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1. Introduction
1.1. The classical Kac model

We begin by briefly recalling some essential features of the classical Kac Master Equa-
tion [11] which models a system of N particles of mass m with one-dimensional velocities
vj, j =1,...,N in R that interact only through binary collisions. At each instant any
particle may collide with any other. That is, the Kac model is a mean-field model of
binary molecular collisions in one region of physical space. Between collisions there is
no interaction between the particles, and the binary collisions conserve energy. Conse-
quently, the total energy of the system is the sum of the individual kinetic energies:

N
m
E(vi,...,uN) = §Z|”j|2- (1.1)
j=1

When a binary collision occurs, for some pair (i,7), 1 <i < j < N, v; and v; change
to v; and v} respectively, while for all other k € {1,..., N}, vy is unchanged. Since
the energy is conserved, v? + vjz» = v + v;‘Q. It follows that there is a one parameter
family of kinematically possible collisions between particles ¢ and j. The vector R; ; ¢¥
of post-collisional velocities is related to the vector of pre-collisional velocities ¥ by

Vg k 7é Za.]
(Rijo0)k =  cosOv; —sinfv; k=i (1.2)
sinfv; +cosfv; k=j
where 6 € [—m, 7] is the collision parameter. For E > 0, define Sg := {¢ : E(¥) = E}.

Note that for all 1 <i < j < N and all § € [—7, 7], R; j ¢ is an invertible transformation
from Sg onto Sg; which is to say that the collisions conserve energy and are reversible.
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The Kac Walk on Sg is the Markov jump process on Sg in which at each step, a pair
(i,7), 1 < i < j < N, is chosen uniformly at random, along with a § € [—=, 7], also
chosen uniformly at random, and then the system jumps from the state v € Sg prior to
the collision to the new post-collisional state R; ;v

The Kac Master Equation is the evolution equation describing the continuous time
version of the Kac Walk in which the jump times arrive in a Poisson stream with mean
waiting time 1/N, so that the mean waiting time for collisions involving any particular
particle is independent of N.

Now fix the energy to be N, so that the average energy per particle is 1, independent
of N. Let £ denote the generator of this process on Sy so that if the initial probability
density for @ is F, the density at time t is e!“¥ F', where

™

-1
LNF () :N(Q) Y (FY —F) and F"(7):= %/F(Ri,jﬁﬁ)de. (1.3)
i<j g
The equation
%F(a t) = LNF(0,1) , (1.4)

which describes the evolution of probability densities for ¢ on Sy with respect to the
uniform probability measure ox on Sy, is the Kac Master Equation (KME). It is the
Kolmogorov forward equation for the continuous Kac walk on Sy.

One motivation for investigating the KME is that it has a rigorous connection with
the non-linear Kac-Boltzmann equation, a one dimensional caricature of the spatially
homogeneous Boltzmann equation; see (1.5) below. Moreover, a more complicated version
of the Kac Master equation describing random collisions that preserve both the energy
and the momentum of particles with velocities in R? is connected in the same way with
the usual spatially homogeneous Boltzmann equation [12]. For simplicity, we only discuss
Kac’s original one dimensional caricature, which is perfectly adequate to set the stage
for the quantum mechanical investigation. We refer to [4] for a recent survey on the Kac
model that focuses on questions that are relevant to the present work.

The connection between the Kac model and the Boltzmann equation depends on Kac’s
notion of chaos and its propagation under the stochastic evolution.

1.1. Definition (Chaos). Let p be a probability measure on R. A sequence {1} yen of
probability measures on Sy is p chaotic in case for each k € N,

lim [ x(v1,...,00)de™) (ve,. .. 0N) :/X(vl,...,vk)du(vl)---du(vk)

N —o0

for each bounded continuous function y on R¥.

In 1956 Kac proved [11]:
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1.2. Theorem (Propagation of Chaos). Let {FéN)a(N)} be a fo(v)dv—chaotic sequence.
Then {etLNFéN)J(N)} is a f(v,t)dv—chaotic sequence and f(v,t) is the solution of the
initial value problem

st =2 [ | [ire o5 ®).0 - fe.0fwow | a ws)

- R

with f(v,0) = fo(v), where v*(0) and w*(0) are given by rotating (v, w) through an angle
6:

v*(0) = cosv — sinfw and w*(f) = sinbv + cosbw .

The equation in (1.5) is the Kac Boltzmann Equation (KBE). Theorem 1.2 would be
of little relevance to the investigation of the Boltzmann equation were it not possible to
construct f(v)dv-chaotic sequences for all physically relevant initial data for the Kac-
Boltzmann Equation. The following theorem shows that a construction proposed by Kac

works in sufficient generality that this is indeed possible [5]:

1.3. Theorem (FEzistence of Chaotic initial data). Let f be a probability density on R
satisfying, for some p > 1,

/f(v)dev =1, /f(v)v4dv < oo, feLlPR)
R R

and let p(dv) = f(v)dv, and let [,u‘g’N}SN,I(W) be the normalized restriction of f&N to
the sphere Sy. Then {[,LL@N]SN—l(\/ﬁ)} is p—chaotic.

Now that the relation between the KME and the KBE is clarified, we turn to the
question that motivated Kac: Can one obtain information on the rate of relaxation to
equilibrium for the KME that is useful for proving results about the rate of relaxation
to equilibrium of solutions of the KBE?

It is easy to see that under the Kac Walk, the density tends to become uniform: For
all F' e L2(8N7O'N).

tliglo INE =1 .
This is a simple consequence of the ergodicity of the Kac Walk: It is possible to move
from any point in Sy to any other in at most IV —1 steps of the Kac Walk. However, this
sort of argument says nothing about the rate of convergence. The rate of convergence in
L?(Sy,on) is governed by the spectral gap of £n, Ay, which is

Ay = inf{—(F, Ly F)aisny © [Flla=1,(F 1) 250 =0} . (1.6)
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In his 1956 paper, Kac conjectured that liminfy_,oo Ax > 0. This was proved by Jan-
vresse [10] with no estimate on the limiting gap. Our paper [2] gave the exact value:

_IN+2
NTaoN-1
Later, Maslin [17] was able to compute many more eigenvalues, but their large multiplic-
ity is such that this does not provide much further information in rates of convergence.
For an investigation of the spectral gap in related but more intricate models, see [3].

For the purpose of investigating the properties of the KBE, the relative entropy would
provide a better measure, and subsequent research will address spectral gaps and rates of
entropy dissipation in quantum Kac models. In the present paper we focus on quantum
analogs of Kac’s original 1956 result relating the Kac Master Equations and the Kac
Boltzmann Equation, and in addition carry out a detailed study of the steady states of
their quantum analogs.

1.2. Quantum Markov semigroups

In the next subsection we describe the quantum analog of the Kac Master Equation
that is investigated here. In the quantum setting, probability densities are replaced by
density matrices; that is, positive trace class operators on a Hilbert space that have unit
trace. The quantum analog [8] of the semigroup e**~ arising in the continuous time
Kac Walk will be a particular sort of evolution equation for density matrices known as
a quantum Markov semigroup. Before going into the particular features of the quantum
model, we introduce the notation that we will use.

Let $) be a separable Hilbert space with inner product (-,-)s and norm || - ||g. Let
A ($) denote the set of norm-continuous linear operators on £, and for A € B(9H), let
|Alloc denote the operator norm of A. We make use of other norms on subspaces of
B($). For p € [1,00), F,(H) denotes the set of operators A on §) such that

Tr[(A*A)P/?] < oo
equipped with the norm
1Allp = (Tx[(A*AP2])P

For each p € [1,00), Z,(9) is a two-sided ideal in Z($), closed in the || - ||, norm, but
operator norm dense in €(£), the norm closed subalgebra of compact operators on £).
Of special interest to us are 73 (9), the space of trace class operators on £, and Z($)),
which is a Hilbert space in its own right with the inner product (A, B) #,(5) = Tr[A* B].
If Ae Z1(9), then B — Tr[AB] is a bounded linear functional on #($), and every
bounded linear functional on #($)) has this form. That is, 77 (%) is the predual of Z(9).
In the same way, .71 () itself is the dual of €(9).
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Define &(9) to be the set of positive operators p in Z;($) such that Tr[p] = 1. We
refer to G(9) as the set of density matrices on $.

A linear operator % : Z#(H) — B(9) is positivity preserving in case A A > 0
whenever A > 0. It is completely positive in case the following more stringent condition
is satisfied: For each n € N, let M,,(C) denote the space of complex n x n matrices. Let
E, ; denote the element of M, (C) that has 1 in the ¢, j entry, and 0 elsewhere. The set
{E; ;1 ,<i j<n is the matriz unit basis for M,,(C). The general element of #($) ® M,,(C)

can be written as a sum

Z Aij®E;;,

ij=1

and may therefore be regarded as an n xn matrix with entries in (%), and consequently,
as an operator on ®"$, the direct sum of n copies of §). We say that an element of B($)®
M,,(C) is positive if it is positive as an operator on &"$). Any linear transformation
K B($H) — A($) induces the linear transformation 2" ® 1y, (¢ from #($) @ M, (C)
to B(H) @ M, (C):

H @) | Y, A @Fi; | =Y H(Aij)@E; .

i,5=1 i,j=1

The map %" is completely positive in case for each n € N, " ® 1)/, (c) is positivity pre-
serving. The notion of complete positivity was introduced by Stinespring [21]. Its physical
relevance was discussed by Kraus [14]. See Paulsen’s book [20] for more information on
the mathematical theory.

As an example, it is very easy to see that for any V € #(9), the map . defined
by £ A = VAV* is completely positive. It is also clear that any convex combination
of completely positive maps is completely positive. Complete positivity arises naturally
in quantum mechanics. A quantum Markov operator on Z($)) is a linear transformation
A on B(H) that is completely positive and such that #'1g = 1.

If furthermore

Te[(# A)*B] = Tr[A*# (B)] (1.7)

for all A,B € Z5(9), then ¢ is a symmetric quantum Markov operator. The Kadison
inequality [7,13] says that for any completely positive operator ¢, and all A € B(9),

H(A*A) > (K (A)* H (A) . (1.8)

(In fact, one only needs the positivity of #" ® 1y, (c) for n = 2.) In particular, when %"
is a symmetric quantum Markov operator,

Tr[AA] = Te[# (15)A*A] = Tr[1g2 (A*A)] > Te[(# (A))*# (A)] .
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That is, ||# (A)||2 < ||A]l2, so that # is a contraction on (). Let # T denote the
adjoint of # with respect to the inner product on Z(9).

If % is a quantum Markov operator, then J# T is completely positive, and # is called
normal in case 1 maps &($) into itself. (Recall that .7;($)) is the predual of Z($)
in that every bounded linear functional on 73 () is of the form A — Tr[AB] for some
B € #A($).) Normal quantum Markov maps are often called quantum operations [14].
A quantum Markov semigroup on A($)) is a semigroup Z; of linear transformations on
AB($) such that for all A € B(H) and all p € &(9), lim;_,o Tr[pP, A] = Tr[pA], and such
for each t > 0, £ is a normal quantum operator. Of course when $) is finite dimensional,
all vector space topologies on HB($)) are the same, and normality is automatic.

