PHILOSOPHICAL
TRANSACTIONS A

royalsocietypublishing.org/journal/rsta

L)

Research

updates

Cite this article: Vaidyanathan PP and
Tenneti S. 2019 Srinivasa Ramanujan and
signal-processing problems. Phil. Trans. R.
Soc. A 378: 20180446.
http://dx.doi.org/10.1098/rsta.2018.0446

Accepted: 10 July 2019

One contribution of 13 to a discussion meeting
issue ‘Srinivasa Ramanujan: in celebration of
the centenary of his election as FRS"

Subject Areas:
electrical engineering

Keywords:

Ramanujan-sums, periodicity,
Ramanujan-subspace, Ramanujan filter banks,
Farey-dictionaries

Author for correspondence:
P. P. Vaidyanathan
e-mail: ppvnath@systems.caltech.edu

THE ROYAL SOCIETY

PUBLISHING

Srinivasa Ramanujan and
signal-processing problems

Palghat P. Vaidyanathan and Srikanth Tenneti

Department of Electrical Engineering, California Institute of
Technology, Pasadena, CA, USA

PPV, 0000-0003-3003-7042

The Ramanujan sum cy(n) has been used by
mathematicians to derive many important infinite
series expansions for arithmetic-functions in number
theory. Interestingly, this sum has many properties
which are attractive from the point of view of
digital signal processing. One of these is that c4(n)
is periodic with period g, and another is that it is
always integer-valued in spite of the presence of
complex roots of unity in the definition. Engineers
and physicists have in the past used the Ramanujan-
sum to extract periodicity information from signals.
In recent years, this idea has been developed further
by introducing the concept of Ramanujan-subspaces.
Based on this, Ramanujan dictionaries and filter
banks have been developed, which are very useful to
identify integer-valued periods in possibly complex-
valued signals. This paper gives an overview of
these developments from the view point of signal
processing.

This article is part of a discussion meeting issue
‘Srinivasa Ramanujan: in celebration of the centenary
of his election as FRS'.

1. Introduction

In 1918, Srinivasa Ramanujan introduced a summation,
known today as the Ramanujan sum [1]. The gth
Ramanujan sum is defined by

q q
=Y Wir= 3" W, (1.1)
k=1 k=1
(kg)=1 (kg)=1

where W, = e 27/7 and (k,q) denotes the gcd of k and 4.
So the sum runs over those k that are coprime to g. For
example, if g =10, then k € {1, 3,7,9} so that

c10(m) = &27/10 | i6mn/10_y (jl4mn/10 | (j187n/10
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Ramanujan used this sum to derive many important infinite series expansions for arithmetic
functions in number theory [2—4].

Many decades later, some scientists and engineers began to recognize the value of Ramanujan-
sums in signal processing [5-9]. It was found useful in identifying periodicities in signals, and
extracting periodic components. The relevance of such ideas was also noticed in the physics
community [10,11]. However, there were only some limited activities in this direction, and deeper
potentialities of the Ramanujan sum for signal representation largely remained unexplored. More
recently Ramanujan subspaces were introduced in [12,13], which gave rise to a new representation
for periodic signals. From this, it was possible to develop new dictionaries called Ramanujan
periodicity dictionaries to represent and extract periodic components [14].

Ramanujan-sum based methods for identifying periodicities work differently from traditional
Fourier based ones, and offer advantages when the data length is short, and multiple hidden
periodicites have to be identified, especially when the periods are integer-valued (although
the signals themselves might have non-integer, even complex, values). Furthermore, when
periodicities change with time, one can track the changes by generating a time-period plane plot
using a so-called Ramanujan filter bank.

(a) Paperoutline

In this paper, we present an overview of some of these recent results. The main goal is to provide
a lucid introduction so that the reader may be inspired to study the references in depth and
go deeper into the proofs and details. These details can be found in the papers cited in the
various sections, and in the website ‘Ramanujan Periodicity Project’ maintained by the authors,
which can be accessed at (http://systems.caltech.edu/dsp/students/srikanth/Ramanujan/, The
Ramanujan Periodicity Project). Section 2 describes the basic limitations of the discrete Fourier
transform (DFT) in the representation of signals with integer periodicities. Section 3 introduces
Ramanujan subspaces and their role in representing periodic signals. Ramanujan dictionaries,
which offer a practical method to find such representations, are introduced in §4. Section 5
discusses Ramanujan filter banks which are very useful to analyse periodic signals whose period
is localized and varies with time. Some further developments are described in §6, and §7
concludes the paper.

