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Robustness of Difference Coarrays of Sparse Arrays
to Sensor Failures—Part II: Array Geometries
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Abstract—In array processing, sparse arrays are capable of re-
solving O(N2) uncorrelated sources with N sensors. Sparse ar-
rays have this property because they possess uniform linear array
(ULA) segments of size O(N2) in the difference coarray, defined
as the differences between sensor locations. However, the coarray
structure of sparse arrays is susceptible to sensor failures and the
reliability of sparse arrays remains a significant but challenging
topic for investigation. In the companion paper, a theory of the k-
essential family, the k-fragility, and the k-essential Sperner family
were presented not only to characterize the patterns of k faulty
sensors that shrink the difference coarray, but also to provide a
number of insights into the robustness of arrays. This paper derives
closed-form characterizations of the k-essential Sperner family for
several commonly used array geometries, such as ULA, minimum
redundancy arrays (MRA), minimum holes arrays (MHA), Can-
tor arrays, nested arrays, and coprime arrays. These results lead
to many insights into the relative importance of each sensor, the
robustness of these arrays, and the DOA estimation performance
in the presence of sensor failure. Broadly speaking, ULAs are more
robust than coprime arrays, while coprime arrays are more ro-
bust than maximally economic sparse arrays, such as MRA, MHA,
Cantor arrays, and nested arrays.

Index Terms—Sparse arrays, difference coarrays, the k-
essentialness property, the k-fragility, the k-essential Sperner
family.

I. INTRODUCTION

S PARSE arrays [1]–[4], such as minimum redundancy arrays
(MRA) [2], nested arrays [3], coprime arrays [4], and their

generalizations [5], can resolveO(N2) uncorrelated sources us-
ing N physical elements. This O(N2) property arises because
the difference coarray, defined as the differences between the
sensor locations, possesses an O(N2)-long central uniform lin-
ear array (ULA) segment. However, as far as the system re-
liability is concerned [6], [7], in the past, sparse arrays were
considered not to be robust to sensor failures, due to empirical
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observations. More details on this argument can be found in [8],
[9] and the references therein.

In the companion paper [9], the concepts such as the k-
essential family, the k-fragility, and the k-essential Sperner fam-
ily were proposed to assess the robustness of difference coarrays
of sparse arrays to sensor failures. A subarray of size k is said
to be k-essential if its deletion changes the difference coarray.
All these k-essential subarrays constitute the k-essential family.
With this tool, the robustness can be quantified by the k-fragility,
or simply fragility, which ranges from 0 to 1. An array is more
robust or less fragile if the fragility is closer to 0. However, from
the computational perspective, the size of the k-essential fam-
ily can be as large as

(
N
k

)
, where N is the number of physical

elements. It was shown in the companion paper [9] that the k-
essential family can be compactly represented by the k-essential
Sperner family. With these tools, the system reliability can be
quantified by the probability that the difference coarray changes,
Pc, under the assumption of random sensor failures. Many in-
sights into the interplay between the proposed theory and Pc

were also offered in the companion paper [9].
The main contribution of this paper is to analyze the robust-

ness of several commonly used array configurations, such as the
ULA [1], MRA [2], minimum hole arrays (MHA) [10], Can-
tor arrays [11], [12], nested arrays [3], and coprime arrays [4],
based on the theory in the companion paper [9]. These arrays are
widely used in various topics of array signal processing, such
as beamforming [1], [3], [11], [13], [14] and DOA estimation
[3]–[5], [15]. However the robustness of the difference coarrays
of these arrays to sensor failures remains an open but signifi-
cant topic in this field. It will be shown in this paper that MRA,
MHA, Cantor arrays, and nested arrays are maximally economic,
that is, any sensor failure changes the difference coarray. It will
also be proved that the fragility and Pc for maximally economic
sparse arrays (MESA) are the largest among all arrays with a
fixed number of sensors. These theoretical results confirm the
empirical observation that MRA are not robust to sensor failures,
in terms of the preservation of the difference coarray.

In this paper, the closed-form expressions of the k-essential
Sperner family for ULA and coprime arrays are also established
with detailed derivations. These expressions lead to a number of
contributions. First, it can be proved that, for sufficiently large
number of sensors, ULA are more robust than MESA and co-
prime arrays (in terms of the fragility), which is in accordance
with the observation that sparse arrays are in general less ro-
bust than ULA. Furthermore, the explicit expressions of the
k-essential Sperner family for the coprime array allow one to
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construct arrays with fewer sensors but with the same difference
coarray as the coprime array. Note that this topic was previously
addressed in the thinned coprime array [16], where a specific se-
lection of sensors is removed from the coprime array. Using the
expressions we propose in this paper, it can be shown that there
exist other array geometries that achieve the same difference
coarray as the thinned coprime array.

It is also demonstrated through numerical examples that, the
DOA estimation performance of arrays is influenced by the
trade-offs between the size and the robustness of the difference
coarray. For this, a number of sparse arrays are compared, with
a fixed failure probability p for each sensor, and fixed number
of sensors. It will be deduced in the examples that, for small p,
the MRA has the best DOA estimation performance, due to the
largest difference coarray, while for large p, the ULA owns the
best performance because of its robustness. An interesting ob-
servation is that, for moderate p, the coprime array could outper-
form the ULA, the MRA, and the nested array, since the coprime
array strikes a balance between the size and the robustness of
the difference coarray.

In the literature, more general sparse array configurations
have been reported. For instance, the generalized coprime arrays
[5] have recently received considerable attention. They extend
coprime arrays by two operations: compressions and displace-
ments. In principle, the robustness of other array configurations
could be analyzed using the theory in the companion paper [9],
but the details would be very involved. Due to page limitations,
the robustness analysis of these arrays is left for future.

Paper outline: Section II gives a quick review of some of the
key results from the companion paper [9]. Sections III, IV, and
V study the k-essential Sperner family for MESA, ULA, and
coprime arrays, respectively, along with examples, discussions,
and proofs. The performance of these arrays in the presence of
sensor failure is demonstrated in Section VI while Section VII
concludes this paper. Parts of the results were presented in a
conference paper [12].

II. REVIEW OF THE ESSENTIALNESS PROPERTY

Consider a linear array whose sensors are located atnd. Heren
belongs to an integer set S and d is half of the wavelength of the
incoming monochromatic, far-field, and uncorrelated sources.
Under these assumptions, the source directions can be resolved
according to the difference coarray and the weight function [3],
[4], [17]–[19]:

Definition 1: The difference coarray of the sensor array S is
defined as D � {n1 − n2 : n1, n2 ∈ S}.

Definition 2: The weight function w(m) of a linear array S

is defined as the number of sensor pairs with coarray index m.
That is, w(m) =

∣
∣{(n1, n2) ∈ S

2 : n1 − n2 = m}∣∣.
Furthermore, the central ULA segment of the difference coar-

ray, denoted byU, is defined as the largest ULA inD that contains
the element 0, i.e., U � {m : {0, 1, . . . , |m|} ⊆ D}.

Based on this concept, the companion paper [9] studies the
influence of sensor failures on the difference coarray D, as we
will review next:

Definition 3: The sensor located at n ∈ S is said to be es-
sential with respect to S if the difference coarray changes when

sensor at n is deleted from the array. That is, if S = S\{n}, then
D �= D. Here D and D are the difference coarrays for S and S,
respectively.

Note that the essentialness property in Definition 3 assumes
one faulty element at a time. A more realistic situation is the
case of multiple sensor failures.

Definition 4: The subarray of size k over an integer set S is
defined as Sk � {A ⊆ S : |A| = k}.

Definition 5: A subarray A is said to be k-essential if 1) A ∈
Sk, and 2) the difference coarray changes when A is removed
from S.

Definition 6: The k-essential family Ek with respect to a sen-
sor array S is defined as

Ek � {A : A is k-essential with respect to S}, (1)

where k = 1, 2, . . . , |S|.
With this tool, the robustness of a linear array can be quantified

by the k-fragility, or simply the fragility:
Definition 7: The fragility or k-fragility of a sensor array S

is defined as

Fk � |Ek|
|Sk| =

|Ek|(|S|
k

) , (2)

where k = 1, 2, . . . , |S|.
It was shown in the companion paper [9] thatFk is an increas-

ing function of k and min{1, 2/|S|} ≤ Fk ≤ 1. As Fk becomes
closer to 1, the array S is less robust (or more fragile) to sensor
failures in the sense of changing the difference coarray.

Based on the underlying structure of Ek, the k-essential fam-
ily Ek can be compactly represented by the k-essential Sperner
family E′

k [9]:
Definition 8: Let Ek be the k-essential family with respect

to the array S, where the integer k satisfies 1 ≤ k ≤ |S|. The
k-essential Sperner family E′

k is defined as follows:

E′
k �

{
E1, if k = 1, (3a)

{A ∈ Ek : ∀B ∈ Ek−1, B �⊂ A}, otherwise, (3b)

where B �⊂ A denotes that B is not a proper subset of A. Here
P being a proper subset of Q means that P is a subset of Q and
P �= Q.

Finally, let us consider the case where each element in a linear
array S fails independently with probability p [9]. Assume that
the faulty sensors constitute a set A. The set S � S\A denotes
the set of the operational sensors. The difference coarrays of
S and S are expressed as D and D, respectively. As discussed
in the companion paper [9], the system reliability can be stud-
ied through the probability that the difference coarray changes,
namely, Pc � Pr[D �= D]. It was shown in [9, (33)] that Pc can
be expressed in terms of the number of sensors, the probability
p, and the k-fragility Fk.

The main contribution of this paper is to apply the above-
mentioned theory to several commonly used array geometries,
such as minimum redundancy arrays (MRA), minimum hole ar-
rays (MHA), nested arrays, Cantor arrays, uniform linear arrays
(ULA), and coprime arrays, to assess the robustness. In what
follows, the closed-form expressions of the k-essential Sperner
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family E′
k, the k-fragility Fk, and the probability Pc that the dif-

ference coarray changes will be investigated comprehensively.

III. MAXIMALLY ECONOMIC SPARSE ARRAYS

We begin with the definition of maximally economic sparse
arrays (MESA):

Definition 9: A sensor array S is said to be maximally eco-
nomic if all the sensors in S are essential [12].

The definition was introduced in [12] to study the economy of
the number of sensors in S. However, this paper and the compan-
ion paper [9] concentrate on the robustness analysis of MESA
with respect to the difference coarray.

