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1. Introduction

1.1. The classical Kac model

We begin by briefly recalling some essential features of the classical Kac Master Equa-
tion [11] which models a system of N particles of mass m with one-dimensional velocities 
vj , j = 1, . . . , N in R that interact only through binary collisions. At each instant any 
particle may collide with any other. That is, the Kac model is a mean-field model of 
binary molecular collisions in one region of physical space. Between collisions there is 
no interaction between the particles, and the binary collisions conserve energy. Conse-
quently, the total energy of the system is the sum of the individual kinetic energies:

E(v1, . . . , vN ) = m

2

N∑
j=1

|vj |2 . (1.1)

When a binary collision occurs, for some pair (i, j), 1 ≤ i < j ≤ N , vi and vj change 
to v∗i and v∗j respectively, while for all other k ∈ {1, . . . , N}, vk is unchanged. Since 
the energy is conserved, v2

i + v2
j = v∗2i + v∗2j . It follows that there is a one parameter 

family of kinematically possible collisions between particles i and j. The vector Ri,j,θ�v

of post-collisional velocities is related to the vector of pre-collisional velocities �v by

(Ri,j,θ�v)k =

⎧⎪⎪⎨⎪⎪⎩
vk k �= i, j

cos θvi − sin θvj k = i

sin θvi + cos θvj k = j

(1.2)

where θ ∈ [−π, π] is the collision parameter. For E > 0, define SE := {�v : E(�v) = E}. 
Note that for all 1 ≤ i < j ≤ N and all θ ∈ [−π, π], Ri,j,θ is an invertible transformation 
from SE onto SE ; which is to say that the collisions conserve energy and are reversible.
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The Kac Walk on SE is the Markov jump process on SE in which at each step, a pair 
(i, j), 1 ≤ i < j ≤ N , is chosen uniformly at random, along with a θ ∈ [−π, π], also 
chosen uniformly at random, and then the system jumps from the state �v ∈ SE prior to 
the collision to the new post-collisional state Ri,j,θ�v.

The Kac Master Equation is the evolution equation describing the continuous time 
version of the Kac Walk in which the jump times arrive in a Poisson stream with mean 
waiting time 1/N , so that the mean waiting time for collisions involving any particular 
particle is independent of N .

Now fix the energy to be N , so that the average energy per particle is 1, independent 
of N . Let LN denote the generator of this process on SN so that if the initial probability 
density for �v is F , the density at time t is etLNF , where

LNF (�v) = N

(
N
2

)−1 ∑
i<j

(F i,j − F ) and F i,j(�v) := 1
2π

π∫
−π

F (Ri,j,θ�v)dθ . (1.3)

The equation

∂

∂t
F (�v, t) = LNF (�v, t) , (1.4)

which describes the evolution of probability densities for �v on SN with respect to the 
uniform probability measure σN on SN , is the Kac Master Equation (KME). It is the 
Kolmogorov forward equation for the continuous Kac walk on SN .

One motivation for investigating the KME is that it has a rigorous connection with 
the non-linear Kac-Boltzmann equation, a one dimensional caricature of the spatially 
homogeneous Boltzmann equation; see (1.5) below. Moreover, a more complicated version 
of the Kac Master equation describing random collisions that preserve both the energy 
and the momentum of particles with velocities in R3 is connected in the same way with 
the usual spatially homogeneous Boltzmann equation [12]. For simplicity, we only discuss 
Kac’s original one dimensional caricature, which is perfectly adequate to set the stage 
for the quantum mechanical investigation. We refer to [4] for a recent survey on the Kac 
model that focuses on questions that are relevant to the present work.

The connection between the Kac model and the Boltzmann equation depends on Kac’s 
notion of chaos and its propagation under the stochastic evolution.

1.1. Definition (Chaos). Let μ be a probability measure on R. A sequence {μ(N)}N∈N of 
probability measures on SN is μ chaotic in case for each k ∈ N,

lim
N→∞

∫
χ(v1, . . . , vk)dμ(N)(v1, . . . , vN ) =

∫
χ(v1, . . . , vk)dμ(v1) · · ·dμ(vk)

for each bounded continuous function χ on Rk.

In 1956 Kac proved [11]:
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1.2. Theorem (Propagation of Chaos). Let {F (N)
0 σ(N)} be a f0(v)dv–chaotic sequence. 

Then {etLNF
(N)
0 σ(N)} is a f(v, t)dv–chaotic sequence and f(v, t) is the solution of the 

initial value problem

∂

∂t
f(v, t) = 1

π

π∫
−π

⎛⎝∫
R

[f(v∗(θ, t)f(w∗(θ), t) − f(v, t)f(w, t)]dw

⎞⎠dθ (1.5)

with f(v, 0) = f0(v), where v∗(θ) and w∗(θ) are given by rotating (v, w) through an angle 
θ:

v∗(θ) = cos θv − sin θw and w∗(θ) = sin θv + cos θw .

The equation in (1.5) is the Kac Boltzmann Equation (KBE). Theorem 1.2 would be 
of little relevance to the investigation of the Boltzmann equation were it not possible to 
construct f(v)dv-chaotic sequences for all physically relevant initial data for the Kac-
Boltzmann Equation. The following theorem shows that a construction proposed by Kac 
works in sufficient generality that this is indeed possible [5]:

1.3. Theorem (Existence of Chaotic initial data). Let f be a probability density on R
satisfying, for some p > 1,∫

R

f(v)v2dv = 1 ,

∫
R

f(v)v4dv < ∞ , f ∈ Lp(R)

and let μ(dv) = f(v)dv, and let [μ⊗N ]SN−1(
√
N) be the normalized restriction of f⊗N to 

the sphere SN . Then {[μ⊗N ]SN−1(
√
N)} is μ–chaotic.

Now that the relation between the KME and the KBE is clarified, we turn to the 
question that motivated Kac: Can one obtain information on the rate of relaxation to 
equilibrium for the KME that is useful for proving results about the rate of relaxation 
to equilibrium of solutions of the KBE?

It is easy to see that under the Kac Walk, the density tends to become uniform: For 
all F ∈ L2(SN , σN ).

lim
t→∞

etLNF = 1 .

This is a simple consequence of the ergodicity of the Kac Walk: It is possible to move 
from any point in SN to any other in at most N−1 steps of the Kac Walk. However, this 
sort of argument says nothing about the rate of convergence. The rate of convergence in 
L2(SN , σN ) is governed by the spectral gap of LN , ΔN , which is

ΔN := inf{−〈F,LNF 〉L2(SN ) : ‖F‖2 = 1 , 〈F, 1〉L2(SN ) = 0 } . (1.6)
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In his 1956 paper, Kac conjectured that lim infN→∞ ΔN > 0. This was proved by Jan-
vresse [10] with no estimate on the limiting gap. Our paper [2] gave the exact value:

ΔN = 1
2
N + 2
N − 1 .

Later, Maslin [17] was able to compute many more eigenvalues, but their large multiplic-
ity is such that this does not provide much further information in rates of convergence. 
For an investigation of the spectral gap in related but more intricate models, see [3].

For the purpose of investigating the properties of the KBE, the relative entropy would 
provide a better measure, and subsequent research will address spectral gaps and rates of 
entropy dissipation in quantum Kac models. In the present paper we focus on quantum 
analogs of Kac’s original 1956 result relating the Kac Master Equations and the Kac 
Boltzmann Equation, and in addition carry out a detailed study of the steady states of 
their quantum analogs.

1.2. Quantum Markov semigroups

In the next subsection we describe the quantum analog of the Kac Master Equation 
that is investigated here. In the quantum setting, probability densities are replaced by 
density matrices; that is, positive trace class operators on a Hilbert space that have unit 
trace. The quantum analog [8] of the semigroup etLN arising in the continuous time 
Kac Walk will be a particular sort of evolution equation for density matrices known as 
a quantum Markov semigroup. Before going into the particular features of the quantum 
model, we introduce the notation that we will use.

Let H be a separable Hilbert space with inner product 〈·, ·〉H and norm ‖ · ‖H. Let 
B(H) denote the set of norm-continuous linear operators on H, and for A ∈ B(H), let 
‖A‖∞ denote the operator norm of A. We make use of other norms on subspaces of 
B(H). For p ∈ [1, ∞), Tp(H) denotes the set of operators A on H such that

Tr[(A∗A)p/2] < ∞

equipped with the norm

‖A‖p = (Tr[(A∗A)p/2])1/p .

For each p ∈ [1, ∞), Tp(H) is a two-sided ideal in B(H), closed in the ‖ · ‖p norm, but 
operator norm dense in C (H), the norm closed subalgebra of compact operators on H.

Of special interest to us are T1(H), the space of trace class operators on H, and T2(H), 
which is a Hilbert space in its own right with the inner product 〈A, B〉T2(H) = Tr[A∗B].

If A ∈ T1(H), then B 	→ Tr[AB] is a bounded linear functional on B(H), and every 
bounded linear functional on B(H) has this form. That is, T1(H) is the predual of B(H). 
In the same way, T1(H) itself is the dual of C (H).
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Define S(H) to be the set of positive operators ρ in T1(H) such that Tr[ρ] = 1. We 
refer to S(H) as the set of density matrices on H.

A linear operator K : B(H) → B(H) is positivity preserving in case K A ≥ 0
whenever A ≥ 0. It is completely positive in case the following more stringent condition 
is satisfied: For each n ∈ N, let Mn(C) denote the space of complex n × n matrices. Let 
Ei,j denote the element of Mn(C) that has 1 in the i, j entry, and 0 elsewhere. The set 
{Ei,j}1,≤i,j≤n is the matrix unit basis for Mn(C). The general element of B(H) ⊗Mn(C)
can be written as a sum

n∑
i,j=1

Ai,j ⊗Ei,j ,

and may therefore be regarded as an n ×n matrix with entries in B(H), and consequently, 
as an operator on ⊕nH, the direct sum of n copies of H. We say that an element of B(H) ⊗
Mn(C) is positive if it is positive as an operator on ⊕nH. Any linear transformation 
K : B(H) → B(H) induces the linear transformation K ⊗1Mn(C) from B(H) ⊗Mn(C)
to B(H) ⊗Mn(C):

K ⊗ 1Mn(C)

⎛⎝ n∑
i,j=1

Ai,j ⊗Ei,j

⎞⎠ =
n∑

i,j=1
K (Ai,j) ⊗Ei,j .

The map K is completely positive in case for each n ∈ N, K ⊗1Mn(C) is positivity pre-
serving. The notion of complete positivity was introduced by Stinespring [21]. Its physical 
relevance was discussed by Kraus [14]. See Paulsen’s book [20] for more information on 
the mathematical theory.

As an example, it is very easy to see that for any V ∈ B(H), the map K defined 
by K A = V AV ∗ is completely positive. It is also clear that any convex combination 
of completely positive maps is completely positive. Complete positivity arises naturally 
in quantum mechanics. A quantum Markov operator on B(H) is a linear transformation 
K on B(H) that is completely positive and such that K 1H = 1H.

If furthermore

Tr[(K A)∗B] = Tr[A∗K (B)] (1.7)

for all A, B ∈ T2(H), then K is a symmetric quantum Markov operator. The Kadison 
inequality [7,13] says that for any completely positive operator K , and all A ∈ B(H),

K (A∗A) ≥ (K (A))∗K (A) . (1.8)

(In fact, one only needs the positivity of K ⊗1Mn(C) for n = 2.) In particular, when K
is a symmetric quantum Markov operator,

Tr[A∗A] = Tr[K (1H)A∗A] = Tr[1HK (A∗A)] ≥ Tr[(K (A))∗K (A)] .
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That is, ‖K (A)‖2 ≤ ‖A‖2, so that K is a contraction on T2(H). Let K † denote the 
adjoint of K with respect to the inner product on T2(H).

If K is a quantum Markov operator, then K † is completely positive, and K is called 
normal in case K † maps S(H) into itself. (Recall that T1(H) is the predual of B(H)
in that every bounded linear functional on T1(H) is of the form A 	→ Tr[AB] for some 
B ∈ B(H).) Normal quantum Markov maps are often called quantum operations [14]. 
A quantum Markov semigroup on B(H) is a semigroup Pt of linear transformations on 
B(H) such that for all A ∈ B(H) and all ρ ∈ S(H), limt→0 Tr[ρPtA] = Tr[ρA], and such 
for each t > 0, Pt is a normal quantum operator. Of course when H is finite dimensional, 
all vector space topologies on B(H) are the same, and normality is automatic.

2. The quantum Kac model

2.1. Binary collisions

Consider a quantum mechanical system of N particles. Let H be the state space of 
the single particle system. Let HN denote the N -fold tensor product HN = H⊗N . We 
write Hj to denote the jth factor of H in HN . If A is an operator on H, we write A1 to 
denote the operator on HN given by

A1(φ1 ⊗ φ2 ⊗ · · · ⊗ φN ) = (Aφ1) ⊗ φ2 ⊗ · · · ⊗ φN . (2.1)

Likewise, for j = 2, . . . , N , we define Aj to act by applying A to the jth factor only. 
Equivalently, let πi be the permutation of {1, . . . , N} such that πi(i) = 1, and πi(k) = k

for k �= 1, i. Let Vi be the canonical unitary representation of this permutation on HN . 
Then we have

Ai = ViA1V
∗
i . (2.2)

Let h denote the single-particle Hamiltonian on H. We define the N -particle Hamil-
tonian HN by

HN =
N∑
j=1

hj . (2.3)

No interactions between the particles are included in HN because it specifies the energy 
of a state between collisions, and apart from collisions, the particles do not interact. 
Thus, HN plays the same role as the kinetic energy, which is the Hamiltonian for the 
free motion in the classical Kac model. As in the classical model, we will consider an 
evolution in which the system makes random jumps from one state to another through 
binary collisions that preserve the energy of the non-interacting particles. All of the 
effects of the interaction are encoded into the description of these binary collisions as 
follows:
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The collision parameter space C is a compact metric space; the elements of C param-
eterize the kinematically possible collisions. In the classical Kac model discussed above 
C = S1, the unit circle. We take as given a continuous map U from C to U (H⊗H), the 
group of unitary operators on H⊗H. Let σ denote a generic point of C. Then U(σ) may 
be regarded as the scattering matrix of a particular type of collision that two particles 
may undergo. Let 
 be a density matrix on H ⊗ H representing the (non-interacting) 
state of the two particles before this collision. Then U(σ)
U∗(σ) gives the state after the 
collision.