(b) Notations

The following notations are used throughout.

— Discrete-time signals are denoted by notations such as x(1) where n is an integer
representing integer time. One can merely regard these as sequences indexed by 7.
— The quantity Wy is defined as

W, =e127/1, (1.2)

where j = +/—1. (In keeping with electrical engineering tradition, we use j instead of i.)
Wj is a root of unity, since WZ = 1. The subscript q in W, is sometimes deleted if it is clear
from the context.

— (s the g-dimensional space of complex vectors. For a matrix A, the transpose, conjugate
and transpose-conjugate are denoted as AT, A* and A', respectively.

— The abbreviations Icm and gcd stand for least common multiple and greatest common
divisor, respectively.

— The notation (k, g) represents the gcd of the integers k and 4. So (k, 4) = 1 means that k and
q are coprime.

— The quantity ¢(g) is the Euler’s totient function [3]. It is equal to the number of integers
kin 1 <k < g satisfying (k, q) = 1. For example if 4 = 10, then the integers 1,3,7 and 9 are
coprime to g, so ¢(10) = 4.
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— The notation g;|g means that g; is a divisor of g (i.e. a factor of q). For example, if =10,
the divisors are 41 = 1,42 = 2,43 =5 and g4 = 10. A proper divisor of g is a divisor of g less
than g.

— §; denotes the Ramanujan subspace associated with the integer g (defined in §3a).

(c) Preliminaries
A discrete-time signal x(n) is periodic if there exists an integer R such that
x(n) =x(n + R) (1.3)

for all n, and the integer R is called a repetition interval. The period P (an integer) is the smallest
positive repetition interval [15]. It can be shown that any repetition interval is an integer multiple
of P (i.e. P is a divisor of any repetition interval). If x1 (1) and x2(1) have periods P; and Py, their
sum x1(n) + x2(n) has a repetition interval R =lem (Pq, P2), so its period P is either this lcm or a
proper divisor of it. Next, we mention some important properties of Ramanujan sums. More are
summarized in [12].

(i) Since (k,q) =1, each term in (1.1) has period exactly g (it cannot be smaller, as there are
no uncancelled factors between k and g). Most importantly, it can be shown, though not
obvious [12], that the Ramanujan sum (1.1) has period exactly equal to q (and not a proper
divisor of g).

(ii) Secondly, c4(n) is real and integer valued, inspite of the complex exponentials in the
definition [1,12]. For example

ClO(”)={4/ 1/_1/ 1/ _1/ _4/ _1/ 1/_1/ 1} (1.4)

in the first period 0 <7 < 9. The integer property is very useful in implementing c,(n) as
a digital filter [15,16]. Note that |c;(n)| < ¢(g) from (1.1).

(iif) Thirdly, the periodic functions cg (1) and cg,(n) are orthogonal for g1 #qp, that is,
Zf;lo ¢q,(n)cg, (n) = 0, where [ is any common multiple (e.g. lcm) of 41 and ¢5.

2. Fourier methods and integer periodicities

Assume we are given N samples of a discrete-time signal x(1), namely x(n1),0 <n <N — 1. Let

N-1
X[k]=) " x(mWy, 0<k<N-1 2.1)
n=0
be the N-point DFT [15] of these N samples of x(1). Then the DFT representation of x(1),0 <n <
N-—-1is
1 N-1 1 N-1
—— —nk _ j2nk/N
x(n) =5 k;) XIWY™ = & ;; X[k] e k/N. (2.2)

If x(n) has period P < N, can we always find P by examining a plot of |X[k]|? The answer depends
on the relation between P and N.