Definition 9 is actually equivalent to the statement E1 = S1.
This result leads to the following lemma [9, Corollary 2, Corol-
lary 4, Lemma 7]:

Lemma 1: Let S be a MESA, as defined in Definition 9. Then
the k-essential family Ek, the k-fragility Fk, and the k-essential
Sperner family E′

k for S are given by

Ek = Sk, Fk = 1, k = 1, 2, . . . , |S|, (4)

E′
1 = S1, E′

k = ∅, k = 2, 3, . . . , |S|, (5)

where Sk is defined in Definition 4 and ∅ denotes the empty set.
Due to Lemma 1, MESA are the least robust arrays in terms

of the k-fragility Fk, since they own the largest k-fragility
Fk among all array configurations. Furthermore, according to
Lemma 1, the condition that E′

k = ∅ for all 2 ≤ k ≤ N is nec-
essary, but not sufficient for S being maximally economic. As
an example, the array S = {0, 1, 2, 3, 4, 12, 14} has E′

k = ∅ for
all 2 ≤ k ≤ 7. But E′

1 = S1\{{2}} and S is not maximally
economic.

The probability Pc that the difference coarray changes can
also be characterized in closed form. In view of Lemma 1, Eq.
[9, (33)] simplifies to

Pc = 1− (1− p)|S| for MESA. (6)

Eq. (6) depends only on the number of sensors in MESA, instead
of the sensor locations. It was shown in [9, Theorem 3] that,
for a fixed number of sensors, MESA has the largest Pc. This
observation is in accordance with the statement that MESA are
the least robust or the most fragile arrays among all possible array
geometries, as seen from our earlier discussion on k-fragility.

The above discussions do not assume a specific array geome-
try. One of the main contributions of this paper is the following
theorem:

Theorem 1: The MESA family includes minimum redun-
dancy arrays (MRA), minimum hole arrays (MHA), nested ar-
rays with N2 ≥ 2, and Cantor arrays.

Example 1: The definitions of these arrays and the proofs
can be found later in Sections III-A to III-D. In this example, let
us consider the geometries and the weight functions of MRA,
MHA, nested arrays, and Cantor arrays with 8 physical sensors,
as illustrated in Fig. 1. Here the essential sensors are depicted in
red diamonds, empty space is shown in crosses, and the weight
functions are illustrated in blue dots. Due to the symmetry of the
difference coarray, only the nonnegative portion of the weight
function is depicted. By definition, the difference coarray is the
support of the weight function, as in Definition 1 and 2.

Fig. 1. The array geometry (S, in diamonds) and the nonnegative part of the
weight function (w(m), in dots) for (a) the MRA with 8 elements, (b) the MHA
with 8 elements, (c) the nested array with N1 = N2 = 4 (8 elements), and
(d) the Cantor array with 8 elements. Here crosses denote empty space.

It can be observed that the size of the nonnegative part of
the difference coarray, as given by the number of m such that
w(m) ≥ 1 in Fig. 1, is 24 for the MRA, 29 for the MHA, 20
for the nested array, and finally 14 for the Cantor array. This
is because Cantor arrays only have O(|S|1.585) elements in the
difference coarray [12] while the remaining arrays have O(|S|2)
elements in D [2], [3], [10]. Furthermore, the MHA has holes
in the difference coarray. That is, there are some missing el-
ements, such as 26, 27, and 29 in Fig. 1(b), which cannot be
obtained from the pairwise differences of the sensor locations.
The remaining arrays have hole-free difference coarrays, i.e., the
difference coarray is composed of consecutive integers (D = U).
Theorem 1 indicates that none of the physical elements (as the
diamonds in Fig. 1) in these arrays can be removed without
changing the difference coarray.

In Sections III-A to III-D, the details of Theorem 1 will be
clarified, including the definition of these arrays and the claims
of the theorem will be proved.

A. Minimum Redundancy Arrays

Minimum redundancy arrays (MRA) were first proposed by
Moffet [2]. These minimize the so-call redundancy R, defined
as

R �
(|S|
2

)

(|U| − 1)/2
=

(|S|
2

)

max(U)
, (7)

subject to the hole-free constraint on the difference coarray.
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Next, the definition of the MRA is given as follows:
Definition 10: The MRA with N physical elements can be

defined as [2]:

SMRA � argmax
S

|D| subject to |S| = N, D = U. (8)

Namely, Eq. (8) indicates that the MRA has the largest hole-
free difference coarray for a given number of sensors. For a
fixed number of sensors, it can be shown that Moffet’s definition
is equivalent to Definition 10. However, this paper considers
Definition 10 to facilitate the proof of Theorem 1, as presented
below.

Proof of the maximal economy of MRA: Definition
10 implies that the MRA has the largest hole-free dif-
ference coarray DMRA � {0,±1,±2, · · · ± (max(SMRA)−
min(SMRA))}, among all array configurations withN elements.
Due to [9, Corollary 3], the MRA is maximally economic for
1 ≤ N ≤ 3. If N ≥ 4, then we have the following chain of ar-
guments. Assume that n ∈ SMRA is inessential. It can be shown
that 1) n �= min(SMRA) [9, Lemma 2] and 2) the difference
coarray of SMRA\{n} is also DMRA. Now we construct a new
array geometry

S � (SMRA\{n}) ∪ {max(SMRA) + 1}, (9)

which has difference coarray D. Based on (9), the following
properties can be shown to be true

1) |S| = N .
2) D = DMRA ∪ {±(max(SMRA)−min(SMRA) + 1)}.
Hence D is hole-free. However, we have |D| = |DMRA|+

2, which contradicts (8). Therefore all elements in SMRA are
essential. �

B. Minimum Hole Arrays

Minimum hole arrays (MHA) are also called Golomb arrays
or minimum gap arrays [10], [20]. These arrays are defined
to minimize the number of holes, such that each nonzero ele-
ment in the difference coarray results from a unique sensor pair.
Formally:

Definition 11: The MHA with N physical elements can be
defined as [10]

SMHA � argmin
S

|H|

subject to |S| = N, w(m) = 1 for m ∈ D\{0}, (10)

where H � {m : min(D) ≤ m ≤ max(D),m �∈ D} are the
holes in D.

More details on MHA can be found in [21] and the references
therein. In this paper, the main focus of MHA is to prove their
maximal economy, as presented below:

Proof of the maximal economy of MHA: Let SMHA =
{s1, s2, . . . , sN} be a MHA with N elements such that s1 <
s2 < · · · < sN . Due to [9, Corollary 3], it suffices to consider
MHA with N ≥ 4. Next, Definition 11 indicates that the weight
function of SMHA satisfies w(s2 − s1) = w(s3 − s1) = · · · =
w(sN − s1) = 1, This relation proves the maximal economy of
MHA owing to [9, Lemma 1] and Definition 9. �

Example 2: Consider Fig. 1(b), where the MHA has sensor
locations SMHA = {0, 1, 4, 9, 15, 22, 32, 34}. It can be observed

that the weight function satisfies w(1− 0) = w(4− 0) = w(9
− 0) = w(15− 0)=w(22− 0)=w(32− 0)=w(34− 0)= 1.
As a result, the MHA with 8 sensors is maximally economic.

C. Nested Arrays With N2 ≥ 2

A downside for MRA and MHA is the lack of computation-
ally efficient algorithms or closed-form solutions for the sensor
locations [2], [10]. By contrast, the sensor locations of nested
arrays are expressed in closed-form [3]:

Definition 12: Assume that N1 and N2 are positive integers.
The nested array withN1 andN2 is specified by the setSnested �
T1 ∪ T2, where T1 and T2 are defined as

T1 = {1, 2, . . . , N1}, (11)

T2 = {n(N1 + 1) : n = 1, 2, . . . , N2}. (12)

Here T1 denotes a dense ULA with interelement spacing 1
(in unit of half of the wavelength) while T2 represents a sparse
ULA with spacing N1 + 1. For instance, in Fig. 1(c), the nested
array has T1 = {1, 2, 3, 4} and T2 = {5, 10, 15, 20}.

Nested arrays possess hole-free difference coarrays [3]. Fur-
thermore, if N1 and N2 are approximately N/2, then the size
of the difference coarray of the nested array becomes O(N2),
which is as many as that of MRA and MHA [2], [3], [10]. For
brevity, other properties of the nested array are skipped in this
paper and interested readers are referred to [3] and the references
therein.

Next, as one of the contributions of this paper, the maximal
economy of nested arrays with N2 ≥ 2 will be proved. As a
remark, if N2 = 1, then the nested array becomes the ULA with
N1 + 1 elements, which is, in general, not maximally economic,
as we will show in Theorem 2.

Proof of the maximal economy of nested arrays with N2 ≥ 2:
First, the weight function for Snested is denoted by wnested(m).
Then, we invoke the following two lemmas, whose proofs can
be found at the end of this subsection.

Lemma 2: Assume that N2 ≥ 2. If n1 = N2(N1 + 1) and
n2 ∈ T1, then wnested(n1 − n2) = 1.

Lemma 3: If n1 ∈ T2 and n2 = 1, then wnested(n1 −
n2) = 1.

Finally, combining [9, Lemma 1], Lemma 2, Lemma 3, and
Definition 9 proves the maximal economy of the nested array
with N2 ≥ 2. �

Example 3: Let us verify Lemmas 2 and 3 using the nested ar-
ray withN1 = N2 = 4 in Fig. 1(c). Assume thatn1 = N2(N1 +
1) = 20 and n2 = 3 ∈ T1. Due to Fig. 1(c), the weight func-
tion of the nested array satisfies w(n1 − n2) = w(17) = 1,
which confirms Lemma 2. Next, suppose thatn1 = 15 ∈ T2 and
n2 = 1. We obtainw(n1 − n2) = w(14) = 1based on Fig. 1(c).
The above example is also consistent with Lemma 3.