To describe a binary collision between particles 1 and 2 in our N particle system, 
define U1,2(σ) to be the unitary operator on HN given by

U1,2(σ)(φ1 ⊗ φ2 ⊗ φ3 ⊗ · · · ⊗ φN ) = (U1,2(σ)φ1 ⊗ φ2) ⊗ φ3 ⊗ · · · ⊗ φN .

In the same way, for 1 ≤ i < j ≤ N , we define Ui,j(σ) so that it acts on the ith 
and jth factors of H. Equivalently, let πi,j be a permutation of {1, . . . , N} such that 
πi,j(i) = 1, πi,j(j) = 2, and πi,j(k) = k for k �= i, j, 1, 2. Let Vi,j be the canonical unitary 
representation of this permutation on HN . Then we have Ui,j(σ) = V ∗

i,jU1,2(σ)Vi,j .
Since we are only concerned with collisions that conserve energy, we require that for 

each σ ∈ C,

U(σ)[1H ⊗ h + h⊗ 1H]U∗(σ) = [1H ⊗ h + h⊗ 1H] . (2.4)

It then follows from the definitions that for each σ ∈ C, and each 1 ≤ i < j ≤ N

Ui,j(σ)HNU∗
i,j(σ) = HN , (2.5)

or, what is the same, that each Ui,j(σ) commutes with HN .

2.1. Definition (Collision specification). A collision specification (C, U, ν) consists of a 
compact metric space C, a continuous one-to-one function U from C to U (H2), and a 
Borel probability measure ν that charges all open subsets of C such that:

(i) For each σ ∈ C, U(σ) commutes with H2.
(ii) For some σ0 ∈ C, U(σ0) = 1HN

.
(iii) {U(σ) : σ ∈ C} = {U∗(σ) : σ ∈ C} and the map σ 	→ σ′ where U∗(σ) = U(σ′) is 

a measurable transformation of C that leaves ν invariant.
(iv) Let V : H2 → H2 be the swap transformation: V (φ ⊗ ψ) = ψ ⊗ φ for all φ, ψ ∈ H. 

Then {U(σ) σ ∈ C} = {V U(σ)V ∗ σ ∈ C} and the map σ 	→ σ′ where V U(σ)V ∗ =
U(σ′) is a measurable transformation of C that leaves ν invariant.

2.2. Remark. Since U(σ)∗ is the time reversal of the collision U(σ), property (iii) in 
Definition 2.1 will incorporate time-reversibility into the quantum Kac model. Property 
(ii) together with the continuity of U will mean that not only is the trivial collision 
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included in the model, but also all “grazing” collisions. The condition (iv) ensures that 
the two factors of H enter the collision specification in a symmetric way.

To proceed, we need to make some assumptions on the spectrum of the single-particle 
Hamiltonian h. We shall always assume that H is separable, and that h has a compact 
resolvent. Of course the latter condition is trivially satisfied when H is finite dimensional. 
The compactness of the resolvent implies not only that h has discrete spectrum, but that 
each of the eigenspaces of h is finite dimensional. This is crucial in what follows, and 
it is much less restrictive than supposing that H be finite dimensional. For example, 
one could take H = L2(Ω) for a regular bounded domain Ω ⊂ Rd, and take h = −Δ
with, say, Dirichlet conditions. We shall always write {ej}j∈J to denote the sequence of 
eigenvalues of h arranged in increasing order and repeated according to their multiplicity. 
The index set J will be taken to be N when H is infinite dimensional, and otherwise 
it will be given by J = {1, . . . , dim(H)}. We shall always write {ψj}j∈J to denote an 
orthonormal basis of H consisting of eigenvectors of h such that hψj = ejψj for each 
j ∈ J .

The diagonalization of h leads directly to a diagonalization of HN . Let α denote a 
generic element of JN so that α = (α1, . . . , αN ). For each α ∈ JN , define

Eα =
N∑
j=1

eαj
and Ψα = ψα1 ⊗ · · · ⊗ ψαN

. (2.6)

Evidently {Ψα}α∈JN is an orthonormal basis of HN , and for all α, HNΨα = EαΨα.
Note that even if each h has non-degenerate spectrum, it will never be the case that 

HN has non-degenerate spectrum.

2.3. Definition (Energy shells). Let Spec(HN ) denote the spectrum of HN . For each 
E ∈ HN , we call “energy shell at energy E” the eigenspace KE of HN with eigenvalue 
E. For each E ∈ Spec(HN ), let PE denote the orthogonal projection in HN onto KE so 
that

HN =
⊕

E∈Spec(HN )

KE . (2.7)

On account of the compactness assumption on the resolvent of h, each KE is finite 
dimensional. The different energy shells KE correspond to the level surfaces of the clas-
sical energy function E(�v) defined in (1.1), which are the energy spheres SE. Evidently 
each KE is invariant under each Ui,j(σ), or, what is the same,

Ui,j(σ)PEU
∗
i,j(σ) = PE . (2.8)



10 E.A. Carlen et al. / Advances in Mathematics 358 (2019) 106827
For each E ∈ Spec(HN ), define

σE = 1
dim(KE)PE . (2.9)

Then σE ∈ S(HN ), and it is the analog of the uniform measure on the classical energy 
shell SE . Of course it is only possible to define σE because KE is finite dimensional.

An important feature of the classical Kac model is that for each E > 0, the only 
continuous functions F on SE that satisfy F = F ◦ Ri,j,θ for all 1 ≤ i < j ≤ N and 
θ ∈ [−π, π] are the constants. Equivalently, a continuous function F on RN satisfies 
F = F ◦Ri,j,θ for all 1 ≤ i < j ≤ N and θ ∈ [−π, π] if and only if F depends on �v ∈ RN

only through E(�v). This feature of the classical collisions provides the ergodicity of the 
Kac walk on the energy spheres. We require its quantum analog.

2.4. Definition (Energy algebra). Let AN denote the commutative subalgebra of B(HN)
generated by {PE : E ∈ Spec(HN )}. The elements of AN are the elements of the form 
f(HN ) for some bounded continuous function f : Spec(HN ) → C, or what is the same 
thing,

∑
E∈Spec(HN )

λEPE (2.10)

where λE = f(E). AN is called the energy algebra.

The elements of AN are the quantum analogs of the functions F on RN that depend 
on �v ∈ RN only through the energy E(�v). Note that if A ∈ AN , then A has an expansion 
of the form (2.10) where

λE = Tr[σEA] (2.11)

and σE is given by (2.9).
For any S ⊂ B(K), K any Hilbert space, S ′ denotes the commutant of S in B(K). 

By part (i) of Definition 2.1,

A2 ⊂ {U(σ) : σ ∈ C}′ . (2.12)

We are primarily interested in collision specifications such that {U(σ) : σ ∈ C}′ = A2.

2.5. Definition (Ergodic collision specification). A collision specification (C, U, ν) as in 
Definition 2.1 is ergodic in case

{U(σ) : σ ∈ C}′ = A2 . (2.13)
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Alternatively we can say that a collision specification is ergodic if and only if whenever 
A commutes with each U(σ), then A is a function of H2. Let A ∈ B(H2). Then since H2
has discrete spectrum, A ∈ A2 if and only if PEA ∈ A2 for each eigenvalue E of H2. Since 
the eigenspaces of H2 are all finite dimensional, for all A ∈ B(H2) and all eigenvalues E
of H2, PEA ∈ T2(H2). It follows that (2.13) is satisfied if and only if

T2(H2) ∩ {U(σ) : σ ∈ C}′ = T2(H2) ∩ A2 . (2.14)

Thus, (2.14) gives another characterization of ergodicity, and it has the advantage that 
since T2(H2) is a Hilbert space, it can be related to an eigenvalue problem.

2.6. Definition (Collision operator). Let (C, U, ν) be a collision specification. Define the 
collision operator Q on B(H2) by

QA =
∫
C

dν(σ)U(σ)AU∗(σ) . (2.15)

It is evident that the restriction of Q to T2(H2) is self-adjoint, and that for all 
A ∈ {U(σ) : σ ∈ C}′, Q(A) = A. Therefore, T2(H2) ∩ {U(σ) : σ ∈ C}′ is contained 
in the eigenspace of Q with eigenvalue 1. The next lemma says, in particular, that 
T2(H2) ∩ {U(σ) : σ ∈ C}′ is precisely the eigenspace of Q with eigenvalue 1. The 
lemma shall have other uses as well, and we state it in a more general form that we need 
at present to avoid repetition later on.

2.7. Lemma (Convexity lemma). Let (C, U, ν) be a collision specification. Let Φ be a 
convex function on B(H2) with the property that for all U ∈ U (H2) and all A ∈ B(H2), 
Φ(UAU∗) = Φ(A). Then

Φ(QA) ≤ Φ(A) (2.16)

and if Φ is strictly convex, there is equality in (2.16) with Φ(A) < ∞ if and only if 
A ∈ {U(σ) : σ ∈ C}′. In particular, taking Φ(A) = Tr[A∗A], the eigenspace of Q with 
eigenvalue 1 is T2(H2) ∩ {U(σ) : σ ∈ C}′.

Proof. By the convexity and unitary invariance,

Φ(QA) ≤
∫
C

dν(σ)Φ(U(σ)AU(σ)∗) =
∫
C

dν(σ)Φ(A) = Φ(A) , (2.17)

which proves (2.16). If there is equality in (2.16) and Φ is strictly convex, we must have 
that U(σ)AU∗(σ) is constant almost everywhere with respect to ν, and then by the conti-
nuity of σ 	→ U(σ) and the fact that ν charges all open sets, U(σ)AU∗(σ) is independent 
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of σ. Since for some σ0, U(σ0) = 1H2 , it must be the case that U(σ)AU∗(σ) = A for all 
σ ∈ C. The final statement then follows from the remarks made above. �

It follows from Lemma 2.7 that for A ∈ T2(H2), limn→∞ QnA = PA where P is the 
orthogonal projection onto {U(σ) : σ ∈ C}′. Thus, to prove ergodicity, it suffices to 
show that limn→∞ QnA ∈ A2 for all A ∈ T2(H).

In the next two examples, it is possible to derive an explicit form for Q from which 
one can easily determine the eigenspace with eigenvalue 1, and thus verify ergodicity.

2.8. Example. For the simplest possible example, take H = C2, so that HN = (C2)⊗N . 

Define the single particle Hamiltonian h by h =
[

0 0
0 1

]
so that the N -particle Hamil-

tonian HN =
∑N

j=1 hj has Spec(HN ) = {0, . . . , N}. For E ∈ {0, . . . , N},

dim(KE) =
(
N
E

)
.

Identify C2 ⊗C2 with C4 using the basis(
1
0

)
⊗

(
1
0

)
,

(
0
1

)
⊗

(
1
0

)
,

(
1
0

)
⊗

(
0
1

)
,

(
0
1

)
⊗

(
0
1

)
.

The standard physics notation for this basis is simply

|00〉 , |10〉 , |01〉 , |11〉 , (2.18)

which will be useful. With this identification of C2 ⊗C2 with C4,[
a1,1 a1,2
a2,1 a2,2

]
⊗

[
b1,1 b1,2
b2,1 b2,2

]
=: A⊗B is represented by

[
b1,1A b1,2A

b2,1A b2,2A

]
.

(Switching the order of the second and third basis elements swaps the roles of A and B
in the block matrix representation of the tensor product A ⊗B.) In the sort of notation 
used in (2.18), an orthonormal basis of HN consisting of eigenvectors of HN is provided 
by the set of vectors |α1, . . . , αN 〉 in which each αj is either 0 or 1. Then

HN |α1, . . . , αN 〉 =

⎛⎝ N∑
j=1

αj

⎞⎠ |α1, . . . , αN 〉 .

In this basis,

H2 =
[

0 0
0 1

]
⊗ I + I ⊗

[
0 0
0 1

]
=

⎡⎢⎢⎢⎣
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 2

⎤⎥⎥⎥⎦ .
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Therefore, Spec(H2) = {0, 1, 2} and

P0 =

⎡⎢⎢⎢⎣
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎦ , P1 =

⎡⎢⎢⎢⎣
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎤⎥⎥⎥⎦ and P2 =

⎡⎢⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎤⎥⎥⎥⎦ .

Now define C = S1 × S1 × S1 × S1 identifying each copy of S1 with the unit circle in 
C so that the general point in σ ∈ C has the form σ = (eiϕ, eiθ, eiψ, eiη). Then define

U(σ) :=

⎡⎢⎢⎢⎣
eiθ 0 0 0
0 eiψ cos θ −eiϕ sin θ 0
0 e−iϕ sin θ e−iψ cos θ 0
0 0 0 eiη

⎤⎥⎥⎥⎦
Choosing ν to be the uniform probability measure on C gives us a collision specification 
(C, U, ν).

A simple computation shows that for every operator A on H2 = C2 ⊗ C2 identified 
as the 4 × 4 matrix with entries ai,j using the basis (2.18),

QA =
∫
C

dν(σ)U(σ)AU∗(σ) =

⎡⎢⎢⎢⎣
a1,1 0 0 0
0 1

2 (a2,2 + a3,3) 0 0
0 0 1

2 (a2,2 + a3,3) 0
0 0 0 a4,4

⎤⎥⎥⎥⎦
= a1,1P0 + a2,2 + a3,3

2 P1 + a4,4P2 ∈ A2 . (2.19)

Therefore,

{U(σ) : σ ∈ C}′ ⊂ ran(Q) ⊂ A2 ⊂ {U(σ) : σ ∈ C}′ ,

showing that (C, U, ν) is ergodic.

2.9. Example. For the next simplest example, we take C and U as in the previous example, 
but we take ν to be a non-uniform probability measure on C. For example, take

ν = (2π)−4(1 + cosϕ)(1 + cos θ)(1 + cosψ)(1 + cos η)dϕdθdψdη .

It is easy to check that conditions (i) through (iv) are satisfied. Then (2.19) becomes

QA =

⎡⎢⎢⎢⎢⎣
a1,1

1
8a1,2

1
8a1,3

1
2a1,4

1
8a2,1

1
2 (a2,2 + a3,3) 0 1

4a2,4
1
8a3,1 0 1

2 (a2,2 + a3,3) 1
4a3,4

1a 1a 1a a

⎤⎥⎥⎥⎥⎦ . (2.20)
2 4,1 4 4,2 4 3,4 4,4
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In this case, QA /∈ A2. However, it is clear that limn→∞ QnA is, and hence (C, U, ν) is 
ergodic.

