III. THE ESSENTIALNESS PROPERTY

In this section, we will present the essentialness property,
which is useful in studying the robustness of sparse arrays.
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It is well-known that coarray MUSIC is applicable to the
autocorrelation vector on U as long as |U| > 1 (e.g., see [8]).
However, it will be demonstrated in Example 1 that U is sus-
ceptible to sensor failure. For certain array geometries, even one
damaged physical sensor could alter U significantly and coarray
MUSIC may fail.

Example 1: In Fig. 1, Array #1 has S1 = {0, 1, 2, 4, 6} and
D1 = {0,±1, . . . ,±6} = U1 . In this case, the coarray MUSIC
algorithm may be used, since |U1 | = 13 > 1. Now suppose the
sensor located at 1 fails. The new array configuration (Array #2)
and the associated difference coarray becomes S2 = {0, 2, 4, 6}
and D2 = {0,±2,±4,±6}, respectively. So the size of the ULA
segment of D2 is 1 and the coarray MUSIC algorithm is not ap-
plicable. On the other hand, if the sensor at 2 fails, we have Ar-
ray #3, which has S3 = {0, 1, 4, 6} and D3 = {0,±1, . . . ,±6}.
Since |U3 | = 13 > 1, the coarray MUSIC algorithm may still
be implemented.

Example 1 shows that, the location of the faulty sensors
could modify the difference coarray, which affects the appli-
cability of coarray MUSIC. Note that, even if the difference
coarray changes, there might exist other DOA estimators, such
as compressed sensing based methods [10], [11] and coarray
interpolation [12], [34], that work on the new difference coar-
ray. However, these approaches are typically computationally
expensive and the exact conditions under which the method
works, remain to be explored. For this reason, we only focus
on coarray MUSIC and the integrity of the difference coarray
in this paper and the companion paper [29]. Other scenarios are
left for future work.

We begin with the following definition [23]:
Definition 3: The sensor located at n ∈ S is said to be es-

sential with respect to S if the difference coarray changes when
sensor at n is deleted from the array. That is, if S = S\{n}, then
D �= D. Here D and D are the difference coarrays for S and S,
respectively.

The essentialness property was originally introduced in [23]
to study symmetric arrays and Cantor arrays. The main focus in
[23] was the economy of sensors.

In this paper, we focus on the fact that the removal of (or
failure of) an essential sensor makes it difficult to apply coarray
MUSIC. The removal of an inessential sensor, on the other hand,
does not affect the applicability of coarray MUSIC at all. Our
focus in this paper is a study of essentialness, and its generaliza-
tion called k-essentialness for arbitrary array geometries. One
potential use of this knowledge is that one can design essential
sensors more carefully so they have smaller failure probability,
although this is not the focus here.

Given an array S, the essential sensors can be found by search-
ing over all the sensors in S, according to Definition 3. The
knowledge of the weight function w(m) also gives useful in-
sights about this:

Lemma 1: Suppose that w(m) is the weight function of S.
Let n1 and n2 belong to S. If w(n1 − n2) = 1, then n1 and n2
are both essential [23].

The proof of Lemma 1 can be found in [23, Lemma 1]. Note
that the condition that w(n1 − n2) = 1 is sufficient, but not
necessary for the essentialness of both n1 and n2 . For instance,

Fig. 2. An example of MESA. (a) The original array and its difference coarray.
The array configurations and the difference coarrays after the deletion of (b) the
sensor at 0, (c) the sensor at 1, (d) the sensor at 4, or (e) the sensor at 6, from the
original array in (a). Here the sensors are denoted by dots while crosses denote
empty space.

if S = {0, 1, 2}, then it can be shown that n1 = 1 and n2 = 0 are
both essential with respect to S, due to Definition 3. However,
the weight function satisfies w(n1 − n2) = w(1) = 2.

Lemma 1 serves as a building block of many results in this
paper and the companion paper [29], as we will develop later.

Due to Lemma 1 and the fact that w(max(S) − min(S)) = 1
for any S, we have the following lemma:

Lemma 2: For any array S, the leftmost element (min(S))
and the rightmost element (max(S)) are both essential.

As a result, when studying the essentialness property, it suf-
fices to consider the elements min(S) < n < max(S), which
simplifies the discussion.

Next we will develop the concept of maximal economy, which
was first presented in [23]. It is formally defined as

Definition 4: A sensor array S is said to be maximally eco-
nomic if all the sensors in S are essential [23].

These arrays are also called maximally economic sparse ar-
rays (MESA) [23]. By definition, none of the sensors in MESA
can be removed without changing the difference coarray. For
instance, the array S = {0, 1, 4, 6} in Fig. 2(a) is maximally
economic, due to the results in Figs. 2(b) (c), (d), and (e).

Note that maximal economy is a property of the entire array,
in contrast to the essentialness property, which is associated with
sensors in an array, as in Definition 3. In this paper, the general
properties will be discussed while in the companion paper [29,
Section III], it will be proved that MESA includes MRA, MHA,
nested arrays with N2 ≥ 2, and Cantor arrays.

A. The k-Essential Family

If there are multiple sensor failures, the influence of these
faulty sensors on the difference coarray becomes more compli-
cated. If two sensors are inessential, it means that either one of
them can be removed without changing the coarray. But if both
sensors are removed, the difference coarray may change.

In the following development, the essentialness property in
Definition 3 will be generalized into the k-essentialness property
to handle multiple sensor failures. To begin with, the family of
all size-k subarrays over an integer set S is defined as

Sk � {A ⊆ S : |A| = k}. (6)
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Fig. 3. Array configurations and the difference coarrays for (a) the ULA with
9 sensors, and the arrays after the removal of (b) 1, (c) 2, (d) 7, (e) {1, 2}, and
(f) {1, 7} from (a).

Then the k-essentialness property is defined as
Definition 5: A subarray A of S is said to be k-essential with

respect to array S if it has the following properties.
1) A has size exactly k. Namely, A ∈ Sk .
2) The difference coarray changes when A is removed

from S.
Note that essentialness, as defined in Definition 3, is equiv-

alent to 1-essentialness (k = 1 in Definition 5). Namely, n ∈ S

is essential if and only if {n} ⊆ S is 1-essential. For brevity, we
will use these terms interchangeably.

Example 2: For instance, let us consider the ULA with 9
sensors, as depicted in Fig. 3(a). It can be shown that {1} is not
1-essential, {2} is not 1-essential, {7} is not 1-essential, {1, 2}
is not 2-essential, but {1, 7} is 2-essential, all with respect to
the array in Fig. 3(a).