Finally, the proofs of Lemmas 2 and 3 are given as follows:
Proof of Lemma 2: In this case, we have n1 − n2 ≥

N2(N1 + 1)−N1. Assume that there exist n′
1, n

′
2 ∈ Snested

such that the pair (n′
1, n

′
2) �= (n1, n2) and n′

1 − n′
2 = n1 −

n2. If n′
1 is not the rightmost element in Snested, namely,

n′
1 �= N2(N1 + 1), then n′

1 ≤ (N2 − 1)(N1 + 1), because
N2 ≥ 2. Furthermore, since n′

2 ≥ 1, we have n′
1 − n′

2 ≤
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(N2 − 1)(N1 + 1)− 1 = N2(N1 + 1)−N1 − 2, which dis-
agrees with n′

1 − n′
2 = n1 − n2 ≥ N2(N1 + 1)−N1. There-

fore n′
1 = n1 = N2(N1 + 1), n′

2 = n2, and wnested(n1 −
n2) = 1. �

Proof of Lemma 3: Since n1 ∈ T2 and n2 = 1, we have

n1 − n2 ≡ N1 mod (N1 + 1), (13)

n1 − n2 ≥ N1, (14)

where modN denotes the modulo-N operation. Suppose that
there exist n′

1, n
′
2 ∈ Snested such that the pair (n1, n2) �=

(n′
1, n

′
2) and n′

1 − n′
2 = n1 − n2. The parameters n′

1 and n′
2

can be divided into four cases. If n′
1, n

′
2 ∈ T1, then |n′

1 − n′
2| ≤

N1 − 1, which contradicts (14). If n′
1, n

′
2 ∈ T2, then n′

1 − n′
2

is divisible by N1 + 1, which violates (13). If n′
1 ∈ T1 and

n′
2 ∈ T2, then n′

1 − n′
2 ≤ −1, which disagrees with (14). Fi-

nally, if n′
1 ∈ T2 and n′

2 ∈ T1, then we obtain

n′
2 = n′

1 − (n1 − n2) ≡ 1 mod (N1 + 1),

due to (13) and n′
1 ∈ T2. Therefore n′

2 = n2 = 1 and n′
1 = n1,

which proves this lemma. �

D. Cantor Arrays

In this subsection, we will concentrate on Cantor arrays,
which first appeared in the context of fractal array design [11],
[22], [23]. These arrays originated from the Cantor set in fractal
theory [24], [25]. Previous research on Cantor arrays was mainly
conducted towards the relationships between fractal geometries
and the beampatterns of the arrays [11], [22], [23]. A recent
study focused on the difference coarray of Cantor arrays [12],
including the weight function, the size and the structure of the
difference coarray, and its maximal economy, as we will present
next.

First, the definition of the Cantor array Sr is parameterized
by a nonnegative integer r. The translated array of Sr is defined
as Tr � {n+Dr : ∀n ∈ Sr}, where Dr � 2Ar + 1, with Ar

denoting the aperture of Sr, that is, Ar � max(Sr)−min(Sr).
With this, we are ready to define a Cantor array:

Definition 13: The Cantor array Sr is defined as

Sr �
{{0} if r = 0,

Sr−1 ∪ Tr−1, if r ≥ 1.
(15)

Notice that Sr has N = 2r sensors. So, Cantor arrays are
defined only for the case that the number of sensors is a power
of two. Furthermore, it was shown in [12] that Cantor arrays are
symmetric arrays, i.e. n ∈ Sr if and only if Ar − n ∈ Sr.

For instance, let us consider the Cantor arrays for r =
0, 1, 2, 3. According to Definition 13, these arrays become

S0 = {0}, A0 = 0, D0 = 1, (16)

S1 = {0, 1}, A1 = 1, D1 = 3, (17)

S2 = {0, 1, 3, 4}, A2 = 4, D2 = 9 (18)

S3 = {0, 1, 3, 4, 9, 10, 12, 13}, A3 = 13, D3 = 27, (19)

where (19) is depicted in Fig. 1(d). It can also be deduced from
Fig. 1(d) that S3 is symmetric.

The arrays in Definition 13 are equivalent to the Cantor array
proposed in [11], [22], [23], with proper amount of translation
and scaling. The Cantor arrays in [11], [22], [23] are built upon
the Cantor sets in fractal theory [26], [27]. But here we start
with a different definition (Definition 13), which will facilitate
the discussion on its coarray properties. We begin by proving:

Lemma 4: For the Cantor array (15) with parameter r ≥ 1 in
Definition 13, the weight function wr(m) satisfies

wr(m) =

⎧
⎪⎪⎨

⎪⎪⎩

2wr−1(m), if |m| ≤ Ar−1,

wr−1(m±Dr−1), if |m±Dr−1| ≤ Ar−1,

0, otherwise,
(20)

where Ar and Dr are defined as in Definition 13.
Proof: The weight function wr(m) can be expressed as

wr(m) =
∣
∣{(n1, n2) ∈ S

2
r : n1 − n2 = m

}∣∣

=
∣
∣{(n1, n2) ∈ S

2
r−1 : n1 − n2 = m

}∣∣

+
∣
∣{(n1, n2) ∈ T

2
r−1 : n1 − n2 = m

}∣∣

+ |{(n1, n2) ∈ Sr−1 × Tr−1 : n1 − n2 = m}|
+ |{(n1, n2) ∈ Tr−1 × Sr−1 : n1 − n2 = m}| ,

(21)

which is due to Sr = Sr−1 ∪ Tr−1 for r ≥ 1 in Definition 13.
Since every element in Tr−1 can be expressed as n′ +Dr−1,
where n′ ∈ Sr−1, (21) can be written as

wr(m) =
∣
∣{(n1, n2) ∈ S

2
r−1 : n1 − n2 = m

}∣∣

+
∣
∣{(n′

1, n
′
2) ∈ S

2
r−1 : n′

1 − n′
2 = m

}∣∣

+
∣
∣{(n1, n

′
2) ∈ S

2
r−1 : n1 − n′

2 = m+Dr−1

}∣∣

+
∣
∣{(n′

1, n2) ∈ S
2
r−1 : n′

1 − n2 = m−Dr−1

}∣∣

= 2wr−1(m) + wr−1(m+Dr−1)

+ wr−1(m−Dr−1). (22)

Equation (22) simplifies to (20) in the following cases:
1) Suppose that |m| ≤ Ar−1, which is equivalent to the con-

dition that−Ar−1 ≤ m ≤ Ar−1. SinceDr−1 = 2Ar−1 +
1, we have

|m+Dr−1| ≥ −Ar−1 +Dr−1 = Ar−1 + 1 > Ar−1,

|m−Dr−1| ≥ |Ar−1 −Dr−1| = Ar−1 + 1 > Ar−1.

Since the aperture of the Cantor array with parameter
r − 1 is Ar−1, we have, by definition, wr−1(p) = 0 for
any |p| > Ar−1. This property indicates that wr−1(m±
Dr−1) = 0 if we set p = m±Dr−1. Therefore, (22) be-
comes wr(m) = 2wr−1(m) in this case.

2) Assume that |m+Dr−1| ≤ Ar−1. This condition can be
rewritten as −Ar−1 ≤ m+Dr−1 ≤ Ar−1 so −3Ar−1 −
1 ≤ m ≤ −Ar−1 − 1. As a result, |m| and |m−Dr−1|
satisfy

|m| ≥ Ar−1 + 1 > Ar−1, (23)

|m−Dr−1| ≥ | −Ar−1 − 1−Dr−1| > Ar−1. (24)
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Therefore, we have wr−1(m) = 0 and wr−1(m−
Dr−1) = 0. Using (22), we obtain that wr(m) =
wr−1(m+Dr−1) in this case.

3) If |m−Dr−1| ≤ Ar−1, then due to similar arguments
as the case of |m+Dr−1| ≤ Ar−1, we have wr(m) =
wr−1(m−Dr−1). �

Lemma 4 shows that the weight function for the Cantor array
Sr can be recursively constructed from the weight function for
Sr−1. To give some feelings for Lemma 4, the following numer-
ical example is considered. Due to Lemma 4 and (16) to (19),
the weight function becomes w3(6) = w2(6−D2) = w2(3) =
w1(3−D1) = 2w0(0) = 2, which is consistent with the weight
function in Fig. 1(d).

Furthermore, based on Lemma 4, it can be proved that Cantor
arrays have hole-free difference coarrays of size O(|S|log2 3) ≈
O(|S|1.585). This result is distinct from the MRA (hole-free dif-
ference coarray of size O(|S|2)) and the ULA (hole-free differ-
ence coarray of size O(|S|)). The detailed proofs are skipped
here and can be found in [12].

Proof of the maximal economy of Cantor arrays: Finally the
maximal economy of Cantor arrays will be proved at the end of
this subsection. First we prove:

Lemma 5: Let the Cantor array with parameter r be denoted
by Sr = {s1, s2, . . . , sN}, where 0 = s1 < s2 < · · · < sN and
N = 2r. Then the weight function of Sr satisfies wr(sN+1−k −
sk) = 1 for all k = 1, 2, . . . , N .

Proof: First, if r = 0, then S0 = {0} and w0(0) = 1, which
holds trivially. Assume wr(sN+1−k − sk) = 1 holds true for all
k = 1, 2, . . . , N . Then the sensor locations forSr+1 are given by

Sr+1 = {s1, s2, . . . , sN , s1 +Dr, s2 +Dr, . . . , sN +Dr}.
It can be shown that sN < s1 +Dr < s2 +Dr < · · · <
sN +Dr. Due to Lemma 4, the weight function of Sr+1 sat-
isfies wr+1((sN+1−k +Dr)− sk) = wr(sN+1−k − sk) = 1
for all k = 1, 2, . . . , N . Furthermore, the symmetry of the dif-
ference coarray shows that wr+1(sk − (sN+1−k +Dr)) = 1.
These arguments complete the proof. �

Due to [9, Lemma 1] and Lemma 5, sk and sN+1−k are
both essential for all k = 1, 2, . . . , N , which proves the max-
imal economy of Cantor arrays. �

For clarity, Fig. 1(d) demonstrates the weight function of S3,
where w(13− 0) = w(12− 1) = w(10− 3) = w(9− 4) = 1.
Due to [9, Lemma 1], this result implies that the sensors at 13,
0, 12, 1, 10, 3, 9, and 4 are all essential, which confirms the
maximal economy of S3.

IV. UNIFORM LINEAR ARRAYS

In what follows, two commonly used array geometries, the
ULA and the coprime array, will be discussed in Sections IV
and V, respectively. Among the arrays considered in this paper,
it will be shown that the most robust arrays are ULA, followed
by coprime arrays, and finally MESA.

The ULA with N physical elements is defined as [1]:

SULA � {0, 1, . . . , N − 1}. (25)

Fig. 2. The ULA with N = 10 elements and the k-essential Sperner family
E′
1, E′

2, and E′
3.