If P is a proper divisor of N, that is N = PK for some integer K > 1, then it can be shown that
only terms of the form el2min/P | integer, can be non-zero in (2.2). Since

@f2min/P _ g2z Kin/N. (2.3)

this means that only the DFT coefficients X[KI], i.e. X[(N/P)!], are possibly non-zero. For example,
if N =32 and P = 8, then only X[4] are non-zero as demonstrated in figure 1a. Thus, by examining
this systematic sparse pattern we can identify the period P. On the other hand, if P is not a divisor
of N, this is not so easy, as the DFT becomes non-sparse. Figure 1b shows this for N =32, P=9.In
this case, it is not possible to estimate the period from examining the plot of |X[k]|. If the DFT has

Ov08L0 ‘8LE ¥ 205§ SUbI] J14qeisy/jeuinol/BioBuystigndizanosiedos



(a) period-8 signal x(n) magnitude of 32-pt DFT
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Figure 1. (a) A period-8 signal and (b) a period-9 signal. The 32-point DFT magnitudes are also shown. In (a), the period can be
inferred from the sparse structure of the DFT plot because 8 is a divisor of 32, but this is not so in part (b) [13].
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Figure 2. (a) A short segment (N = 100 samples) of a sum of three periodic signals, with hidden periods 5, 7 and 9, (b)
magnitude of the 100-point DFT, (c) magnitude of the 200-point DFT obtained using zero-padding and (d) the strength versus
period plot using the Ramanujan dictionary. (Online version in colour.)

a peak at k = kg and multiples thereof, we can estimate the period to be “approximately” N /ko but
this estimate is in general not an integer. For small N especially, peaks in the DFT are not reliable
indicators of integer periodicities in x(r).
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The problem becomes even more complicated if x(n) is a sum of periodic components. Multiple
hidden periodicities produce multiple sets of peaks in the DFT with overlaps, and can completely
fill the DFT domain, so that no obvious patterns are discernible. Say

x(n) = x1(1) + x2(n) 4 x3(n), (2.4)

where the components x;(1) have periods P; <N. Then x(n) has period P equal to either
lem(Py, P2, P3), or a proper divisor of this lem. If P > N, then x(n) does not even ‘look” periodic
in 0 <n <N — 1. This is demonstrated in figure 2a for P =5, P =7 and P3 =9, with N =100. It
is hard to judge the hidden periods P; by examining the peaks in the plot of the 100-point DFT
(figure 2b). Computing the value of 27 /w at the peaks we find that some of them correspond
to periods 5,7 and 9 as indicated, but the peak corresponding to period 7 is not sharp. We
can use zero-padding to compute a 200-point DFT, which reveals period 7 more clearly (part
(c)), but there are many new peaks, making it hard to find true periods. We will see, however,
that Ramanujan subspace methods can identify the periods more easily, and perfectly. Thus, for
the same signal x(n), figure 2d shows the so-called strength-versus-period plot, obtained using
Ramanujan subspace dictionaries [14]. The hidden periods are clearly seen. The extra peak at 3
merely indicates a harmonic in the period-9 component. The non-zero background is due to small
noise added to the periodic signal in the experiement (5 dB SNR).

3. Ramanujan subspace representations

We now review the fundamental principles behind Ramanujan-subspace representation of signals
[12-14]. First observe that the N basis functions in the DFT representation are

iy =whr, 0<k<N-1, 3.1)

where the data length is N. These basis functions are periodic signals with periods equal to
divisors of N. For example if N =10, then only the four periods 1,2,5 and 10 are present in the
10 basis functions. The periods 3,4, 6,7,8,9 are not represented in the basis. Instead of the DFT,
suppose we develop a redundant representation (a frame rather than basis) with possibly many
more ‘atoms’ than the data length:!

Q q-1
x(m)=) "> agW". (3.2)

q=1k=0

Here, the atoms WX include functions that have all the periodicities in the range 1 <g<Q <N.
Thus, there are basis vectors available to represent period g whether g is a divisor of data length
N or not. Note that for every [k, g] pair, we can write

W = e P/ = ¢ I2HA, (33)

where (/k\,ﬁ) =1. So there are many repetitions in the set of all W’,; in (3.2). If all repetitions are
removed, a minimal set of atoms needed to represent all periods in 1 < g < Q will emerge. This
includes only those W’q‘” for which k and g are coprime. So (3.2) can be replaced with [17]

Q Q
xm)=Y ) Y bgWE =3 N e TR, (3.4)

q=1 1<k=<q q=1 1<k=q
(kq)=1 (kq)=1
————

call this x,(17)

Now we are ready to explain how the Ramanujan subspace comes about.