It is useful to enumerate all the k-essential subarrays because
these are the subarrays whose failure could make the coarray
MUSIC fail. The collection of these subarrays is called the k-
essential family:

Definition 6: The k-essential family Ek with respect to a
sensor array S is defined as

Ek � {A : A is k-essential with respect to S}. (7)

Here k ∈ {1, 2, . . . , |S|}.
The implication of the k-essential family is as follows. If

an array S and its k-essential family Ek are given, then for
any subarray A of size k, it is possible to determine whether
S and S\A share the same difference coarray, without actually
computing the difference coarray. This can be done by searching
for A in Ek . Furthermore, the size of Ek (i.e., the number of k-
essential subarrays) also quantifies the robustness of the system,
as we shall elaborate in Section IV.

In general, given an array configuration S, the k-essential
family Ek can be uniquely determined, by examining all possi-
ble
(|S|

k

)
subarrays, as in Definition 6. From the computational

perspective, this task becomes intractable for large number of
sensors. In addition, even if Ek can be enumerated, it remains
difficult to retrieve information from Ek , which might have size
up to the order of

(|S|
k

)
.

These challenges will be addressed in two respects. First, the
size of the k-essential family, namely |Ek |, can be expressed

Fig. 4. The ULA with 6 physical sensors, where the essential sensors and the
inessential sensors are denoted by diamonds and rectangles, respectively. The
k-essential subarrays are also listed.

or bounded in terms of simpler things like the number of sen-
sors, the weight function, and the number of essential sensors,
as presented in Theorem 1. These results lead to the robust-
ness analysis of array configurations, as we will develop in
Section IV. Second, the retrieval of the information in Ek could
be accelerated by the k-essential Sperner family, which will be
discussed in Section V in detail.

Next, some properties of Ek are discussed in Theorem 1,
whose proof can be found in the next subsection.

Theorem 1: Let Ek be the k-essential family with respect to
a nonempty integer set S (set of sensors), and let the family Sk

be as defined in (6). Let �·� and 	·
 be the ceiling function and
the floor function, respectively. Then the following properties
hold true:

1) (|S| − k)|Ek | ≤ (k + 1)|Ek+1 | for all 1 ≤ k ≤ |S| − 1.
The equality holds if and only if Ek = Sk .

2) Ek = Sk for all Q ≤ k ≤ |S|, where Q = min{Q1 , Q2}.
The parameters Q1 and Q2 are given by

Q1 = |S| − |E1 | + 1, (8)

Q2 =

⌈

|S| −
√

8|S| − 11 + 1
2

⌉

, for |S| ≥ 2. (9)

3) Let Mq = |{m ∈ D : w(m) = q}| be the number of ele-
ments in the difference coarray such that the associated
weight function is q. If |S| ≥ 2, then

⌈√
4M1 + 1 + 1

2

⌉
≤ |E1 | ≤ min

{
M1 +

⌊
M2

2

⌋
, |S|
}

.

(10)

Example 3: Theorem 1 can be illustrated by the following
concrete examples. Fig. 4 depicts the k-essential family of the
ULA with 6 sensors. First, we obtain that E1 �= S1 , |E1 | = 2,
and |E2 | = 11. If k = 1, then we have (|S| − 1)|E1 | = 10 and
(1 + 1)|E2 | = 22, which illustrates Property 1 of Theorem 1.
Second, Fig. 4 shows that the ULA with 6 sensors has |E1 | = 2
and Ek = Sk for 3 ≤ k ≤ 6. This is consistent with Property 2
of Theorem 1, since we have Q1 = 5, Q2 = 3, and Q = 3 in
(8) and (9). Finally, let us demonstrate Property 3 of Theorem 1
using the ULA, the MRA, and the MHA. The array geometries
and the weight functions for these arrays are depicted in Fig. 5.
Furthermore, the parameters M1 and M2 can be found in the
caption of Fig. 5. Substituting M1 and M2 into the lower bound
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Fig. 5. The array geometries and the weight functions for (a) the ULA with
6 sensors, (b) the MRA with 6 sensors, and (c) the MHA with 6 sensors. The
sensors are depicted in dots while the empty space is shown in crosses. The
definition of Mq in Property 3 of Theorem 1 leads to M1 = 2, M2 = 2 for (a),
M1 = 22, M2 = 4 for (b), and M1 = 30, M2 = 0 for (c).

and the upper bound in (10) leads to

(a) ULA: Lower bound = 2, Upper bound = 3, (11)

(b) MRA: Lower bound = 6, Upper bound = 6, (12)

(c) MHA: Lower bound = 6, Upper bound = 6. (13)

Next let us consider the number of essential sensors (|E1 |) for
these arrays. According to Fig. 4, we have |E1 | = 2 for the ULA
with 6 sensors, which is in accordance with (11). For MRA and
MHA with 6 sensors, using Definition 5, it can be numerically
shown that they are maximally economic. This result is con-
sistent with (12) and (13). Note that the maximal economy of
MRA and MHA will be proved in the companion paper [29].

Remarks on Property 1 of Theorem 1: This property says that
the size of Ek cannot be arbitrary. In particular, if Ek becomes
Sk , we have the following corollary:

Corollary 1: For any k in 1 ≤ k ≤ |S| − 1, if Ek = Sk , then
Ek+1 = Sk+1 .

Note that Corollary 1 can be utilized to accelerate the com-
putation of Ek for all k. Due to Definition 6, Ek can be evaluated
numerically from k = 1, 2, and so on. If Ek is Sk for some
particular k, then the algorithm stops, since it is guaranteed that
E� = S� for k + 1 ≤ � ≤ |S|. Another usage of Corollary 1 is
to study the k-essential family of MESA. Due to Definition 4
(E1 = S1) and Corollary 1, we obtain

Corollary 2: If S is maximally economic, then Ek = Sk for
all 1 ≤ k ≤ |S|.

Implications of Property 2 of Theorem 1: If the number of
faulty sensors k is sufficiently large (≥ Q where Q is defined in
Property 2 of Theorem 1), then the difference coarray is guar-
anteed to change. For instance, if k = |S|, then all the sensors
fail so the difference coarray changes from a nonempty set to

the empty set. The parameter Q depends on Q1 and Q2 , which
can be readily computed given the array geometry. Q1 is the
number of inessential sensors plus one while Q2 is purely a
function of the number of sensors. In particular, assume that the
number of sensors |S| is large enough. Based on (9), we have
Q2 ≈ |S| −√2|S|, implying that, if the number of operational
sensors (|S| − k) is smaller than

√
2|S|, then Ek = Sk , that is,

any subset of k sensors is k-essential with respect to S.
Note that the condition that Q ≤ k ≤ |S| is only sufficient but

not necessary for Ek = Sk . For instance, if S = {0, 1, . . . , 15},
then (8) and (9) result in Q1 = 15, Q2 = 11, so Q = 11. How-
ever, in this case, it can be numerically shown that E10 = S10 .