It can be shown that the difference coarray of the ULA is
{0,±1, . . . ,±(N − 1)}, whose size is 2N − 1. This property
indicates that the ULA resolves at most N − 1 uncorrelated
sources, unlike sparse arrays such as MRA or nested arrays
(O(N2) uncorrelated sources) [3]. However, in the past, ULA
are regarded as more robust than sparse arrays. In this section,
this observation will be confirmed using the theory in the com-
panion paper [9]. Using (25) and Definition 8, the k-essential
Sperner family of the ULA can be shown to have the following
closed-form expressions:

Theorem 2: The k-essential Sperner family of SULA satisfies

E′
1 =

{S1,ULA, if 1 ≤ N ≤ 3,

{{0}, {N − 1}}, if N ≥ 4,
(26)

E′
2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∅, if 1 ≤ N ≤ 3,

{{1, 2}}, if N = 4,

{{1, 2}, {1, 3}, {2, 3}}, if N = 5,

{{1, 4}, {2, 3}}, if N = 6,

{{1, N − 2}}, if N ≥ 7,

(27)

E′
3 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∅, if N ≤ 6,

{{1, 2, 3}, {1, 2, 4}, {2, 3, 4},
{2, 4, 5}, {3, 4, 5}}, if N = 7,

{{1, 2, 5}, {2, 3, 4},
{2, 5, 6}, {3, 4, 5}}, if N = 8,

{{1, 2, 6}, {2, 6, 7}, {3, 4, 5}}, if N = 9,

{{1, 2, N − 3},
{2, N − 3, N − 2}}, if N ≥ 10.

(28)

Here S1,ULA � {{n} : n ∈ SULA} denotes all the subarrays of
size 1 over SULA.

The derivation of the expressions in Theorem 2 is quite in-
volved, and it can be found in Section IV-A. Next the expressions
in Theorem 2 are demonstrated through the following numerical
example:

Example 4: Consider the ULA withN = 10 elements. Fig. 2
depicts the k-essential Sperner family E′

1, E′
2, and E′

3. Since
N ≥ 3k + 1 for k = 1, 2, 3, the last equations in (26) to (28)
are used. First, some of the subarrays in E′

k are mirror images of
each other, with respect to the center of SULA, like {1, 2, 7} and

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 21,2020 at 18:56:56 UTC from IEEE Xplore.  Restrictions apply. 



LIU AND VAIDYANATHAN: ROBUSTNESS OF DIFFERENCE COARRAYS OF SPARSE ARRAYS TO SENSOR FAILURES – PART II 3233

Fig. 3. (a) The ULA with 10 physical elementsSULA and its difference coar-
ray. The physical array (left) and the difference coarray (right) after removing
(b) {7, 8, 9}, (c) {1, 2, 8}, and (d) {3, 5, 8}, from SULA, respectively. Here
bullets denote elements and crosses represent empty space. It can be observed
that the difference coarrays of (b), (c), and (d) contain {0,±1, . . . ,±6}.

{2, 7, 8}. This phenomenon is because the difference coarray is
invariant to the reversal of the array configuration [12]. Second,
using Fig. 2, given any subarray of size k ≤ 3, its k-essentialness
property can be readily examined by the contents of E′

k, as pre-
sented in the companion paper [9, Section V]. For instance, since
{1, 2, 8} is a superset of {1, 8} ∈ E′

2, we have {1, 2, 8} ∈ E3, so
removing {1, 2, 8} from SULA alters the difference coarray, as
depicted later in Fig. 3(c). As another example, deleting {3, 5, 8}
from SULA preserves the difference coarray, as illustrated later
in Fig. 3(d). This observation is consistent with Fig. 2 since
{3, 5, 8} is not a superset of any elements in E′

k for k = 1, 2, 3
and hence {3, 5, 8} �∈ E3.

Theorem 2 also shows that the elements at both ends of SULA

are more important than others. It was reported in [28] that for
the ULA with 6 elements (SULA = {0, 1, 2, 3, 4, 5}), the ele-
ments at 0 and 5 are the most important ones while the elements
1, 2, 3, 4 are less important. On the other hand, as presented in
Theorem 2, for SULA = {0, 1, 2, 3, 4, 5}, the elements 0 and 5
are essential while the elements 1, 2, 3, 4 are inessential, which
is in accordance with [28]. Our contribution here is to utilize the
essentialness property as another notion of the importance of
elements in arrays. Unlike the previous work [28], our approach
depends purely on the array geometry, rather than other factors
such as source directions and source powers.

Next, the closed-form expressions of the k-fragility for the
ULA will be derived based on Theorem 2. The main focus
would be F1, F2, and F3, for N ≥ 4, N ≥ 7, and N ≥ 10,
respectively. If N ≥ 4, then |E′

1| = |E1| = 2 so F1 = 2/N .
If N ≥ 7, then due to [9, Lemma 5], the cardinality of
E2 can be computed as |E2| = |{{0, n}, {n,N − 1}, {0, N −
1}, {1, N − 2} : 1 ≤ n ≤ N − 2}| = 2(N − 1). Hence F2 =
2(N − 1)/

(
N
2

)
= 4/N . Finally, the 3-essential family for the

ULA with N ≥ 10 is given by

E3 = {A ∈ S3,ULA : 0 ∈ A}
︸ ︷︷ ︸

G1

∪ {A ∈ S3,ULA : N − 1 ∈ A}
︸ ︷︷ ︸

G2

∪ {A ∈ S3,ULA : {1, N − 2} ⊂ A}
︸ ︷︷ ︸

G3

∪E′
3, (29)

where S3,ULA � {A ⊆ SULA : |A| = 3} represents all the
subarrays of size 3 over SULA. Substituting |G1| = |G2| =(
N−1
2

)
, |G3| = |G1 ∩ G2| = N − 2, |G1 ∩ G3| = |G2 ∩ G3| = 1,

and |G1 ∩ E′
3| = |G2 ∩ E′

3| = |G3 ∩ E′
3| = 0, into (29) leads to

|E3| = (N − 1)(N − 2) so that fragility F3 = 6/N . Summa-
rizing, the k-fragility Fk for the ULA with N elements satisfies

ULA: F1 =
2

N
, F2 =

4

N
, F3 =

6

N
, (30)

where these expressions are valid for N ≥ 4, N ≥ 7, and
N ≥ 10, respectively. For instance, for the ULA with N =
16 elements, (30) leads to F1 = 0.125, F2 = 0.25, and F3 =
0.375, which are consistent with the numerical example in
[9, Fig. 8].

Failure probabilities. Finally, here are some remarks on the
probability that the difference coarray changes, Pc, for ULA.
Even though Pc has closed-form expressions associated with
the fragility Fk, as in [9, (33)], it remains challenging to derive
closed-form expressions ofPc for ULA, due to the lack of closed
forms of E′

k andFk, for all k. Even so,Pc for the ULA can still be
analyzed either numerically using [9, (33)], or analytically using
the bounds of Pc, as in the companion paper [9, Theorem 3]. For
instance, as discussed in [9, Section VI], if the probability of
element failure p is sufficiently small, then Pc is approximately
|E1|p. This approximation indicates that, for ULA with N ≥ 4
elements, Pc has an asymptotic expression of 2p. Namely, the
probability that the difference coarray changes is around 2p. This
is the smallest among all possible array configurations with fixed
N , due to [9, Lemma 2].

A. Derivation of the Expressions in Theorem 2

Before deriving the expressions in Theorem 2, we first invoke
Lemma 6 to describe the difference coarray after removing k
physical sensors.

Lemma 6: Let A ⊆ SULA satisfy |A| = k. Assume that S �
SULA\A and its difference coarray is denoted by D. If N ≥
3k + 1, then {0,±1, . . . ,±(N − k − 1)} ⊆ D.

Lemma 6 implies that, if N is sufficiently large, then even
though k elements are removed from SULA, the difference
coarray D still possesses a central ULA segment of at least
2(N − k − 1) + 1 elements. The detailed proof of Lemma 6
will be given after Example 5:

Example 5: Fig. 3 demonstrates an example of Lemma 6. We
consider the ULA withN = 10 elements and its difference coar-
ray, as depicted in Fig. 3(a). In Figs. 3(b), (c), and (d), we remove
k = 3physical elements fromSULA and evaluate their difference
coarrays. Regardless of the locations of the removed elements,
all these difference coarrays possess a central ULA segment,
whose size is at least 2(N − k − 1) + 1 = 13, as claimed by
Lemma 6.

Proof of Lemma 6: First let us consider several useful results
for the proof [13]:

Definition 14: Let S be an integer set. The discrete sequence
c(n) is 1 if n ∈ S and 0 otherwise.
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Proposition 1: Let c(n) and w(m) be the discrete sequence
and the weight function for S, respectively. Then w(m) satisfies

w(m) =

∞∑

n=−∞
c(n+m)c(n), (31)

for any integer m.
Furthermore, the difference coarray can be expressed as the

support of the weight function. Namely, D = {m : w(m) �= 0}.
Next it will be proved that {0,±1,±2, . . . ,±(N − k −

1)} ⊆ D. It suffices to consider the nonnegative part of the set,
due to the symmetry of the difference coarray. Assume that there
exists some m̂ ∈ {0, 1, 2, . . . , N − k − 1} such that m̂ /∈ D.
The discrete sequence and the weight function of S � SULA\A
are denoted by c(n) and w(m), respectively. Since m̂ /∈ D, we
have w(m̂) = 0, implying that

c(n+ m̂)c(n) = 0, (32)

for all n = 0, 1, . . . , N − m̂− 1, due to Definition 14 and (31).
Eq. (32) indicates that, n+ m̂ ∈ A or n ∈ A. This condition
implies

(A− m̂) ∪ A ⊇ O � {0, 1, . . . , N − m̂− 1}. (33)

Here the notation A± m̂ � {a± m̂ : a ∈ A}.
According to (33), the size of O satisfies

|O| = |((A− m̂) ∪ A) ∩O| = |((A− m̂) ∩O) ∪ (A ∩O)|
≤ |(A− m̂) ∩O|+|A ∩O| = |A ∩ (O+m̂)|+|A ∩O| ,

(34)

where the inequality is due to the union bound between sets. In
what follows, (34) will be analyzed in detail. First, the set SULA

is partitioned into three subsets L1,L2,L3:

L1 = {0, 1, . . . , P − 1}, (35)

L2 = {P, P + 1, . . . , N − P − 1}, (36)

L3 = {N − P, N − P + 1, . . . , N − 1}, (37)

where P � min{m̂,N − m̂}. We also define A� � A ∩ L� and
k� � |A�| for � = 1, 2, 3. It can be shown that

k = k1 + k2 + k3, 0 ≤ k� ≤ min{k, |L�|}, (38)

for � = 1, 2, 3.
According to m̂, Eq. (34) can be analyzed in two cases:
1) If m̂ ≤ N/2, then we obtain P = m̂. The sets O and O+

m̂ can be expressed as O = L1 ∪ L2 and O+ m̂ = L2 ∪
L3, respectively. Combining (34) and (38) leads to

N − m̂ ≤ (k2 + k3) + (k1 + k2) = k + k2. (39)

Now let us consider the upper bounds of k + k2 for
two cases of m̂. First, if 0 ≤ m̂ ≤ N/3, then using (38)
and N ≥ 3k + 1, we obtain k + k2 ≤ 2k < 2k + 2

3 ≤
2
3N ≤ N − m̂. Therefore k + k2 < N − m̂, which con-
tradicts (39). On the other hand, if N/3 < m̂ ≤ N/2,
then we have m̂ > N/3 ≥ k + 1

3 so k − m̂ < 0. In ad-
dition, the size of L2 is given by N − 2P = N − 2m̂.
In this case, we have k + k2 ≤ k + |L2| = k + (N −

2m̂) = (N − m̂) + (k − m̂) < N − m̂, disagreeing with
(39).