2. The quantum Kac model
2.1. Binary collisions

Consider a quantum mechanical system of N particles. Let H be the state space of
the single particle system. Let H denote the N-fold tensor product Hy = HEN. We
write H; to denote the jth factor of H in Hy. If A is an operator on H, we write A; to
denote the operator on Hy given by

A1 @ P2 ® - RdN) = (Ap1) @ P2 @ -+ @ P . (2.1)

Likewise, for j = 2,..., N, we define A; to act by applying A to the jth factor only.
Equivalently, let 7; be the permutation of {1,..., N} such that m;(¢) = 1, and m;(k) = k
for k #£ 1,i. Let V; be the canonical unitary representation of this permutation on Hy.
Then we have

Ay =ViA V. (2.2)

Let h denote the single-particle Hamiltonian on H. We define the N-particle Hamil-
tonian Hy by

N
Hy = Z hj . (2.3)
j=1

No interactions between the particles are included in Hy because it specifies the energy
of a state between collisions, and apart from collisions, the particles do not interact.
Thus, Hy plays the same role as the kinetic energy, which is the Hamiltonian for the
free motion in the classical Kac model. As in the classical model, we will consider an
evolution in which the system makes random jumps from one state to another through
binary collisions that preserve the energy of the non-interacting particles. All of the
effects of the interaction are encoded into the description of these binary collisions as
follows:
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The collision parameter space C is a compact metric space; the elements of C param-
eterize the kinematically possible collisions. In the classical Kac model discussed above
C = S*, the unit circle. We take as given a continuous map U from C to % (H ® H), the
group of unitary operators on H ® H. Let o denote a generic point of C. Then U(o) may
be regarded as the scattering matrix of a particular type of collision that two particles
may undergo. Let ¢ be a density matrix on H ® H representing the (non-interacting)
state of the two particles before this collision. Then U(o)oU*(0) gives the state after the
collision.

To describe a binary collision between particles 1 and 2 in our N particle system,
define Uy 2(o) to be the unitary operator on Hy given by

Ur2(0) (01 @ p2 @ 3@ - @ On) = (U1,2(0)1 @ ) R p3 @ - -+ @ b -

In the same way, for 1 < i < j < N, we define U; (o) so that it acts on the ith
and jth factors of H. Equivalently, let m; ; be a permutation of {1,..., N} such that
;1) =1, m ;(j) =2, and m; j(k) = k for k # 4, 4,1, 2. Let V; ; be the canonical unitary
representation of this permutation on Hy. Then we have U; j(0) = V;TjULQ(O'ﬁ/;J.

Since we are only concerned with collisions that conserve energy, we require that for
each 0 € C,

Ul @h+h@14U" (o) =1y @ h+ h® 1] . (2.4)
It then follows from the definitions that for each 0 € C, and each 1 <i < j < N
Ui j(o)HnU; (o) = Hy (2.5)
or, what is the same, that each U; j(0) commutes with Hy.

2.1. Definition (Collision specification). A collision specification (C,U,v) consists of a
compact metric space C, a continuous one-to-one function U from C to % (Hz), and a
Borel probability measure v that charges all open subsets of C such that:

(i) For each o € C, U(o) commutes with Ho.
(if) For some o¢ € C, U(op) = 1y, -
(i) {U(o) : 0 €C} ={U*(0) : o €C} and the map o — o’ where U*(c) = U(o”) is
a measurable transformation of C that leaves v invariant.
(iv) Let V : Hoa — Ha be the swap transformation: V(¢ ® ¢) = ¢ ® ¢ for all ¢, ¢ € H.
Then {U(c) o0 €C} ={VU(0)V* ¢ € C} and the map o — ¢’ where VU (0)V* =
U(o’) is a measurable transformation of C that leaves v invariant.

2.2. Remark. Since U(c)* is the time reversal of the collision U(c), property (iii) in
Definition 2.1 will incorporate time-reversibility into the quantum Kac model. Property
(ii) together with the continuity of U will mean that not only is the trivial collision
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included in the model, but also all “grazing” collisions. The condition (iv) ensures that
the two factors of H enter the collision specification in a symmetric way.

To proceed, we need to make some assumptions on the spectrum of the single-particle
Hamiltonian h. We shall always assume that H is separable, and that A has a compact
resolvent. Of course the latter condition is trivially satisfied when H is finite dimensional.
The compactness of the resolvent implies not only that h has discrete spectrum, but that
each of the eigenspaces of h is finite dimensional. This is crucial in what follows, and
it is much less restrictive than supposing that H be finite dimensional. For example,
one could take H = L2(2) for a regular bounded domain @ C R¢, and take h = —A
with, say, Dirichlet conditions. We shall always write {e;};c 7 to denote the sequence of
eigenvalues of h arranged in increasing order and repeated according to their multiplicity.
The index set J will be taken to be N when H is infinite dimensional, and otherwise
it will be given by J = {1,...,dim(#)}. We shall always write {¢;};es to denote an
orthonormal basis of H consisting of eigenvectors of h such that hi; = e;i; for each
jeJg.

The diagonalization of h leads directly to a diagonalization of Hy. Let « denote a

generic element of 7% so that & = (ay,...,ay). For each a € J, define
N
Ea=Zeaj and Vo =14, @ @ WYay - (2.6)
j=1

Evidently {Uq }qe 7~ is an orthonormal basis of Hy, and for all a, Hy Vo = Eq V4.
Note that even if each h has non-degenerate spectrum, it will never be the case that
Hpy has non-degenerate spectrum.

2.3. Definition (Energy shells). Let Spec(Hpy) denote the spectrum of Hpy. For each
E € Hy, we call “energy shell at energy E” the eigenspace g of Hy with eigenvalue
E. For each F € Spec(Hy), let Pg denote the orthogonal projection in Hx onto Kg so
that

Hv= & Ke. (2.7)

E€eSpec(HnN)

On account of the compactness assumption on the resolvent of h, each Kg is finite
dimensional. The different energy shells g correspond to the level surfaces of the clas-
sical energy function E(¥) defined in (1.1), which are the energy spheres Sg. Evidently
each K is invariant under each U; (o), or, what is the same,

Ui j(0)PeU; ;(0) = Pp . (2.8)
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For each E € Spec(Hy ), define

1

= e (2.9)

)

Then o € 6(Hy), and it is the analog of the uniform measure on the classical energy
shell Sg. Of course it is only possible to define o because K is finite dimensional.

An important feature of the classical Kac model is that for each E > 0, the only
continuous functions F' on Sg that satisfy F' = F o R; e forall 1 <i < j < N and
§ € [—m, 7| are the constants. Equivalently, a continuous function F' on R¥ satisfies
F=FoR; gforalll1<i<j<Nand#@ e [—mn]if and only if F depends on 7 € RY
only through E(¢). This feature of the classical collisions provides the ergodicity of the
Kac walk on the energy spheres. We require its quantum analog.

2.4. Definition (Energy algebra). Let Ay denote the commutative subalgebra of Z(H )
generated by {Pr : F € Spec(Hy)}. The elements of Ay are the elements of the form
f(Hp) for some bounded continuous function f : Spec(Hy) — C, or what is the same
thing,

> AePg (2.10)

EeSpec(Hy)
where Agp = f(E). Ay is called the energy algebra.
The elements of Ay are the quantum analogs of the functions F' on R¥ that depend

on ¥ € RY only through the energy F(%). Note that if A € Ay, then A has an expansion
of the form (2.10) where

)\E = TI‘[O’EA] (211)
and og is given by (2.9).
For any S ¢ #(K), K any Hilbert space, S’ denotes the commutant of S in Z(K).
By part (i) of Definition 2.1,
As c{U(o) : c€C} . (2.12)

We are primarily interested in collision specifications such that {U(o) : o € C} = A,.

2.5. Definition (Ergodic collision specification). A collision specification (C,U,v) as in
Definition 2.1 is ergodic in case

{U(o) : ceC} =A;. (2.13)
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Alternatively we can say that a collision specification is ergodic if and only if whenever
A commutes with each U(c), then A is a function of Hy. Let A € #(Hz). Then since Hy
has discrete spectrum, A € As if and only if Pz A € As for each eigenvalue E of Hs. Since
the eigenspaces of Hj are all finite dimensional, for all A € %(H3) and all eigenvalues E
of Hy, PrA € F5(H2). It follows that (2.13) is satisfied if and only if

To(Ha)N{U(0) : 0 €CY = T(Ha) N Az . (2.14)

Thus, (2.14) gives another characterization of ergodicity, and it has the advantage that
since J5(Hz) is a Hilbert space, it can be related to an eigenvalue problem.

2.6. Definition (Collision operator). Let (C,U,v) be a collision specification. Define the
collision operator 2 on B(Hs) by

24 = / dv(0)U (o) AU (o) . (2.15)
C

It is evident that the restriction of 2 to J5(Hs2) is self-adjoint, and that for all
Ae{U(o) : o€}, 2(A) = A. Therefore, 2(H2) N{U(c) : o € C} is contained
in the eigenspace of 2 with eigenvalue 1. The next lemma says, in particular, that
Fa(Ha) N{U(c) : o € C} is precisely the eigenspace of 2 with eigenvalue 1. The
lemma shall have other uses as well, and we state it in a more general form that we need
at present to avoid repetition later on.

2.7. Lemma (Convezity lemma). Let (C,U,v) be a collision specification. Let ® be a
convez function on B(Ha) with the property that for allU € % (Hz) and all A € B(H>),
O(UAU*) = ®(A). Then

P(2A) < P(4) (2.16)
and if ® is strictly convex, there is equality in (2.16) with ®(A) < oo if and only if
Ae{U(o) : o€ C}Y. In particular, taking ®(A) = Tr[A*A], the eigenspace of 2 with
eigenvalue 1 is To(H2) N{U(o) : o €C}.

Proof. By the convexity and unitary invariance,

B(24) < / (o) D(U (o) AU (0)*) = / dv(o)B(A) = B(A) , (2.17)
C C

which proves (2.16). If there is equality in (2.16) and & is strictly convex, we must have
that U(o)AU*(0) is constant almost everywhere with respect to v, and then by the conti-
nuity of o — U(o) and the fact that v charges all open sets, U(o) AU*(0) is independent
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of o. Since for some og, U(og) = 1y,, it must be the case that U(c)AU*(0) = A for all
o € C. The final statement then follows from the remarks made above. 0O

It follows from Lemma 2.7 that for A € F5(Hz), lim, oo 2" A = PA where P is the
orthogonal projection onto {U(c) : o € C}. Thus, to prove ergodicity, it suffices to
show that lim, o, 2"A € A; for all A € Z5(H).

In the next two examples, it is possible to derive an explicit form for 2 from which
one can easily determine the eigenspace with eigenvalue 1, and thus verify ergodicity.

2.8. Example. For the simplest possible example, take H = C2, so that Hy = (C?)®¥.

so that the N-particle Hamil-

Define the single particle Hamiltonian h by h = lg
tonian Hy = Zjvzl hj has Spec(Hy) ={0,...,N}. For E€{0,...,N},

Identify C2? ® C? with C* using the basis

) 0) ()elo) )= ) ()=0):

The standard physics notation for this basis is simply
00) , [10), [01), |11}, (2.18)

which will be useful. With this identification of C2 ® C? with C*,

ay 1z o bii big
a1 G22 b1 bao

(Switching the order of the second and third basis elements swaps the roles of A and B

bl,lA bLQA

=: A® B is represented by b A booA
2,1 2,2

in the block matrix representation of the tensor product A ® B.) In the sort of notation
used in (2.18), an orthonormal basis of H y consisting of eigenvectors of Hy is provided

by the set of vectors |a,...,an) in which each «; is either 0 or 1. Then
N
Hylag,...,an) = Zaj lag, ..., an) .
Jj=1

In this basis,

000 0

0 0 0100
Hy = I+1 —

2{01®+®01] 0010

000 2
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Therefore, Spec(H2) = {0, 1,2} and

100 0 0000 000 0
0000 0100 0000
Py = P = d P, =
"Zlo oo o0l “*Tloo 1ol ™ T2Tloo0o0 0
000 0 000 0 000 1

Now define C = St x St x St x St identifying each copy of S! with the unit circle in
C so that the general point in o € C has the form o = (e, e?, ™, e™). Then define

et 0 0 0
0 e%cos —e®sing 0
0 e ¥sinf e ™cosh 0
0 0 0 en

U(o) :=

Choosing v to be the uniform probability measure on C gives us a collision specification
(C,U,v).