Property 2 of Theorem 1 can also be utilized to characterize
MESA, as in the following corollary, which is readily verified:

Corollary 3: Let S be a sensor array. If 1 ≤ |S| ≤ 3, then S

is maximally economic.
Remarks on Property 3 of Theorem 1: Eq. (10) is analogous

to Cheeger inequalities in graph theory [35], where the Cheeger
constant is bounded by the expressions based on the topology
of graphs. Here in (10), the number of essential sensors is anal-
ogous to the Cheeger constant. The bounds in (10) also depend
on the weight functions, which depend on the array geometry.

Another remark is the connection between the difference
coarray and graph theory. It was shown in [36] that the differ-
ence coarray is closely related to numbered undirected graphs,
where each vertex corresponds to a number and the differences
of the numbers on the vertices are assigned to edges. Interested
readers are referred to [36] and the references therein. In this
paper, we will use this concept to prove Theorem 1.

B. Proof of Theorem 1

The following results are useful in proving Theorem 1:
Proposition 1: Let D and D be the difference coarrays of S

and S, respectively. If S ⊆ S, then D ⊆ D.
The proof of Proposition 1 can be readily seen.
Lemma 3: Assume that A and B are sets such that A ⊆ B ⊆

S. If A ∈ E|A|, then B ∈ E|B|.
Proof: Assume that S1 � S\A and S2 � S\B. The differ-

ence coarrays of S, S1 , and S2 are denoted by D, D1 , and D2 ,
respectively. The notation X ⊂ Y denotes that X is a subset
of Y but X �= Y. We will show that D2 ⊆ D1 ⊂ D. First, since
A ⊆ B ⊆ S, we have S2 ⊆ S1 , implying D2 ⊆ D1 due to Propo-
sition 1. Second, due to the definition of the k-essential family,
A ∈ E|A| is equivalent to D1 ⊂ D. Hence D2 ⊂ D, which means
B ∈ E|B|. �

Lemma 4: Assume that an array S has difference coarray D.
Then D satisfies 2|S| − 1 ≤ |D| ≤ |S|2 − |S| + 1.

Proof: Let S be {s1 , s2 , . . . , sN } such that s1 < s2 < · · · <
sN , where N = |S| is the number of sensors. If N = 1, then
this lemma is trivially true. Next let us consider N ≥ 2. Since
the sensor locations s1 , s2 , . . . , sN are distinct, the differ-
ences 0,±(s2 − s1),±(s3 − s1), . . . ,±(sN − s1) are all dis-
tinct, which proves the lower bound. For the upper bound, it
is known that there are

(
N
2

)
ways to choose two distinct num-

bers from N numbers and each choice leads to two differences.
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Fig. 6. An illustration for the main idea of the proof of Property 1 of Theorem
1. Here the array is the ULA with 6 sensors and the k-essential family E1 and
E2 are depicted in Fig. 4.

In addition, the difference 0 is obtained by choosing the same
number twice. Hence |D| is at most 2

(
N
2

)
+1=N 2−N+1. �

Now let us move on to the proof of Theorem 1:
1) Proof of Property 1 of Theorem 1: This proof technique

can be found in [37]. Let us count the number of pairs (A, B) ∈
Ek × Ek+1 such that A ⊂ B. Let L be the number of such pairs.
For every n1 ∈ S but n1 /∈ A, it can be shown that A ⊂ A ∪
{n1} ⊆ S and therefore A ∪ {n1} ∈ Ek+1 , due to Lemma 3.
Since (A, A ∪ {n1}) has |Ek | × |S\A| choices, we have

L = (|S| − k)|Ek |. (14)

Similarly, it can be shown that B\{n2} ⊂ B ⊆ S, for all B ∈
Ek+1 and n2 ∈ B. However, the statement that B\{n2} ∈ Ek ,
(the converse of Lemma 3), is not necessarily true. Therefore,
by counting the number of n2 and B, we have

L ≤ (k + 1)|Ek+1 |, (15)

with equality if and only if B\{n2} ∈ Ek for all B ∈ Ek+1 and
all n2 ∈ B. Combining (14) and (15) proves the inequality. The
equality holds if and only if (A ∪ {n1})\{n2} ∈ Ek . Therefore
Ek = ∅ or Sk , where ∅ is the empty set. Since min(S) and
max(S) are both essential, Ek is not empty. This proves the
condition for equality. �

Example 4: For clarity, the proof of Property 1 of Theorem 1
is demonstrated using an undirected graph in Fig. 6 . We focus
on the ULA with 6 sensors and k = 1. The array geometry and
the k-essential family E1 and E2 are depicted in Fig. 4. The nodes
in Fig. 6 are grouped into Layer #1 (elements in E1), Layer #2
(elements in E2), and Layer #3 (elements in S1). The numbers
in the nodes denote subarrays of the ULA. We say that the
node A in Layer #1 and the node B in Layer #2 are connected,
if and only if A is a subset of B. For instance, the node {0}
in Layer #1 and the node {0, 1} in Layer #2 are connected.
By definition, the parameter L is exactly the number of edges
between Layer #1 and Layer #2. Since there are |E1 | = 2 nodes
in Layer #1 and each node contributes to |S| − 1 = 5 edges, we
have L = 2 × 5 = 10, which is (14). Next, let us consider the
number of edges between Layer #2 and Layer #3. Let B in Layer
#2 and C in Layer #3. We say that there exists an edge between
B and C if and only if C is a subset of B. For example, the node
{3, 5} in Layer #2 is connected to both node {3} and node {5}
in Layer #3. As a result, each node in Layer #2 corresponds to
k + 1 = 2 edges. Then the number of edges between Layer #2
and #3 becomes 11 × 2 = 22, which is indeed greater than or
equal to L = 10.

2) Proof of Property 2 of Theorem 1: Let us consider any
subarray A ⊆ S such that |A| = k ≥ |S| − |E1 | + 1 = Q1 . The
cardinality of S\A becomes |S| − k ≤ |E1 | − 1 < |E1 |, imply-
ing that there is at least one essential element in A. Due to
Lemma 3, A is k-essential, which proves the lower bound Q1 .