2.2. The quantum Kac generator

We are now ready to define the quantum analogs of classical transformations 

F 	→ 1
2π

π∫
−π

F (Ri,j,θ�v)dθ defined in (1.3). Given a collision specification (C, U, ν), for 

each N ≥ 2 define a family of operators on B(HN ), {Qi,j}1≤i,j≤N as follows: For all 
A ∈ B(HN ),

Qi,jA =
∫
C

dν(σ)Ui,j(σ)AU∗
i,j(σ) . (2.21)

Evidently, for each i, j, Qi,j1HN
= 1HN

and Qi,j preserves positivity. If A is trace-
class, then so is Qi,jA and Tr[Qi,jA] = Tr[A]. That is, each Qi,j is both a quantum 
Markov operator, and, when restricted to S(HN), a quantum operation, as defined in 
the final paragraph of Section 1.2. Moreover, because of the way that time reversibil-
ity has been incorporated into the definition of (C, U, ν), each Qi,j is a self-adjoint
quantum Markov operator. In particular, each Qi,j is a self-adjoint contraction on 
T2(HN ).

The transformation 
 	→ Qi,j
 is a quantum analog of the classical transformation 
defined in (1.3), and this brings us to the definition of the quantum Kac generator:

2.10. Definition (Quantum Kac generator). Let {U(σ) σ ∈ C} be an ergodic set of collision 
operators and let ν be a given Borel probability measure on C. Define the operators QN

and LN on B(HN ) by

QN =
(
N
2

)−1 ∑
i<j

Qi,j and LN = N(QN − 1HN
) . (2.22)

Note that by property (iv) in Definition 2.1, for all i �= j,

Qi,j = Qj,i . (2.23)

Hence one has the alternate formula for QN :

QN = 1
N(N − 1)

∑
i
=j

Qi,j . (2.24)

QN is a self-adjoint quantum Markov operator because the set of such operators is 
convex, and QN is a convex combination of the Qi,j which are symmetric quantum 
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Markov operators. In particular, QN is a contraction on T2(HN ). For the same reason, 
the restriction of QN to S(HN ) is a quantum operation.

The Quantum Kac Master Equation (QKME) is the evolution equation on S(HN )
given by

d
dt
(t) = LN
(t) . (2.25)

Since ‖LN‖∞ ≤ 2N , the QKME is solved by exponentiation: For each t ≥ 0, we may 
define an operator PN,t on each Tp(HN ), and in particular on S(HN ), by

PN,tA =
∞∑
k=1

e−Nt (Nt)k

k! Qk
NA = etLNA . (2.26)

Then the unique solution 
(t) of the QKME satisfying 
(0) = 
0 ∈ S(HN ) is 
(t) =
PN,t
0.

The first equality in (2.26) displays each PN,t as a convex combination of powers 
of QN . Thus, as above, each PN,t is both a symmetric quantum Markov operator (and 
hence a contraction on T2(HN )) and a quantum operation. Hence PN,t is a quantum 
Markov semigroup.

2.3. Permutation invariance

The symmetric group SN of permutations π of {1, . . . , N} has a natural unitary action 
on HN that commutes with LN . Let φ1⊗· · ·⊗φN be a product vector in HN . For π ∈ SN , 
define

Uπ(φ1 ⊗ · · · ⊗ φN ) = φπ(1) ⊗ · · · ⊗ φπ(N) , (2.27)

and then extend Uπ by linearity to produce a linear operator on HN . Evidently Uπ is 
unitary.

We will be especially interested in density matrices 
 such that

Uπ
U
∗
π = 


for all π ∈ SN . We call such density matrices symmetric. There is an orthonormal basis 
for T2(HN ) consisting of operators of the form A1⊗· · ·⊗AN with each Aj , j = 1, . . . , N
chosen from an orthonormal basis for T2(H). It follows directly from (2.27) that

Uπ(A1 ⊗ · · · ⊗AN )U∗
π = Aπ(1) ⊗ · · · ⊗Aπ(N) . (2.28)

Then from (2.28), it is evident that for all A ∈ B(HN ), and all 1 ≤ i < j ≤ N ,

Qi,jUπAU∗
π = Qπ(i),π(j)A , (2.29)
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and then from (2.24), it follows that QNUπAU∗
π = QNA. In particular, if 
 is symmetric, 

then PN,t
 is symmetric for each t > 0. Furthermore, by the self-adjointness of the 
operators Qi,j , for any B ∈ B(HN ),

Tr[B∗(Qi,jUπAU∗
π)] = Tr[B∗Qπ(i),π(j)A] = Tr[(Qπ(i),π(j)B)∗A]

and

Tr[B∗(Qi,jUπAU∗
π)] = Tr[(Qi,jB)∗UπAU∗

π)] = Tr[(U∗
πQi,jBUπ)∗A)] .

Therefore,

U∗
π(Qi,jA)Uπ = Qπ(i),π(j)A . (2.30)

Notice the different orders of Uπ and U∗
π in (2.29) and (2.30), which can also be under-

stood in terms of a replacement of π with π−1.

2.4. The nullspace of the quantum Kac generator

The analog of the Kac conjecture for the QKME concerns the long time behavior of its 
solutions. A basic first step in the investigation of the long time behavior is to determine 
all of the steady-state solutions. In this section we give a characterization of the null 
space of LN . Of course since LN = N(QN − 1), this is the same as the eigenspace of 
Q with eigenvalue 1. The following simple generalization of Lemma 2.7 will be useful. 
Note that when N = 2, Q1,2 is exactly the operator Q of Lemma 2.7. The adaptation 
to higher N is trivial and will be left to the reader.

2.11. Lemma (Convexity lemma on B(HN )). Let Φ be a convex function on B(HN ) with 
the property that for all U ∈ U (HN ) where U (HN ) is the unitary group on HN , and 
all A ∈ B(HN ), Φ(UAU∗) = Φ(A). Then for all 1 ≤ i < j ≤ N ,

Φ(Qi,jA) ≤ Φ(A) (2.31)

and if Φ is strictly convex, there is equality in (2.31) with Φ(A) < ∞ if and only if 
Ui,j(σ)AU∗

i,j(σ) = A for all σ ∈ C and all 1 ≤ i < j ≤ N .

2.12. Remark. We do not assume that Φ is finite everywhere on B(H2). In our first 
application, we will take Φ(A) = Tr[A∗A] which is finite if and only if A ∈ T2(HN ). In 
this case, Φ is finite on all of S(HN ). Later we shall consider an example based on the 
von Neumann entropy:

Φ(A) =
{

Tr[A logA] A ∈ S(HN )
∞ A /∈ S(H ) .

(2.32)

N
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When H is infinite dimensional, this function is infinite for certain A ∈ S(HN ).

2.13. Lemma (Spectrum of LN). Let (C, U, ν) be an ergodic collision specification, and let 
LN and QN be defined in terms of it as in (2.22). QN and LN have discrete spectrum: 
There is a complete orthonormal basis of T2(HN ) consisting of eigenvectors of QN and 
LN . Moreover, Spec(QN ) ⊂ (0, 1], and Spec(LN ) ⊂ (−N, 0]. The null space of LN in 
T2(HN ), Null(LN ), is given by

Null(LN ) = {A ∈ T2(HN ) : Ui,j(σ)AU∗
i,j(σ) = A all 1 ≤ i < j ≤ N, σ ∈ C} . (2.33)

Proof. That QN is positive in B(T2(HN )) follows from

Tr(A∗QA) =
∫
C

dνTr(A∗UAU∗) =
∫
C

dνTr((UA)∗(UA)) ≥ 0

with equality only if A = 0. Since Tr(A∗QA)2 ≤ Tr(A∗A)Tr((QA)∗QA) we know from 
Lemma 2.7 that Tr(A∗QA) ≤ Tr(A∗A) and hence Spec(QN ) ⊂ (0, 1]. This readily 
implies that SpecLN ⊂ (−N, 0]. For each E, E′ ∈ Spec(HN ), let XE′,E denote the 
subspace of operators X on HN such that the range of X is contained in KE′ and the 
range of X∗ is contained in KE. The different XE′,E are mutually orthogonal in T2(HN ), 
and

T2(HN ) =
⊕

E,E′∈Spec(HN )

XE′,E .

Since KE′ and KE are finite dimensional, XE′,E is finite dimensional. Since KE′ and KE

are invariant under each Ui,j(σ), XE′,E is invariant under Qi,j for each i and j, and 
hence also under QN . Since QN is self-adjoint, it may be diagonalized on each of these 
finite dimensional subspaces. The same applies to LN = N(QN − 1HN

).
Since each A ∈ AN is invariant under each Qi,j , it is clear that AN ⊂ Null(LN ). 

Now suppose that (C, U, ν) is ergodic. Let Φ denote the strictly convex function Φ(A) =
Tr[A∗A] which is finite everywhere on T2(HN ). By (2.22) which displays QN as a convex 
combination of the Qi,j with strictly positive weights, for all A ∈ B(HN ), Lemma 2.7
implies that Φ(QNA) ≤ Φ(A) and there is equality if and only if Φ(Qi,jA) = Φ(A)
for each i, j. Since Φ is strictly convex and finite, Lemma 2.7 further implies that if 
Φ(QNA) = Φ(A), then Ui,j(σ)AU∗

i,j(σ) = A for all σ and all i, j. Hence if QNA = A, 
then Ui,j(σ)AU∗

i,j(σ) = A for all σ and all i, j which proves 2.33. �
2.14. Definition. For each N , let CN be the commutant

CN = {Ui,j(σ) : 1 ≤ i < j ≤ N,σ ∈ C}′ . (2.34)

By (2.33), CN ∩ T2(HN ) is precisely the null space of LN acting on T2(HN ). Let ECN

denote the orthogonal projection in T2(HN ) onto CN ∩ T2(HN ). The notation recalls 
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the fact that CN is an algebra as well as a subspace, and that this operation can be 
considered as a non-commutative conditional expectation.

Evidently, AN ⊂ CN and A2 = C2. However, it may be that CN is strictly larger than 
AN . In this case, there are observables that are conserved by the evolution that are not 
functions f(HN ) of the energy alone. This may happen even if the collision specification 
(C, U, ν) is ergodic: Ergodicity at the 2 particle level of individual collisions may or may 
not imply ergodicity at the N particle level, as we shall see.

In any case, let (C, U, ν) be an ergodic collision specification, and let LN and QN be 
defined in terms of it as in (2.22). By Lemma 2.13, ECN

is the orthogonal projection 
onto Null(LN ), and moreover, for all A ∈ T2(HN ),

lim
t→∞

PN,tA = ECN
A . (2.35)

The steady states of the QKME are evidently the density matrices 
 ∈ S(HN ) that 
satisfy 
 = ECN


.
The argument leading to (2.35) gives no information on the rate of convergence. In a 

later paper we investigate rates in terms of entropy production inequalities and spectral 
gaps. In order to do this, it is first necessary to obtain a more explicit description of CN . 
In particular, we would like to know when CN = AN , and, if this is not the case, how 
much larger CN may be than AN . The next theorem shows that while CN may be larger 
that AN , at least, like AN , it is commutative.

2.15. Theorem (CN is commutative). Let (C, U, ν) be a 2-ergodic collision specification. 
Then CN is a commutative algebra. In fact, every A ∈ CN is diagonal in the basis {Ψα}.

Proof. Let A be a self-adjoint operator in CN . It suffices to show that for each α, Ψα is 
an eigenvector of A.

Recall that we have defined the operator Q on B(H2) by

QA =
∫
C

dν(σ)U(σ)AU∗(σ). (2.36)

We may think of Q as being Q1,2 for N = 2 and then by Lemma 2.13, Q is a symmetric 
quantum Markov operator, and hence a contraction on T2(H2) as well as B(H2), and the 
eigenspace of Q with eigenvalue 1 in T2(H2) is precisely the commutant {U(σ) : σ ∈ C}′.

Since LNA = 0, Qi,jA = A for each 1 ≤ i < j ≤ N . For N ≥ 3, we may identify HN

with H2 ⊗ HN−2 where the first factor corresponds to the first two factors of H, and 
the second factor to the remaining factors of H. Corresponding to this identification, we 
may write

Q1,2 = Q ⊗ 1HN−2 .
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This product structure gives rise to a simple description of Null(Q1,2−1HN
) in T2(HN ): 

Let {Xj} be an orthonormal basis for the eigenspace of Null(Q − 1H2) in T2(H2), and 
let {Yk} be an orthonormal basis of T2(HN−2). Then {Xj ⊗Yk} is an orthonormal basis 
for Null(Q1,2 − 1HN

) in T2(HN ).
When (C, U, ν) is 2-ergodic, the fact that Xj ∈ Null(Q − 1H2) means that for some 

function f , Xj = f(H2). It follows that for all α,

Xj ⊗ YkΨα = Xj(ψα1 ⊗ ψα2) ⊗ Yk(ψα3 ⊗ · · · ⊗ ψαN
)

= f(H2)(ψα1 ⊗ ψα2) ⊗ Yk(ψα3 ⊗ · · · ⊗ ψαN
)

= f(eα1 + eα2)(ψα1 ⊗ ψα2) ⊗ Yk(ψα3 ⊗ · · · ⊗ ψαN
)

It follows that 〈Ψβ, Xj ⊗ YkΨα〉HN
= 0 unless β1 = α1 and β2 = α2. Since this is 

true for each j and k, then, whenever A ∈ T2(H2) and Q12A = A, 〈Ψβ, AΨα〉HN
= 0

unless β1 = α1 and β2 = α2. Then by symmetry in the indices, if A ∈ T2(HN ) satisfies 
Qi,jA = A for all 1 ≤ i < j ≤ N , 〈Ψβ, AΨα〉HN

= 0 unless β = α. This proves that for 
all self-adjoint A ∈ Null(LN ), AΨα = λαΨα for some λα ∈ R. �

It is well known that a commutative von Neumann algebra on a separable Hilbert space 
is generated by the spectral projections of a single self adjoint operator. In the present 
case, we have an even more favorable situation: We can give an explicit description of 
all of the minimal projections in CN ; this is done in the next section.