A simple computation shows that for every operator A on Hy = C? ® C? identified
as the 4 x 4 matrix with entries a; ; using the basis (2.18),

a1,1 0 0 0
0 3(az2+ass) 0 0
QAz/dVaUUAU*U: 2V '
faewoaro= | g S
0 0 0 g4
+
=a1 P+ wPl +asaPs € Ay . (2.19)

Therefore,
{U(o) : ceC} Cran(2) Cc A, Cc {U(0) : c€C},
showing that (C,U,v) is ergodic.

2.9. Example. For the next simplest example, we take C and U as in the previous example,
but we take v to be a non-uniform probability measure on C. For example, take

v =(2m) (1 + cos p)(1 + cos 0)(1 + cos ) (1 + cos n)dpdfdepdn .

It is easy to check that conditions (i) through (iv) are satisfied. Then (2.19) becomes

1 1 1
ai,1 ga1,2 g@1,3 5014
1 1 1
za21  3(a22 +asz3) 0 1024
8 ) 2 s ) 4 3

QA = L L N (2.20)
5031 0 5(az2 +az3) Fasa
1 1 1

704,2 7103,4 Q4.4
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In this case, 2A ¢ A,. However, it is clear that lim,,_,., 2" A is, and hence (C,U,v) is
ergodic.

2.2. The quantum Kac generator

We are now ready to define the quantum analogs of classical transformations
T

1
Fe o /F(Riﬂ',@ﬁ)dﬁ defined in (1.3). Given a collision specification (C,U,v), for
7T

each N > 2 define a family of operators on B(Hn), {2 ;}i<ij<n as follows: For all
A€ @(HN),

QLJ‘A = /dl/(O')Ui’j(O')AUZj(O‘) . (2.21)
C

Evidently, for each 4,7, £; 13, = 1y, and 2;; preserves positivity. If A is trace-
class, then so is 2, ;A and Tr[2; jA] = Tr[A]. That is, each 2;; is both a quantum
Markov operator, and, when restricted to &(H ), a quantum operation, as defined in
the final paragraph of Section 1.2. Moreover, because of the way that time reversibil-
ity has been incorporated into the definition of (C,U,v), each 2;; is a self-adjoint
quantum Markov operator. In particular, each 2;; is a self-adjoint contraction on
Fo(Hn).

The transformation ¢ — 2; ;0 is a quantum analog of the classical transformation
defined in (1.3), and this brings us to the definition of the quantum Kac generator:

2.10. Definition (Quantum Kac generator). Let {U(o) o € C} be an ergodic set of collision
operators and let v be a given Borel probability measure on C. Define the operators 2y
and Ly on B(Hy) by

1
QN: (J;f) Zgi’j and gN:N(QN_]-HN) . (222)
i<j
Note that by property (iv) in Definition 2.1, for all ¢ # j,
gz}j = Qj)i . (2.23)

Hence one has the alternate formula for 2y:
PN — > 2, (2.24)
N — N(N _ 1) Z;éj 1,] .

2y is a self-adjoint quantum Markov operator because the set of such operators is
convex, and Zy is a convex combination of the 2;; which are symmetric quantum
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Markov operators. In particular, 2y is a contraction on J5(H ). For the same reason,
the restriction of 2 to &(Hy) is a quantum operation.

The Quantum Kac Master Equation (QKME) is the evolution equation on &(Hy)
given by

S olt) = Zolt) (2.25)

Since || LN |leo < 2N, the QKME is solved by exponentiation: For each ¢ > 0, we may
define an operator Zy,, on each 7,(Hy), and in particular on &(Hy), by
(ND)*

PniA=) e—NngJkVA =N 4 (2.26)
k=1 ’

Then the unique solution g(t) of the QKME satisfying 0(0) = g9 € &(Hy) is o(t) =
& N,t00-

The first equality in (2.26) displays each Yy, as a convex combination of powers
of 2n. Thus, as above, each &y ; is both a symmetric quantum Markov operator (and
hence a contraction on Z2(Hy)) and a quantum operation. Hence &y is a quantum
Markov semigroup.

2.8. Permutation invariance

The symmetric group Sy of permutations 7 of {1, ..., N} has a natural unitary action
on H that commutes with Zy. Let ¢1 ®- - -®¢n be a product vector in Hy. For m € Sy,
define

and then extend U, by linearity to produce a linear operator on Hy. Evidently U, is
unitary.
We will be especially interested in density matrices ¢ such that

UTI'QU;: =0

for all 7 € Sy. We call such density matrices symmetric. There is an orthonormal basis
for Z5(H ) consisting of operators of the form A1 ®---® Ay witheach 4, j=1,...,N
chosen from an orthonormal basis for 7 (#H). It follows directly from (2.27) that

Uﬂ-(Al ®®AN)U; :Aw(1)®"'®A7T(N) . (2.28)
Then from (2.28), it is evident that for all A € Z(Hy), and all 1 <i < j <N,

2;jUz AU = 2oy m(nA (2.29)
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and then from (2.24), it follows that 2yU, AU = 2x A. In particular, if g is symmetric,
then Py +0 is symmetric for each ¢ > 0. Furthermore, by the self-adjointness of the
operators 2; ;, for any B € B(Hny),

Te[B* (2 ;Ur AUD)] = Tr[B* 2r5) n(j) Al = Te[(Lr(i) () B)" Al
and
Tr[B*(2:,;Ur AUR)| = Tr[(2:,; B) U AUZ)| = Tr[(Uz 25 ; BUX) " A)] .
Therefore,
Ui (2 ;A)Ur = 2ry r(HA - (2.30)

Notice the different orders of U, and U in (2.29) and (2.30), which can also be under-
stood in terms of a replacement of 7w with 7—!.

2.4. The nullspace of the quantum Kac generator

The analog of the Kac conjecture for the QKME concerns the long time behavior of its
solutions. A basic first step in the investigation of the long time behavior is to determine
all of the steady-state solutions. In this section we give a characterization of the null
space of Zy. Of course since Xy = N(Zy — 1), this is the same as the eigenspace of
2 with eigenvalue 1. The following simple generalization of Lemma 2.7 will be useful.
Note that when N = 2, 2, 5 is exactly the operator £ of Lemma 2.7. The adaptation
to higher N is trivial and will be left to the reader.

2.11. Lemma (Convezity lemma on B(Hy)). Let & be a convex function on B(Hn) with
the property that for all U € % (Hy) where % (Hy) is the unitary group on Hy, and
all A e B(Hn), QUAU*) = ®(A). Then for all1 <i< j<N,

B(2,,;A) < B(A) (2.31)

and if ® is strictly convex, there is equality in (2.51) with ®(A) < oo if and only if
Ui j(0)AU} ;(0) = A for allo € C and all 1 <i < j < N.

2.12. Remark. We do not assume that ® is finite everywhere on %(Hsz). In our first
application, we will take ®(A) = Tr[A* A] which is finite if and only if A € Z(Hy). In
this case, ® is finite on all of &(H ). Later we shall consider an example based on the
von Neumann entropy:

2(4) = {Tr[AlogA] Ae &(Hy) (232)

00 A¢S(Hy) .
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When H is infinite dimensional, this function is infinite for certain A € &(Hy).

2.13. Lemma (Spectrum of £n ). Let (C,U,v) be an ergodic collision specification, and let
Ln and 2y be defined in terms of it as in (2.22). 2N and L have discrete spectrum:
There is a complete orthonormal basis of F5(H ) consisting of eigenvectors of 2y and
Zn. Moreover, Spec(Zn) C (0,1], and Spec(ZLy) C (—N,0]. The null space of Ly in
Fa(Hn), Null(ZLy), is given by

NHH(XN) = {A € %(HN) : Ui’j(U)AU;]—(U) =A alll<i< jJ<N, o€ C} . (233)

Proof. That 2y is positive in B(F(Hy)) follows from

Tr(A*2A) = /dZ/Tr(A*UAU*) = /dVTr((UA)*(UA)) >0
c C

with equality only if A = 0. Since Tr(A*2A4)? < Tr(A*A)Tr((2A)* 2A) we know from
Lemma 2.7 that Tr(A*2A4) < Tr(A*A) and hence Spec(Z2x) C (0,1]. This readily
implies that SpecZy C (—N,0]. For each E,E’ € Spec(Hy), let Zx/ g denote the
subspace of operators X on Hy such that the range of X is contained in g/ and the
range of X* is contained in Kg. The different 2%/ g are mutually orthogonal in Z(Hy),
and

%(/HN): @ %E’,E .

E,E’'eSpec(Hn)

Since Kgs and K are finite dimensional, Z%/ g is finite dimensional. Since Kz and Kg
are invariant under each U; j(0), 25/ g is invariant under 2; ; for each i and j, and
hence also under 2. Since 2y is self-adjoint, it may be diagonalized on each of these
finite dimensional subspaces. The same applies to Zn = N(Zny — Ly, )-

Since each A € Ay is invariant under each £2; ;, it is clear that Ay C Null(Zy).
Now suppose that (C, U, v) is ergodic. Let ® denote the strictly convex function ®(A) =
Tr[A* A] which is finite everywhere on 5 (Hy). By (2.22) which displays 2y as a convex
combination of the 2; ; with strictly positive weights, for all A € Z(Hy), Lemma 2.7
implies that ®(2nyA) < ®(A) and there is equality if and only if ®(2;,;A) = ®(A)
for each i,j. Since ® is strictly convex and finite, Lemma 2.7 further implies that if
®(ZnA) = ®(A), then U; j(0) AU} ;(0) = A for all o and all 4,j. Hence if ZvA = A,
then U; ;(0) AU/ ;(0) = A for all o and all 4, j which proves 2.33. O

2.14. Definition. For each N, let ¥ be the commutant
CKN:{UM(U) :1§i<j§N,0’€C}’. (234)

By (2.33), €n N J2(Hy) is precisely the null space of £y acting on Z2(Hy). Let Eg,,
denote the orthogonal projection in Z(Hy) onto €n N Zo(H ). The notation recalls
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the fact that %y is an algebra as well as a subspace, and that this operation can be
considered as a non-commutative conditional expectation.

Evidently, Ay C €n and As = %5. However, it may be that @€y is strictly larger than
Ap. In this case, there are observables that are conserved by the evolution that are not
functions f(Hp) of the energy alone. This may happen even if the collision specification
(C,U,v) is ergodic: Ergodicity at the 2 particle level of individual collisions may or may
not imply ergodicity at the N particle level, as we shall see.

In any case, let (C,U,v) be an ergodic collision specification, and let £y and 2y be
defined in terms of it as in (2.22). By Lemma 2.13, E¢, is the orthogonal projection
onto Null(-Zy), and moreover, for all A € Z(Hy),

tlggo PNniA=Eg A. (2.35)
The steady states of the QKME are evidently the density matrices o € &(Hy) that
satisfy o = E¢, 0.

The argument leading to (2.35) gives no information on the rate of convergence. In a
later paper we investigate rates in terms of entropy production inequalities and spectral
gaps. In order to do this, it is first necessary to obtain a more explicit description of @y .
In particular, we would like to know when ¥ = Ay, and, if this is not the case, how
much larger ¥ may be than Apy. The next theorem shows that while ¥ may be larger
that Ay, at least, like Ay, it is commutative.

2.15. Theorem (¥ is commutative). Let (C,U,v) be a 2-ergodic collision specification.
Then €n is a commutative algebra. In fact, every A € € is diagonal in the basis {¥q}.

Proof. Let A be a self-adjoint operator in @y . It suffices to show that for each a, ¥, is
an eigenvector of A.
Recall that we have defined the operator 2 on Z(Hz) by

94 = / Av(o)U (o) AU* (). (2.36)
C

We may think of 2 as being 2; 5 for N = 2 and then by Lemma 2.13, 2 is a symmetric
quantum Markov operator, and hence a contraction on Z5(Hz) as well as B(Hsz), and the
eigenspace of 2 with eigenvalue 1 in Z3(Hz) is precisely the commutant {U(c) : o € C}'.