The proof for the lower bound Q2 is as follows. Let the
difference coarray of an array S be denoted by D. Suppose
that A ⊆ S and |A| = k. Assume that S � S\A has difference
coarray D. Due to Lemma 4, D and D satisfy

2|S| − 1 ≤ |D| ≤ |S|2 − |S| + 1, (16)

2(|S| − k) − 1 ≤ |D| ≤ (|S| − k)2 − (|S| − k) + 1. (17)

It is guaranteed that D �= D, if the range of |D| in (16) and that
of |D| in (17) are disjoint. Therefore, Ek = Sk if

(|S| − k)2 − (|S| − k) + 1 ≤ (2|S| − 1) − 1. (18)

If |S| ≥ 2, then the sufficient condition (18) leads to |S| −
(
√

8|S| − 11 + 1)/2 ≤ k ≤ |S| + (
√

8|S| − 11 − 1)/2. Since
k is an integer, we have k ≥ Q2 . �

3) Proof of Property 3 of Theorem 1: Let Sq = {n1 , n2 :
w(n1 − n2) = q} ⊆ S be the sensors such that the associated
weight function is q. The set Gq collects the essential sensors in
Sq but not in S� for 1 ≤ � ≤ q − 1. Namely,

Gq = {n : {n} ∈ E1 , n ∈ Sq ,

n /∈ S� , 1 ≤ � ≤ q − 1}. (19)

By definition, the number of essential sensors is given by |E1 | =
∑|S|

q=1 |Gq |. Next, it can be shown (see below) that the size of
Gq satisfies:

(
√

4M1 + 1 + 1)/2 ≤ |G1 | ≤ M1 , (20)

0 ≤ |G2 | ≤ M2/2, (21)

|Gq | = 0, q ≥ 3. (22)

Since |E1 | is an integer, |E1 | is lower bounded by �(√4M1 + 1 +
1)/2� and upper bounded by M1 + 	M2/2
, which proves this
theorem. �

Proof of (20): Consider a simple, directed graph G with ver-
tices G1 and directed edges from n1 to n2 if w(n1 − n2) = 1
for all distinct n1 , n2 ∈ G1 . Due to |S| ≥ 2 and Lemma 2, both
of the distinct elements min(S) and max(S) belong to G1 .
Therefore |G1 | ≥ 2. By definition, M1 is the number of di-
rected edges in G. Next the range of M1 is discussed. Due to
(19), each vertex in G corresponds to at least one directed edge
and hence |G1 | ≤ M1 . On the other hand, the maximum num-
ber of edges in G is 2

(|G1 |
2

)
= |G1 |(|G1 | − 1) [38]. Rearranging

M1 ≤ |G1 |(|G1 | − 1) proves the lower bound in (20). �
Example 5: Let us consider the arrays in Fig. 5 to elaborate

the proof of (20). For instance, in Figs. 4 and 5(a), the ULA has
E1 = {{0}, {5}} and w(5 − 0) = 1. In this case, we have G1 =
{0, 5}, due to (19), and the number of directed edges is M1 = 2,
as in Fig. 7(a), which is in accordance with (20). For the MRA
with 6 sensors, Example 3 and Fig. 5(b) show that all sensors are
essential and w(13 − 0) = w(11 − 1) = w(9 − 6) = 1. There-
fore, we obtain G1 = {0, 1, 6, 9, 11, 13} and M1 = 22, as
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Fig. 7. The directed graph G in the proof of (20), for (a) the ULA with 6
sensors, (b) the MRA with 6 sensors, and (c) the MHA with 6 sensors. The
number of directed edges is (a) M1 = 2, (b) M1 = 22, and (c) M1 = 30.

depicted in Fig. 7(b). These quantities also confirm (20). Fi-
nally, as in Example 3 and Fig. 5(c), the MHA with 6 sensors
has E1 = S1 and w(1 − 0) = w(12 − 10) = w(17 − 4) = 1.
Hence G1 = {0, 1, 4, 10, 12, 17} and M1 = 30, which are con-
sistent with (20). Note that, in this case, the associated graph G
is a complete directed graph, as illustrated in Fig. 7(c).

Proof of (21): First, it will be shown that, each case of
w(m) = w(−m) = 2 corresponds to at most one element in
G2 . Then the upper bound in (21) can be proved since there are
at most M2/2 such cases.

Let (n1 , n2), (n′
1 , n

′
2) ∈ S

2 be the only two sensor pairs
such that (n1 , n2) �= (n′

1 , n
′
2) and n1 − n2 = n′

1 − n′
2 . We have

w(n1 − n2) = w(n2 − n1) = 2. Without loss of generality,
the pair (n1 , n2) is considered in the following. If n1 ∈ G2 ,
then the sensor failure at n1 leads to failure of the pairs
(n1 , n2) and (n′

1 , n
′
2) at the same time. Since n1 �= n′

1 , we have
n′

2 = n1 ∈ G2 and n2 + n′
1 = 2n1 . Similarly, if n2 ∈ G2 , then

n′
1 = n2 ∈ G2 and n1 + n′

2 = 2n2 . If both n1 and n2 belong
to G2 , then n1 = n2 = n′

1 = n′
2 . These arguments show that,

among n1 , n2 , n′
1 , and n′

2 , there is at most one element in G2 .
Therefore, each case of w(m) = w(−m) = 2 leads to at most
one element in G2 . �

Proof of (22): Let n1 ∈ Gq . Since 3 ≤ q ≤ |S|, there exist
three distinct pairs (n1 , n2), (n′

1 , n
′
2), (n

′′
1 , n

′′
2) ∈ S

2 such that
n1 − n2 = n′

1 − n′
2 = n′′

1 − n′′
2 . The essentialness property of

n1 indicates that, the sensor failure at n1 removes these three
pairs simultaneously. Since n1 �= n′

1 and n1 �= n′′
1 , we have

n1 = n′
2 = n′′

2 so n′
1 = n′′

1 , which disagrees with the assump-
tion of distinct pairs. Hence |Gq | = 0. �

IV. THE k-FRAGILITY

After studying the general properties of the k-essential family
Ek , in this section, we will focus on the size of the k-essential
family. Larger the size, higher is the likelihood that the differ-
ence coarray changes due to failure of k sensors. For instance, if
Ek = Sk , it means that any k faulty sensors shrink the difference
coarray. The notion of fragility is useful to capture this idea.

Definition 7: The fragility or k-fragility of a sensor array S

is defined as

Fk � |Ek |
|Sk | =

|Ek |(|S|
k

) , (23)

where k = 1, 2, . . . , |S|.
Fk can also be regraded as the probability that the difference

coarray changes, if all failure patterns of size k are equiprobable.

Fig. 8. The array geometries (top) and the k-fragility Fk (bottom) for (a)
the ULA with 16 sensors, (b) the nested array with N1 = N2 = 8, and (c) the
coprime array with M = 4 and N = 9.

Larger Fk indicates that this array configuration is less robust,
or more fragile to sensor failure, in the sense of changing the
difference coarray.

With these physical interpretations, next we will move on to
some properties of the k-fragility Fk :

Theorem 2: Let S be an integer set denoting the sensor lo-
cations. The k-fragility Fk with respect to S has the following
properties:

1) Fk ≤ Fk+1 for all 1 ≤ k ≤ |S| − 1. The equality holds if
and only if Fk = 1.

2) Fk = 1 for all k such that Q ≤ k ≤ |S|, where Q is defined
in Property 2 of Theorem 1.