2.5. Ergodicity at energy E

A projection P ∈ CN is minimal if it is non-zero, and if there is no non-zero projection 
P ′ ∈ CN such that P − P ′ is strictly positive. In other words, if P is minimal and P ′

any other projection then either they are not comparable or P − P ′ ≤ 0. Since for each 
E ∈ Spec(HN ), PE ∈ AN ⊂ CN , every minimal projection P in CN clearly satisfies
PE − P ≥ 0 for some uniquely determined E ∈ Spec(HN ). To see this note that there 
must be an E such that PPE = PEP �= 0 because C is commutative and the projections 
PE sum to the identity. Note that PPE is a projection. Since P is minimal, it must be 
comparable with PE , for otherwise we have that the projection PEP = PEPPE ≤ P

contrary to our assumption of minimality. Hence P ≤ PE and the E for which this holds 
must be unique. Since the algebra CN is evidently generated by its minimal projections, 
it is clear that CN = AN if and only if PE is minimal in CN for each E ∈ Spec(HN ). 
This brings us to the following definition:

2.16. Definition (Ergodicity at energy E). An ergodic collision specification (C, U, ν) is 
ergodic at energy E ∈ Spec(HN ) in case PE is minimal in CN , and it is fully ergodic
in case it is ergodic at each E ∈ Spec(HN ). Equivalently, by what has been noted just 
above, (C, U, ν) is fully ergodic exactly when CN = AN .
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The rest of this subsection is devoted to the characterization of the minimal projections 
dominated by PE , E ∈ Spec(HN ), and hence of checking full ergodicity.

2.17. Lemma. Let (C, U, ν) be an ergodic collision specification and assume that ek +e� =
em + en. Then there exists a finite sequence {σ1, . . . , σs} in C such that

〈ψk ⊗ ψ�, U(σs) · · ·U(σ2)U(σ1)ψm ⊗ ψn〉H2 �= 0 .

Conversely, if ek + e� �= em + en then

〈ψk ⊗ ψ�, U(σs) · · ·U(σ2)U(σ1)ψm ⊗ ψn〉H2 = 0

for any sequence {σ1, . . . , σs}.

Proof. By ergodicity,

lim
r→∞

Qr(|ψek ⊗ ψe�〉〈|ψek ⊗ ψe� |) = 1
d
Pek+e�

where d is the dimension of the eigenspace of H2 associated with the eigenvalue ek + e�. 
(Both sides have unit trace.) Hence for some finite s,

Qs(|ψek ⊗ ψe�〉〈ψek ⊗ ψe� |) ≥
1
2dPek+e� .

Now assume that ek + e� = em + en. Taking the trace against |ψem ⊗ψen〉〈ψem ⊗ψen |
yields ∫

C×···×C

|〈ψem ⊗ ψen , U(σs) · · ·U(σ2)U(σ1)ψek ⊗ ψe�〉|2dν⊗s ≥ 1
2d .

If ek + e� �= em + en then it is evident that

〈ψem ⊗ ψen , U(σs) · · ·U(σ2)U(σ1)ψek ⊗ ψe�〉 = 0 ,

since U(σ) commutes with H2. �
2.18. Definition (Adjacency). Two indices α, α′ ∈ JN are adjacent in case for some pair 
(i, j), 1 ≤ i < j ≤ N ,

eαi
+ eαj

= eα′
i
+ eα′

j

and for all k �= i, j, αk = α′
k. Two indices α, α′ ∈ JN are equivalent in case there is a 

finite sequence {α0, . . . , αn} such that α0 = α, αn = α′ and αj and αj−1 are adjacent 
for each j = 1, . . . , n. In this case we write α ∼ α′.
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2.19. Remark. Clearly if α and α′ differ by a pair transposition; i.e., for some 1 ≤ i < j ≤
N , αi = α′

j , αj = α′
i and αk = α′

k for k �= i, j, then α is adjacent to α′. Consequently, 
if α′ is related to α by some permutations of the indices, then α′ ∼ α.

2.20. Lemma. Let A be self adjoint in CN with AΨα = λαΨα for all α ∈ JN . Suppose 
that (C, U, ν) is ergodic. Then if α and α′ are adjacent, λα = λα′ , and more generally,

α ∼ α′ ⇒ λα = λα′ . (2.37)

Conversely, if α and α′ are not equivalent, there is some self-adjoint A ∈ CN for which 
λα �= λα′ .

Proof. Suppose that α, α′ ∈ JN are adjacent, with αk = α′
k for all k �= i, j. By 

Lemma 2.17, there is a finite sequence {σ1, . . . , σs} in C such that

〈Ψα′ , Ui,j(σs) · · ·Ui,j(σ1)Ψα〉 �= 0 .

Since A is self adjoint and commutes with each Ui,j(σ),

〈AΨα′ , Ui,j(σs) · · ·Ui,j(σ1)Ψα〉 = 〈Ψα′ , Ui,j(σs) · · ·Ui,j(σ1)AΨα〉 ,

and hence it must be that λα = λα′ , and now (2.37) follows easily.
It follows from Lemma 2.17 that if α and α′ are not equivalent, and therefore not 

adjacent,

〈Ψα, Ui,j(σ)Ψα′〉 = 0

for all i, j and all σ. Expanding, Ui,j(σ)Ψα =
∑

β〈Ψβ, Ui,j(σ)Ψα〉Ψβ. Evidently, 
〈Ψβ, Ui,j(σ)Ψα〉 = 0 unless β is adjacent to α′. It follows that if V is any finite product 
of operators of the form Ui,j(σ), 〈Ψα′ , V Ψα〉 = 0, unless α ∼ α′. Then by the definition 
of PN,t, it follows that Tr[|Ψα′〉〈Ψα′ |PN,t(|Ψα〉〈Ψα|)] = 0 unless α ∼ α′.

By (2.35)

lim
t→∞

PN,t|Ψα〉〈Ψα| = ECN
|Ψα〉〈Ψα| , (2.38)

and then if α and α′ are not equivalent, (ECN
|Ψα〉〈Ψα|)Ψα′ = 0. Thus, ECN

|Ψα〉〈Ψα|
is an operator in CN for which Ψα and Ψα′ have distinct eigenvalues. �

There is another useful way to phrase Lemma 2.20. A non-zero projection P in an 
operator algebra is minimal in case whenever Q is a non zero projection in the algebra 
such that Q ≤ P , Q = P .
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2.21. Lemma. The minimal projections P in CN satisfying P ≤ PE for some E ∈
Spec(HN ) are precisely of the form

P =
∑
α∼α0

|Ψα〉〈Ψα|

for some α0 with HNΨα0 = EΨα0 . That is, the minimal projections stand in one to one 
correspondence with the equivalence classes of the indices α.

2.22. Lemma. A collision specification is fully ergodic if and only if whenever α, α′ ∈ JN

satisfy Eα = Eα′ , then α ∼ α′.

Proof. Evidently CN ⊂ AN if and only if whenever P is a projection in CN , it belongs 
to AN , and this is the case if and only if for each E ∈ Spec(HN ), either PEP = 0 or 
PEP = PE . The claim now follows from Lemma 2.20. �

We next study some examples. The following notation will be useful.

2.23. Definition (Occupancy function). For each j ∈ J , and each N , define the function 
Mj on JN with values in {0, 1, . . . , N} by

Mj(α) =
N∑

k=1

δαk,j = mj . (2.39)

The function is called the occupancy function for the jth level; it counts the number of 
times the eigenstate ψj of h appears as a factor in

Ψα = ψα1 ⊗ · · · ⊗ ψαN
.

The figures below illustrate the utility of the occupation function. Each figure is a 
histogram of the occupied levels in a system of 6 particles and 4 single particle states of 
energies e1 = 0, e2 = 1, e3 = 2, and e4 = 3. Let α1, α2 and α3 be any 3 elements of J 6

with occupancy as indicated in the corresponding figure. Then for each j = 1, 2, 3, Ψαj

is an eigenfunction of H9 with eigenvalue 9. However, α1 ∼ α2, while α3 belongs to a 
second equivalence class.

To see this, note that the only collisions that alter the histograms are those in which 
a pair with energies e1 and e3 becomes a pair in which both particles have energy e2, 
or in which a pair with energies e0 and e2 becomes a pair in which both particles have 
energy e1, or else the reverse of such a collision. In fact α1 and α2 are adjacent, being 
connected by a single collision of this type. The squares that are changed in the histogram 
after such a collision are colored in black in Figs. 1 and 2. However, in Fig. 3, there are 
no pairs for which any of the four types of collisions is possible. Hence this state is in 
a class by itself. Evidently, the occupancy of level 2 is even after such a collision if and 
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Fig. 1. Occupancy in α1. Fig. 2. Occupancy in α2. Fig. 3. Occupancy in αe.

only if it was even before such a collision. Evidently, this system of 6 particles with 4 
single particle energy levels is not fully ergodic. We now consider some further examples.

2.24. Example. Let H = Cn, and let h have eigenvalues {e1, . . . , en}. If n = 2, suppose 
that e1 �= e2. For n ≥ 3, suppose that {e1, . . . , en} is linearly independent over the ratio-
nal numbers. Then Spec(HN ) consists of the real numbers of the form E =

∑n
j=1 mjej

where each mj is a non-negative integer, and 
∑n

j=1 mj = N . Because of the linear 
independence of the energies,

HNΨα =

⎛⎝ n∑
j=1

mjej

⎞⎠Ψα

if and only if for each j = 1, . . . , n,

Mj(α) = mj .

It follows that for all α, α′ with Eα = Eα′ , α and α′ are related by a permutation of 
indices, and then by Remark 2.19, α ∼ α′. It follows that for this choice of h, every 
ergodic collision specification is fully ergodic.

2.25. Example. Let H = Cn, and let h have eigenvalues ej = j− 1, j = 1, . . . , n. We may 
as well suppose that n ≥ 3 since the case n = 2 is covered by the previous example. In 
this case of evenly spaced eigenvalues, n ≥ 3, there are many α, α′ that are adjacent, but 
unrelated by permutations. For each m ∈ N, m < n/2, and k with m + 1 ≤ k ≤ n −m

we have obviously that 2ek = ek−m + ek+m. Thus, if α and α′ are such that for some 
1 ≤ i < j ≤ N α� = α′

� for � �= i, j, while

αi = αj = k and α′
i = k −m , α′

j = k + m

then α and α′ are adjacent. Taking into account the permutation invariance, it follows 
that if α and α′ satisfy

Mk(α′) = Mk(α) − 2 and Mk±m(α′) = Mk±m(α) + 1

and M�(α′) = M�(α) for � �= k, k −m, k + m, then α′ ∼ α.
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Now let us consider n = 3. If M1(α) > 1, we may lower M1(α) by 2 through a collision 
of two particles of energy e2 = 1, producing a pair with energies e1 = 0 and e3 = 2. 
Doing this repeatedly, we arrive at an α′ with either M1(α′) = 0 or M1(α′) = 1, and 
with α′ ∼ α. Since Eα′ is even if and only if M1(α′) is even, it follows that whenever 
Eα = Eα′ , then α ∼ α′. Thus for this h the ergodic collision specification (C, U, ν) is 
fully ergodic.

Things are different for n = 4. We may start from an arbitrary α, and consider colli-
sions that decrease M2(α) +M3(α) while increasing M1(α) +M4(α). We may continue 
doing so as long as either M1(α) > 1 or M2(α) > 1. When the process stops, M2(α)
and M3(α) are both either 0 or 1. The energy E is given by

Eα = M2(α) + 2M3(α) + 3M4(α) .

Evidently Eα is of the form 3k + 1, k ∈ N, if and only if M2(α) = 1 and M3(α) = 0. 
Likewise, Eα is of the form 3k + 2, k ∈ N, if and only if M2(α) = 0 and M3(α) = 1. 
However Eα = 3k, k ∈ N if and only if either M2(α) = M3(α) = 0 or M2(α) =
M3(α) = 1. It is also clear that if M2(α) = M3(α) = 0 and α′ ∼ α, then M2(α′) =
M3(α′) = 0. Thus complete ergodicity is impossible in this case, but the problem only 
arises when the energy E is a multiple of 3.

One might expect things to get more complicated for n = 5, but this is not the case: 
For n = 5, any ergodic collision specification (C, U, ν) is fully ergodic on energy shells 
with E/N not too close to either 0 or 4 when N is sufficiently large.

To see this, consider an arbitrary α′, and then in a finite sequence of steps one arrives 
at an equivalent α such that Mj(α) ∈ {0, 1} for each j = 2, 3, 4. We may further suppose 
that among all such α equivalent to α′, 

∑4
j=2 Mj(α) is minimal.

Under this minimality assumption, it is impossible that both M2(α) = 1 and 
M4(α) = 1: If so, there is a collision that lowers these both to 0, while raising M3(α)
by 2. But this can be lowered again by 2 in a collision that then raises both M1(α) and 
M5(α) by 1. Thus, in two steps, one further lowers 

∑4
j=2 Mj(α) by 2.

Next, suppose that M3(α) = M4(α) > 1. If M1(α) > 1 (which will necessarily be the 
case for sufficiently large N), a collision can lower M1(α) and M2(α) each by 1, and rais-
ing M2(α) by 2. Then as above, in one more step M2(α) can be lowered again by 2, while 
raising M1(α) and M5(α) each by 1. Again, in two steps one has lowered 

∑4
j=2 Mj(α)

by 1, which is impossible under the minimality hypothesis. Thus under this hypothesis, 
if M3(α) = 1, M1(α)M4(α) = 0. The same reasoning shows that M2(α)M5(α) = 0.

Now if Eα/N is not too close to either 0 or 4, then necessarily M1(α) > 1 and 
M5(α) > 1 whenever Mj(α) ∈ {0, 1} for each j = 2, 3, 4. Hence under the minimality 
hypothesis, the only possibilities for Mj(α), j = 2, 3, 4 are that Mj(α) = 0 for all 
j = 2, 3, 4, in which case Eα is of the form 4k, k ∈ N, or else Mj(α) = 1 for exactly one 
value of j = 2, 3, 4, and is zero for all of the others. These respectively correspond to the 
energies 4k + j − 1, k ∈ N, j = 2, 3, 4.
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Thus, for all η > 0, and all N sufficiently large, if E/N ∈ (η, 4 − η), then there is full 
ergodicity at energy E whenever (C, U, ν) is ergodic.