Since ZNA =0, 2; jA= Aforeach 1 <i<j<N.For N >3, we may identify Hy
with Ho ® Hy_o where the first factor corresponds to the first two factors of H, and
the second factor to the remaining factors of ‘H. Corresponding to this identification, we
may write

e@1’2 =92® 17{1\,72 .
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This product structure gives rise to a simple description of Null(21 2 — 14, ) in Z(Hny):
Let {X,} be an orthonormal basis for the eigenspace of Null(2 — 14,) in J(H2), and
let {Y)} be an orthonormal basis of Z(Hy—2). Then {X; ® Y} is an orthonormal basis
for Null(2; 2 — 14, ) in F(HnN).

When (C,U,v) is 2-ergodic, the fact that X; € Null(2 — 14,) means that for some
function f, X; = f(Ha2). It follows that for all o,

Xj QYU = Xj(wm ®%2) ®Yk(wa3 @ ®¢a1v)
= f(HQ)(¢a1 & ¢a2) 29 Yk(wag Q- waN)
= fleas + €ay) (Yo, @ a,) ® Yk’(q/’aa ® - ®Yay)

It follows that (Ug, X; @ Yy Uq)p,y = 0 unless f1 = a7 and B2 = ao. Since this is
true for each j and k, then, whenever A € 95 (Hz) and 2124 = A, (Vg, AVq)u, =0
unless 51 = a; and B2 = ag. Then by symmetry in the indices, if A € J5(H ) satisfies
2 jA=Aforall1 <i<j<N, (¥, A¥q)p, =0 unless 8 = a. This proves that for
all self-adjoint A € Null(Zy), AVq = Aq ¥4 for some A\, € R. O

It is well known that a commutative von Neumann algebra on a separable Hilbert space
is generated by the spectral projections of a single self adjoint operator. In the present
case, we have an even more favorable situation: We can give an explicit description of
all of the minimal projections in % ; this is done in the next section.

2.5. Ergodicity at energy E

A projection P € €y is minimal if it is non-zero, and if there is no non-zero projection
P’ € €N such that P — P’ is strictly positive. In other words, if P is minimal and P’
any other projection then either they are not comparable or P — P’ < 0. Since for each
E € Spec(Hy), Pe € Ay C €, every minimal projection P in €y clearly satisfies
Pg — P > 0 for some uniquely determined E € Spec(Hy). To see this note that there
must be an E such that PPy = PgP # 0 because % is commutative and the projections
Pg sum to the identity. Note that PPg is a projection. Since P is minimal, it must be
comparable with Pg, for otherwise we have that the projection PP = PgPPr < P
contrary to our assumption of minimality. Hence P < Pg and the E for which this holds
must be unique. Since the algebra % is evidently generated by its minimal projections,
it is clear that ¥x = An if and only if Pg is minimal in ¥y for each E € Spec(Hy).
This brings us to the following definition:

2.16. Definition (Ergodicity at energy E). An ergodic collision specification (C,U,v) is
ergodic at energy E € Spec(Hy) in case Pg is minimal in ¥y, and it is fully ergodic
in case it is ergodic at each E € Spec(Hy). Equivalently, by what has been noted just
above, (C,U,v) is fully ergodic exactly when €y = An.
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The rest of this subsection is devoted to the characterization of the minimal projections
dominated by Pg, E € Spec(Hy), and hence of checking full ergodicity.

2.17. Lemma. Let (C,U,v) be an ergodic collision specification and assume that ey, +ep =
€m + en. Then there exists a finite sequence {o1,...,05} in C such that

(Ve @1, U(0s) - U(02)U(01)8m @ n)p, # 0 .

Conversely, if ey, + ey # e + €5, then

(Yr @Y, U(os) - U(o2)U(01)Pm @ Yn)p, =0
for any sequence {o1,...,04}.

Proof. By ergodicity,

. . 1
rll)rgog (|ther, @ ey) {|Ver ® Ye,l) = Epek“l’eé

where d is the dimension of the eigenspace of Hy associated with the eigenvalue e + ey.
(Both sides have unit trace.) Hence for some finite s,

1

2° (e, ® e}y ® e, ]) > 5

PSkJree .

Now assume that ey, + ey = e,, + e,. Taking the trace against |, @ e, ) (Ve,, @ e, |
yields

/ |<¢em ® e,y s Ulos) -+ U(UQ)U(Ul)ﬂ}Gk ® wee>|2d1/®s > i .

2d
Cx--xC

If ex + e¢ # ey + €5, then it is evident that
<’(/}€7n, Y ¢em U(Us> e U(0'2)U<Ul)1/}ek & weg> =0 )
since U(o) commutes with He. O

2.18. Definition (Adjacency). Two indices o, @’ € J are adjacent in case for some pair
(4,§), 1<i<j<N,

€Ca; + eaj - eag + ea;
and for all k # 4,7, ag, = o,. Two indices o, @’ € IV are equivalent in case there is a

finite sequence {a', ..., a"} such that @’ = @, @" = @’ and &’/ and a?~! are adjacent
for each j = 1,...,n. In this case we write a ~ &'.
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2.19. Remark. Clearly if o and ' differ by a pair transposition; i.e., for some 1 <4 < j <
/

37
if o’ is related to a by some permutations of the indices, then o’ ~ «.

N, a; = o/, aj = o and oy, = o, for k # i, j, then o is adjacent to a’. Consequently,

2.20. Lemma. Let A be self adjoint in €n with AVe = AaVq for all a € TN . Suppose
that (C,U,v) is ergodic. Then if o and o' are adjacent, Ao = Ao, and more generally,

/

a~a = Aa = - (2.37)

Conversely, if a and o' are not equivalent, there is some self-adjoint A € € for which

)\a 7é /\a’-

Proof. Suppose that o, @’ € JV are adjacent, with ay = «}, for all k # 4,j. By
Lemma 2.17, there is a finite sequence {o1,...,04} in C such that

(Wor,Uij(os) Ui j(01)¥a) #0 .

Since A is self adjoint and commutes with each U; ;(o),
(AVar, Ui j(0s) -+ Ui j(01)Va) = (Var, Ui j(0s) -+ - Ui j(01)A¥4a)

and hence it must be that Ao, = Ao/, and now (2.37) follows easily.
It follows from Lemma 2.17 that if o and &’ are not equivalent, and therefore not
adjacent,

<\Ifa, Ui’j(O')\I’al> =0

for all ¢,j and all ¢. Expanding, U; ;(0)¥q = Zﬂ<\llﬁ, Ui j(0)¥q)¥g. Evidently,
(Vg,U; j(0)¥q) = 0 unless B is adjacent to o'. It follows that if V' is any finite product
of operators of the form U; ;(0), (Vor, VUq) = 0, unless a ~ o’. Then by the definition
of Py, it follows that Tr[|Ua (Vo | PNt (|¥a)(Tal)] = 0 unless a ~ o'.

By (2.35)

lim PN |Va)(Val = Eey|[¥a)(Tal , (2.38)
t—o00

and then if o and o’ are not equivalent, (Exy |¥a)(Pal)¥a = 0. Thus, Ex, |¥a) (Vs
is an operator in ¥ for which ¥, and ¥, have distinct eigenvalues. 0O

There is another useful way to phrase Lemma 2.20. A non-zero projection P in an
operator algebra is minimal in case whenever @ is a non zero projection in the algebra
such that @ < P, Q = P.
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2.21. Lemma. The minimal projections P in €y satisfying P < Pg for some E €
Spec(Hy) are precisely of the form

P= Y (W0,

o

for some ap with Hy Wy, = EV,,. That is, the minimal projections stand in one to one
correspondence with the equivalence classes of the indices .

2.22. Lemma. A collision specification is fully ergodic if and only if whenever o, o’ € JN
satisfy Eq = Eq, then o ~ o’.

Proof. Evidently ¥n C Ay if and only if whenever P is a projection in %, it belongs
to Ay, and this is the case if and only if for each E € Spec(Hy), either PgP = 0 or
PP = Pg. The claim now follows from Lemma 2.20. O

We next study some examples. The following notation will be useful.

2.23. Definition (Occupancy function). For each j € J, and each N, define the function
M; on J¥ with values in {0,1,..., N} by

N
Mj(@) = o, =m; . (2.39)
k=1

The function is called the occupancy function for the jth level; it counts the number of
times the eigenstate v; of h appears as a factor in

\Ija:'woq@"'@/wazv'

The figures below illustrate the utility of the occupation function. Each figure is a
histogram of the occupied levels in a system of 6 particles and 4 single particle states of
energies e; =0, es =1, e3 = 2, and e4 = 3. Let aq, as and a3 be any 3 elements of J°
with occupancy as indicated in the corresponding figure. Then for each j = 1,2,3, ¥4,
is an eigenfunction of Hy with eigenvalue 9. However, a; ~ a, while ag belongs to a
second equivalence class.

To see this, note that the only collisions that alter the histograms are those in which
a pair with energies e; and es becomes a pair in which both particles have energy es,
or in which a pair with energies ey and es becomes a pair in which both particles have
energy ej, or else the reverse of such a collision. In fact a; and as are adjacent, being
connected by a single collision of this type. The squares that are changed in the histogram
after such a collision are colored in black in Figs. 1 and 2. However, in Fig. 3, there are
no pairs for which any of the four types of collisions is possible. Hence this state is in
a class by itself. Evidently, the occupancy of level 2 is even after such a collision if and
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0 1 2 3 0 1

Fig. 1. Occupancy in a;. Fig. 2. Occupancy in as. Fig. 3. Occupancy in o.

0 1 2 3 2 3

only if it was even before such a collision. Evidently, this system of 6 particles with 4
single particle energy levels is not fully ergodic. We now consider some further examples.

2.24. Example. Let H = C™, and let h have eigenvalues {es,...,en}. If n = 2, suppose
that e; # ea. For n > 3, suppose that {ey,...,e,} is linearly independent over the ratio-
nal numbers. Then Spec(H ) consists of the real numbers of the form F = 2?21 mje;
where each m; is a non-negative integer, and Z?Zl m; = N. Because of the linear
independence of the energies,

HN\I/a = ijej \I/a

j=1
if and only if for each j =1,...,n,

M;(a) =m; .

It follows that for all o, @’ with E, = E4/, @ and «’ are related by a permutation of
indices, and then by Remark 2.19, ¢ ~ «’. It follows that for this choice of h, every
ergodic collision specification is fully ergodic.

2.25. Example. Let # = C", and let h have eigenvalues e; = j—1, j =1,...,n. We may
as well suppose that n > 3 since the case n = 2 is covered by the previous example. In
this case of evenly spaced eigenvalues, n > 3, there are many «, a’ that are adjacent, but
unrelated by permutations. For each m € N, m < n/2, and k withm+1<k<n-m
we have obviously that 2ep = ex_p, + €gim. Thus, if a and o’ are such that for some
1<i<j<N oy=ajforl#1,j, while

"=k+m

ai=a;=k and a;=k—-m, o

then « and o’ are adjacent. Taking into account the permutation invariance, it follows
that if ¢ and o’ satisfy

Mk(o/) = Mk(a) —2 and Mkim(o/) = Mkim(a) +1

and My(a) = My(a) for £ # k,k —m, k +m, then o’ ~ a.
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Now let us consider n = 3. If M7 () > 1, we may lower Mj () by 2 through a collision
of two particles of energy es = 1, producing a pair with energies e; = 0 and ez = 2.
Doing this repeatedly, we arrive at an o’ with either M;(a’) = 0 or M;(a’) = 1, and
with @’ ~ a. Since E is even if and only if M;(a’) is even, it follows that whenever
Ey = Eo, then a ~ @'. Thus for this h the ergodic collision specification (C,U,v) is
fully ergodic.

Things are different for n = 4. We may start from an arbitrary «, and consider colli-
sions that decrease M () + Ms(a) while increasing M; (o) + My(ar). We may continue
doing so as long as either Mj(a) > 1 or M3(a) > 1. When the process stops, Ma(ax)
and M;5(a) are both either 0 or 1. The energy FE is given by

Ea = Mg(a) + 2M3(a) + 3M4(a) .