3) min{1, 2/|S|} ≤ Fk ≤ 1 for all 1 ≤ k ≤ |S|.
Proof: Properties 1 and 2 of Theorem 2 follow from Prop-

erties 1 and 2 of Theorem 1, respectively. The lower bound in
Property 3 of Theorem 2 is due to Definition 7, Lemma 2, and
Property 1 of Theorem 2. �

Example 6: Fig. 8 demonstrates the k-fragility Fk for (a) the
ULA with 16 sensors, (b) the nested array with N1 = N2 = 8,
as in (4), and (c) the coprime array with M = 4 and N = 9, (5).
All these arrays have 16 physical sensors. The array geometries
for these arrays are depicted on the top of Fig. 8. On the bottom
of Fig. 8, the data points of Fk are computed numerically using
Definitions 6 and 7. For all these arrays, the k-fragility Fk is
increasing in k (Property 1 of Theorem 2) and Fk is bounded
between 2/|S| = 0.125 and 1 (Property 3 of Theorem 2). As
an example, the ULA has |S| = 16, Q1 = 15, Q2 = 11, and
Q = min{Q1 , Q2} = 11. Hence we obtain Fk = 1 for all 11 ≤
k ≤ 16 (Property 2 of Theorem 2), which is consistent with
Fig. 8.

Furthermore, smaller Fk indicates that the array configuration
tends to be more robust to sensor failures. Among the arrays
considered in Fig. 8, the most robust array in terms of F1 , is
the ULA, followed by the coprime array, and finally the nested
array.

Next we will present the k-fragility for MESA. According to
Definition 4, an array S being a MESA is equivalent to F1 = 1,
implying the following corollary due to Theorem 2:
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Fig. 9. An example of the underlying structure of k-essential family Ek . Here
the ULA with 7 sensors, S = {0, 1, . . . , 6}, is considered while the numbers in
each small box denote a subarray. For instance, “0, 1, 2” represents the subarray
{0, 1, 2}.

Corollary 4: If S is maximally economic, then Fk = 1 for
all 1 ≤ k ≤ |S|.

For instance, for the nested array with N1 = N2 = 8, the k-
fragility Fk = 1 for all k, as shown in Fig. 8. This numerical
result is consistent with the fact that the nested array with N2 ≥
2 is a MESA, as proved in the companion paper [29, Theorem 1].

As another remark, Theorem 1 of the companion paper [29]
indicates that MRA, MHA, and Cantor arrays are all maximally
economic. Therefore they have Fk = 1 for all k, like the nested
array.

V. THE k-ESSENTIAL SPERNER FAMILY

The concept of the k-essentialness property makes it possible
to investigate the failure patterns that modify the difference
coarray. However the k-essential family Ek may contain as many
as
(|S|

k

)
subarrays of size k. Hence, in general, it is challenging

to retrieve information from Ek , for large number of sensors and
k. It will be demonstrated through the following example that
there exist simple and compact representations of the k-essential
family:

Example 7: Here we consider the ULA with 7 physical sen-
sors S = {0, 1, 2, 3, 4, 5, 6}. All of the subarrays over S with
size 1, 2, and 3 are depicted in small boxes in Fig. 9. The
numbers in the small box denote the contents of the subarray.

For instance, “0, 1, 2” represent the subarray {0, 1, 2}. Among
these, the subarrays in Ek are enumerated and shown in shaded
boxes. For example, the boxes within S1 show that 0 and 6 are
both essential while 1, 2, 3, 4, and 5 are all inessential. Next, let
us focus on the 12 subarrays in the family E2 . It can be observed
that E2 can be partitioned into two parts:

1) Subarrays that contain essential sensors. For instance,
the subarray {0, 1} ∈ E2 satisfies 0 ∈ {0, 1}, where 0 is
essential. These subarrays are illustrated in light red rect-
angles with sharp corners.

2) Subarrays that do not contain essential sensors. For ex-
ample, {1, 5} ∈ E2 but 1 and 5 are both inessential. This
subarray is depicted in a light blue rectangle with rounded
corners.

Furthermore, every subarray in Part 1 of E2 can be obtained
by combining an essential sensor and another sensor in S. For
instance, {0, 1} is constructed from the essential element 0 and
the inessential element 1. As another example, the subarray
{0, 6} ∈ E2 is composed of two essential elements 0 and 6.

The above discussion indicates that E2 can be characterized
by

1) {0}, {6} ∈ E1 (essential sensors), and
2) {1, 5} (those belonging to E2 but not containing essential

sensors),
without listing all the 12 subarrays in E2 . This decomposition
results in a compact representation of E2 , where only 3 subarrays
({0}, {6}, {1, 5}) are recorded.

Similarly, in Fig. 9, the same technique can be utilized in E3 ,
which is decomposed into 1) subarrays that include the elements
in E2 , as depicted in light red rectangles with sharp corners, and
2) those that do not, as illustrated in light blue rectangles with
rounded corners. In particular, the second part of E3 is grouped
by a dashed box and denoted by the family E′

3 . This second
part of Ek , called the k-essential Sperner family, is formally
defined next. The name comes from Sperner theory in discrete
mathematics [37], [39] as elaborated later.

Definition 8: Let Ek be the k-essential family with respect
to the array S, where the integer k satisfies 1 ≤ k ≤ |S|. The
k-essential Sperner family E′

k is defined as follows:

E′
k �
{E1 , if k = 1, (24a)
{A ∈ Ek : ∀B ∈ Ek−1 , B �⊂ A}, otherwise, (24b)

where B �⊂ A denotes that B is not a proper subset of A.
Note that the definition E′

1 = E1 is introduced such that E′
k is

well-defined for all 1 ≤ k ≤ |S|.
As one of the advantages, the k-essential Sperner family E′

k

could compress Ek significantly, which would be quite useful
especially when the size of Ek is huge. The example in Fig. 9
displays the k-essential Sperner family E′

1 , E′
2 , and E′

3 . It can be
deduced that the sizes of the k-essential Sperner family |E ′

1 | = 2,
|E′

2 | = 1, and |E′
3 | = 5 are much smaller than those of the k-

essential family |E1 | = 2, |E2 | = 12, and |E3 | = 33.
Definition 9 shows that {E′

1 , E′
2 , . . . , E′

|S|} can be uniquely
determined from {E1 , E2 , . . . , E|S|}. Conversely, if {E′

1 , E′
2 , . . . ,

E′
|S|} is given, then {E1 , E2 , . . . , E|S|} can be perfectly recon-

structed due to the following lemma:
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Lemma 5: Let E′
k be the k-essential Sperner family of S with

1 ≤ k ≤ |S|. Then the k-essential family Ek satisfies

Ek =

⎧
⎨

⎩

E′
1 , if k = 1, (25a)

{A ∪ B : A ∈ E′
� , 1 ≤ � ≤ k,

B ⊆ S\A, |B| = k − �} , otherwise. (25b)

For instance, as in Fig. 9, the 3-essential subarray {1, 2, 5}
can be decomposed into A ∪ B, where A = {1, 5} ∈ E′

2 and
B = {2} ⊆ S\A = {0, 2, 3, 4, 6}. Another example is {0, 3, 6},
which corresponds to either A = {0} ∈ E′

1 , B = {3, 6} ⊆ S\A

or A = {6} ∈ E′
1 , B = {0, 3} ⊆ S\A.