Since invariant densities for the QKME must belong to CN , we have the following 
immediate consequence of the characterization of CN obtained in this section:

2.26. Theorem. Let (C, U, ν) be an ergodic collision specification, and let LN be defined 
in terms of it as in Definition 2.10. A density matrix 
 on HN satisfies LN
 = 0 if and 
only if it is a convex combination of normalized minimal projections in CN .

A density matrix 
 on HN is a product state if 
 = ρ1 ⊗ · · · ⊗ ρN where each ρj is a 
density matrix on H. A density matrix 
 on HN is separable in case 
 is in the closed 
convex hull of the product states. A density matrix 
 on HN is entangled in case it is 
not separable,

2.27. Corollary (Separability of steady states). Let (C, U, ν) be an ergodic collision speci-
fication, and let LN be defined in terms of it as in Definition 2.10. All density matrices 

 on HN that satisfy LN
 = 0 are separable.

Proof. Consider any α ∈ JN . Then Ψα = ψα1 ⊗ · · · ⊗ ψαN
, and evidently |Ψα〉〈Ψα| is 

product state. Since each minimal projection in CN is diagonal in the {Ψα}α∈JN basis, 
the claim is a corollary of Theorem 2.26. �

Consider any ergodic collision specification (C, U, ν). Let LN be the associate quantum 
Markov semigroup generator, and let PN,t = etLN . Let 
 be any density matrix on HN , 
and let


∞ := ECN

,

which satisfies not only LN
∞ = 0, but by (2.35),

lim
t→∞

PN,t
 = 
∞ . (2.40)

It is clear that in the examples we have discussed with finite dimensional single particle 
space H, it will be the case that

lim
t→∞

S(PN,t
 ‖ 
∞) = 0 (2.41)

where for two density matrices ρ, σ, S(ρ ‖ σ) = Tr[ρ(log ρ − log σ)] is the Umegaki 
relative entropy of ρ with respect to σ. The rate at which the limit in (2.41) is attained 
is of interest. By a theorem of Lindblad [16], derived as a consequence of the strong 
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subadditivity of the quantum entropy proved by Lieb and Ruskai [15], the quantity 
S(PN,t
 ‖ 
∞) is monotone decreasing in t, and hence

DN (
) := − d
dtS(PN,t
 ‖ 
∞)

∣∣∣∣
t=0

≥ 0 .

A quantum analog of the Cercignani conjecture [6] from classical kinetic theory would 
be that there exists a constant c > 0 such that

inf
	∈S

DN (
)
S(
 ‖ 
∞) ≥ c

uniformly in N .
Likewise, there are various measures of entanglement for many-body systems, and the 

rates at which they decay to zero are of interest. These matters will be investigated in 
forthcoming work.

3. The quantum Kac-Boltzmann equation

3.1. Propagation of chaos

A density matrix 
 ∈ S(HN ) is symmetric in case it is invariant under the canonical 
action of the permutation group on HN . Here, the adjective symmetric without fur-
ther qualification will always have this meaning. For example, for each E ∈ Spec(HN ), 
σE = 1

dim(KE)PE is symmetric.

Given 
 ∈ S(HN ), let


(1) = Tr2...N 
 and more generally 
(k) = Trk+1...N 


where we take the partial trace of the last N − 1, respectively N − k, factors in HN . 
As usual, 
(1) is called the single particle reduced density matrix and 
(k) is called the 
k-particle reduced density matrix.

3.1. Definition (Chaoticity). Let ρ be a density matrix on H. A sequence {
N}N∈N of 
symmetric density matrices on HN is ρ-chaotic in case

lim
N→∞



(1)
N = ρ and lim

N→∞


(k)
N = ⊗kρ .

The convergence is in the sense that limN→∞ Tr(A∗
(1)) = Tr(A∗ρ) for any A ∈ B(H)
and similarly for 
(k)

N .

The point of the definition is that, as in the classical case, chaos is propagated, and 
propagation of chaos leads to a non-linear Boltzmann type equation. This is also true in 
the quantum case:
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3.2. Theorem. Let {U(σ) σ ∈ C} be a set of collision operators and let ν be a given 
Borel probability measure on C. Let LN be defined in terms of these as in (2.22). Then 
the semigroup PN,t = etLN propagates chaos for all t meaning that if {
N}N∈N is a 
ρ-chaotic sequence, then for each t, {PN,t
N}N∈N is a ρ(t)-chaotic sequence for some 
ρ(t) = limN→∞(PN,t
N )(1), where in particular this limit of the one-particle marginal
exists and is a density matrix.

Before beginning the proof, we explain the strategy, which follows that of the original
argument of Kac as refined by McKean. Consider an operator A of the form Bk⊗1HN−k

where 1 ≤ k < N , and Bk ∈ B(Hk). We are interested in estimating Tr[
LNA] where 

is symmetric. First note that

LN (Bk ⊗ 1HN−k
) = 2

N − 1
∑

1≤i<j≤k

(Qi,j − 1Hk
)(Bk) ⊗ 1HN−k

+ 2
N − 1

∑
1≤i≤k,j>k

(Qi,j − 1Hk
)(Bk ⊗ 1HN−k

) . (3.1)

For N much larger than k, there are many more terms in the second sum on the right in 
(3.1) than in the first. Moreover, when taking the expectation against 
 with 
 symmetric, 
each of these terms makes the exact same contribution; for j > k, let π be the pair 
permutation sending j to k + 1 and k + 1 to j. Then since Uπ
U

∗
π = 
, it follows from 

(2.30) and the fact that π = π−1 that

Tr[
(Qi,j − 1Hk
)(Bk) ⊗ 1HN−k

] = Tr[Uπ
U
∗
π(Qi,j − 1Hk

)(Bk ⊗ 1HN−k
)]

= Tr[
U∗
π(Qi,j − 1Hk

)(Bk ⊗ 1HN−k
)Uπ]

= Tr[
(Qπ(i),π(j) − 1Hk
)(Bk ⊗ 1HN−k

)]

= Tr[
(Qi,k+1 − 1Hk
)(Bk ⊗ 1HN−k

)] .

Therefore,

Tr[
LN (Bk ⊗ 1HN−k
)] = 2

N − 1
∑

1≤i<j≤k

Tr[
(Qi,j − 1Hk
)(Bk) ⊗ 1HN−k

]

+ (N − k)
N − 1 2

∑
1≤i≤k

Tr[
(Qi,k+1 − 1Hk
)(Bk ⊗ 1HN−k

)] . (3.2)

For large N , the second term will turn out to be the main term, as is almost clear from 
the factor of 1/(N − 1) in front of the first term.

The fact that the first term is negligible in the limit N → ∞ has a probabilistic 
interpretation emphasized by Kac. Consider the “collision histories” of the first k particles 
over some fixed time interval [0, t]. Then the probability that any of these particles collide 
with each other, or even collide with any particle that has already collided with any of 
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the first k particles, is vanishingly small in the limit N → ∞. Then, as we shall see, 
without recollisions, there is no mechanism for generating correlations.

To efficiently work with the second term, and to see why it does not generate cor-
relation, we introduce, following McKean [19], the operators Γk : B(Hk) → B(Hk+1)
by

Γk(Bk) = 2
k∑

i=1
(Qi,k+1 − 1Hk+1)(Bk ⊗ 1H) .

Now let {
N}N∈N be a ρ-chaotic sequence. Then,

lim
N→∞

Tr[
NLN (Bk ⊗ 1HN−k
)] = Tr[⊗k+1ρΓk(Bk)] .

A closer analysis, carried out below, of the decomposition in (3.2) will show that for all 
� ∈ N ,

lim
N→∞

Tr[
NL �
N (Bk ⊗ 1HN−k

)] = Tr[(⊗k+�ρ)Γk+�−1 · · ·Γk(Bk)] .

Furthermore, it will be shown that the power series for Tr[
NetLN (Bk ⊗ 1HN−k
)]

converges uniformly in N for small t. Once this is shown, the propagation of chaos 
will follow from a term by term analysis of the power series. The key for this is the 
observation of McKean that Γk is a “twisted” derivation in the following sense: Let 
1 ≤ j < k, Xj ∈ B(Hj) and Yk−j ∈ B(Hk−j). Let π denote the pair permutation on 
{1, . . . , k + 1} such that π(j + 1) = k + 1 and π(k + 1) = j + 1. Then

Γk(Xj ⊗ Yk−j) = [Uπ(Γj(Xj) ⊗ 1Hk−j
)U∗

π ]1Hj
⊗ Yj ⊗ 1H + Xj ⊗ Γk−jYk−j . (3.3)

With a slight abuse of notation, we can write this more simply as

Γk(Xj ⊗ Yk−j) = (ΓjXj) ⊗ Yk−j + Xj ⊗ Γk−jYk−j , (3.4)

but then with the understanding that ΓjXj acts on the first j factors of Hk+1 together 
with the k + 1st factor, as is made clear by the permutations in the longer form.

For example, consider the case k = 2, which is the most important for our binary 
collision model. Let B2 = X1 ⊗ Y2. Then for � ∈ N, suppressing permutations from our 
notation as in the passage from (3.3) to (3.4), with N > � + 2, so that Γ�(X1 ⊗ Y2) is 
defined,

lim
N→∞

Tr[
NL �
N (X1 ⊗ Y2 ⊗ 1HN−2)]

= Tr[⊗2+�ρΓ2+�−1 · · ·Γ2(X1 ⊗ Y2)]

=
∑ �!

�1!�2!
Tr[⊗2+�ρ(Γ�1 · · ·Γ1)X1 ⊗ (Γ�2 · · ·Γ1)Y2]
�1+�2=�
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=
∑

�1+�2=�

�!
�1!�2!

Tr[⊗1+�1ρ(Γ�1 · · ·Γ1)X1] Tr[⊗1+�2ρ(Γ�2 · · ·Γ1)Y2]

= lim
N→∞

∑
�1+�2=�

�!
�1!�2!

Tr[
NL �1
N (X1 ⊗ 1HN−1)] Tr[
NL �1

N (Y2 ⊗ 1HN−1)]

After the reduction that permits us take limits term by term, we conclude

lim
N→∞

Tr[(etLN
N )X1 ⊗ Y2 ⊗ 1HN−2 ]

= lim
N→∞

Tr[(etLN
N )X1 ⊗ 1HN−1 ] Tr[(etLN
N )Y1 ⊗ 1HN−1 ] .

Since X1, Y2 ∈ B(H) are arbitrary, this means that

lim
N→∞

(etLN
N )(2) = lim
N→∞

(etLN
N )(1) ⊗ (etLN
N )(1) .

This shows that {etLN
N}N∈N is (etLN
N )(1)-chaotic.
Having explained the strategy and the key role of McKean’s derivation property, it 

remains to provide the estimates that permit it to be carried out.
Define Gk : B(Hk) → B(Hk+1) by

Gk(Bk) = 2
N − 1

∑
1≤i<j≤k

(Qi,j − 1Hk
)(Bk) ⊗ 1H + N − k

N − 1Γk(Bk) .

3.3. Lemma. For all k,

‖G�+k · · ·Gk(Bk)‖B(Hk+�+1) ≤ 4�+1(� + k) · · · k‖Bk‖B(Hk) . (3.5)

For � < N − k, so that Γ�(Bk) is well-defined, we have the following estimates:

‖Γ�+k · · ·Γk(Bk)‖B(Hk+�+1) ≤ 4�+1(� + k) · · · k‖Bk‖B(Hk) . (3.6)

‖G�+k · · ·Gk(Bk) − Γ�+k · · ·Γk(Bk)‖B(Hk+�+1) ≤
Ck4��k+2

N − 1 �!‖Bk‖B(Hk) , (3.7)

where Ck is some constant that depends on k.

Proof. Using the elementary estimate ‖Qi,k+1(Bk ⊗ 1H)‖B(Hk+1) ≤ ‖Bk‖B(Hk), the 
estimate on ‖Gk(Bk)‖B(Hk+1) is then a consequence of

k
4N − 2k − 2

N − 1 ‖Bk‖B(Hk) ≤ 4k‖Bk‖B(Hk) .

Again using the elementary estimate ‖Qi,k+1(Bk ⊗ 1H)‖B(Hk+1) ≤ ‖Bk‖B(Hk) we find

‖Γk(Bk)‖B(Hk+1) ≤ 4k‖Bk‖B(Hk)

from which (3.6) follows immediately.
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A bit trickier is the proof of (3.7). Using the estimate on Gk and Γk one easily finds 
that

‖Gk(Bk) − Γk(Bk)‖B(Hk+1) ≤
2k(k − 1) + (k − 1)4k

N − 1 ‖Bk‖B(Hk) ≤
6k2

N − 1‖Bk‖B(Hk) .

(3.8)
We write the telescoping sum

G�+k · · ·Gk(Bk) − Γ�+k · · ·Γk(Bk)

= (G�+k − Γ�+k)G�+k−1 · · ·Gk(Bk)

+
�−1∑
m=1

Γ�+k · · ·Γ�+k−m+1(G�+k−m − Γ�+k−m)G�+k−m−1 · · ·Gk(Bk)

+ Γ�+k · · ·Γk+1(Gk − Γk)(Bk) .

Using (3.5), (3.6) and (3.8), the norm of the right side can be estimated by

6
N − 14�(� + k) · · · k(� + 1)[k + �/2]‖Bk‖B(Hk)

≤ 6
N − 14�(� + 1)(� + k + 1)!

(k − 1)! ‖Bk‖B(Hk) .

Using Stirling’s formula we find that

(� + k + 1)!
�! ≈

(
1 + k + 1

�

)�+k+3/2

�k+1e−k−1 ,

which is bounded by Dk�
k+1 where Dk is some constant that depends on k. This 

proves (3.7). �
Proof of Theorem 3.2. The proof is now a word by word translation of the one given by 

McKean [19] for the classical case. We start by writing PN,t =
∞∑
�=0

t�

�!L
�
N so that

Tr(PN,t
N (Bk ⊗N−k 1H)) =
∞∑
�=0

t�

�! Tr(
NL �
N (Bk ⊗N−k 1H)) (3.9)

using that PN,t is self-adjoint. By what has been explained above, for � ≥ 1

Tr(
NL �
N (Bk ⊗N−k 1H)) = Tr(
NGk+�−1Gk+�−2 · · ·Gk(Bk) ⊗N−k−�−1 1H)) .