!t is more convenient to use W’,;” instead of its conjugate W’ k1 as in (2.2). This does not affect any conclusions.
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(a) Ramanujan subspace, Farey series and lcm property

The Ramanujan subspace [12], denoted as S, is defined as the span of
(W, =2 ®/am, - where 1 <k <q, (k,q)=1. (3.5)

Equivalently, we can take it to be the span of {W},;” = e 27k/0m) Thus, the signal xq(n) defined
in equation (3.4) belongs to S;. The space S; has dimension ¢(q) (Euler totient). Now let us write
(3.4) in the simpler form

Q
x(n)=Y x4(n), x4(n) €S, (3.6)

q=1

Here, Q is the maximum value of the period to be represented. The following properties of S; are
proved in [12].

(i) Any non-zero signal in S; has period exactly 4 (i.e. it cannot be a proper divisor of ¢).
(i) The spaces Sy, and S, are orthogonal for g; #q;, over any interval that is a common
multiple of g; and g;.

So (3.6) is a decomposition of x(n) in terms of an orthogonal set of signals where the component x4(n)
has period q and belongs to the ¢(q)-dimensional Ramanujan subspace S,;. But since S; only has
dimension ¢(g), it does not include all period-g signals. In fact, an arbitrary period-g signal can be
decomposed into a sum of components in S;, where g; are divisors of g [13].2 The beauty of the
decomposition (3.6) is the so-called lem property [13]. Namely, once we have obtained a unique
decomposition (3.6), suppose the non-zero terms are

Xq, (), Xq,(1), . .., Xg (). 3.7)

Then the period P of x(n) is given precisely by

P=lem(q1,92,...,9K). (3.8)

It cannot be smaller, that is it cannot be a proper divisor of this lcm, as proved in [13].
Note that the set of rational numbers k/q in the frequencies 27k/q represented in (3.4) includes

all rationals of the form

k

pl l<k=g,1=q=Q (3.9)
The restriction (k, ) =1 merely eliminates duplicate entries. The sequence of numbers in (3.9) is
called a Farey series and has interesting applications in number theory [3]. The total number of
terms in (3.4) will be denoted as @ (Q). Thus

Q 3Q2
P(Q) =) ¢(@)="—5 +0(Qlog Q) ~3Q*/x*. (3.10)

=1

The closed form expression on the right is well known [3]. Thus there are O(Q?) terms in (3.4)
when compared with the DFT representation which has N terms.

(b) Relation to Ramanujan sums

Recall that the Ramanujan sum is defined as in (1.1). Clearly, the Ramanujan sum cq(n) belongs to the
Ramanujan space S;. In fact, c;(n) can be used to generate a real, integer, basis for the Ramanujan

The elements of S, can either be regarded as length-q vectors or as infinite length vectors with elements repeating with
period g, depending on what is more convenient in a particular context.
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space S;. Thus, it can be shown [12] that the ¢(g) successively shifted signals

cg(n),cq(n —1),...,¢c4(n — ¢(q) + 1) (3.11)

are linearly independent and form a basis for S;. Since c,;(17) has period g, the sequence ¢;(n — k)
is a circularly right-shifted version of ¢4(n), the amount of shift being k samples. For example, if
q =10 then ¢(q) = 4 and the four sequences which form the basis for Sy are

cro(m={4,1,-1,1,-1,-4,-1,1,-1,13},
cion—1)={1,4,1,-1,1,-1,—-4,-1,1,-1},
cro(n—2)={-1,1,4,1,-1,1,-1,-4,-1,1}

and cio(n—3)={1,-1,1,4,1,-1,1,-1,-4, -1},

(3.12)

where the numerical values are shown for the region 0 <7 <9. These form a basis for Syg. Since
(3.11) is also a basis for Sy, the representation (3.4) has equivalent form

Q $g)—1
x(m)=Y" Y dgncg(n —m). (3.13)

g=1 m=0

The total number of terms in either of the representations (3.4) or (3.13) is @(Q) (equation (3.10)).
The complex basis (3.5) is orthonormal, but the real integer basis (3.11) is not, unless g is a power of
two [12]. Earlier methods which developed periodicity transforms include the pioneering work
by Sethares & Staley [18] and the work by Muresan & Parks [19]. The former is unrelated to
Ramanujan subspaces, while the latter can be shown to be closely related. Further details can be
found in [20]. Other interesting early work (again, not related to Ramanujan sums) includes [21].