2) If N/2 < m̂ ≤ N − k − 1, then P = N − m̂. In this
case, we have O = L1 and O+ m̂ = L3. Hence (34)
becomes

N − m̂ ≤ k3 + k1 = k − k2. (40)

However, the right-hand side of (40) satisfies k − k2 ≤
k ≤ N − m̂− 1, due to (38) and m̂ ≤ N − k − 1. This
result contradicts (40).

These arguments complete the proof of Lemma 6. �
Next, the expressions in Theorem 2 will be derived. Here we

will skip the expressions of E′
k forN ≤ 3k and k = 1, 2, 3, since

they can be readily verified by enumerating all subarrays with
size k. The main focus here would be the case of N ≥ 3k + 1.
In what follows, the sensor locations, the difference coarray, the
discrete sequence (Definition 14), and the weight function af-
ter the removal of k elements will be denoted by S, D, c(n),
and w(m), respectively. We will study the circumstances un-
der which the difference coarray changes, namely D �= DULA,
where DULA is the difference coarray of SULA.

1) E′
1 for N ≥ 4: Due to Lemma 6, the difference coarray D

contains {0,±1,±2, . . . ,±(N − 2)} for k = 1. If D �=
DULA, then w(N − 1) = 0. This implies

w(N − 1) = c(N − 1)c(0) = 0, (41)

due to Proposition 1. Eq. (41) shows that removing either
0 or N − 1 leads to D �= DULA. Hence E′

1 = {{0}, {N −
1}} for N ≥ 4.

2) E′
2 for N ≥ 7: Lemma 6 indicates that it suffices to con-

sider (a) w(N − 1) = 0 and (b) w(N − 2) = 0. Let A

be a subarray of size 2 over SULA. First, assume that
w(N − 1) = 0. The argument of (41) shows that 0 ∈ A

or N − 1 ∈ A. Therefore A does not belong to E′
2. Sec-

ond, if w(N − 2) = 0, then we obtain

w(N − 2) = c(N − 2)c(0) + c(N − 1)c(1) = 0. (42)

There are four choices of A satisfying (42): {0, 1},
{0, N − 1}, {N − 1, N − 2}, and {1, N − 2}. Since the
first three subarrays contain either 0 or N − 1, we have
E′
2 = {{1, N − 2}} for N ≥ 7.

3) E′
3 for N ≥ 10: The arguments in E′

2 indicates that, it suf-
fices to consider w(N − 3) = 0 in this case. Hence we
have

c(N − 3)c(0) + c(N − 2)c(1) + c(N − 1)c(2) = 0.

Since the elements in E′
3 do not contain 0 or N − 1,

we have E′
3 = {{1, 2, N − 3}, {2, N − 3, N − 2}},

which proves Theorem 2. �

V. COPRIME ARRAYS

In this section, we will move on to coprime arrays, which have
recently attracted considerable attention in sparse array signal
processing [4], [5], [14], [15]. These arrays are defined as:
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Fig. 4. An illustration for the k-essential Sperner family of the coprime arrays
with (a) M = 4,N = 5 and (b) M = 5,N = 4. In these figures, the coprime
arrays are split into two sparse ULAs for clarity.

Definition 15: Let M and N be a coprime pair of positive
integers. A coprime array Scoprime with parameters M and N
can be defined as

Scoprime = {0} ∪ P1 ∪ P2 ∪ {MN} ∪ P3, (43)

where the sets P1, P2, and P3 are given by

P1 = {p1M : 1 ≤ p1 ≤ N − 1}, (44)

P2 = {p2N : 1 ≤ p2 ≤ M − 1}, (45)

P3 = {p3N : M + 1 ≤ p3 ≤ 2M − 1}. (46)

Coprime arrays are composed of two sparse ULAs. The first
sparse ULA ({0} ∪ P1) has N elements with interelement spac-
ingM (in unit of half of the wavelength) while the second sparse
ULA ({0} ∪ P2 ∪ {MN} ∪ P3) owns 2M elements with sepa-
ration N . It can be shown that the difference coarray of Scoprime

has a central ULA segment Ucoprime = {0,±1, . . . ,±(MN +
M − 1)} and holes at ±(MN +M) [4], [5].

Example 6: Fig. 4(a) demonstrates the geometry of coprime
arrays. For clarity, the first ULA with separation M is depicted
on the top while on the bottom is shown the second ULA with
separation N . The physical sensors are denoted by diamonds or
rectangles and the empty space is marked by crosses. If M = 4
andN = 5, then we haveP1 = {4, 8, 12, 16},P2 = {5, 10, 15},
and P3 = {25, 30, 35}, which are also illustrated in Fig. 4(a).

In the following development, the robustness of coprime ar-
rays will be investigated based on the theory in the companion
paper [9]. To begin with, the closed-form expressions of E′

k for
coprime arrays will be presented in Theorem 3, whose proof can
be found in Section V-C.

Theorem 3: Let Scoprime be a coprime array with a coprime
pair of integers M and N , as defined in Definition 15. As-
sume thatM,N ≥ 2. Then the k-essential Sperner family can be
expressed as

E′
1 =

{
A ∪ B, if M is odd,

A ∪ B ∪ {{MN/2}}, if M is even,
(47)

E′
2 =

⎧
⎪⎨

⎪⎩

∅, if M = 2,

{{N, 2N}, {2N, 3N}}, if M = 3,

C, otherwise,

(48)

E′
k = ∅, 3 ≤ k ≤ |S|, (49)

where A, B, and C are given by

A � {{nM} : 0 ≤ n ≤ N − 1}, (50)

B � {{mN} : M + 1 ≤ m ≤ 2M − 1}, (51)

C � {{mN, (M −m)N} : 1 ≤ m ≤ �(M − 1)/2�}. (52)

Example 7: The implications of Theorem 3 are exemplified
by Fig. 4, where the essential sensors (diamonds in Fig. 4), the
inessential sensors (rectangles in Fig. 4), andE′

2, are enumerated.
Here the coprime arrays have parameters (a) M = 4, N = 5
and (b) M = 5, N = 4. In Fig. 4(a), the essential elements
0, 4, 8, 12, 16 are associated with A, as in (50), or {0} ∪ P1,
as in (44), while the elements 25, 30, 35 are related to B in (51),
or equivalently P3 in (46). Furthermore, in Fig. 4(a), the ele-
ment MN/2 = 10 is also essential, which is consistent with
(47). The sets in E′

2 are also depicted in Fig. 4. For instance, in
Fig. 4(b), both {8, 12} and {4, 16} belong to E′

2, as described
in (48) and (52). Note that the elements in these sets are sym-
metric with respect to the location MN/2 = 10. Another in-
teresting observation is that, among the inessential sensors in
Fig. 4(b), some are related to E′

2, such as 4 and 8, but the inessen-
tial sensor MN = 20 does not belong to any elements in E′

k

for all k. In fact, if M ≥ 4 and N ≥ 2, it can be shown that
MN does not belong to the elements in E′

k for all k, due to
Theorem 3.

Theorem 3 can be interpreted as a generalization of the
thinned coprime array [16]. For sufficiently large M and N ,
it was shown in [16] that removing the elements at (�M/2�+
1)N, (�M/2�+ 2)N, . . . ,MN in a coprime array preserves the
difference coarray and the new array geometry is called the
thinned coprime array. The above statement is equivalent to
the condition that {(�M/2�+ 1)N, (�M/2�+ 2)N, . . . ,MN}
is not �M/2�-essential with respect to Scoprime. For instance,
in Fig. 4(a), removing {15, 20} from Scoprime does not al-
ter the difference coarray, since {15, 20} is not 2-essential.
Furthermore, Theorem 3 makes it possible to create other ar-
rays than thinned coprime arrays but with the same difference
coarray. For example, in Fig. 4(b), deleting either {8, 16, 20},
{4, 8, 20}, or {4, 12, 20} from Scoprime does not alter the differ-
ence coarray, while none of them is identical to thinned coprime
arrays.

A. The k-Fragility of Coprime Arrays

In the following development, closed-from expressions for the
k-fragility of the coprime array will be derived. It is first assumed
that M is an even number and M ≥ 4. In this case, we have
|E1| = |E ′

1| = M +N so the fragility F1 = (N +M)/(N +
2M − 1). Next, due to [9, Lemma 5], the 2-essential family
E2 can be expressed as

E2 = {{n1, n2} : {n1} ∈ E′
1, {n2} �∈ E′

1, n2 ∈ Scoprime}︸ ︷︷ ︸
H1

∪ {{n1, n2} : {n1}, {n2} ∈ E′
1}︸ ︷︷ ︸

H2

∪E′
2.
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Since H1, H2, and E′
2 are disjoint, the size of E2 is given by

|E2| = |H1|+ |H2|+ |E ′
2| = (N +M)(M − 1) +

(
N+M

2

)
+

(M/2− 1) so that fragilityF2 becomesF2 = (3M2 + 4MN −
2M +N2 − 3N − 2)/((N + 2M − 1)(N + 2M − 2)). Re-
peating similar arguments for odd M leads to these expressions

F1 =

⎧
⎪⎪⎨

⎪⎪⎩

N +M − 1

N + 2M − 1
, if M is odd,

N +M

N + 2M − 1
, if M is even,

(53)

F2=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

3M2 + 4MN − 4M +N2 − 3N+1

(N + 2M − 1)(N + 2M − 2)
, if M is odd,

3M2 + 4MN − 2M +N2 − 3N−2

(N + 2M − 1)(N + 2M − 2)
, if M is even,

(54)

where M ≥ 4.
As k increases, the closed-form expressions of Fk can be de-

rived but the details become more involved. Here these expres-
sions are omitted in this paper. However, if k is sufficiently large,
then Fk can still be characterized by the following proposition:

Proposition 2: For the coprime array with a coprime pair of
integers M ≥ 4 and N ≥ 2, the k-fragility satisfies Fk = 1 for
all �M/2�+ 1 ≤ k ≤ N + 2M − 1.