Now using (3.5), we see that

t� |Tr(
NL �
N (Bk ⊗N−k 1H))| ≤ t� 4�+1(� + k − 1) · · · k‖Bk‖B(Hk) .
�! �!
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Using Stirling’s formula we find that

(� + k − 1)!
�!(k − 1)!

≈ 1
(k − 1)!

(
1 + k − 1

�

)�+k−1/2

�k−1e−(k−1) ≤ 1
(k − 1)!

(
e(k−1)

)k−1/2
�k .

Then since 
∑∞

�=0 t
�4��k converges uniformly for |t| < 1/4. We see that the series on the 

right in (3.9) converges at a rate independent of N for all 0 ≤ t < 1/4.
We are now in a position to take the limit N → ∞ term by term. Using (3.7) for 

N > � + k, we obtain the estimate

|Tr(
NL �
N (Bk ⊗N−k 1H)) − Tr(
NΓk+�−1 · · ·Γk(Bk) ⊗N−k−�−1 1H))|

≤ Ck4�

N − 1�
k+2�!‖Bk‖B(Hk) .

Thus,

∣∣∣N−k∑
�=0

t�

�! Tr(
NL �
N (Bk ⊗N−k 1H)) −

N−k∑
�=0

t�

�! Tr(
NΓk+�−1 · · ·Γk(Bk) ⊗N−k−�−1 1H))
∣∣∣

≤
N−k∑
�=0

t�

�!

∣∣∣Tr(
NL �
N (Bk ⊗N−k 1H)) − Tr(
NΓk+�−1 · · ·Γk(Bk) ⊗N−k−�−1 1H))

∣∣∣
≤ Ck

N − 1

N−k∑
�=0

(4t)��k+2‖Bk‖B(Hk) ≤
Ck

N − 1

∞∑
�=0

(4t)��k+2‖Bk‖B(Hk) , (3.10)

provided that 4t < 1. Again, the reason for summing up to N − k only is that for 
� > N − k the expression Γk+� is not defined. By what we have proved at the beginning, 
however, the tail of the sum makes a negligible contribution in the large N limit. We 
have shown before that the power series (3.9) converges uniformly in N for t < 1/4. It 
follows from (3.10) that the power series

∞∑
�=0

t�

�! Tr(
NΓk+�−1 · · ·Γk(Bk) ⊗N−k−�−1 1H))

also converges uniformly in N for t < 1/4. Hence taking the limit N → ∞ yields

lim
N→∞

Tr(PN,t
N (Bk ⊗N−k 1H)) =
∞∑
�=0

t�

�! Tr(⊗k+�ρΓk+�−1 · · ·Γk(Bk)) .

If we specialize to the situation where Bk = X1 ⊗ · · · ⊗ Xk, then, as explained before, 
the right side can be written as
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∞∑
�=0

t�

�!
∑

�1+···+�k=�

�!
�1! · · · �k!

Tr[⊗1+�1ρ(Γ�1 · · ·Γ1)X1] · · ·Tr[⊗1+�kρ(Γ�k · · ·Γ1)Xk]

= Πk
j=1

∞∑
�=0

t�

�! Tr[⊗1+�ρ(Γ� · · ·Γ1)Xj ] .

For the same reasons we have for any 1 ≤ j ≤ k

∞∑
�=0

t�

�! Tr[⊗1+�ρ(Γ� · · ·Γ1)Xj ] = lim
N→∞

Tr(PN,t
N (Xj ⊗N−1 1H))

and thus

lim
N→∞

Tr[PN,t
N (X1 ⊗ · · · ⊗Xk ⊗N−k 1H)] = Πk
j=1 lim

N→∞
Tr[PN,t
N (Xj ⊗N−1 1H)] ,

which proves that PN,t
N is ρ(t)-chaotic for t < 1/4 where

ρ(t) :=
∞∑
�=0

t�

�! [Γ
∗
1 · · ·Γ∗

� (⊗1+�ρ)] , (3.11)

and Γ∗
k : B(Hk+1) → B(Hk) is the adjoint of Γk, i.e.,

Γ∗
k(Bk+1) = 2

k∑
i=1

Trk+1[Qi,k+1(Bk+1) −Bk+1] . (3.12)

Pick any T < 1/4 and chose as initial condition the state PN,T 
N which is ρ(T )-chaotic. 
Applying the previous argument one has propagation of chaos up to time 2T . Continuing 
this way one obtains propagation of chaos for all times, which proves Theorem 3.2. �
3.2. Quantum convolution and the Quantum Kac-Boltzmann equation

In the classical case, the single particle density satisfies the Kac-Boltzmann equation. 
In the quantum case, it satisfies a quantum analog of the Kac-Boltzmann equation, as 
we now explain.

3.4. Lemma. Let 
(t) = etLN
0 for a symmetric density matrix 
0 on HN . Then the one 
and two particle reduced density matrices of 
(t) are related by

d
dt


(1)(t) = 2 Tr2

⎡⎣∫
C

dν(σ)U(σ)[
(2)(t)]U∗(σ) − 
(2)(t)

⎤⎦ . (3.13)
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Proof.

d
dt


(1)(t) = Tr2,...,N [LN
(t)]

= Tr2,...,N

⎡⎣ 2
N − 1

N∑
j=2

∫
C

dν(σ)
[
U1,j(σ)
(t)U∗

1,j(σ) − 
(t)
]⎤⎦

= Tr2,...,N

⎡⎣2
∫
C

dν(σ)
[
U1,2(σ)
(t)U∗

1,2(σ) − 
(t)
]⎤⎦

where the symmetry was used in the last step. Now move the trace Tr3,...,N inside the 
integral onto the state 
 to obtain the result. �

Observe that if 
(2)(t) = 
(1)(t) ⊗
(1)(t), then (3.13) would reduce to a closed equation 
for 
(1)(t):

d
dt


(1)(t) = 2 Tr2

⎡⎣∫
C

dν(σ)U(σ)[
(1)(t) ⊗ 
(1)(t)]U∗(σ)]

⎤⎦− 
(1)(t) . (3.14)

This brings us to the following definition:

3.5. Definition (quantum Wild convolution operator). Let (C, U, ν) be a collision specifi-
cation. The corresponding quantum Wild convolution is the bilinear from T (H) ×T (H)
to T (H) sending (A, B) to A � B where

A � B = Tr2

⎡⎣∫
C

dν(σ)U(σ)[A⊗B]U∗(σ)

⎤⎦ = Tr2[Q(A⊗B)] (3.15)

where Q is the operator defined in (2.36).

Note that for any A, B ∈ T (H),

Tr[A � B] = Tr1,2

⎡⎣∫
C

U(σ)[A⊗B]U∗(σ)dσ

⎤⎦
=

∫
C

dν(σ) Tr1,2[A⊗B] = Tr[A] Tr[B] .

Furthermore if A and B are non-negative operators, then A � B is also non-negative. In 
particular, for ρ ∈ S(H), ρ � ρ ∈ S(H), and consequently
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d
dt

ρ(t) = 2(ρ(t) � ρ(t) − ρ(t)) (3.16)

is an evolution equation in S(H). To see that is has a unique global solution, write it in 

the equivalent form 
d
dt

(
e2tρ(t)

)
= e2tρ(t) � ρ(t), which, given the initial state ρ0, can be 

integrated to obtain

ρ(t) = e−2tρ0 +
t∫

0

e2(s−t)ρ(s) � ρ(s)ds . (3.17)

The equation (3.17) may be solved by iteration as shown by McKean in the classical 
case, and the unique solution may be represented as a convergent sum over “McKean 
graphs”.

3.6. Definition (The Quantum Kac-Boltzmann Equation). The Quantum Kac Boltzmann 
Equation (QKBE) is the evolution equation S(H) given by

d
dtρ(t) = 2(ρ(t) � ρ(t) − ρ(t)) . (3.18)

3.7. Theorem. Suppose that {
N (0)}N∈N is ρ(0)-chaotic, and that for each N , 
N (t) =
exp(tLN )
N (0) for all t > 0. Then ρ(t), defined in Theorem 3.2, satisfies the Quantum 
Kac-Boltzmann Equation.

Proof. Recall from Lemma 3.4 that

d
dt


(1)
N (t) = 2 Tr2

⎡⎣∫
C

dν(σ)U(σ)[
(2)
N (t)]U∗(σ) − 
(2)(t)

⎤⎦ ,

where 
N is a chaotic sequence and 
N (t) is a shorthand for PN,T 
N . Testing this 
equation with a bounded operator X ∈ B(H) we get

d
dt Tr(X


(1)
N (t)) = 2 Tr[X Tr2

⎡⎣∫
C

dν(σ)U(σ)[
(2)
N (t)]U∗(σ) − 


(2)
N (t)]

⎤⎦ .

Using Theorem 3.2 we may take the limit as N → ∞ and interchange it with the integral. 
This is legitimate for t < 1/4 since the power series defining 
N (t) converges uniformly 
in N . This yields

d
dt Tr(Xρ(t)) = 2 Tr[X Tr2

⎡⎣∫
dν(σ)U(σ)[ρ(t) ⊗ ρ(t)]U∗(σ) − ρ(t) ⊗ ρ(t)]

⎤⎦ .
C
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Another way of deriving this result is to differentiate (3.11) with respect to t and obtain

d

dt
ρ(t) := Γ∗

1

∞∑
�=0

t�

�! Γ
∗
2 · · ·Γ∗

�+1(⊗2+�ρ)

which, by what has been discussed in the previous section, can be written as

Γ∗
1(ρ(t) ⊗ ρ(t)) = 2 Tr2 Q(ρ(t) ⊗ ρ(t)) − ρ(t) . �

3.3. The quantum Wild convolution

The operator Q defined in Definition 2.6 is the same as the operator Q that arises in 
the Wild convolution. In Example 2.8 we saw that Q = EA2 . In general, when (C, U, ν)
is ergodic, limk→∞ Qk = EA2 , but if ν is uniform enough, as in Example 2.8, it may not 
be necessary to take the limit. When Q = EA2 it is possible to give an explicit formula 
for the quantum Wild convolution A � B in terms of the spectral decomposition of h
using the formula (2.15) for EA2 .

3.8. Lemma. Let (C, U, ν) be a collision specification such that Q, as defined in terms of 
(C, U, ν) in (2.36), satisfies Q = EA2 . For E ∈ Spec(H2) and j ∈ J , define

ME =
∑
j∈J

1Spec(h)(E − ej) . (3.19)

Then ME < ∞ for all E ∈ Spec(H2), and for all A, B ∈ T (H),

A � B =
∑

i,j,k∈J
〈ψi, Aψi〉〈ψk, Bψk〉

1Spec(h)(ei + ek − ej)
Mei+ek

|ψj〉〈ψj | . (3.20)

Proof. The fact that ME < ∞ is a direct consequence of the compactness of the resolvent 
of h. Write A =

∑
i,j∈J

ai,j |ψi〉〈ψj | and B =
∑

k,�∈J
bk,�|ψk〉〈ψ�| in terms of an eigenbasis of 

h so that A⊗B =
∑

i,jk,�∈J
ai,jbk,�|ψi ⊗ ψk〉〈ψj ⊗ ψ�|. Then

Q(A⊗B) =
∑

i,jk,�∈J
ai,jbk,�Q(|ψi⊗ψk〉〈ψj⊗ψ�|) =

∑
i,jk,�∈J

ai,jbk,�EA2(|ψi⊗ψk〉〈ψj⊗ψ�|) .

By (2.15), recalling (2.9),

EA2(|ψi ⊗ ψk〉〈ψj ⊗ ψ�|) = Tr[PE |ψi ⊗ ψk〉〈ψj ⊗ ψ�|]σE = δi,jδk,�σei+ek .

Therefore, Q(A⊗B) =
∑

ai,ibk,kσei+ek . For each E ∈ Spec(H2),

i,k∈J
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Tr2[σE ] = 1
ME

∑
j∈J

1Spec(h)(E − ej)|ψj〉〈ψj | ,

and combining this with the expression for Q(A ⊗B) yields the result. �
The formula (3.20) simplifies further if h satisfies a certain non-degeneracy condition, 

as shown in the next lemma. We first define an operator that will appear in the simplified 
formula.

3.9. Definition (Diagonal projection). Let {ψj} be an orthonormal basis of H consisting 
of eigenvectors of h. The operator Dh on T2(H) is defined by

Dh(A) =
∑
j∈J

〈ψj , Aψj〉|ψj〉〈ψj | .

Dh is the orthogonal projection onto the commutative diagonal algebra that is generated 
by the spectral projections of h.

3.10. Lemma. Let (C, U, ν) be a collision specification such that Q, as defined in terms 
of it in (2.36), satisfies Q = EA2 . Suppose that for all i, j, k, � ∈ J , if ei + ej = ek + e�, 
then either i = k and j = � or i = � and j = k. Then for all A, B ∈ T (H),

A � B = 1
2 (Tr[A]Dh(B) + Tr[B]Dh(A)) .

In particular, for ρ ∈ S(H),

ρ � ρ = Dh(ρ) .

Proof. Under the non-degeneracy condition, for all E ∈ Spec(H2), ME = 1 in case 
E = 2ej for some j ∈ J , or else E = ei +ej for some i �= j, and then ME = 2. Therefore, 
(3.20) becomes

A � B = 1
2

∑
i,k∈J

〈ψi, Aψi〉〈ψk, Bψk〉(|ψj〉〈ψj | + |ψk〉〈ψk|) . � (3.21)

When the conditions of Lemma 3.10 are satisfied, the QKBE reduces to the linear
evolution equation

d
dtρ(t) = 2(Dhρ(t) − ρ(t)) . (3.22)

Since the conditions of Lemma 3.10 are satisfied for the collision specification in 
Example 2.8, the QKBE for this example is linear. When the non-degeneracy condition 
in Lemma 3.10 is not satisfied, then the map ρ 	→ ρ � ρ need not be linear on S(H), as 
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Example 3.12 below shows. However, when Q = EA2 , Lemma 3.8 shows that A � B =
Dh(A) � Dh(B), so that the quantum Wild convolution of ρ1, ρ2 ∈ S(H) in this case is 
really a convolution of the classical probability vectors on the diagonals of ρ1 and ρ2.