Evidently Eq is of the form 3k + 1, k € N, if and only if Ms(a) = 1 and M3(ex) = 0.
Likewise, Fq is of the form 3k + 2, k € N, if and only if Ms(a) = 0 and M3(ax) =1
However E, = 3k, k € N if and only if either Ms(ax) = M3(ax) = 0 or Ma(ar) =
Ms(a) = 1. It is also clear that if Ms(a) = M3(a) = 0 and &’ ~ a, then My(a') =
M;(a’) = 0. Thus complete ergodicity is impossible in this case, but the problem only
arises when the energy F is a multiple of 3.

One might expect things to get more complicated for n = 5, but this is not the case:
For n = 5, any ergodic collision specification (C,U,v) is fully ergodic on energy shells
with E/N not too close to either 0 or 4 when N is sufficiently large.

To see this, consider an arbitrary o', and then in a finite sequence of steps one arrives
at an equivalent a such that M, (a) € {0, 1} for each j = 2, 3,4. We may further suppose
that among all such a equivalent to o/, 22%22 M; (o) is minimal.

Under this minimality assumption, it is impossible that both Ms(a) = 1 and
M,(a) = 1: If so, there is a collision that lowers these both to 0, while raising Ms(cx)
by 2. But this can be lowered again by 2 in a collision that then raises both M;(«) and
Ms(a) by 1. Thus, in two steps, one further lowers Zj‘:2 M; (o) by 2.

Next, suppose that Ms(a) = My(ax) > 1. If M7 () > 1 (which will necessarily be the
case for sufficiently large N), a collision can lower M;(a) and Ma(a) each by 1, and rais-
ing Ms(ax) by 2. Then as above, in one more step Mz(a) can be lowered again by 2, while
raising M; () and Ms(a) each by 1. Again, in two steps one has lowered 2?22 M; (o)
by 1, which is impossible under the minimality hypothesis. Thus under this hypothesis,
if M3(a) =1, My(a)My(ex) = 0. The same reasoning shows that Ma(a) Ms(a) = 0.

Now if E,/N is not too close to either 0 or 4, then necessarily Mj(a) > 1 and
Ms(a) > 1 whenever M;(a) € {0,1} for each j = 2,3,4. Hence under the minimality
hypothesis, the only possibilities for M;(a), j = 2,3,4 are that M;(a) = 0 for all
Jj =2,3,4, in which case E, is of the form 4k, k € N, or else M;(a) = 1 for exactly one
value of j = 2, 3,4, and is zero for all of the others. These respectively correspond to the
energies dk+j—1, ke N, j =2,3,4.
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Thus, for all n > 0, and all N sufficiently large, if E/N € (n,4 —n), then there is full
ergodicity at energy E whenever (C,U,v) is ergodic.

Since invariant densities for the QKME must belong to %y, we have the following
immediate consequence of the characterization of ¥y obtained in this section:

2.26. Theorem. Let (C,U,v) be an ergodic collision specification, and let £y be defined
in terms of it as in Definition 2.10. A density matriz 0 on Hy satisfies Lno = 0 if and
only if it is a convexr combination of normalized minimal projections in €y .

A density matrix o on Hy is a product state if p = p1 ® --- ® py where each p; is a
density matrix on H. A density matrix ¢ on Hy is separable in case g is in the closed
convex hull of the product states. A density matrix ¢ on Hy is entangled in case it is
not separable,

2.27. Corollary (Separability of steady states). Let (C,U,v) be an ergodic collision speci-
fication, and let Ly be defined in terms of it as in Definition 2.10. All density matrices
0 on Hy that satisfy Lno =0 are separable.

Proof. Consider any a € JV. Then Wo = g, @ -+ ® Yoy, and evidently [Vq) (Vo] is
product state. Since each minimal projection in @y is diagonal in the {¥q }oec 7~ basis,
the claim is a corollary of Theorem 2.26. O

Consider any ergodic collision specification (C, U, v). Let £y be the associate quantum

Markov semigroup generator, and let Py ; = elN

and let

. Let p be any density matrix on Hy,

Oco = E(@”N o,
which satisfies not only £y o = 0, but by (2.35),
lim P10 = 0o - (2.40)
t—o00

It is clear that in the examples we have discussed with finite dimensional single particle
space H, it will be the case that

Tim S(ZPwse | o) = 0 (2.41)
where for two density matrices p,o, S(p || o) = Tr[p(logp — logo)] is the Umegaki

relative entropy of p with respect to o. The rate at which the limit in (2.41) is attained
is of interest. By a theorem of Lindblad [16], derived as a consequence of the strong
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subadditivity of the quantum entropy proved by Lieb and Ruskai [15], the quantity
S(Zn .10 || 0s0) is monotone decreasing in ¢, and hence

d
Dn(0) = ——S(Pniell o) >0
di =0
A quantum analog of the Cercignani conjecture [6] from classical kinetic theory would
be that there exists a constant ¢ > 0 such that

. D (o)
1nf —_—
06 S(o | 00) —

uniformly in N.

Likewise, there are various measures of entanglement for many-body systems, and the
rates at which they decay to zero are of interest. These matters will be investigated in
forthcoming work.

3. The quantum Kac-Boltzmann equation
3.1. Propagation of chaos

A density matrix o € G(Hy) is symmetric in case it is invariant under the canonical
action of the permutation group on Hy. Here, the adjective symmetric without fur-

ther qualification will always have this meaning. For example, for each E € Spec(Hy),

1 Pg i tri
OF = —/————~ 1S Symimetric.
E= dim(Kg) E0Y

Given g € G(Hy), let
o =Try nyo  and more generally o™ =Tr,1 no

where we take the partial trace of the last N — 1, respectively N — k, factors in H .
As usual, oV is called the single particle reduced density matriz and o®) is called the
k-particle reduced density matriz.

3.1. Definition (Chaoticity). Let p be a density matrix on H. A sequence {on}nen Of
symmetric density matrices on Hy is p-chaotic in case

li (1): d li (k): k .
e =pad i oy’ =t

The convergence is in the sense that limy o, Tr(A*oM) = Tr(A*p) for any A € B(H)
(k)

and similarly for oy’.

The point of the definition is that, as in the classical case, chaos is propagated, and
propagation of chaos leads to a non-linear Boltzmann type equation. This is also true in
the quantum case:
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3.2. Theorem. Let {U(c) o € C} be a set of collision operators and let v be a given
Borel probability measure on C. Let £y be defined in terms of these as in (2.22). Then

the semigroup Py, = €N

propagates chaos for all t meaning that if {on}NeN S a
p-chaotic sequence, then for each t, { PN 0N} NneN 5 a p(t)-chaotic sequence for some
p(t) = limNHoo(.@N,th)(l), where in particular this limit of the one-particle marginal

exists and is a density matriz.

Before beginning the proof, we explain the strategy, which follows that of the original
argument of Kac as refined by McKean. Consider an operator A of the form B, ® 1y, _,
where 1 < k < N, and By, € B(Hy,). We are interested in estimating Tr[o. %y A] where o
is symmetric. First note that

IN(Be ®1ny_i) = 57— > (25— 13,)(Br) @ 1oy,
1<i<j<k
2
TN 1 Yo (2 -l )(Br @1y ,) - (3.1)
1<i<k,j>k

For N much larger than k, there are many more terms in the second sum on the right in
(3.1) than in the first. Moreover, when taking the expectation against o with ¢ symmetric,
each of these terms makes the exact same contribution; for 57 > k, let 7w be the pair
permutation sending j to £+ 1 and k + 1 to j. Then since U, U} = p, it follows from
(2.30) and the fact that 7 = 7! that

Tr[Q(Qi,j - ]-Hk)(Bk) ® ]-’HN—k] = TI'[ WQU*( 1Hk>(Bk ® ]'HN—’C)]
= Tr[oU;(2; ]-Hk)(Bk ® 13y, )Ux]
= Tr[o(2, —134,)(Br @ 134 ,)]

[

Tr Q( i,k+1 — l'Hk)(Bk & 17‘1ka)] .

Therefore,

2
TrloZn(Br ® 1uy )] = 7 > Trlo(2i; — 13,)(Br) ® 1y,
1<i<j<k

- %2 1;%“[9(3%‘,%1 —19,)(Br @ 13, _,)] - (3.2)

For large IV, the second term will turn out to be the main term, as is almost clear from
the factor of 1/(N — 1) in front of the first term.

The fact that the first term is negligible in the limit N — oo has a probabilistic
interpretation emphasized by Kac. Consider the “collision histories” of the first k particles
over some fixed time interval [0, t]. Then the probability that any of these particles collide
with each other, or even collide with any particle that has already collided with any of
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the first k£ particles, is vanishingly small in the limit N — oo. Then, as we shall see,
without recollisions, there is no mechanism for generating correlations.

To efficiently work with the second term, and to see why it does not generate cor-
relation, we introduce, following McKean [19], the operators Ty : B(Hy) — B(Hi+1)
by

k
Te(Br) =2 (Zikt1— Lo, ,) (B ® 13) -
i=1

Now let {on}nen be a p-chaotic sequence. Then,
Jim Trlon £y (Br ® 1oy, )] = Tr[@" pT(By)] -

A closer analysis, carried out below, of the decomposition in (3.2) will show that for all
feN,

i TrlonZn (Br ® 13y, )] = Tr[(@F p)ige1 -+ Ti(Be)] -

Furthermore, it will be shown that the power series for Tr[one!™ (B @ 135, )]
converges uniformly in N for small t. Once this is shown, the propagation of chaos
will follow from a term by term analysis of the power series. The key for this is the
observation of McKean that I'y is a “twisted” derivation in the following sense: Let
1<j<k X; € ABH;) and Yy_j € B(Hi—;). Let m denote the pair permutation on
{1,...,k+ 1} such that 7(j +1) =k + 1 and 7(k+ 1) = j + 1. Then

Lr(X; @Y ;) = [Un(Tj(X5) @ 13y, )UF] 19, @Y; @1y + X; @ Ty Y5 . (3.3)
With a slight abuse of notation, we can write this more simply as
Fk(Xj@kaj) = (Fij)@Yk,j-i-Xj@Fk,ij,j , (3.4)

but then with the understanding that I'; X; acts on the first j factors of Hyy1 together
with the k + 1st factor, as is made clear by the permutations in the longer form.

For example, consider the case k = 2, which is the most important for our binary
collision model. Let By = X7 ® Y5. Then for ¢ € N, suppressing permutations from our
notation as in the passage from (3.3) to (3.4), with N > £+ 2, so that T'p(X; ® Y3) is
defined,

lim Trlon 2% (X1 © Yo @ 13y )]
N—oo

= Te[@2 Ty 1 - To(X) © V3)]

£
- Z 1101 Tr[®2+ép(1—‘£1 - T1)X; ® (T, -+ -T1)Y3)
b tlp=0 L
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Te[@ 1 p(Dy, -+ T1) X1] Tr[@' 2 p(Ty, - - - T1)Ya)

= >

by +lo=4

. 4
ZA}gﬂmz Zg: 6] Tr[on 2y (X1 © Loy )] Trlon 2yt (Yo © Loy ,)]

€1'£2

After the reduction that permits us take limits term by term, we conclude
lim Tr[(e!Y on) X1 @ YVa @ 19y ]
N —o0

= lim Tr[(et‘zN on)X1 ® 1y, ] Tr[(ethgN)Yl ® 1yn 4] -

N—o0

Since X1,Y2 € B(H) are arbitrary, this means that

1- th (2) _ 1 t:ZN (1) tLN (1) .
i (e ew)® = i (5 ) © ()
This shows that {e"“Non}nen is (N o )(P-chaotic.
Having explained the strategy and the key role of McKean’s derivation property, it

remains to provide the estimates that permit it to be carried out.
Define Gy, : B(Hi) = B(Hi41) by

2 N —k
Gr(By) = N_1 Z (Zij — 131,)(Bi) @ 13 + mrk(Bk) -
1<i<j<k
3.3. Lemma. For all k,
1Gerk - Gr(Br)ll Bty rsn) < 4T+ K) - k|| Billaa,) - (3.5)

For ¢ < N —k, so that T'y(By,) is well-defined, we have the following estimates:

Tk Th(Bi) | @rnsenn) < AT+ E) - k|| Brllzruy) - (3.6)

C 4Z£k+2
1 UBilsen . B

1Gesk - Gr(Br) = Tern - Tr(Br)lla(rnsenn) < —5—

where C}, is some constant that depends on k.