Proof of Lemma 5: Eq. (25a) follows from (24a) directly, so
it suffices to prove (25b). Let C0 ∈ Ek . If C0 ∈ E′

k , then C0 is
trivially included in (25b). If C0 �∈ E′

k , due to Definition 8, there
exists C1 ∈ Ek−1 such that C1 ⊂ C0 . The same argument for
C1 and Ek−1 shows that either C1 ∈ E′

k−1 or C1 is a superset
of some C2 ∈ Ek−2 . Repeating these steps show that C0 is a
superset of some elements in E′

� . Next, let us consider the right-
hand side of (25b). Since A ⊆ A ∪ B ⊆ S and A ∈ E′

� ⊆ E� , we
have A ∪ B ∈ E|A∪B| = Ek , due to Lemma 3. �

Another advantage of the k-essential Sperner family is that
the k-essentialness property of a given subarray A ⊆ S, can be
readily determined from the k-essential Sperner family, without
computing the difference coarray or searching within Ek . This
can be done by iterating over the elements in E′

k from k = 1 to
k = |S|. The subarray A is reported to be k-essential if there ex-
ists B ⊆ A for some B ∈ E′

� and 1 ≤ � ≤ k. As an example, we
know that {4, 5, 6} in Fig. 9 is 3-essential since {0} �⊆ {4, 5, 6}
and {6} ⊆ {4, 5, 6}, where only two comparisons are needed.
On the other hand, if we search for {4, 5, 6} within the box
of E3 from top to bottom and then from left to right, then 28
comparisons are required. As another example, {1, 3, 4} can
be concluded not to be 3-essential with 8 comparisons using
E′

1 , E′
2 , E′

3 , but with 33 comparisons using E3 . Empirically, the
reduction in the number of comparisons is huge especially for
large number of sensors and large k. However, the precise anal-
ysis of the complexity is beyond the scope of this paper and is
left for future work.

The term Sperner originates from the Sperner theory in dis-
crete mathematics [37], [39]. A Sperner family is a family of
sets in which none of the elements is a subset of the other, which
is formally defined as

Definition 9: A family of sets F is a Sperner family if A �⊂ B

for all A, B ∈ F [37].
With Definition 9, we will show an explicit connection be-

tween the k-essential Sperner family and the Sperner family, as
indicated in Lemma 6:

Lemma 6: The union of any selection of the k-essential
Sperner family {E′

1 , E′
2 , . . . , E′

|S|} is a Sperner family. Namely,⋃
k∈I

E′
k is a Sperner family, where I ⊆ {1, 2, . . . , |S|}.

Proof: Let A, B ∈ ⋃k∈I
E′

k such that A ⊂ B. Here A ⊂ B

indicates that A is a subset of B and A �= B. If A, B ∈ E′
k for

some k ∈ I, then |A| = |B| = k, violating A ⊂ B. Assume that
A ∈ E′

k1
and B ∈ E′

k2
for some k1 , k2 ∈ I and k1 < k2 . Let C

be a subset of B\A with size |C| = k2 − k1 − 1. Since A ∈
E′

k1
⊆ Ek1 and A ⊆ A ∪ C ⊆ S, Lemma 3 indicates that, A ∪

C ∈ Ek2 −1 . However A ∪ C ⊂ B, contradicting (24b). �

Fig. 10. The relation between Ek = Sk and E′
k = ∅. Here solid arrows repre-

sent logical implication while arrows with red crosses mean that one condition
does not necessarily imply the other.

As an example of Lemma 6, if I = {2, 3} and E′
k is given

in Fig. 9, then E′
2 ∪ E′

3 contains {1, 5}, {1, 2, 3}, {1, 2, 4},
{2, 3, 4}, {2, 4, 5}, and {3, 4, 5}, where none of the elements
in E′

2 ∪ E′
3 is a superset of another. Hence E′

2 ∪ E′
3 is a Sperner

family.
Furthermore, Lemma 6 connects the essentialness property,

the fragility, and the k-essential (Sperner) family, with the well-
established results in Sperner theory, such as Sperner’s theorem
[39], the Lubell-Yamamoto-Meshalkin inequality (the LYM in-
equality) [40]–[43], and the Ahlswede-Zhang identity (the AZ
identity) [44]. Interested readers are referred to [37] for more
details.

Similar to Corollary 1, the following show the relations be-
tween the equality Ek = Sk and the emptiness of E′

k . These
results will be quite useful in studying the probability that the
difference coarray changes in Section VI and the k-essentialness
property for several array configurations in the companion paper
[29].

Lemma 7: Let ∅ denote the empty set. Assume that the in-
teger k satisfies 1 ≤ k ≤ |S| − 1. If Ek = Sk , then E′

k+1 = ∅.
Lemma 8: Let E′

k be the k-essential Sperner family of an
array S. Then E′

k = ∅ for all Q + 1 ≤ k ≤ |S|, where Q is
defined in Property 2 of Theorem 1.

These lemmas can be proved readily according to Definition
8, Property 2 of Theorem 1, and Lemma 7.

Fig. 10 summarizes the logical relation between Ek = Sk and
E′

k = ∅ in detail. Here Corollary 1 and Lemma 7 are denoted
by solid arrows while arrows with red crosses (Cases (a) to
(h)) indicate that one condition does not imply the other. The
counter examples for Cases (a) to (h) are listed as follows. If
S = {0, 1, 3, 4, 5, 6, 7, 8, 10}, then the k-essential family and the
k-essential Sperner family become

E1 �= S1 , E′
1 = {{0}, {1}, {8}, {10}} �= ∅, (26)

E2 �= S2 , E′
2 = ∅, (27)

E3 �= S3 , E′
3 = {{3, 5, 6}, {4, 6, 7}} �= ∅, (28)

E4 = S4 , E′
4 = {{3, 4, 5, 7}} �= ∅, (29)

E5 = S5 , E′
5 = ∅. (30)

Counter examples for Cases (a) to (h) can be found in (26) to
(30). For instance, E4 = S4 but E3 �= S3 , which contradicts (a).
Furthermore, the case of E4 and E′

4 contradicts (b); the instance
of E2 and E′

2 contradicts (c). The example of E′
1 , E′

2 , and E′
3
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disapproves Cases (d) and (e) while E1 , E′
2 , and E3 contradict

Cases (f) and (g). Case (h) has a counter example of E′
4 and E5 .

These examples confirm that Cases (a) to (h) are not necessarily
true.