However, when Q �= EA2 , but only limk→∞ Qk = EA2 , the quantum Wild convolution 
is a more interesting quantum operation.

3.11. Example. In this example, let (C, U, ν) be the collision specification from Exam-
ple 2.9. Let a, b ∈ [0, 1] and let w, z ∈ C satisfy |z|, |w| ≤ 1 so that with

ρ1 =
[
a z

z 1 − a

]
and ρ2 =

[
b w

w 1 − b

]
,

ρ1 and ρ2 are generic elements of S(C2). Then using the basis from Examples 2.8 to 
identify C2 ⊗C2 with C4,

ρ1 ⊗ ρ2 =

⎡⎢⎢⎢⎣
ab zb aw zw

zb b(1 − a) zw w(1 − a)
aw zw a(1 − b) z(1 − b)
zw (1 − a)w (1 − b)z (1 − a)(1 − b)

⎤⎥⎥⎥⎦ . (3.23)

Then by (2.20),

Q(ρ1 ⊗ ρ2) =

⎡⎢⎢⎢⎢⎣
ab 1

8zb
1
8aw

1
2zw

1
8zb

1
2 (a + b) − ab 0 1

4w(1 − a)
1
8aw 0 1

2 (a + b) − ab 1
4z(1 − b)

1
2zw

1
4(1 − a)w 1

4 (1 − b)z (1 − a)(1 − b)

⎤⎥⎥⎥⎥⎦ .

Note that Tr2, the partial trace over the second factor, is obtained by adding up the 
two diagonal 2 × 2 blocks, and Tr1, the partial trace over the first factor, is obtained by 
taking the trace in each 2 × 2 block. Therefore,

ρ1 � ρ2 =
[

1
2 (a + b) z

8 (2 − b)
z
8 (2 − b) 1 − 1

2(a + b)

]
. (3.24)

In particular, taking ρ = ρ1,

ρ � ρ =
[

a z
8 (2 − a)

z
8 (2 − a) 1 − a

]
, (3.25)

which is nonlinear in ρ. Note also, that in contrast with the classical case, the quantum 
Wild convolution is not commutative; ρ1 � ρ2 �= ρ2 � ρ1 when z(2 − b) �= w(2 − a).
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3.12. Example. Take H = C3, so that HN = (C3)⊗N . Define the single particle Hamil-

tonian h by h =

⎡⎢⎣ 0 0 0
0 1 0
0 0 2

⎤⎥⎦ so that the N -particle Hamiltonian HN =
∑N

j=1 hj has 

Spec(HN ) = {0, . . . , 2N}. In particular Spec(H2) = {0, 1, 2, 3, 4}. Let {ψ1, ψ2, ψ3} be the 
standard basis of C3 so that hψj = (j−1)ψj . Then the eigenspace of H2 with eigenvalue 
2 is spanned by

ψ1 ⊗ ψ3 , ψ2 ⊗ ψ2 and ψ3 ⊗ ψ1 .

Therefore,

Tr2[σ2] = 1
3(|ψ1〉〈ψ1| + |ψ2〉〈ψ2| + |ψ3〉〈ψ3|) .

Take C to be the subgroup of U(9) that commutes with H2 considered as an operator 
on C9. Let U be the identity map on C, and let ν be the uniform Haar measure on C . 
Using Lemma 3.8 it is easy to see that ρ 	→ ρ � ρ is non-linear.

3.4. Steady states for the QKBE

Throughout this subsection we fix an ergodic collision specification (C, U, ν), and let 
� denote the corresponding Wild convolution. Let

h =
∑

e∈Spec(h)

ePe (3.26)

be a spectral resolution of the single particle Hamiltonian h.
The steady state solutions of the QKBE are precisely the ρ ∈ S(H) such that ρ = ρ �ρ. 

The Gibbs states ρβ = Z−1
β e−βh are always steady states since

ρβ ⊗ ρβ = Z−2
β e−βH2 ∈ A2

and thus U(σ)ρβ⊗ρβU
∗(σ) = ρβ⊗ρβ for all σ ∈ C. It follows that Q(ρβ⊗ρβ) = ρβ⊗ρβ , 

and then that ρβ � ρβ = ρβ . Whether or not there are other steady states depends on 
the spectrum of h in a way that will be specified below. For any density matrix ρ, 
S(ρ) = − Tr[ρ log ρ] is the von Neumann entropy of ρ. The set of finite entropy steady 
states turns out to be independent of the particular ergodic collision specification (C, Uν), 
but depends only on h.

3.13. Theorem. Let h have the spectral resolution (3.26), and let ρ ∈ S(H) be such that 
ρ = ρ � ρ and S(ρ) < ∞. Then ρ has the form

ρ =
∑

λePe (3.27)

e∈Spec(h)



E.A. Carlen et al. / Advances in Mathematics 358 (2019) 106827 39
for non-negative numbers {λe : e ∈ Spec(h)} such that 
∑

e∈Spec(h) Tr[Pe]λe = 1. 
Moreover, if {ei, ej , ek, e�} ⊂ Spec(h) then

ei + ej = ek + e� ⇒ log λei + log λej = log λek + log λe� . (3.28)

Conversely, every such ρ ∈ S(H) is a steady state.

Proof. Recall that by condition (iv) in the definition of a collision specification, Q com-
mutes with the map X 	→ V XV ∗ where V is the swap transformation on H2 given by 
V φ ⊗ ψ = ψ ⊗ φ for all φ, ψ ∈ H. Therefore, for all bounded A on H,

Tr[A⊗ 1HQ(ρ⊗ ρ)] = Tr[V 1H ⊗AV ∗Q(ρ⊗ ρ)] =

Tr[1H ⊗AQ(V ρ⊗ ρV ∗)] = Tr[1H ⊗AQ(ρ⊗ ρ)] .

Consequently,

ρ � ρ = Tr2[Q(ρ⊗ ρ)] = Tr1[Q(ρ⊗ ρ)] . (3.29)

By the subadditivity of the entropy,

2S(ρ � ρ) ≥ S(Q(ρ⊗ ρ)) , (3.30)

and then by (3.29) and the concavity of the von Neumann entropy

2S(ρ � ρ) ≥ −Tr [Q(ρ⊗ ρ) log(Q(ρ⊗ ρ))]

≥ −Tr [(ρ⊗ ρ) log(ρ⊗ ρ)] = 2S(ρ) . (3.31)

Since the von Neuman entropy is strictly concave, there is equality if and only if 
σ 	→ U(σ)ρ ⊗ ρU∗(σ) is constant almost everywhere with respect to ν, and then by 
the continuity of σ 	→ U(σ) and the fact that U(σ0) = 1H2 , this means that

σ 	→ U(σ)ρ⊗ ρU∗(σ) = ρ⊗ ρ

for all σ. By the ergodicity, this means that ρ ⊗ ρ ∈ A2.
Therefore, when ρ �ρ = ρ, it is also the case that ρ�̂ρ = ρ where ρ�̂ρ = Tr2[EA2(ρ ⊗ρ)]

is the Wild convolution corresponding to the uniform average over all of the unitaries 
commuting with H2. In this case, Lemma 3.10 applies and

ρ⊗ ρ = ρ�̂ρ = Dh(ρ) .

Hence if {ψj}j∈J is an orthonormal basis of H consisting of eigenfunctions of h, then 
for some sequence {μj}j∈J ,

ρ =
∑

μj |ψj〉〈ψj | .

j∈J
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It then follows that

ρ⊗ ρ =
∑

j,k∈J
μjμk|ψj ⊗ ψk〉〈ψj ⊗ ψk| .

for the right hand side to belong to A2, it is necessary and sufficient that whenever 
ej + ek = e� + em, then μjμk = μ�μm. Taking m = k for some k such that μk �= 0, we 
see that ej = e� implies that μj = μ�, and thus ρ has the expansion in the form (3.27)
and then by the same reasoning once more we obtain (3.28) �

Theorem 3.13 says in particular that if ρ is a steady state solution of the QKBE for an 
ergodic collision specification, then ρ = f(h) for some real valued function on Spec(h). 
This may be the only restriction. If h is such that whenever ej +ek = e� +em then either 
ej = e� and ek = em or else ej = em and ek = e�, then (3.28) imposes no restriction, and 
indeed, we have seen that in this case, if ρ = f(h), so that ρ = Dh(ρ), then ρ � ρ = ρ.

On the other hand, suppose h has evenly spaced eigenvalues and there are at least three 
of them. To be specific, suppose that dim(H) = n ≥ 3, and Spec(h) = {0, 1, . . . , n − 1}. 
Then for each j = 1, . . . n − 2, ej−1 + ej+1 = 2ej , and hence λej =

√
λej−1λej+1 . This 

means that for some β ∈ R, ρ = Z−1
β e−βh. (In finite dimension, negative temperatures 

are allowed.) In general, the more ways a given eigenvalue E of H2 can be written as a 
sum of eigenvalues of h, the more constraints there are on the set of steady state solutions 
of the QKBE.

3.14. Definition (Steady states and collision invariants). Let h be a self adjoint operator 
on H that is bounded below and has a compact resolvent. The set S∞,h(H) consists of 
those ρ ∈ S(H) such that (3.27) and (3.28) are satisfied. The set S∞,h(H)◦ consist of 
those ρ ∈ S∞,h(H) that are strictly positive. The set of collision invariants is the set of 
self adjoint operators A of the form A = log ρ, ρ ∈ S∞,h(H)◦.

The term “collision invariant” is justified by the next theorem.

3.15. Theorem. Let ρ∞ ∈ S∞,h(H)◦. Then for all ρ ∈ S(H),

Tr[log(ρ∞)ρ] = Tr[log(ρ∞)ρ � ρ] . (3.32)

In particular, for every solution ρ(t) of the QKBE, and every collision invariant A, 
Tr[Aρ(t)] is independent of t. Moreover, for each ρ∞ ∈ S∞,h(H) the relative entropy 
D(ρ(t)‖ρ∞) is strictly monotone decreasing along any solution that is not a steady state 
solution.

Proof. Recall that as a consequence of condition (iv) in the definition of a collision 
specification, we always have (3.29). Therefore,

2 Tr[log(ρ∞)ρ � ρ] = Tr[log(ρ∞ ⊗ ρ∞)Q(ρ⊗ ρ)] = Tr[Q(log(ρ∞ ⊗ ρ∞))ρ⊗ ρ] .
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However, since ρ∞ ⊗ ρ∞ ∈ A2, log(ρ∞ ⊗ ρ∞ + ε1H2)) ∈ A2 for all ε > 0 (this is only 
necessary if ρ∞ has zero as an eigenvalue) so that

Q(log(ρ∞ ⊗ ρ∞ + ε1H2)) = log(ρ∞ ⊗ ρ∞ + ε1H2) .

Therefore,

2 Tr[log(ρ∞)ρ � ρ] = Tr[log(ρ∞ ⊗ ρ∞)ρ⊗ ρ] = 2 Tr[log(ρ∞)ρ] .

Now note that

D(ρ(t)‖ρ∞) = Tr[log(ρ(t))ρ(t)] − Tr[log(ρ∞)ρ(t)] ,

and we have already seen that due to the strict convexity of t 	→ t ln t, t 	→
Tr[log(ρ(t))ρ(t)] is strictly decreasing at each t unless ρ(t) is a steady state. Finally, 
from the Wild sum representation of ρ(t), it is clear that unless ρ(0) is a steady state, 
ρ(t) is not a steady state for any finite t. �
3.16. Remark. When S∞,h(H) consists only of the Gibbs states Zβe

−βh, then Theo-
rem 3.15 provides only one conservation law, namely that Tr[hρ(t)] is constant so that 
the energy is conserved. This is the familiar situation with the classical Kac-Boltzmann 
equation. However, we have seen that if every E ∈ Spec(H2) is the sum of a single (un-
ordered) pair of eigenvalues of h, then S∞,h(H) consists of all ρ ∈ Sh(H) such that ρ
commutes with h. This means that the diagonal entries of ρ in an eigenbasis for h are 
conserved, as we have seen.

We are now ready to study the basins of attraction of the steady states. Fix some 
ρ∞ ∈ S∞,h(H). Let ρ(t) be the solution with ρ(0) = ρ0 ∈ S(H). For limt→∞ ρ(t) = ρ∞
to be valid in the topology making all of these functionals continuous, we require that 
for all ρ̂∞ ∈ S∞,h(H)◦ (so that ρ̂∞ has no zero eigenvalues),

Tr[log(ρ̂∞)ρ0] = Tr[log(ρ̂∞)ρ∞] .

We are interested in conditions under which this is also a sufficient condition.

3.5. The linearized QKBE

We begin the investigation of the long-time behavior of solutions of the QKBE by 
linearizing it in the vicinity of a steady state. This has to be done with some care: To 
obtain a purely dissipative linear equation on a Hilbert space, we must choose the inner 
product to reflect some dissipative feature of the non-linear equation. This means the 
inner product must ultimately derive from the dissipativity of relative entropy for the 
QKBE.
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We briefly recall the linearization of the classical KBE. Let M(v) = (2π)−1/2e−|v|2/2

be the steady state about which we shall linearize. Let ρ(v) be a probability density on 
R such that ∫

R

ρ(v)v2dv =
∫
R

M(v)v2dv = 1 , (3.33)

so that ρ has the same conserved energy as the steady state M . Let ρ(t) denote the 
solution of the classical KBE with initial data ρ. Suppose that S(ρ) is finite. (In the 
classical case, this means S(ρ) > −∞ since S(ρ) ≤ S(M).)

We now write

ρ = M(1 + f) (3.34)

where 
∫
R

v2f(v)M(v)dv = 0. Assuming that f is “small”, we make the expansion

S(ρ) = S(M(1 + f)) = −
∫
R

[logM + log(1 + f)]M(1 + f)dv = S(M) − 1
2

∫
R

f2Mdv .