(c) Identifying multiple hidden periods

In figure 24, we showed a segment of a signal which is a sum of three periodic signals, with
periods 5, 7 and 9. We mentioned that 5,7 and 9 are hidden periods, but how does one exactly
define hidden periods? Some reflection will show that it is not trivial. For example, we can always
add and subtract an arbitrary periodic signal p1(n) to x() and claim that p;(n) and x(n) — p1(n)
are the periodic components.

To avoid such degeneracies, we compute the non-zero orthogonal periodic components x4, (1)
belonging to the Ramanujan subspaces Sy, in the representation (3.6). It is tempting to regard
the set {g;} as the hidden periods of x(1). However, note that if gi is a proper divisor of g;, then
xg,(n) + x4,(n) has period g;, so the smaller number g can be dropped. (Think of g as a harmonic
of the fundamental period g;.) So, we simply extract a subset of integers {p;} from {g;} such that p;
is not a proper divisor of p; if j #i. This smaller set {p;} is considered to be the set of hidden periods of
x(n). Summarizing, we can write x(1) in two ways:

K L
x(m)=Y xg(m) =Y yp(n), (3.14)
i=1 i=1

where the set {p;} is a subset of the set {g;} (so L < K), such that p; is not a proper divisor of p; for
distinct i, j. Here, x;,(n) € Sy, and has period g;. While yy, (1) also has period p;, it may not be in Sp,.
The lem of g;-s reveals the period of x(11) whereas the set {p;} is the set of all hidden periods in x(n).
For example if {g;} = {3,4,12,16}, then {p;} = {12,16}, so the period of x(n) is 48 and the hidden
periods are 12 and 16. So we can rewrite

x(n) = x3(n) + x4(n) + x12(n) + x16(n) = y12(1) + Yy16(1). (3.15)

Note that even though the x4,(n)-s above are unique (namely, projections of x(n) onto S,), the
signals yy,(n) are not: the harmonics that are common to both 12 and 16 can be divided between
these two terms arbitrarily. Thus, since 4 is a divisor of both 12 and 16, we can have ax4(n)
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included in y12(n), and (1 — a)x4(n) included in y16(1), where « is arbitrary. In short, hidden periods
pi, defined according to the above procedure, always yield unique answers, but the hidden periodic
components yy, are not unique; this ambiguity is called harmomic ambiguity.

4. Dictionaries for period identification

With the insights gained from Ramanujan-space representations, we now explain how the hidden
periods can be estimated. In practice, we only have a finite number N of samples of x(n). In this
case, it is convenient to rewrite the representation (3.4) as follows:

x= A s. 4.1)
——

Nx®(Q)

Here x =[x(0) x(1) --- x(N — 1)]T and the vector s € C®Q contains the coefficients by of (3.4)
in some order. ®(Q) is the number of coefficients by in (3.4), as given by equation (3.10). The
elements of the matrix A are WZ;”. For example, if N = Q = 6, the matrix is as shown below

g— 1 2 3 3 4 4 5 5 5 5 6 6

4 4 8 4 12 4 8 12 16 4 20
Wi owi oW owi w2 owi o owg w2 owlt owi w2
5 5 10 5 15 5 10 15 20 5 25
wi owi Wit owi owi owE owl wis w2 owi w2

1 1 1 1 1 1 1 1 1 1 1 1
1 Wo W3 W3 Wi, W; Ws W2 W2 W: We W7
A 1T w2 w2 owi w2 ows owzoowd owg owg owZz owl 42)
1w oWl ows WEowg oW WE g wR oW Wl
1
1

This matrix is called a dictionary and its columns are usually referred to as atoms of the dictionary.3
Since there are other possible choices of dictionaries for period estimation, the matrix in (4.2) is
specifically referred to as the Farey dictionary [17] (inspired by ‘Farey series” in (3.9)). Note that the
set of columns of this matrix corresponding to any specific g span a space :971 whose elements are
truncated versions of S, (truncated to 0 <7 < N — 1). Because of this truncation, non-zero vectors
in 3‘:,1 and 3772 are not necessarily orthogonal.