Proof. Using the elementary estimate ||2;41(Br ® 1%)l|2,.0) < ||1Brll#,), the
estimate on ||G(By)||#(n,.,) is then a consequence of

4N — 2k —2
kﬁ“BkH@(m) < 4k|| B || z(n4y,) -

Again using the elementary estimate || 2; x11(Br ® 1)l z(3,.1) < [ Bellz(n,) we find

IT%(Br) | #(#141) < 45| Brll (31,

from which (3.6) follows immediately.
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A bit trickier is the proof of (3.7). Using the estimate on Gy, and I'y, one easily finds
that

2%k(k — 1) + (k — 1)4k 6>

|Gk (Br) = Ti(Bi) |l #(3411) < N1 1Bkl zrn) < = I1Brllzcu)

(3.8)
We write the telescoping sum

Gk Gr(By) = Topr - Ti(Br)
= (Gogr = Logn)Gryr—1 - Gi(By)

+ 3 Topr Topromi1(Gerhom — Tevh-m)Gerh-m-1-- - Ge(Br)

+ Togg D1 (Gr — Tx)(By) -

Using (3.5), (3.6) and (3.8), the norm of the right side can be estimated by

6
ﬁ‘le(f + k) k(€4 1)[k + £/2]|| Be |l (31,
04K+ 1)
SNV 14 ¢+ 1)—(k ~ | Brll () -

Using Stirling’s formula we find that

)

(C+k+1)! B (1+ k+1>£+k+3/2€k+1 e
0 ~ ¢ ©

which is bounded by Dj¢¥t1 where D;, is some constant that depends on k. This
proves (3.7). O

Proof of Theorem 3.2. The proof is now a word by word translation of the one given by

McKean [19] for the classical case. We start by writing &y = Z E.Zf, so that
=0 "

oo é
Tr(Pn.ron(Br @V 7% 14)) Z i Tr(on %% (Br @V 7% 14)) (3.9)
=0

using that &y . is self-adjoint. By what has been explained above, for £ > 1
Tr(onZ5 (Br @~ 7% 13)) = Tr(onGrar-1Grqe—2 -+ Gr(Bi) @~ 1 1y))

Now using (3.5), we see that

tt _ tt
E' Tr(onZn (B @Y % 1y))| < E4€+1(€ +k—1) k|| Bell ) -
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Using Stirling’s formula we find that

+k—
(L+k—1)! ~ 1 14 E— 1)\ th1/2 1= (h=1) < 1 (e(k_l))kfl/Z o
Ok —1)! (k—1)! / ~ (k=1 '

Then since Y_,2, t*4°¢* converges uniformly for |t| < 1/4. We see that the series on the
right in (3.9) converges at a rate independent of N for all 0 <t < 1/4.

We are now in a position to take the limit N — oo term by term. Using (3.7) for
N > { + k, we obtain the estimate

| Tr(on-Z5 (Br @~ 7% 14)) — Tr(onThye—1---Tu(By) @V K1 14))|

Cp4*
< 20 Byl

Thus,

N—k ¢
t —k—t—
‘Z i TY (onZx (Be @V 5 13)) = 71 Tr(onTere—1- - Tp(By) @+ 117{))‘
=0

N—k
t - —Rk—F—
< Z E‘TT(QNXKI(B;@ @N* 1)) — Tr(onThie—1 - Tr(By) @V F* 11H))‘
=0
N—k oo
k+2 Z ko
N ; ; () 02 Bl ats) < ;415 02| By |l a3 » (3.10)

provided that 4¢ < 1. Again, the reason for summing up to N — k only is that for
£ > N — k the expression 'y, is not defined. By what we have proved at the beginning,
however, the tail of the sum makes a negligible contribution in the large N limit. We
have shown before that the power series (3.9) converges uniformly in N for ¢ < 1/4. It
follows from (3.10) that the power series

E ETr(QNFk+271"'Fk(Bk) QN R 1))
=0

also converges uniformly in N for ¢ < 1/4. Hence taking the limit N — oo yields

oo

. - ¢
lim Tr(Pnron (Br @Y 150) = > 5 Tr(@"pTyer -+ T(By)) -
N—oo —0 14

If we specialize to the situation where By = X; ® --- ® X}, then, as explained before,
the right side can be written as
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x4
t 0!
Sou X i e ey D)X @ (D, - T X
(=0 fdeglp=t L k:
ot 140
=15, ) 71 @™ (T T1)X,]
=0 "

For the same reasons we have for any 1 < j <k

0
=

Tr[@ o p(Ty---T1)X,] = lim Tr(Pyron(X; @V 1y))
N— oo

and thus
lim Tr(Pyon(X1 @ @ X @V F 15)] = TF_) lim Tr[ P 0w (X; @V 1))
N—o0 N—o0

which proves that Py on is p(t)-chaotic for ¢ < 1/4 where

o0 ¢
(1) = 3 GITT - TH )] (3.11)

and I'} : B(Hy41) — B(Hy) is the adjoint of T'y, i.e.,

k

Ti(Bi1) =2 Trea[2ips1 (Brsr) — Bryal - (3.12)
i=1

Pick any T' < 1/4 and chose as initial condition the state &n r on which is p(T')-chaotic.
Applying the previous argument one has propagation of chaos up to time 27'. Continuing
this way one obtains propagation of chaos for all times, which proves Theorem 3.2. O

3.2. Quantum convolution and the Quantum Kac-Boltzmann equation

In the classical case, the single particle density satisfies the Kac-Boltzmann equation.
In the quantum case, it satisfies a quantum analog of the Kac-Boltzmann equation, as
we now explain.

3.4. Lemma. Let o(t) = ¢~ g for a symmetric density matriz o9 on Hy. Then the one
and two particle reduced density matrices of o(t) are related by

G000 =21 | [@oUEEP U@ - 20| . G
C
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Proof.

d
a9(1)(t) =Try. N [ng(t)]

9 N
T | g 2 [ d(0) [Ur0)00(0)U7(0) - oft)]
C

~Tr, |2 / (o) [U1.2(0)2(t)T7 5(0) — o(t)]
C

where the symmetry was used in the last step. Now move the trace Trs . n inside the
integral onto the state p to obtain the result. O

Observe that if o (t) = o™ (£)® 0™ (t), then (3.13) would reduce to a closed equation

for oM (t):

G0 =21 | [ @U@V e OO @) | - V6. G
c

This brings us to the following definition:
3.5. Definition (quantum Wild convolution operator). Let (C,U, v) be a collision specifi-

cation. The corresponding quantum Wild convolution is the bilinear from 7 (H) x .7 (H)
to Z(H) sending (A, B) to A * B where

AxB=Tr / (o) U (0)[A ® BIU*(0)| = Tra[ 2(A ® B)] (3.15)
C

where 2 is the operator defined in (2.36).

Note that for any A, B € 7 (H),
Tr[A % B] = Try / U(0)[A ® BU* (0)do
C

— [ avo)talae B = 1A LB
C

Furthermore if A and B are non-negative operators, then A x B is also non-negative. In
particular, for p € G(H), px p € S(H), and consequently
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d
3P0 = 2(p(t) * p(t) — p(t)) (3.16)
is an evolution equation in &(H). To see that is has a unique global solution, write it in

d
the equivalent form T (e*'p(t)) = €**p(t) * p(t), which, given the initial state py, can be

integrated to obtain

p(t) = e ' po + /62(54)/)(3) *p(s)ds . (3.17)
0

The equation (3.17) may be solved by iteration as shown by McKean in the classical
case, and the unique solution may be represented as a convergent sum over “McKean
graphs”.

3.6. Definition (The Quantum Kac-Boltzmann Equation). The Quantum Kac Boltzmann
Equation (QKBE) is the evolution equation G(H) given by

S ol1) = 2p(1) * (1) — pl1)) - (3.18)

3.7. Theorem. Suppose that {on(0)}nen is p(0)-chaotic, and that for each N, on(t) =
exp(t-Zn)on(0) for all t > 0. Then p(t), defined in Theorem 3.2, satisfies the Quantum
Kac-Boltzmann Equation.

Proof. Recall from Lemma 3.4 that

GO =21 | [ U@ 0" (0) - 60|
C

where gy is a chaotic sequence and gn(t) is a shorthand for &n pon. Testing this
equation with a bounded operator X € #(H) we get

ST (X o) (1)) = 2 TH{X Ty / (o) ()[eN (U* () — o ()]
C

Using Theorem 3.2 we may take the limit as N — oo and interchange it with the integral.
This is legitimate for ¢ < 1/4 since the power series defining ox(t) converges uniformly
in N. This yields

% Tr(Xp(t)) = 2 Tr[X Tr /dV(U)U(U)[p(t) ® p(t)JU"(0) = p(t) @ p(t)]
C
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Another way of deriving this result is to differentiate (3.11) with respect to ¢ and obtain

d N~ e e
Eﬂ(t) =1 Z Ta- T (@)
=0

=

which, by what has been discussed in the previous section, can be written as

Li(p(t) ®@p(t) =2Tr2 2(p(t) ® p(t)) — p(t) . O
3.3. The quantum Wild convolution

The operator 2 defined in Definition 2.6 is the same as the operator 2 that arises in
the Wild convolution. In Example 2.8 we saw that 2 = E 4,. In general, when (C,U,v)
is ergodic, limy_, oo 2F = E 4,, but if v is uniform enough, as in Example 2.8, it may not
be necessary to take the limit. When 2 = E 4, it is possible to give an explicit formula
for the quantum Wild convolution A x B in terms of the spectral decomposition of h
using the formula (2.15) for E 4,.

3.8. Lemma. Let (C,U,v) be a collision specification such that 2, as defined in terms of
(C,U,v) in (2.36), satisfies 2 =E4,. For E € Spec(Hs3) and j € J, define

ME = Z 1Spec(h) (E - Ej) . (319)
JjeET

Then Mg < oo for all E € Spec(Hs), and for all A, B € 7 (H),

Lspec(n)(€i +ex — €;)
Mei"l‘ek

A% B = Z (Vi, Ay) (Whr, By)

i,j,k€T

) (¥4l - (3.20)

Proof. The fact that Mg < oo is a direct consequence of the compactness of the resolvent
of h. Write A = Z a; ;i) (;| and B = Z br.e|k) (e in terms of an eigenbasis of
,jET kteJ

h so that A® B = Z i, jbr,e| i @ Pr) (15 @ e|. Then
i,5k €T

2(A®B) = Y i bp e 2(0i@ve) (@) = D aiibreEa, (V@) (@) .

i,k €T i,jkLET
By (2.15), recalling (2.9),
E 4, (|90 @ ¥r) (5 @ thel) = Tr[Pr|vs @ Vi) (¥j @ Yellor = 6;,j6k 00,4 -

Therefore, 2(A® B) = Z a; ibg kOe;te, - For each E € Spec(Hs),
i,keJ
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1
Tralow] = 3= > Lspeotn) (B = €5)ls) (¥
Jjeg

and combining this with the expression for 2(A ® B) yields the result. O

The formula (3.20) simplifies further if h satisfies a certain non-degeneracy condition,
as shown in the next lemma. We first define an operator that will appear in the simplified
formula.

3.9. Definition (Diagonal projection). Let {1;} be an orthonormal basis of H consisting
of eigenvectors of h. The operator &), on J5(H) is defined by

Dn(A) =D (s, A4 (] -
jeT

P, is the orthogonal projection onto the commutative diagonal algebra that is generated
by the spectral projections of h.