Proof: It follows from Item 3d in Section V-C (before
Section VI).

For example, let M = 4 and N = 9. Using (53), (54), and
Proposition 2, it can be shown that F1 = 0.8125, F2 = 0.9833,
and Fk = 1 for all 3 ≤ k ≤ 16. These results are in accordance
with the numerical values in the companion paper [9, Fig. 8].

B. The Probability That the Difference Coarray Changes

In this subsection, the closed-form expressions of Pc for the
coprime array are characterized by the following theorem:

Theorem 4: LetScoprime be the coprime array with a coprime
pair of integers M,N , as in Definition 15. Assume that M,N ≥
2. Then the probability that the difference coarray changes is

Pc =

{
1− (1− p)|E

′
1|(1− 2p2 + p3), if M = 3,

1− (1− p)|E
′
1|(1− p2)|E

′
2|, otherwise.

(55)

Here E′
1 and E′

2 are the k-essential Sperner family of Scoprime,
whose expressions are given in Theorem 3.

Proof: According to the proof of [9, Theorem 3], the prob-
ability Pc can be expressed as 1− Pr(Gc

1) + Pr(Gc
1)Pr(G2),

where Gc
1 denotes the complement of the event G1. The events

G1 and G2 are defined as

G1 �
⋃

A1∈E′
1

F(A1), G2 �
|S|⋃

k=2

⋃

Ak∈E′
k

F(Ak). (56)

Here F(Ak) � ∩n∈Ak
(n fails) denotes the event in which all the

elements in Ak fail. It was proved in [9, (39)] that Pr(Gc
1) =

(1− p)|E1| for any array geometry. Next we will simplify
Pr(G2). If M = 2, then Pr(G2) = Pr(F(∅)) = 0. If M = 3,

then we obtain

Pr(G2) = Pr(F({N, 2N}) ∪ F({2N, 3N}))
= Pr(F({N, 2N})) + Pr(F({2N, 3N}))
− Pr(F({N, 2N, 3N}))

= 2p2 − p3. (57)

If M ≥ 4, then Pr(G2) can be simplified as

Pr(G2) = 1− Pr(Gc
2) = 1− Pr

(
⋂

A2∈E′
2

(F(A2))
c

)

. (58)

Due to (48), all the elements in E′
2 are disjoint, so all the events

F(A2) are mutually independent. Hence (58) becomes

Pr(G2) = 1−
∏

A2∈E′
2

Pr((F(A2))
c) = 1−

∏

A2∈E′
2

(1− p2)

= 1− (1− p2)|E
′
2|. (59)

Substituting (57), (59), and Pr(Gc
1) = (1− p)|E1|, into Pc =

1− Pr(Gc
1) + Pr(Gc

1)Pr(G2) proves this theorem. �
The closed-form expressions ofPc for MESA (6) and coprime

arrays (55) can be validated by Monte-Carlo simulations, as in
[9, Fig. 12]. It is also deduced from [9, Fig. 12] that the smallest
Pc is exhibited by the ULA, followed by the coprime array, and
finally the nested array. This observation is also consistent with
the conclusion drawn from the fragility Fk of these arrays.

C. Derivation of the Expressions in Theorem 3

Example 8: To begin with, let us demonstrate the main
concept of the derivation. Fig. 5(a) shows the coprime ar-
ray with M = 7, N = 8 and its nonnegative part of the
difference coarray. Here the elements are depicted in dots
while empty space is denoted by crosses. The elements
0, 7, 14, 21, 28, 35, 42, 49, 64, 72, 80, 88, 96, 104 can be shown
to be essential ([9, Lemma 2] and Lemma 8). Therefore, for the
elements in E′

k and k ≥ 2, it suffices to consider the subarrays
A ⊆ {8, 16, 24, 32, 40, 48, 56}, as marked in Fig. 5(a). The re-
maining part of the derivation is to identify the constraints on A

such that D (the difference coarray after the removal of A from
Scoprime) is distinct from D (the difference coarray of Scoprime).
To identify these constraints, we will state and prove three lem-
mas in this section (Lemmas 10 to 12). The brief implications
of these lemmas are as follows

Lemma 10: |A| ≤ M − 2 ⇒ D1 = D1,

Lemma 11: A and AR are disjoint ⇔ D3 = D3,

Lemma 12: D1 = D1 and D3 = D3 ⇔ D = D,

where D1D1, D3, D3, and AR will be defined shortly. These
results can be applied to Fig. 5(b), where A = {16, 32, 56},
AR = {0, 24, 40}, and |A| = 3. It can be readily shown that
D = D using Lemmas 10 to 12 without actually computing D.
As a result, A does not belong to E′

3.
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Fig. 5. (a) the coprime array Scoprime with M = 7,N = 8 and the nonnegative part of the difference coarray D. (b) The array S, where the elements in

A = {16, 32, 56} are removed from Scoprime, and the nonnegative part of its difference coarray D.

Next we will proceed to the rigorous derivation of the ex-
pressions in Theorem 3. In what follows, it is assumed that the
coprime array, as defined in Definition 15, satisfies M,N ≥ 2.
The self difference of a set S is denoted by SD(S) � {n− n′ :
n, n′ ∈ S} and the cross difference between S1 and S2 are given
by CD(S1, S2) � {±(n1 − n2) : n1 ∈ S1, n2 ∈ S2}. The fol-
lowing lemmas are useful in proving Theorem 3:

Lemma 7: Assume thatn1, n2 ∈ Scoprime and1 ≤ u ≤ N −
1 and 1 ≤ v ≤ M − 1. Then n1 − n2 = uM − vN if and
only if the pair (n1, n2) is (uM, vN) or ((M − v)N, (N −
u)M).

Proof: The proof consists of four cases of n1 and n2:
1) n1, n2 ∈ {0} ∪ P1: Let n1 = q1M and n2 = q2M for

0 ≤ q1, q2 ≤ N − 1. The equation n1 − n2 = uM − vN
can be rearranged as (u− q1 + q2)M = vN . Since M
and N are coprime, v is an integer multiple of M , which
contradicts 1 ≤ v ≤ M − 1.

2) n1, n2 ∈ P2 ∪ {MN} ∪ P3: Assume that n1 = q1N and
n2 = q2N for 1 ≤ q1, q2 ≤ 2M − 1. Then n1 − n2 =
uM − vN gives (v + q1 − q2)N = uM . Hence u is di-
visible by N , which disagrees with 1 ≤ u ≤ N − 1.

3) n1 ∈ {0} ∪ P1 and n2 ∈ P2 ∪ {MN} ∪ P3: Suppose
n1 = q1M and n2 = q2N for 0 ≤ q1 ≤ N − 1 and 1 ≤
q2 ≤ 2M − 1. Rearranging n1 − n2 = uM − vN leads
to (u− q1)M = (v − q2)N . Since M and N are coprime
and −N + 2 ≤ u− q1 ≤ N − 1, we obtain q1 = u and
q2 = v. Hence (n1, n2) = (uM, vN).

4) n1 ∈ P2 ∪ {MN} ∪ P3 and n2 ∈ {0} ∪ P1: Consider
n1 = q1N and n2 = q2M for 1 ≤ q1 ≤ 2M − 1 and 0 ≤
q2 ≤ N − 1. The equation n1 − n2 = uM − vN can be
rearranged as (u+ q2)M = (v + q1)N . Then we obtain
u+ q2 = N and v + q1 = M because M and N are co-
prime and 1 ≤ u+ q2 ≤ 2N − 2. Therefore (n1, n2) =
((M − v)N, (N − u)M). �

Lemma 8: If n ∈ P1 or n ∈ P3, then n is essential with re-
spect to Scoprime.

Proof: Due to [9, Lemma 1], it suffices to show that, if
n1 = p1M ∈ P1 and n3 = p3N ∈ P3, then w(n1 − n3) = 1.
Namely, (n1, n3) is the only sensor pair of Scoprime with differ-
ence n1 − n3.

Assume that there exists another pair (s1, s2) ∈ S
2
coprime such

that (s1, s2) �= (n1, n3), and s1 − s2 = n1 − n3. According to
(s1, s2), we have the following cases:

1) s1, s2 ∈ {0} ∪ P1: Assume that s1 = q1M and s2 = q2M
for 0 ≤ q1, q2 ≤ N − 1. The condition s1 − s2 = n1 −
n3 can be rearranged as (p1 − q1 + q2)M = p3N . Since
M and N are coprime, the parameter p3 is an integer
multiple of M , which contradicts (46).

2) s1, s2 ∈ P2 ∪ {MN} ∪ P3: Let s1 = q1N and s2 = q2N
for 1 ≤ q1, q2 ≤ 2M − 1. The condition s1 − s2 = n1 −
n3 becomes (p3 + q1 − q2)N = p1M . Due to the co-
primeness of M and N , the parameter p1 is divisible by
N , causing a contradiction with (44).

3) s1 ∈ {0} ∪ P1 and s2 ∈ P2 ∪ {MN} ∪ P3: Suppose that
s1 = q1M and s2 = q2N for 0 ≤ q1 ≤ N − 1 and 1 ≤
q2 ≤ 2M − 1. If s1 − s2 = n1 − n3, then (p1 − q1)M =
(p3 − q2)N . The coprimeness of M and N indicates that
N divides p1 − q1. Since −N + 2 ≤ p1 − q1 ≤ N − 1,
we havep1 = q1, s1 = n1, and s2 = n3, which contradicts
(s1, s2) �= (n1, n3).

4) s1 ∈ P2 ∪ {MN} ∪ P3 and s2 ∈ {0} ∪ P1: We assume
that s1 = q1N and s2 = q2M for 1 ≤ q1 ≤ 2M − 1 and
0 ≤ q2 ≤ N − 1. The condition s1 − s2 = n1 − n3 be-
comes (p3 + q1)N = (p1 + q2)M . We have p1 + q2 =
N because M and N are coprime and 1 ≤ p1 + q2 ≤
2N − 2. Hencep3 + q1 = M , which contradicts the range
of p3 + q1 (M + 2 ≤ p3 + q1 ≤ 4M − 2). �

Lemma 9: SD({0} ∪ P1) ∪ CD(P1, {MN}) = SD({0}
∪ P1).