(a) The basic principle

The basic principle behind the use of dictionaries for identifying periodicity is as follows: given
the infinite sequence x(11), —oo < 1 < 0o, the representation in equation (3.4) is unique because the
representation of the periodic sequence in terms of Fourier exponentials e/ is unique (Theorem 2
in [23]). That is, if x is a doubly infinite vector in (4.1) then the solution s is unique. Call this the
ideal solution s). In practice when we are given a finite sequence x and the dictionary A, the
solution s = s(¥ is still valid because equation (4.1) represents a subset of the infinity of equations
in (3.4). But there may be other solutions because A is usually a fat matrix (i.e. (Q) > N, since
@(Q) is O(N?)). Assume for a moment that we somehow identify the ideal solution s=s.
Then we can identify the period of x(n) from the support of s, that is from the indices ¢ of the
components s; which are non-zero. To see this observe that these indices indicate the columns
of A which participate in the representation of x. This helps to identify those values of g; (i.e.
those Ramanujan subspaces S;;) that have non-zero components in the representation. By taking
the Iem of these g;-s, we can find the period of x(n). By using the non-zero components s; of
s, the components x4, (1) in the representation x(1) = ), x;,(n) can therefore be identified where
xg;(n) € S,

3The applicability of dictionary methods for period estimation has been known since the work of Nakashizuka [22] although
these early constructions of dictionaries were not based on Ramanujan subspaces.
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We can also find hidden periods by eliminating those g; which are divisors of larger numbers
in the set {g;}. This reduced set {p;} represents the hidden periods as explained earlier in §3c.
The above representation can then be rewritten in two ways as in (3.14) where yy, (1) are hidden
periodic components (which do not necessarily belong to a specific Ramanujan subspace). Given
a signal x(1), we can arrive at the above representation, and plot the energies of the components
Yq:(n) versus g;. This is how the strength-versus-period plot in figure 2(d) was obtained. As
explained before, although {p;} is unique, the components y,, (1) are in general not unique because
of harmonic ambiguity.

(b) Unique identifiability of periods using the Farey dictionary

To show that the period of x(1) (or the hidden periods) can be identified uniquely, it only remains
to explain how to obtain the ideal solution s =s!) from the set of all solutions. Before we do
this, some comments are in order. The Farey dictionary A is Vandemonde, and the elements W’;
in the second row are distinct. Now there are two possibilities. (i) When @(Q) > N, any set of N
columns is linearly independent (because of the Vandermonde property), that is the matrix has
Kruskal rank N. So we can choose to represent x with any set of N columns of A which means that
there are many solutions s, each with at most N non-zero entries. (ii) When N > ®(Q) the matrix
has full column rank and solution s is unique (and should therefore be equal to sy,

Since ®(Q) = O(N?), the case N > &(Q) is not of much practical interest. The case @(Q) > N is
more practical. In this case, equation (4.1) has multiple solutions s. However, it turns out that the
sparsest solutions, that is any solution with the smallest number p of non-zero elements s;, can be
used to estimate periods and hidden periods, as explained next. Thus consider any solution to the
following problem:

s=argmsin IIsllp s.t. x=As, (4.3)

where ||s||o = number of non-zero elements in s. It is shown in [23] that the support of this solution
is equal to the support of the ideal solution s as long as N > Lpin, where the threshold Lyy, is
derived in [23]. (This is true regardless of whether the sparsest solution is unique or not.) Thus,
as long as the number of samples N is large enough, we can identify the period of x(n) from the
samples in x. Similarly, the hidden periods can be identified as well (although the required Lin
for this is different).

To be more specific, consider the example where we have the a priori information that the
period of x(n) belongs in the set {1,2,3,...Q}. Then Lpi, =2Q (Theorem 8 of [23]). On the
other hand, if x(n) has M hidden periods with each hidden period belonging to the known set
{1,2,3,...Q} then the period of x(n) itself may not belong in this set. In this case, Liin has a more
complicated expression, and it is given in Theorem 9 of [23].