3.10. Lemma. Let (C,U,v) be a collision specification such that 2, as defined in terms
of it in (2.36), satisfies 2 = E 4,. Suppose that for all i, j, k.0 € J, if e;+ej = e + ey,
then either i =k and j = ori=1{ and j = k. Then for all A,B € T (H),

AxB = % (TY[A)Z4(B) + T[B]Z(A4)) .
In particular, for p € G(H),

pxp=Dnp) -

Proof. Under the non-degeneracy condition, for all E € Spec(Hsz), Mg = 1 in case
E = 2¢; for some j € J, or else E = ¢; +¢; for some ¢ # j, and then Mg = 2. Therefore,
(3.20) becomes

AxB =1 3 (Ao Bo () sl + o) . 0 (321)

i,keJ

When the conditions of Lemma 3.10 are satisfied, the QKBE reduces to the linear
evolution equation

d

") = 2(Znp(t) = p(1)) - (3.22)

Since the conditions of Lemma 3.10 are satisfied for the collision specification in
Example 2.8, the QKBE for this example is linear. When the non-degeneracy condition
in Lemma 3.10 is not satisfied, then the map p — px p need not be linear on &(H), as
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Example 3.12 below shows. However, when 2 = E 4,, Lemma 3.8 shows that A x B =
Dn(A) = D (B), so that the quantum Wild convolution of p1, p2 € &(H) in this case is
really a convolution of the classical probability vectors on the diagonals of p; and ps.

However, when 2 # E 4,, but only limy,_, o, 2% = E 4,, the quantum Wild convolution
is a more interesting quantum operation.

3.11. Example. In this example, let (C,U,v) be the collision specification from Exam-
ple 2.9. Let a,b € [0,1] and let w, z € C satisfy |z|, |w| < 1 so that with

[a z lb w ]
pL=|_ and p2=|_ ,
zZ 1—a

w 1-—b
p1 and py are generic elements of G(C?2). Then using the basis from Examples 2.8 to
identify C2? ® C?2 with C*,

ab zb aw 2w
|z b(l—a) Zw w(l —a)
L p2= aw 2w a(l —1b) z(1—b)
(1-0z (1—-a)(1-0)

(3.23)

gl

zw (1—a)

Then by (2.20),

ab ézb %aw %zw

= La+b)—ab 0 Lw(l - a)
2(p1 ® p2) = 18 2 1 41

Faw 0 5(a+b) —ab 72(1—10)

lzw i-aw  L1-bF  (-a)1-b)

Note that Tro, the partial trace over the second factor, is obtained by adding up the
two diagonal 2 x 2 blocks, and Try, the partial trace over the first factor, is obtained by
taking the trace in each 2 x 2 block. Therefore,

S
+

) 5(2-0)

b
b) 1—1i(a+b) (3.24)

pP1* P2 =

— =
[
I

ool N

In particular, taking p = p1,

z

which is nonlinear in p. Note also, that in contrast with the classical case, the quantum
Wild convolution is not commutative; p; * pa # p2 * p1 when z(2 — b) # w(2 — a).
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3.12. Example. Take H = C3, so that Hy = (C3)®V. Define the single particle Hamil-

0 0 O
tonian h by h = |0 1 0| so that the N-particle Hamiltonian Hy = Zj\;l h; has
0 0 2

Spec(Hy) = {0,...,2N}. In particular Spec(Hz) = {0,1,2,3,4}. Let {11, 12, 13} be the
standard basis of C? so that hip; = (j —1)1);. Then the eigenspace of Hy with eigenvalue
2 is spanned by

PV1I®Y3, YR and Y3 Y .

Therefore,

Tralos] = (1) 1] + 2wl + ) s)

Take C to be the subgroup of U(9) that commutes with Hs considered as an operator
on CY. Let U be the identity map on C, and let v be the uniform Haar measure on %.
Using Lemma 3.8 it is easy to see that p — p x p is non-linear.

3.4. Steady states for the QKBE

Throughout this subsection we fix an ergodic collision specification (C,U,v), and let
* denote the corresponding Wild convolution. Let

h= Y el (3.26)

e€Spec(h)

be a spectral resolution of the single particle Hamiltonian h.
The steady state solutions of the QKBE are precisely the p € &(H) such that p = pxp.
The Gibbs states pg = Zgle_ﬁh are always steady states since

ps©pp =257 M € Ay

and thus U(0)ps®psU*(0) = pg®@pg for all o € C. It follows that 2(ps®ps) = pgRps,
and then that pg * pg = pg. Whether or not there are other steady states depends on
the spectrum of h in a way that will be specified below. For any density matrix p,
S(p) = —Tr[plogp] is the von Neumann entropy of p. The set of finite entropy steady
states turns out to be independent of the particular ergodic collision specification (C, Uv),
but depends only on h.

3.13. Theorem. Let h have the spectral resolution (3.26), and let p € S(H) be such that
p=p*p and S(p) < co. Then p has the form

p= > AP (3.27)

e€Spec(h)
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for non-negative numbers {Ac : e € Spec(h)} such that 3 cqpecn) Tr[Pe]Ae = 1.
Moreover, if {e;,ej,ex, e} C Spec(h) then
eitej=erte = logh +logh; =logA, +logl, . (3.28)
Conversely, every such p € G(H) is a steady state.

Proof. Recall that by condition (4v) in the definition of a collision specification, 2 com-
mutes with the map X — VXV™ where V is the swap transformation on Hs given by
Vo =1 ® ¢ for all ¢,9 € H. Therefore, for all bounded A on H,

TrIA® 14 2(p®p)] = Tr[V1yg @ AV 2(p ® p)] =
Trly @ A2(Vp @ pV*)] = Tr[ly @ A2(p @ p)] .
Consequently,
pxp="Tr[2(p® p)] =Tr:1[2(p @ p)] . (3.29)
By the subadditivity of the entropy,
28(p*p) = S(2(p®p)) , (3.30)
and then by (3.29) and the concavity of the von Neumann entropy

25(p* p) =2 —=Tr [2(p @ p) log(L(p @ p))]
> —Tr[(p p) log(p @ p)] = 25(p) - (3.31)
Since the von Neuman entropy is strictly concave, there is equality if and only if

o~ U(o)p ® pU*(0) is constant almost everywhere with respect to v, and then by
the continuity of o — U(o) and the fact that U(og) = 14,, this means that

o= U(o)p®pU(c) =p®p

for all o. By the ergodicity, this means that p ® p € As.

Therefore, when pxp = p, it is also the case that pxp = p where pkp = Tra[E 4, (p®p)]
is the Wild convolution corresponding to the uniform average over all of the unitaries
commuting with Hs. In this case, Lemma 3.10 applies and

p®@p=pkp=Zn(p) -

Hence if {1);};es is an orthonormal basis of H consisting of eigenfunctions of h, then
for some sequence {f;};ec7,

p="Y_ wilvi) ;] -

FISV
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It then follows that

pRp= Z sk |V5 @ i) (V5 @ Y| -

j.ked

for the right hand side to belong to Az, it is necessary and sufficient that whenever
ej + er = e¢ + em, then pjpg = popim. Taking m = k for some k such that py # 0, we
see that e; = e, implies that p; = p¢, and thus p has the expansion in the form (3.27)
and then by the same reasoning once more we obtain (3.28) O

Theorem 3.13 says in particular that if p is a steady state solution of the QKBE for an
ergodic collision specification, then p = f(h) for some real valued function on Spec(h).
This may be the only restriction. If & is such that whenever e; +e, = e;+ e, then either
e; = eg and e, = e, or else e; = e,, and ey = ¢4, then (3.28) imposes no restriction, and
indeed, we have seen that in this case, if p = f(h), so that p = Z5,(p), then px p = p.

On the other hand, suppose h has evenly spaced eigenvalues and there are at least three
of them. To be specific, suppose that dim(H) = n > 3, and Spec(h) = {0,1,...,n — 1}.
Then for each j = 1,...1n — 2, ¢;_1 + €j41 = 2¢;, and hence e, = \/Ac,_, Ac,,,. This
means that for some g € R, p =7 5 Le=Bh, (In finite dimension, negative temperatures
are allowed.) In general, the more ways a given eigenvalue E of Hy can be written as a
sum of eigenvalues of h, the more constraints there are on the set of steady state solutions
of the QKBE.

3.14. Definition (Steady states and collision invariants). Let h be a self adjoint operator
on H that is bounded below and has a compact resolvent. The set S 5 (H) consists of
those p € G(H) such that (3.27) and (3.28) are satisfied. The set S ,(H)° consist of
those p € G 5 (H) that are strictly positive. The set of collision invariants is the set of
self adjoint operators A of the form A =logp, p € Guo 1 (H)°.

The term “collision invariant” is justified by the next theorem.
3.15. Theorem. Let poo € Goo 1 (H)°. Then for all p € S(H),

Trllog(peo)p] = Tr[log(pec)p * p] - (3.32)

In particular, for every solution p(t) of the QKBE, and every collision invariant A,
Tr[Ap(t)] is independent of t. Moreover, for each pos € Soon(H) the relative entropy
D(p(t)||pso) is strictly monotone decreasing along any solution that is not a steady state
solution.

Proof. Recall that as a consequence of condition (i) in the definition of a collision
specification, we always have (3.29). Therefore,

2Tr[log(poo)p* p] = Trllog(poo @ pc)2(p @ p)] = Tr[2(log(pec ® poo))p & p] -
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However, since poo ® poo € Az, 10g(poo ® poo + €lyy,)) € Ao for all € > 0 (this is only
necessary if po has zero as an eigenvalue) so that

Q(IOg(poo ® Poo + 617—12)) = 1Og(poo ® Poo + 617-12) .

Therefore,

2 Tr[log(poo)p * Pl = Tr[l0g(pos @ poc)p @ p] = 2 Tr[log(peo)p] -

Now note that

D(p(t)]|po) = Tr[log(p(t))p(t)] — Tr[log(poc)p(t)]

and we have already seen that due to the strict convexity of ¢ +— tlnt, ¢ —
Trllog(p(t))p(t)] is strictly decreasing at each ¢ unless p(t) is a steady state. Finally,
from the Wild sum representation of p(t), it is clear that unless p(0) is a steady state,
p(t) is not a steady state for any finite t. O

3.16. Remark. When &, 5, (H) consists only of the Gibbs states Zge™?", then Theo-
rem 3.15 provides only one conservation law, namely that Tr[hp(¢)] is constant so that
the energy is conserved. This is the familiar situation with the classical Kac-Boltzmann
equation. However, we have seen that if every E € Spec(Hs) is the sum of a single (un-
ordered) pair of eigenvalues of h, then G ;(#) consists of all p € &5 (H) such that p
commutes with A. This means that the diagonal entries of p in an eigenbasis for h are
conserved, as we have seen.

We are now ready to study the basins of attraction of the steady states. Fix some
Poo € Goon(H). Let p(t) be the solution with p(0) = pg € &(H). For lim; 00 p(t) = poo
to be valid in the topology making all of these functionals continuous, we require that
for all poo € Goo,n(H)° (so that ps has no zero eigenvalues),

Trflog(pec)po] = Tr[log(pec)pos] -

We are interested in conditions under which this is also a sufficient condition.
3.5. The linearized QKBE

We begin the investigation of the long-time behavior of solutions of the QKBE by
linearizing it in the vicinity of a steady state. This has to be done with some care: To
obtain a purely dissipative linear equation on a Hilbert space, we must choose the inner
product to reflect some dissipative feature of the non-linear equation. This means the
inner product must ultimately derive from the dissipativity of relative entropy for the
QKBE.
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We briefly recall the linearization of the classical KBE. Let M(v) = (2m)~1/2¢=1v1"/2
be the steady state about which we shall linearize. Let p(v) be a probability density on
R such that

/ p(v)vidv = / M(v)v*dv =1, (3.33)
R

R

so that p has the same conserved energy as the steady state M. Let p(t) denote the
solution of the classical KBE with initial data p. Suppose that S(p) is finite. (In the
classical case, this means S(p) > —oo since S(p) < S(M).)