VI. ROBUSTNESS ANALYSIS FOR RANDOM SENSOR FAILURES

In this section, we assume that the sensors in an array have
a certain probability of failure, and derive an expression for the
probability that the difference coarray will change due to this
failure. We will show that the concepts introduced in this paper,
such as k-essentialness and fragility, play a crucial role in this
analysis. As explained earlier, the importance of this analysis
arises from the fact that the robustness of the difference coarray
(to sensor failures) is crucial for the success of algorithms such
as coarray MUSIC.

Assumptions: In this section, let a sensor array be S and
the difference coarray be D. Assume that each sensor fails
independently with probability p. After the removal of faulty
sensors, the array and the difference coarray are denoted by S

and D, respectively. Then the probability that D �= D is denoted
by

Pc � Pr[D �= D]. (31)

An array is more robust, as Pc is close to 0. This property can
also be used in comparing the robustness among several array
configurations.

Note that Pc is different from the k-fragility Fk , even though
they both correspond to the concept of probability. As presented
in Section IV, if there are k faulty sensors in the array and
all possible failure patterns are equiprobable, the k-fragility Fk

can be interpreted as the probability that the difference coarray
changes. On the other hand, Pc denotes the probability that the
difference coarray changes, due to any possible sensor failure
pattern. Furthermore, Fk depends purely on the array geometry
while Pc depends on the array geometry and the failure proba-
bility of each sensor. In practice, Pc is more useful since 1) it
does not require the information of the number of faulty sensors
and 2) the parameter p, which determines the quality and the
cost of the sensing device, can be designed based on the budget.

Next, we will present a closed-form relation between Pc and
Fk . Let A ⊆ S be the set of faulty sensors. Assume that S � S\A

and the associated difference coarray D. Due to Definition 5, the
difference coarray changes (D �= D) if and only if there exist
1 ≤ k ≤ |S| and A ∈ Ek such that 1) all the elements in A ∈ Ek

fail and 2) all the elements in S are operational. Summing over
all possible k and A leads to the following expression of Pc :

Pc =
|S|∑

k=1

∑

A∈Ek

Pr

⎡

⎣

(
⋂

n1 ∈A

(n1 fails)

)

∩
⎛

⎝
⋂

n2 ∈S

(n2 fails)c

⎞

⎠

⎤

⎦

=
|S|∑

k=1

∑

A∈Ek

[
∏

n1 ∈A

Pr [n1 fails]

][
∏

n2 ∈S

(1 − Pr [n2 fails])

]

=
|S|∑

k=1

|Ek |pk (1 − p)|S|−k , (32)

where the second equation is due to the independence of sen-
sor failures. The complement of an event F is denoted by Fc .
Substituting Definition 7 into (32) leads to

Pc =
|S|∑

k=1

(|S|
k

)
Fkpk (1 − p)|S|−k , (33)

where Fk is the k-fragility of S.
Note that (33) shows the explicit relation between Fk and

Pc , which holds for any array configuration S. Here each term
in (33) has two contributions: Fk and

(|S|
k

)
pk (1 − p)|S|−k . Fk

depends purely on the array geometry while
(|S|

k

)
pk (1 − p)|S|−k

relies on k, the number of sensors |S|, and p. This observation
means that, for a fixed number of sensors and a fixed p, it is
possible to reduce Pc by designing new array geometries with
reduced Fk . On the other hand, for a fixed array configuration,
Fk is uniquely determined. In this case, it can be shown that Pc

decreases with p, as p is sufficiently small. Namely, to reduce
Pc , we can deploy sensing devices with small p.

However, the right-hand side of (33) is not computationally
tractable. For instance, if k is approximately |S|/2, the com-
plexity for evaluating Fk is around

( |S|
|S|/2

)
, which becomes com-

putationally expensive for large |S|. Even so, the behavior of Pc

can still be analyzed based on the following theorem:
Theorem 3: The probability that the difference coarray

changes satisfies max{L1 , L2} ≤ Pc ≤ min{U1 , U2 , 1}, where
L1 , U1 , L2 , and U2 are given by

L1 = 1 − (1 − p)|S| −
(

1 − 2
|S|
) Q−1∑

k=1

(|S|
k

)
pk (1 − p)|S|−k ,

(34)

U1 = 1 − (1 − p)|S|, (35)

L2 = 1 − (1 − p)|E1 |, (36)

U2 = 1 − (1 − p)|E1 | + (1 − p)|E1 |
Q∑

k=2

|E′
k |pk . (37)

Here the parameter Q is given in Property 2 of Theorem 1.
The notation Ek and E′

k represent the k-essential family and the
k-essential Sperner family for the sensor array S.

Proof: First we will show that L1 ≤ Pc ≤ U1 . Property 3 of
Theorem 2 indicates that Pc is upper bounded by

∑|S|
k=1

(|S|
k

)

pk (1 − p)|S|−k = 1 − (1 − p)|S| = U1 , which proves (35). For
the lower bound, if |S| = 1, then it can be shown that Pc =
p = L1 . If |S| ≥ 2, then Properties 2 and 3 of Theorem 2 imply
that Fk ≥ 2/|S| for k = 1, 2, . . . , Q − 1 and Fk = 1 otherwise.
Substituting these relations into (33) proves (34).

The proof of Eqs. (36) and (37) is as follows. Let the sensor
array be S and the k-essential Sperner family be E′

k . Assume that
each sensor fails independently with probability p. Let B be the
set of faulty sensors. Assume that S � S\B and its difference
coarray is denoted by D. Since a subarray B is k-essential if
and only if B is a superset of some elements in E′

� for some
1 ≤ � ≤ k, as in (25b), it suffices to consider all elements in
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Fig. 11. The probability that the difference coarray changes Pc and its lower
bounds and upper bounds for the ULA with 12 sensors.

E′
1 , E′

2 , . . . , E′
|S| and the probability that D �= D becomes

Pc = Pr
[
D �= D

]
= Pr

⎡

⎣
|S|⋃

k=1

⋃

Ak ∈E′
k

F(Ak )

⎤

⎦

= Pr

[(
⋃

A1 ∈E′
1

F(A1)

)

︸ ︷︷ ︸
Event G1

∪
( |S|⋃

k=2

⋃

Ak ∈E′
k

F(Ak )

)

︸ ︷︷ ︸
Event G2

]

, (38)

where F(Ak ) � ∩n∈Ak
(n fails) denotes the event in which all

the elements in Ak fail. Since the event G1 involves only the es-
sential elements and G2 are associated with inessential sensors,
G1 and G2 are independent. Namely, Pr[G1 ∩ G2 ] = Pr[G1 ]
Pr[G2 ]. Hence Pr[G1 ∪ G2 ] = 1 − Pr[Gc

1 ] + Pr[Gc
1 ]Pr[G2 ],

where Gc
1 is the complement of the event G1 . The probabil-

ity Pr[Gc
1 ] can be simplified as

Pr[Gc
1 ] = Pr

[
⋂

A1 ∈E′
1

(F(A1))c

]