To give a numerical example, assume we have a priori knowledge that x(1) contains only two
periodic components (M = 2) with periods p; in the range 1 < p; <15.50 Q =15 and A has @(15) =
72 columns. It can be shown (from Theorem 9 in [23]) that Ly, = 56 in this case. With N = Lyin,
A is a fat matrix of size 56 x 72.

A final remark on details is in order. In practice, it turns out that the number of non-zero
components s; in s is less than Lyin /2, and, furthermore, the matrix A is fat. In this case, since the
Kruskal rank of A is Ly it follows that the sparse solution s with < Ly /2 non-zero components
is itself unique.

(c) Ramanujan dictionary, and more general dictionaries

For any g in 1 < g < Q, there are ¢(q) columns with period ¢ in the matrix (4.2); each column is a
Vandermonde vector. Since the complex basis functions (3.5) for S; can be replaced with the real
integer basis (3.11) of Ramanujan sums, the Farey dictionary can be replaced with an equivalent
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real, integer dictionary containing the integers c;(n — I). This is called the Ramanujan dictionary [14].
When A = 6 the Ramanujan dictionary is

g— 1 2 3 3 4 4 5 5 5 5 6 6

1 1 2 -1 2 0 4 4 -1 -1 2 1
1 -1 -1 2 0 2 -1 4 4 -1 1 2
Ao 1 1 -1 -1 -2 0 -1 -1 4 4 -1 1 (4.4)
1 -1 2 -1 o -2 -1 -1 -1 -2 -1
1 1 -1 2 2 0 -1 -1 -1 -1 -1 =2
1 -1 -1 -1 o 2 4 -1 -1 -1 1 -1

There are many other equivalent periodicity dictionaries as shown in [14]. All these are matrices
of the form
o(1) ¢@2) - ¢Q
A= (Al Ay - Ag ) (4.5)

where A; is N x ¢(i) with rank ¢(i). A unified theory of such periodic representations can be
found in [20], based on the concept of nested periodic matrices. This unifies a number of apparently
unrelated results such as the exactly periodic subspaces (EPS) representation of Muresan & Parks
[19], and the intrinsic integer-periodic functions of Pei & Lu [24]. These other dictionaries can also
be used for period identification, and in practice they work very well. It should be mentioned
however that the unique identifiability result for the case of the Farey dictionary (§4b) is in general
not applicable to these other dictionaries because they do not have the Vandermonde structure.

5. Ramanuijan filter banks

The theory and applications of filter banks are well known in digital signal processing [16,25].
Ramanujan-sum filter banks were introduced in [26,27]. They produce a time-period plane plot,
which is well suited for tracking localized periodic behaviour, often yielding more useful results
than short-time Fourier transforms (STFT) [15].

(a) The basic principle

First consider a period-P signal x(n.) We know its Fourier transform is a line spectrum with lines
at 2k/P where k takes integer values in 0 <k <P — 1 (figure 3a). Assume 1 <P < N. One might
think that P can be ‘identified” by using a bank of ideal comb filters

Hy(e”), 1<g<N, .1)

with the frequency response of the gth filter chosen as in figure 3b. However, the period-P input
x(n) can produce a non-zero output for many of these filters besides Hp ().

Even assuming the filters suppress zero frequency or ‘DC’ component, we can prove the
following [27]: assume the P-point DFT of x(n) is non-zero for all non-zero DFT frequencies. Then Hy ()
has non-zero output for every filter with index q not coprime to P.

Thus, a comb filter bank is not well suited to identify periodicities (unless we use sophisticated
adaptive comb filters [28]). Now assume we use a filter bank with frequency responses

Cyé), 1=g<N, (5.2)

where Cq(ej’”) is the Fourier transform of the gth Ramanujan sum c,(n) (figure 44). This is called
a Ramanujan analysis filter bank. The gth filter has the response shown in figure 3c. It is a line
spectrum because c4(n) is periodic. By definition of c;(1), the line spectrum is non-zero only at
2mk;/q where k; is coprime to g. It can be shown [27] that this property enables us to identify the
period of the input.
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Figure 3. Fourier transforms of (a) a period-P signal, (b) a period-g comb filter, and (c) a period-g Ramanujan filter. This
structure of the Ramanujan filter is more suited to identifying periods [27]. See text. (Online version in colour.)
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Figure 4. (a) The Ramanujan filter bank, and (b,¢) frequency response magnitudes for Cé’) (2) for different values of / [27,31].
Here, zin (4(2) stands for ¢ (Online version in colour.)