We now write

p=M1+f) (3.34)

where /U2f(v)M(v)dv = 0. Assuming that f is “small”, we make the expansion
R

S(p)=S(M(1+f)) = —/[1ogM +log(1+ )IM(1 + f)dv = S(M) — %/fQMdv .
R R

The Hilbert space we use to linearize the Kac-Boltzmann equation then is L?(R, M (v)dv)
and the perturbation p of M is written in the form p = M (1+f), with f € L*(R, M (v)dv)
because then for f small in this Hilbert space, %”f”L?(]R,M(v)dv) is the second order
approximation of D(M (14 f)||M). Using this scheme to linearize the KBE yields a purely
dissipative linear equation in L?(R, M (v)dv) because of the close connection between the
Hilbert space L*(R, M (v)dv) and the Hessian of S(p) and hence D(p|M).

‘We seek to follow this model in the quantum case, but we must take into account that
due to non-commutativity, there are many natural analogs of L?(R, M (v)dv) when we
replace M be a density matrix on H. Consideration of the entropy leads, as above, to
the useful analog.

For the rest of this section, to postpone technical difficulties, we suppose that H is
finite dimensional. If p € &(H) is strictly positive, and A is self-adjoint in Z(H), then
if Tr[A] =0, p+tA € SG(H) for all |¢| sufficiently small. Then

= Tr[log(p)4] .

d
aS(p + tA) .

Moreover,

o

d
| tA
pr og(p +tA)

1 1
:/ A ds .
o Slutp slutp
0
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For any positive operator B € %(H), define the linear map [B]™! : B(H) — B(H)
by

o0
1 1
B 'A= A ds .
(5] /31H+B sly+B "
0

This is a non-commutative version of “division by B”. The inverse operation, [B] :
B(H) — B(H) is given by

1
mA:/BmF*®,
0

and this is a non-commutative version of “multiplication by B”. The operation inverse
to the differentiation of the logarithm mentioned above is given by

‘ log B+tA
— e .
dt 1t=0

Using the Duhamel formula it follows that

1
elog B+tA _ elogB + /e(l—s) log BtAe(log B+tA)sd8
0

from which the formula for [B]A easily follows.
The computations made above show that the Hessian of p — S(p) at p is given by
the quadratic form Tr[A[p]~!A]. That is, with p and A as above,

2

d
—S(p+tA)

dt2 = Tr[A[p}ilA] .

t=0

The Bogulioubov-Kubo-Mori inner product on Z(H) with reference state p € G(H) is
the inner product (-,-)pxa given by

(A, B)pren = Tr[A*[p] B] .
We are now ready to linearize. Fix some strictly positive steady state p.. Choose

some p in the possible basin of attraction of po, that is “close” to po,. That is, for all
strictly positive steady states puo,

Tr[log(po)p] = Tr[log(pes)poo] -

This is the quantum analog of (3.33).
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Define a self-adjoint operator A by A = [poo] 1(p — poo) SO that

p=[pc](1+A4). (3.35)

This is the direct analog of (3.34).
We now apply this to p(t) = [po](1 + A(t)) and discard the terms that are quadratic

in A(t) in the QKBE. We obtain:

d

A0 =2 ([poc] ™ [poo * ([ A1) + ([po] A1) % poo] =[] A(F)) - (3.36)

3.17. Definition. For a strictly positive steady state po, the linearized QKBE operator
is the operator K on Z(H) defined by

KX =2 ([poo]) poo * X + X * poc] — X) .

The linearized QKBE at p, is the equation

d

SX(t) = KX() .

3.18. Theorem. Let K be the linearized Kac-Boltzmann operator at a steady state poo.
Let {-,-)Bxm be the corresponding inner product on B(H). Then for all A,B € B(H),

<B,’CA>BKM = <ICB,A>BKM and <A,ICA>BKM § 0. (337)

Moreover (A, KA)pxam = 0 if and only if A is in the linear span of the collision invari-
ants.

Proof. From the definition,
(B,KA) picas = 2TH[B" (poe * ([poc]A) + ([poc] A) » pocl] = THB*[plA] . (3.38)

We now compute

1
Tor B (19 ) poc) = [ T (B9 La0) (5 Aple* # po s
0
1
= [ Towl(B @ 10020 Ark " © o )ls
0

B /TI.HQ[(B © IH)Q((pOO ® pOO)sA ® lﬂ(poo & poo)l_s]ds
0
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since each U(o) commutes with poo ® peo, it follows that

1
Try[B* (([poc]A) * poo] = Tryy | B Tz /(poo ® Poo)’Z(A® 19)(poo ® POO)178 ds
0

A similar computation shows that

Trp (B (9o * ([pac) A)] = Try, | B Try / (Poe ® poe)* (Lt & A) (oo ® po) " | dls
0

This gives us an alternate expression for K:
KA = [po] ™ ([poe ® poc] 2(A@ 1y + 13, @ A)) — A . (3.39)
It is now easy to see from the computations above that
(B,KAYpxym = (KB, A)pr M - (3.40)
To display the fact that
(A, KA)prm <0, (3.41)

and to identify the null space of IC, it is useful to express K in yet one more form in
which the constituents of the operator 2 are written out explicitly which permits further
symmetrization. Taking advantage of the fact that

[P0 @ Poc](A® 1y + 19 @ A) = [psc] A ® Poo + Poo @ [Pec]A
we have
Tra [[poc @ poo) (A @ 1y + 13y @ A)] = [pac] A

since Tr[[poc]A] = 0. Therefore, we can rewrite (3.39) as
[poc] KA =

Try /du[poo @ poo) (U(O)A@ 1y + 13 @ AU*(0) — [AR 1y + 15 @ A])| . (3.42)
C

To shorten the expressions that follow, we temporarily introduce the notation A =
AR1y+1y®Aand B=B®1y+1y @B for A, B € #(H). Then since (B, KA)pxn =
Tr[B*[poo| LA], we have that
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(B,KA) prcar = Tra, B*®1H/Hﬂmn®pwHUWLMﬁW)*A)

c
= % / dv Try, [B*[poc ® poo] (U(0) AU (0) — A)]
c

C

% /dv Try, [U*(0)B*U(0)U™(0)[poo @ poc] (U(0) AU (o) — A) U(0)]
C

N | =

/dv Try, [(U*(0)BU(0))"[Poc @ poo] (A= U™(0)AU(0))]
C
1 ol e .
=3 /dVTrHQ [(U(0)BU"(0))"[poc @ poc] (A —U(a) AU (9))] -
C

The second equality is from the invariance under the swap, the third equality is the
unitary invariance of the trace on Hs, the fourth equality is trivial, the fifth equality is
that peo ® poo commutes with each U(c), and the sixth equality is the invariance under
the adjoint. Now averaging the expressions in the second and sixth lines, we have

(B,KA)Brm =

/ A Try, [(B — U(0)BU(0))" [poe ® poc) (A — U(0)AU*(0))] . (3.43)
C

N

From this expression it is immediately clear that (A, CA)pxy < 0, and there is equality
if and only if A commutes with each U(o), and hence that A is a collision invariant. O

There is a simpler proof of the fact that (4, CA)pxa < 0 based directly on entropy
dissipation. This is a consequence of the monotonicity of the entropy under the nonlinear
QKBE.

To see this, consider a self-adjoint A such that

(log(pec), A)prrr =0
for all strictly positive steady states poo. Then for all u with |u| sufficiently small,
Pu = [poo](1p + uA) = poc + u[psc] A

belongs to &(H) and Tr[log(peo)pu] = Tr[log(pos)peo] for all strictly positive steady
states poo. Let py(t) be the solution of the QKBE with initial data p,. By the entropy
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production inequality, for all 4 with |u| sufficiently small,

d

&S(pu(t)) = —2Tr[log pu(pu * pu — pu)] = 0 .
t=0

That is, for all u with |u| sufficiently small,

Tr[log pu(pu * pu)] < Trlpy log(pu)] -

Define f(u) = Tr[log pu(pu * pu)] and g(u) = Tr[py log(py)]. Evidently f(0) = g(0). Also,

f'(0) = ¢'(0) = Trllog(poc) [poc] A] = 0 .

It follows that f”(0) < ¢”’(0), and doing the computation, this proves (3.41). However,
this approach does not seem to characterize the null space of .

3.19. Definition (Spectral gap of the linearized QKBE). The spectral gap Ak p is defined
by

(A, KA)Br M

A =inf{ —1—~——
KB {<A,A>BKM

: (B, AYprpm = 0 for all collisions invariants B} .
At this point it is not clear that in general Axp > 0 or that Agxp is independent

of pso. (Both things are true for the simplest model with H# = C? discussed above, as we
shall see.)

3.6. Lyapunov functionals

We briefly return to the subject of convergence to equilibrium for the QKBE. McKean
proved [18] a theorem for the classical Kac Boltzmann Equation that explains the special
role of the entropy in this theory. He showed that the only functionals on probability
densities on R of the form p — [p ®(p(v))dv, with @ : (0,00) — R, that are monotone
for every solution p(v,t) of Kac’s equation (on which the functional is defined), are those
in which ® has the form ®(¢) = atlogt + bt for some constants a and b.

We close this paper by using the results obtained in this section to prove a quantum
analog in the case in which for each energy E there is a unique invariant state, as in the
case considered by McKean.

3.20. Theorem. Let @ : (0,t) — R, and suppose that Tr[®(p(t))] is monotone for every
solution of the QKBE for some collision specification such that at each energy E there
is exactly one invariant state ps. Then ® necessarily has the form ®(t) = atlogt + bt
for some constants a and b.
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Proof. Let ® be such a function. Let po, be the steady state of the QKBE at a given
energy E. We may assume that Tr[®(p(t))] is monotone decreasing along solutions.

For € > 0 let p := [poo](1+€A) be a density matrix that is a small perturbation of ps.
The monotonicity implies that

(@' ([poc](1+€A)), KA) prers <0

By continuity it follows that

(D' (poo) KAYgrM <0,

and then by Theorem 3.18, ®'(p.,) must be a collision invariant. If p., is the only steady
state at a given energy E, then the equation

P’ (poo) = alog poc +b

must be valid for some a. As one varies F, the eigenvalues of p,, vary and one must have
&' (z) =alogx +b

meaning that ®(z) = axlogx + (b — a)z.
Hence when there is a unique invariant state for each energy E, entropy is the only
non-trivial Lyapunov function, exactly as in the classical case examined by McKean. O

The investigation completed in this paper sets the stage for the investigation of the
rates of approach to equilibrium for the QKME, the QKBE, and the linearized QKBE,
and the quantitative relations between these rates. The theorem just proved explains
why, just as in the classical case, relative entropy will play an important role in this
investigation. In the classical setting, Cercignani [6] had conjectured that an inequality
bounding the entropy dissipation from below by a constant multiple of the relative en-
tropy would be valid; see [4]. This turns out not to be true, either at the level of the
Kac-Boltzmann equation [1] or the Kac Master equation [5,9] — though it is valid for
some non-physical collision models, and, surprisingly, this can be used to study physical
models, and in physical models, Cercignani’s conjecture is almost true [22]. The known
counter-examples use states in which a very large fraction of the energy is concentrated
in a very small number of particles.

Such states may be easier to rule out in the quantum setting: Already in the discussion
following Corollary 2.27, we have introduced the quantum analog of Cercignani’s conjec-
ture. Certainly in models in which the single particle state space is finite dimensional,
states in which most of the energy is concentrated in a small fraction of the particles
cannot exist. Quantum entropy production will be investigated in forthcoming work. The
present investigation provides a fairly detailed and complete description of the possible
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steady states, which sets the stage for this, although even here interesting questions re-
main open. For example, can one classify the functions ® yielding monotone functionals
as in the last theorem when the class of collision invariants, and steady states, is large?
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