= (1 − p)|E1 |. (39)

Applying the union bound of Pr[G2 ] leads to

0 ≤ Pr[G2 ] ≤
|S|∑

k=2

∑

Ak ∈E′
k

Pr[F(Ak )] =
|S|∑

k=2

|E′
k |pk . (40)

Substituting (39), (40), and Lemma 8 into Pc = 1 − Pr[Gc
1 ] +

Pr[Gc
1 ]Pr[G2 ] proves (36) and (37). �

It can be observed that all these expressions (34) to (37) do
not require the complete knowledge of Fk . For instance, U1
depends only on the probability of single sensor failure p and
the number of sensors, while L2 requires p and the size of E1 .
The bounds L1 and U2 are functions of the parameter Q, as
given in Property 2 of Theorem 1. If Q is much smaller than the
number of sensors, then U2 can be evaluated efficiently with the
first few E′

k .
Example 8: Next we will demonstrate an example for the

bounds in Theorem 3. Fig. 11 shows the curves of Pc , L1 , U1 ,
L2 , and U2 for the ULA with N = 12 physical sensors, as a
function of p. First it can be observed that the bounds L1 and
U1 are close to Pc for p ≥ 0.8 while for small p, the bounds L2

Fig. 12. The dependence of the probability Pc that the difference coarray
changes, on the probability of single sensor failure p for (a) the ULA with 12
sensors, (b) the nested array with N1 = N2 = 6, and (c) the coprime array with
M = 4 and N = 5. Here the essential sensors (diamonds) and the inessential
sensors (squares) are depicted on the top of this figure. Experimental data points
(Exp.) are averaged from 107 Monte-Carlo runs. The approximations of Pc are
valid for p � 1/12 due to (41).

and U2 are tighter than L1 and U1 . Second, in this example, the
bound U2 is greater than 1 for p ≥ 0.5, which becomes a trivial
upper bound for Pc . This is because the term

∑Q
k=2 |E′

k |pk in
(37) is derived from the union bound of the probability, which
could be greater than 1.

The bounds in Theorem 3 also makes it possible to derive
approximations for Pc . For fixed number of sensors, if p �
1/|S|, then the high-order terms

∑Q
k=2 |E′

k |pk in (37) become
negligible, since |E′

k | ≤
(|S|

k

)
= O(|S|k ). Then we have L2 ≤

Pc ≤ U2 ≈ L2 . Therefore, for any array geometry S and p �
1/|S|, the probability that the difference coarray changes can be
approximated by

Pc ≈ L2 = 1 − (1 − p)|E1 | ≈ |E1 |p, (41)

since (1 + x)N ≈ 1 + Nx for |x| � 1. Eq. (41) shows that, for
small p, the probability Pc is approximately linear in p with
slope |E1 |. This result can be verified through the curve of Pc in
Fig. 11, where the ULA has |E1 | = 2, as proved in the companion
paper [29, (26)].

Note that (41) holds for any array configuration S, which
indicates that for the same p � 1/|S|, smaller |E1 | leads to
smaller Pc . For instance, due to [29, (26)], the ULA with N ≥ 4
physical sensors always has Pc ≈ 2p, even for large N . However
this does not hold for MESA, since MESA with N sensors own
Pc ≈ Np, which grows linearly with N . Eq. (41) can also be
expressed as Pc ≈ (|S|p)F1 . This indicates that, if the number
of sensors |S| and the sensor failure probability p are fixed, then
Pc is proportional to fragility F1 .

Example 9: Fig. 12 demonstrates a numerical example for
Pc across various array configurations with 12 sensors, such as
the ULA with 12 sensors, the nested array with N1 = N2 = 6,
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as in (4), and the coprime array with M = 4 and N = 5, as
in (5). The probability that the difference coarray changes is
first evaluated based on (33), as depicted in solid, dashed, and
dotted curves on the bottom of Fig. 12. Next, these probabilities
are also averaged empirically from 107 Monte-Carlo runs and
each run corresponds to an independent realization of the array
geometry with sensor failure probability p. The results based
on Monte-Carlo runs are marked in empty circles, crosses, and
empty squares on the bottom of Fig. 12.

First, it can be deduced that the experimental results match
(33) for all these array configurations. For the same p and the
same number of physical sensors, by comparing the values of
Pc , the most robust array geometry is the ULA, followed by
the coprime array, and finally the nested array. Furthermore,
for p � 1/|S| = 1/12, the approximations for Pc in Fig. 12
become Pc ≈ 2p for ULA, Pc ≈ 12p for the nested array, and
Pc ≈ 9p for the coprime array. These results are consistent with
the approximations in (41).

The results in Fig. 12 and the approximations in (41) hold
true for more sensors. For instance, let us consider the ULA
with 24 sensors, the nested array with N1 = N2 = 12, and the
coprime array with M = 7 and N = 11. All these arrays have 24
physical sensors, and their Pc can be shown to behave similarly
to those in Fig. 12. In particular, Pc can be approximated by
2p for ULA, 24p for the nested array, and 17p for the coprime
array, when p � 1/24.

VII. CONCLUDING REMARKS

In this paper, we presented a theory to quantify the robust-
ness of difference coarrays with respect to sensor failures. We
began by defining the (k-)essentialness property and the k-
essential family. Based on these, the k-fragility characterizes
the likelihood that the difference coarray changes, while the
k-essential Sperner family offers a compact representation of
the k-essential family. Under mild assumptions, the proposed
theory explained the behavior of the probability that the differ-
ence coarray changes, which is crucial for the functionality of
coarray MUSIC.

In the companion paper [29], we will concentrate on the rela-
tion between the presented theory and the array geometry. The
closed-form expressions of the k-essential Sperner family for
ULA, MRA, MHA, Cantor arrays, nested arrays, and coprime
arrays, will be derived to provide insights into the importance
of each sensor and the robustness of these arrays.

In the future, it is of considerable interest to investigate the
interplay between the DOA estimation performance and coarray
robustness, which may find applications in practical systems us-
ing sparse arrays. Another future topic is to quantify the robust-
ness of sparse arrays with respect to the central ULA segment in
the difference coarray, which affects the applicability of DOA
estimators such as coarray MUSIC.

As a final remark, the essentialness property can be reformu-
lated to study the robustness of sparse arrays in various prob-
lems. For instance, the performance of MIMO radar [45] de-
pends on the sum coarray while the 2qth-order difference coar-
ray [46] plays a critical role in DOA estimation with 2qth-order

cumulants. In addition, the proposed theory can be extended
to two-dimensional sparse arrays and their difference coarrays,
which are capable of resolving both the azimuth and the el-
evation of the source. It will be interesting to investigate the
robustness of the coarray in these scenarios.
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