Proof: The elements in CD(P1, {MN}) can be expressed
as ±(MN − p1M) for 1 ≤ p1 ≤ N − 1, which is equivalent
to ±((N − p1)M − 0). Since 1 ≤ N − p1 ≤ N − 1, we have
±(MN − p1M) ∈ SD({0} ∪ P1). �

Next we move on to the main argument. Due to [9, Lemma 2]
and Lemma 8, the family E′

1 containsA andB. For the remaining
elements in Scoprime, it is assumed that A ⊆ P2 ∪ {MN} and
|A| = k. Let S be Scoprime\A and D be the difference coarray
of S. The sets D1, D2, and D3 are defined as

D1 � SD(({0} ∪ P2 ∪ {MN} ∪ P3)\A), (60)

D2 � CD(P1, (P2 ∪ {MN})\A), (61)

D3 � CD(P1,P2\A). (62)

Furthermore, the sets D1 � SD({0} ∪ P2 ∪ {MN} ∪ P3),
D2 � CD(P1,P2 ∪ {MN}), and D3 � CD(P1,P2). Under
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these assumptions, D can be expressed as

D = SD({0} ∪ P1) ∪ SD(({0} ∪ P2 ∪ {MN} ∪ P3)\A)
∪ CD({0} ∪ P1, ({0} ∪ P2 ∪ {MN} ∪ P3)\A) (63)

= SD({0} ∪ P1) ∪ D1 ∪ D2 ∪ CD(P1,P3). (64)

The term {0} in the cross difference of (63) can be removed
since CD(B, {0}) is a subset of SD({0} ∪ B) for any set B.
According to the relation between MN and A, the set D2 can
be expressed as

D2 =

{
D3, if MN ∈ A,

CD(P1, {MN}) ∪ D3, if MN �∈ A,
(65)

where D3 is given by (62). Substituting (65) into (64) and using
Lemma 9 result in

D = SD({0} ∪ P1) ∪ D1 ∪ D3 ∪ CD(P1,P3). (66)

The following lemmas characterize the difference coarray D

in terms of D1 and D3. Here D is the difference coarray of the
coprime array Scoprime.

Lemma 10: Assume that A ⊆ P2 ∪ {MN}. If |A| = k ≤
M − 2, then D1 = D1.

Proof: First, it can be shown that SD({0} ∪ P3) =
D1\{±(M − 1)N,±MN}. It suffices to show that (M −
1)N and MN belong to D1 if k ≤ M − 2. In this case,
since |(P2 ∪ {MN})\A| = M − k ≥ 2, there existsn = qN ∈
(P2 ∪ {MN})\A such that 2 ≤ q ≤ M , If q = M , then the
differences (M − 1)N and MN reside in D1 since (M −
1)N = (2M − 1)N −MN and MN = MN − 0. If 2 ≤ q ≤
M − 1, then the differences (M − 1)N and MN live in
D1 since (M − 1)N = (M − 1 + q)N − qN,MN = (M +
q)N − qN , and (M − 1 + q)N, (M + q)N ∈ P3. �

Lemma 11: Let A ⊆ P2 ∪ {MN} and AR � {MN − a :
a ∈ A}. Then D3 = D3 if and only if A and AR are disjoint.

Proof: First, it is assumed that MN does not belong to
A. We haveD3 = CD(P1,P2) = CD(P1,P2\A) ∪ CD(P1,A).
Therefore, the statement that D3 = D3 is equivalent to
CD(P1,A) ⊆ D3.

If A and AR are disjoint, then for every n ∈ A, the location
MN − n ∈ P2\A. Due to Lemma 7, we have CD(P1,A) ⊆
CD(P1,P2\A) = D3. If A and AR are not disjoint, then there
exists 1 ≤ v ≤ M − 1 such that {vN, (M − v)N} ⊆ A. As a
result, vN �∈ P2\A and (M − v)N �∈ P2\A. Due to Lemma 7,
for some 1 ≤ u ≤ N − 1, the difference uM − vN ∈ D3 is re-
lated to the pair (uM, vN) or ((M − v)N, (N − u)M). These
pairs cannot be found in the cross difference between P1 and
P2\A. Hence D3 �= D3.

Second, let us consider the case of MN ∈ A. The set B and
BR are defined as B � A\{MN} ⊆ P2 and BR � {MN − b :
b ∈ B} ⊆ P2, respectively. Due to the first part of the proof, we
have D3 = D3 if and only if B and BR are disjoint. Since 0 �∈ B

and MN �∈ BR, B and BR being disjoint is equivalent to A and
AR being disjoint, which completes the proof. �

Lemma 12: D = D if and only if D1 = D1 and D3 = D3.

Proof: The sufficiency part of Lemma 12 is trivial using (66).
The following shows the necessity part.

Let m ∈ D1 but m �∈ D1. We denote m = rN for −(2M −
1) ≤ r ≤ 2M − 1. We will show that the union of SD({0} ∪
P1), D3, and CD(P1,P3), does not contain m, implying that
D �= D. If m ∈ SD({0} ∪ P1), then there exists −(N − 1) ≤
s ≤ N − 1 such that rN = sM . Due to the coprimeness of
M and N , the parameter s is an integer multiple of N , im-
plying s = 0 and m = 0. But 0 ∈ D1, which contradicts m �∈
D1. If m ∈ D3, then there exists a sensor pair in {0} ∪ P2 ∪
{MN} ∪ P3 (because m ∈ D1) whose difference is uM − vN
for 1 ≤ u ≤ N − 1 and 1 ≤ v ≤ M − 1 (since m ∈ D3 ⊆ D3).
This result contradicts Lemma 7. Ifm ∈ CD(P1,P3), then there
exist 1 ≤ p1 ≤ N − 1 and M + 1 ≤ p3 ≤ 2M − 1 such that
rN = p1M − p3N , implying (r + p3)N = p1M . SinceM and
N are coprime, we have that p1 is divisible by N , which violates
1 ≤ p1 ≤ N − 1.

Ifm ∈ D3 butm �∈ D3, thenm can be expressed asuM − vN
for 1 ≤ u ≤ N − 1 and 1 ≤ v ≤ M − 1. Lemma 7 indicates
that, such difference can only be found in the cross difference
betweenP1 andP2. Therefore,m does not belong to the union of
SD({0} ∪ P1),D1, andCD(P1,P3). These arguments complete
the proof. �

Now let us consider how the subarray A ⊆ P2 ∪ {MN} in-
fluences the difference coarray D. Based on the parameter M ,
we have the following cases:

1) M = 2: In this case, we have A ⊆ P2 ∪ {MN} =
{N, 2N}. Due to Theorem 2, Lemma 11, and Lemma 12,
it can be shown that D �= D for A = {N} and D = D for
A = {2N}. Therefore, N is essential but 2N is inessen-
tial. If A = {N, 2N}, then A contains the essential ele-
ment N , implying that A �∈ E′

2. These arguments prove
(47) to (49) for M = 2.

2) M = 3: This case leads to A ⊆ P2 ∪ {MN} =
{N, 2N, 3N}. If A = {N}, {2N}, or {3N}, then it
can be shown that D = D, due to Lemmas 10 to 12.
Hence these elements are inessential. If A = {N, 2N},
then A = AR, so D �= D, due to Lemmas 11 and 12.
Similarly, it can be shown that {2N, 3N} is 2-essential,
due to D1 �= D1, while {N, 3N} is not 2-essential. If
A = {N, 2N, 3N}, then it is a superset of {N, 2N},
which is 2-essential. Therefore A �∈ E′

3. As a result, we
prove (47) to (49) for M = 3.

3) M ≥ 4: According to the value ofk, we have the following
cases:

a) k = 1: Due to Lemma 10, we haveD1 = D1. There-
fore, based on Lemmas 11 and 12, we haveD �= D if
and only if A and AR are not disjoint. For the essen-
tial sensors, since |A| = 1, we have A = AR, im-
plying that n = MN − n for some n ∈ P2. If M is
an odd number, then n is not an integer and n �∈ P2.
If M is an even number, then this essential sensor
becomes n = MN/2, which proves (47).

b) k = 2: Similar to the case of M ≥ 4 and k = 1, we
have D �= D if and only if A and AR are not disjoint,
due to Lemmas 10 to 12. This result means that, all
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Fig. 6. The array configurations for (a) ULA with 10 elements, (b) the coprime
array with M = 3,N = 5, (c) the nested array with N1 = N2 = 5, and (d) the
MRA with 10 elements.

TABLE I
THE ARRAY PROFILES IN SECTION VI-A

the subarrays of the form {n,MN − n} for n ∈ P2

belongs to E′
2, which proves (48).

c) 3 ≤ k ≤ �M/2�: In this case, we have k ≤
�M/2� ≤ M − 2, which implies D1 = D1 due to
Lemma 10. Next, according to the set A, we have
two cases. If A and AR are disjoint, then D3 = D3,
due to Lemma 11. Therefore, D = D and A �∈ E′

k.
On the other hand, if A and AR are not disjoint, then
there exists {n,MN − n} ⊆ A for some n ∈ P2.
Since {n,MN − n} ∈ E′

2, we have A �∈ E′
k. These

arguments show that E′
k is empty.

d) k ≥ �M/2�+ 1: For any choice of A, it can be
shown that there exists n ∈ P2 such that {n,MN −
n} is a subset of A. Hence A ∈ Ek but A �∈ E′

k, im-
plying that E′

k is empty. All these arguments proves
Theorem 3. �

VI. NUMERICAL EXAMPLES

In this section, we will study the DOA estimation performance
of arrays in the presence of random sensor failure, through sev-
eral numerical examples.

A. Comparison of ULA, MRA, Nested Arrays, and Coprime
Arrays

Fig. 6 depicts (a) the ULA, (b) the coprime array with
M = 3, N = 5, (c) the nested array with N1 = N2 = 5, and
(d) the MRA. All these arrays have 10 physical sensors. Here
the essential sensors and the inessential sensors are denoted
by diamonds and rectangles, respectively. It can be shown
that the difference coarrays are {0,±1, . . . ,±9} for the ULA,
{0,±1, . . . ,±17,±19,±20,±22,±25} for the coprime array,
{0,±1, . . . ,±29} for the nested array, and {0,±1, . . . ,±36}
for the MRA. Details such as the size of the difference coarray
|D|, the size of the central ULA segment |U|, and the fragility
F1 are summarized in Table I.