The Hilbert space we use to linearize the Kac-Boltzmann equation then is L2(R, M(v)dv)
and the perturbation ρ of M is written in the form ρ = M(1 +f), with f ∈ L2(R, M(v)dv)
because then for f small in this Hilbert space, 1

2‖f‖L2(R,M(v)dv) is the second order 
approximation of D(M(1 +f)‖M). Using this scheme to linearize the KBE yields a purely 
dissipative linear equation in L2(R, M(v)dv) because of the close connection between the 
Hilbert space L2(R, M(v)dv) and the Hessian of S(ρ) and hence D(ρ‖M).

We seek to follow this model in the quantum case, but we must take into account that 
due to non-commutativity, there are many natural analogs of L2(R, M(v)dv) when we 
replace M be a density matrix on H. Consideration of the entropy leads, as above, to 
the useful analog.

For the rest of this section, to postpone technical difficulties, we suppose that H is 
finite dimensional. If ρ ∈ S(H) is strictly positive, and A is self-adjoint in B(H), then 
if Tr[A] = 0, ρ + tA ∈ S(H) for all |t| sufficiently small. Then

d
dtS(ρ + tA)

∣∣∣∣
t=0

= Tr[log(ρ)A] .

Moreover,

d
dt log(ρ + tA)

∣∣∣∣
t=0

=
∞∫ 1
s1H + ρ

A
1

s1H + ρ
ds .
0



E.A. Carlen et al. / Advances in Mathematics 358 (2019) 106827 43
For any positive operator B ∈ B(H), define the linear map [B]−1 : B(H) → B(H)
by

[B]−1A =
∞∫
0

1
s1H + B

A
1

s1H + B
ds .

This is a non-commutative version of “division by B”. The inverse operation, [B] :
B(H) → B(H) is given by

[B]A =
1∫

0

BsAB1−sds ,

and this is a non-commutative version of “multiplication by B”. The operation inverse 
to the differentiation of the logarithm mentioned above is given by

d

dt

∣∣∣
t=0

elog B+tA .

Using the Duhamel formula it follows that

elog B+tA = elog B +
1∫

0

e(1−s) log BtAe(log B+tA)sds

from which the formula for [B]A easily follows.
The computations made above show that the Hessian of ρ 	→ S(ρ) at ρ is given by 

the quadratic form Tr[A[ρ]−1A]. That is, with ρ and A as above,

d2

dt2S(ρ + tA)
∣∣∣∣
t=0

= Tr[A[ρ]−1A] .

The Bogulioubov-Kubo-Mori inner product on B(H) with reference state ρ ∈ S(H) is 
the inner product 〈·, ·〉BKM given by

〈A,B〉BKM = Tr[A∗[ρ]B] .

We are now ready to linearize. Fix some strictly positive steady state ρ∞. Choose 
some ρ in the possible basin of attraction of ρ∞ that is “close” to ρ∞. That is, for all 
strictly positive steady states ρ̂∞,

Tr[log(ρ̂∞)ρ] = Tr[log(ρ̂∞)ρ∞] .

This is the quantum analog of (3.33).
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Define a self-adjoint operator A by A = [ρ∞]−1(ρ − ρ∞) so that

ρ = [ρ∞](1 + A) . (3.35)

This is the direct analog of (3.34).
We now apply this to ρ(t) = [ρ∞](1 +A(t)) and discard the terms that are quadratic 

in A(t) in the QKBE. We obtain:

d
dtA(t) = 2

(
[ρ∞]−1[ρ∞ � ([ρ∞]A(t)) + ([ρ∞]A(t)) � ρ∞] − [ρ∞]A(t)

)
. (3.36)

3.17. Definition. For a strictly positive steady state ρ∞, the linearized QKBE operator 
is the operator K on B(H) defined by

KX = 2
(
[ρ∞]−1[ρ∞ � X + X � ρ∞] −X

)
.

The linearized QKBE at ρ∞ is the equation

d
dtX(t) = KX(t) .

3.18. Theorem. Let K be the linearized Kac-Boltzmann operator at a steady state ρ∞. 
Let 〈·, ·〉BKM be the corresponding inner product on B(H). Then for all A, B ∈ B(H),

〈B,KA〉BKM = 〈KB,A〉BKM and 〈A,KA〉BKM ≤ 0 . (3.37)

Moreover 〈A, KA〉BKM = 0 if and only if A is in the linear span of the collision invari-
ants.

Proof. From the definition,

〈B,KA〉BKM = 2 Tr[B∗(ρ∞ � ([ρ∞]A) + ([ρ∞]A) � ρ∞]] − Tr[B∗[ρ]A] . (3.38)

We now compute

TrH[B∗(([ρ∞]A) � ρ∞] =
1∫

0

TrH2 [(B ⊗ 1H)(ρs∞Aρ1−s
∞ � ρ∞)]ds

=
1∫

0

TrH2 [(B ⊗ 1H)Q(ρs∞Aρ1−s
∞ ⊗ ρ∞)]ds

=
1∫
TrH2 [(B ⊗ 1H)Q((ρ∞ ⊗ ρ∞)sA⊗ 1H(ρ∞ ⊗ ρ∞)1−s]ds
0



E.A. Carlen et al. / Advances in Mathematics 358 (2019) 106827 45
since each U(σ) commutes with ρ∞ ⊗ ρ∞, it follows that

TrH[B∗(([ρ∞]A) � ρ∞] = TrH

⎡⎣B∗ Tr2

⎡⎣ 1∫
0

(ρ∞ ⊗ ρ∞)sQ(A⊗ 1H)(ρ∞ ⊗ ρ∞)1−s

⎤⎦ds

⎤⎦ .

A similar computation shows that

TrH[B∗(ρ∞ � ([ρ∞]A)] = TrH

⎡⎣B∗ Tr2

⎡⎣ 1∫
0

(ρ∞ ⊗ ρ∞)sQ(1H ⊗A)(ρ∞ ⊗ ρ∞)1−s

⎤⎦ds

⎤⎦ .

This gives us an alternate expression for K:

KA = [ρ∞]−1 ([ρ∞ ⊗ ρ∞]Q(A⊗ 1H + 1H ⊗A)) −A . (3.39)

It is now easy to see from the computations above that

〈B,KA〉BKM = 〈KB,A〉BKM . (3.40)

To display the fact that

〈A,KA〉BKM ≤ 0 , (3.41)

and to identify the null space of K, it is useful to express K in yet one more form in 
which the constituents of the operator Q are written out explicitly which permits further 
symmetrization. Taking advantage of the fact that

[ρ∞ ⊗ ρ∞](A⊗ 1H + 1H ⊗A) = [ρ∞]A⊗ ρ∞ + ρ∞ ⊗ [ρ∞]A ,

we have

Tr2 [[ρ∞ ⊗ ρ∞](A⊗ 1H + 1H ⊗A)] = [ρ∞]A

since Tr[[ρ∞]A] = 0. Therefore, we can rewrite (3.39) as

[ρ∞]KA =

Tr2

⎡⎣∫
C

dν[ρ∞ ⊗ ρ∞] (U(σ)[A⊗ 1H + 1H ⊗A]U∗(σ) − [A⊗ 1H + 1H ⊗A])

⎤⎦ . (3.42)

To shorten the expressions that follow, we temporarily introduce the notation A =
A ⊗1H+1H⊗A and B = B⊗1H+1H⊗B for A, B ∈ B(H). Then since 〈B, KA〉BKM =
Tr[B∗[ρ∞]KA], we have that
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〈B,KA〉BKM = TrH2

⎡⎣B∗ ⊗ 1H

∫
C

dν[ρ∞ ⊗ ρ∞] (U(σ)AU∗(σ) −A)

⎤⎦
= 1

2

∫
C

dν TrH2 [B∗[ρ∞ ⊗ ρ∞] (U(σ)AU∗(σ) −A)]

= 1
2

∫
C

dν TrH2 [U∗(σ)B∗[ρ∞ ⊗ ρ∞] (U(σ)AU∗(σ) −A)U(σ)]

= 1
2

∫
C

dν TrH2 [U∗(σ)B∗U(σ)U∗(σ)[ρ∞ ⊗ ρ∞] (U(σ)AU∗(σ) −A)U(σ)]

= 1
2

∫
C

dν TrH2 [(U∗(σ)BU(σ))∗[ρ∞ ⊗ ρ∞] (A− U∗(σ)AU(σ))]

= 1
2

∫
C

dν TrH2 [(U(σ)BU∗(σ))∗[ρ∞ ⊗ ρ∞] (A− U(σ)AU∗(σ))] .

The second equality is from the invariance under the swap, the third equality is the 
unitary invariance of the trace on H2, the fourth equality is trivial, the fifth equality is 
that ρ∞ ⊗ ρ∞ commutes with each U(σ), and the sixth equality is the invariance under 
the adjoint. Now averaging the expressions in the second and sixth lines, we have

〈B,KA〉BKM =

− 1
4

∫
C

dν TrH2 [(B − U(σ)BU∗(σ))∗[ρ∞ ⊗ ρ∞] (A− U(σ)AU∗(σ))] . (3.43)

From this expression it is immediately clear that 〈A, KA〉BKM ≤ 0, and there is equality 
if and only if A commutes with each U(σ), and hence that A is a collision invariant. �

There is a simpler proof of the fact that 〈A, KA〉BKM ≤ 0 based directly on entropy 
dissipation. This is a consequence of the monotonicity of the entropy under the nonlinear 
QKBE.

To see this, consider a self-adjoint A such that

〈log(ρ̂∞), A〉BKM = 0

for all strictly positive steady states ρ̂∞. Then for all u with |u| sufficiently small,

ρu = [ρ∞](1H + uA) = ρ∞ + u[ρ∞]A

belongs to S(H) and Tr[log(ρ̂∞)ρu] = Tr[log(ρ̂∞)ρ∞] for all strictly positive steady 
states ρ̂∞. Let ρu(t) be the solution of the QKBE with initial data ρu. By the entropy 



E.A. Carlen et al. / Advances in Mathematics 358 (2019) 106827 47
production inequality, for all u with |u| sufficiently small,

d
dtS(ρu(t))

∣∣∣∣
t=0

= −2 Tr[log ρu(ρu � ρu − ρu)] ≥ 0 .

That is, for all u with |u| sufficiently small,

Tr[log ρu(ρu � ρu)] ≤ Tr[ρu log(ρu)] .

Define f(u) = Tr[log ρu(ρu �ρu)] and g(u) = Tr[ρu log(ρu)]. Evidently f(0) = g(0). Also,

f ′(0) = g′(0) = Tr[log(ρ∞)[ρ∞]A] = 0 .

It follows that f ′′(0) ≤ g′′(0), and doing the computation, this proves (3.41). However, 
this approach does not seem to characterize the null space of K.

3.19. Definition (Spectral gap of the linearized QKBE). The spectral gap ΔKB is defined 
by

ΔKB = inf
{
〈A,KA〉BKM

〈A,A〉BKM
: 〈B,A〉BKM = 0 for all collisions invariants B

}
.

At this point it is not clear that in general ΔKB > 0 or that ΔKB is independent 
of ρ∞. (Both things are true for the simplest model with H = C2 discussed above, as we 
shall see.)

3.6. Lyapunov functionals

We briefly return to the subject of convergence to equilibrium for the QKBE. McKean 
proved [18] a theorem for the classical Kac Boltzmann Equation that explains the special 
role of the entropy in this theory. He showed that the only functionals on probability 
densities on R of the form ρ 	→

∫
R Φ(ρ(v))dv, with Φ : (0, ∞) → R, that are monotone

for every solution ρ(v, t) of Kac’s equation (on which the functional is defined), are those 
in which Φ has the form Φ(t) = at log t + bt for some constants a and b.

We close this paper by using the results obtained in this section to prove a quantum 
analog in the case in which for each energy E there is a unique invariant state, as in the 
case considered by McKean.

3.20. Theorem. Let Φ : (0, t) → R, and suppose that Tr[Φ(ρ(t))] is monotone for every 
solution of the QKBE for some collision specification such that at each energy E there 
is exactly one invariant state ρ∞. Then Φ necessarily has the form Φ(t) = at log t + bt

for some constants a and b.
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Proof. Let Φ be such a function. Let ρ∞ be the steady state of the QKBE at a given 
energy E. We may assume that Tr[Φ(ρ(t))] is monotone decreasing along solutions.

For ε > 0 let ρ := [ρ∞](1 +εA) be a density matrix that is a small perturbation of ρ∞. 
The monotonicity implies that

〈Φ′([ρ∞](1 + εA)),KA〉BKM ≤ 0 .

By continuity it follows that

〈Φ′(ρ∞),KA〉BKM ≤ 0 ,

and then by Theorem 3.18, Φ′(ρ∞) must be a collision invariant. If ρ∞ is the only steady 
state at a given energy E, then the equation

Φ′(ρ∞) = a log ρ∞ + b

must be valid for some a. As one varies E, the eigenvalues of ρ∞ vary and one must have

Φ′(x) = a log x + b

meaning that Φ(x) = ax log x + (b − a)x.
Hence when there is a unique invariant state for each energy E, entropy is the only 

non-trivial Lyapunov function, exactly as in the classical case examined by McKean. �
The investigation completed in this paper sets the stage for the investigation of the 

rates of approach to equilibrium for the QKME, the QKBE, and the linearized QKBE, 
and the quantitative relations between these rates. The theorem just proved explains 
why, just as in the classical case, relative entropy will play an important role in this 
investigation. In the classical setting, Cercignani [6] had conjectured that an inequality 
bounding the entropy dissipation from below by a constant multiple of the relative en-
tropy would be valid; see [4]. This turns out not to be true, either at the level of the 
Kac-Boltzmann equation [1] or the Kac Master equation [5,9] – though it is valid for 
some non-physical collision models, and, surprisingly, this can be used to study physical 
models, and in physical models, Cercignani’s conjecture is almost true [22]. The known 
counter-examples use states in which a very large fraction of the energy is concentrated 
in a very small number of particles.

Such states may be easier to rule out in the quantum setting: Already in the discussion 
following Corollary 2.27, we have introduced the quantum analog of Cercignani’s conjec-
ture. Certainly in models in which the single particle state space is finite dimensional, 
states in which most of the energy is concentrated in a small fraction of the particles
cannot exist. Quantum entropy production will be investigated in forthcoming work. The 
present investigation provides a fairly detailed and complete description of the possible 
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steady states, which sets the stage for this, although even here interesting questions re-
main open. For example, can one classify the functions Φ yielding monotone functionals 
as in the last theorem when the class of collision invariants, and steady states, is large?
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