Fig. 7. The dependence of RMSE on the element failure probability p for the
array configurations in Fig. 6. There are 10 sensors. The number of snapshots is
100 and the SNR is 0 dB. There is one source (D = 1) with θ̄1 = 0.25. Each
data point is averaged over 106 independent Monte-Carlo runs.

In Fig. 7, the DOA estimation is done by the coarray MUSIC
algorithm. The reason why the MHA and the Cantor array with
10 sensors are not included is two-fold. First, coarray MUSIC
is usually not deployed for MHAs, since they do not necessar-
ily own a large central ULA segment in the difference coarray.
Second, the Cantor array is defined only for |S| = 2r sensors,
where r is a nonnegative integer. Therefore we cannot obtain the
Cantor array for 10 sensors.

1) One Source: Fig. 7 plots the DOA estimation performance
of these arrays as a function of the sensor failure probability
p, in the range from 10−4 to 0.3.1 Here the number of snap-
shots is 100 and the signal-to-noise ratio (SNR) is 0 dB. There
is one source (D = 1) at θ̄1 = 0.25. In each run, each sen-
sor fails independently with probability p and the array out-
put is generated based on [9, (1)], from which coarray MU-

SIC [29] computes the estimated source direction ̂̄θi. For all
106 Monte-Carlo runs, we only collect the instances where
coarray MUSIC works, from which the root-mean-square error

(RMSE = (
∑D

i=1 (θ̄i − ̂̄θi)/D)1/2) is calculated and averaged.
In this example, coarray MUSIC works for almost all Monte

Carlo runs, when p is sufficiently small. In particular, if p =
0.1, then the coarray MUSIC is operational in 99.994% of the
instances for ULA, in 96.386% of those for the coprime array, in
99.635% of those for the nested array, and in 96.391% of those
for the MRA.

Fig. 7 can be divided into three regions:
� Region (I): The MRA owns the smallest RMSE, which is

mainly governed by the size of the difference coarray.
� Region (II): Neither the MRA nor the ULA has the smallest

RMSE.
� Region (III): The ULA has the least RMSE, which is pri-

marily controlled by the robustness of the array.
In Region (I), the best performance is enjoyed by the MRA,

followed by the nested array, then the coprime array, and finally
the ULA. This is because for sufficiently small p, all the sensors

1Based on the exponential distribution, the sensor failure probability can be
modeled as p = 1− e−λt, where λ is the failure rate and t is time duration
[6, Section 2.6.3]. For instance, if λ = 100 failures per million hours (0.876
failures per year) and t = 5 hours, then p ≈ 5× 10−4. Interested readers are
referred to [6], [7] and the references therein.
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Fig. 8. The dependence of RMSE on the element failure probability p for the
array configurations in Fig. 6. The number of snapshots is 100 and the SNR
is −10 dB. There is one source (D = 1) with θ̄1 = 0.25. Each data point is
average over 106 independent Monte-Carlo runs.

tend to be operational and the performance of coarray MUSIC is
dominated by the size of the difference coarray [18]. Note that,
as p goes to zero, the RMSE does not approach zero due to finite
snapshots and nonzero noise (0 dB SNR) [18].

In Region (III), it can be deduced that the RMSE is in accor-
dance with the robustness of these arrays. This is since for large
p, it is very likely to have multiple faulty elements and the ULA
has the least probability that the difference coarray changes.
Another observation is that, empirically, for large p, the nested
array has smaller RMSE than the MRA, even though they are
both maximally economic. The is because the k-essentialness
property only characterizes the integrity of the difference coar-
ray, instead of the central ULA segment of the difference coar-
ray. It is known that the latter has significant influence on the
applicability of coarray MUSIC [18], [29].

Another remark is on Region (II). It is observed in Table I that
the coprime array does not have the largest difference coarray,
nor does it have the smallest fragility F1, but it has the least
RMSE in most of Region (II) in Fig. 7. This result shows the
existence of sparse arrays that strike a balance between the size
and the robustness of the difference coarray. Future research
can be directed towards designing such array geometries, which
work the best in Region (II).

Next we will investigate an example with low SNR, namely
−10 dB. Fig. 8 shows the estimation performance of the ar-
rays in Table I under sensor failure. The number of snapshots
is 100 and the only source has θ̄1 = 0.25. Several observa-
tions can be drawn from Figs. 7 and 8. First, since Fig. 8
has lower SNR, the RMSEs in Fig. 8 are larger than those
in Fig. 7. Second, the ranges of the three regions in Fig. 8
are different from those in Fig. 7. Region (I) is now ap-
proximately 10−4 < p < 1.2× 10−3, Region (II) has around
1.2× 10−3 < p < 2.8× 10−2, and Region (III) corresponds to
p > 2.8× 10−2. Furthermore, in Fig. 8, the nested array has
smaller RMSE than the coprime array in Region (II).

2) Multiple Sources: Fig. 9 demonstrates the RMSE of the
array geometries in Fig. 6. We consider D = 5 sources with
θ̄i = −0.25 + 0.125(i− 1) for i = 1, 2, . . . , 5. The SNR is 0 dB

Fig. 9. The dependence of RMSE on the element failure probability p for the
array configurations in Fig. 6. The number of snapshots is 100 and the SNR
is 0 dB. There are five sources (D = 5) with θ̄i = −0.25 + 0.125(i− 1) for
i = 1, 2, . . . , 5. Each data point is average over 106 independent Monte-Carlo
runs.

TABLE II
THE ARRAY PROFILES IN SECTION VI-B

and the number of snapshots is 100. It can be deduced that the
RMSEs increase when there are multiple sources, compared with
the case of one source in Fig. 7. Furthermore, in Fig. 8, Region
(I) becomes 10−4 < p < 1.1× 10−3, Region (II) corresponds
to 1.1× 10−3 < p < 7.8× 10−2, and Region (III) is p > 7.8×
10−2. Among all the array configurations, the nested array has
the least RMSE around p = 5× 10−3 while the coprime array
owns the smallest RMSE near p = 5× 10−2.

B. Comparison of Different Possible Configurations of Nested
and Coprime Arrays

For a fixed number of sensors, there are several ways to
configure a nested array, and similarly for a coprime array.
In this section, we compare the performance of these different
configurations under sensor failure. We assume the number of
sensors is 16. We select three possible nested arrays, denoted by
(N1), (N2), and (N3), as well as three coprime arrays, denoted
by (C1), (C2), and (C3), according to Definitions 12 and 15.
Table II lists the size of the difference coarray |D|, the size of
the central ULA segment of the difference coarray |U|, and the
1-fragility F1 for these array configurations. In this example, for
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Fig. 10. The dependence of RMSE on the element failure probability p for
the nested arrays in Table II. The number of snapshots is 100 and the SNR is
0 dB. There is one source with θ̄1 = 0.25. Each data point is average over 106

independent Monte-Carlo runs.

Fig. 11. The dependence of RMSE on the element failure probability p for
the coprime arrays in Table II. The number of snapshots is 100 and the SNR is
0 dB. There is one source with θ̄1 = 0.25. Each data point is average over 106

independent Monte-Carlo runs.

these nested arrays, |D| decreases monotonically as the param-
eter N1 increases, but F1 remains unity. For the coprime arrays,
all of |D|, |U|, and F1 are monotonically decreasing when the
parameter M grows.

Fig. 10 shows the dependence of RMSE on the element failure
probability p for the nested arrays. We consider 100 snapshots,
0 dB SNR, and 106 Monte-Carlo runs. There is one source at
θ̄1 = 0.25. For p ≈ 2× 10−4, the smallest RMSE is exhibited
by (N1), followed by (N2), and finally (N3). This is because
the size of the difference coarray is ordered by (N1) (largest),
(N2), and (N3) (smallest). For p ≈ 10−1, the smallest RMSE
is given by (N3), (N2), and finally (N1). This result cannot be
explained by examining F1, since F1 = 1 for all these nested
arrays. It is possible that this phenomenon can be explained
by the robustness of the ULA segment in the difference coar-
ray, on which the coarray MUSIC relies. This requires further
thought.

Next let us move on to coprime arrays, whose profiles are
listed in Table II and the DOA estimation performance is plotted
in Fig. 11. For p ≈ 2× 10−4, the smallest RMSE is exhibited by
(C2), then (C1), and finally (C3). This result can be explained
as follows.

1) Since p ≈ 2× 10−4 is relatively small, the DOA estima-
tion performance is primarily governed by the size of U.
Table II shows that, (C1) and (C2) have the same |U|while
(C3) owns the smallest |U|. This is roughly consistent with
the RMSE for p ≈ 2× 10−4 in Fig. 11.

2) It is also observed that the RMSE of (C2) is slightly smaller
than that of (C1) for p ≈ 2× 10−4. The reason is that (a)
(C1) and (C2) have the same |U|, and (b) F1 of (C2) is
smaller than that of (C1), implying that (C2) is more robust
than (C1).

For the coprime arrays with p > 10−2, (C2) has the smallest
RMSE, followed by (C3), and finally (C1). This phenomenon
is due to the following.

1) Since p is relatively large, we can first compare the robust-
ness of these arrays. Table II indicates that F1 of (C1) is
the largest and the remaining are identical. As a result, the
RMSE of (C1) is the largest in this region.

2) Since (C2) and (C3) have the same fragility, the sizes of U
should be compared to get more insight. We have that |U|
of (C2) is larger than that of (C3). Therefore the RMSE
of (C3) is smaller than that of (C2).

VII. CONCLUDING REMARKS

In this paper, we studied the robustness of the difference coar-
rays for MRA, MHA, nested arrays, Cantor arrays, ULA, and co-
prime arrays, with respect to sensor failures, through the theory
presented in the companion paper [9]. The proposed closed-form
expressions for the k-essential Sperner family not only indicate
the importance of elements in these arrays, but also provide many
insights into the reliability and the DOA estimation performance
based on these arrays.

Future research will be directed towards designing novel
sparse array geometries that strike a balance between perfor-
mance and robustness [30], [31]. For instance, it could be pos-
sible to robustify a given array geometry by adding or redis-
tributing the elements in the array. Another future direction is
to focus on the robustness of the central ULA segment in the
difference coarray, which has an impact on the applicability of
coarray MUSIC.
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