Theorem 5.1 (Ramanujan filter banks). Consider a Ramanujan analysis filter bank {cq(n)} with
1 <g <N (figure 4a), and let x(n) be a period-P input signal with 1 <P < N. Then non-zero outputs can
only be produced by those filters c,(n) such that the filter index q is a divisor of P. Furthermore, assuming
non-zero outputs are produced by the subset of filters cq,(n) with periods q1,q2, . . ., gk, the input period P
is exactly equal to lem(q1, 92, . - -, 4K)

From the filter indices g1, 42, . . ., gk, we can also identify multiple hidden periods {p;} in x(n)

by using the method described in §3c. In practice, each filter is usually truncated to I periods:

ql-1
@)=Y cymz", (5.3)
n=0

so that the lines are spread out (figure 4b,c). Since the filters have finite duration impulse responses

c‘(;)(n), this is called an FIR Ramanujan filter bank. Since cf]l)(n) is localized to a duration of gl, this
helps to extract localization information: if x(n) has various periodic components localized at
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Figure 5. (a) Signal with periodic components buried in noise. (6—d) Time-period planes generated by the Ramanujan filter
bank, and the short-time Fourier transform (STFT) [27,31]. (Online version in colour.)

different times, then by examining the filter-bank output as a function of time, we can obtain a
time-period plane plot which contains the localization information. For fixed /, the time-spread of
the gth filter is gl. Thus short periods (small g) are localized more accurately, which is desirable.

Figure 5a shows an example of x(1) with a period-5 component localized at 50 <# <100 and
period-7, period-10 and period-12 components localized at 180 < n < 280. These components are
buried in noise (SNR 5dB). The time-period plane plot obtained by analysing the output of the
Ramanujan filter bank with N =40, [ =10 is shown in figure 5b. The periodic components can be
seen very clearly as the horizontal lines which also reveal time-localization information. Details
about how these plots are obtained can be found in [26].

For comparison, the STFT plot (or time-dependent Fourier transform [15]) is also shown. This
is obtained by computing the magnitude of the Fourier transform over short windows of data,
and sliding the window in time, in order to obtain a time-frequency plot. Figure 5c,d shows these
for two window sizes. We have also indicated, in round brackets, the value of 27 /w at the location
of the bright bands, which indicates the approximate periods revealed by the plot. For window
size 50, periods 5,7 and 12 are visible, and so are some other spurious bands which typically
correspond to harmonics of these. But the period 10 cannot be spotted, and furthermore, the lines
are spread too thick, that is the frequency resolution is poor. The frequency resolution can be
improved by increasing the STFT window size to 250 (part (d)), but the time domain resolution
is highly compromised as seen from the figure: while the bright lines are thinner, they are also
longer. Since the STFT can only have a fixed window size unlike the Ramanujan filter bank
whose filter lengths are adjusted according to the periods, the STFT does not perform well. In this
sense, the Ramanujan filter bank is more analogous to a ‘wavelet’ type of filter bank, which offers
basis functions with shorter durations for higher frequencies [16,25,29,30]. But unlike wavelets,
the coefficients of the Ramanujan filter bank are specifically chosen to identify integer periods
effectively.

(b) Efficientimplementations

As mentioned earlier, it is well known that c,(n) is integer wvalued [1,12] in spite of the
complex trigonometric functions in its definition (1.1). For example, see equation (1.4) which
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shows one period of cjp(1). To some extent this helps to reduce the multiplier complexity in
hardware implementations. More significantly, a completely multiplierless implementation of the
Ramanujan filter bank is possible, as explained next. It was shown in [12] that Ramanujan sums
satisfy the beautiful recursive relation

cq(n) =qéy(n) — Z cq(n). (5.4)
qxlq
a<q
Here §4(n) is the periodic impulse, where the “1” occurs at locations that are multiples of g, e.g.
83(n)=...001001001001... Starting from this, it can be shown (Theorem 2 in [31]) that the
Ramanujan-sum can be expressed in the form

cq(m) =) ag, X g, (n), (5.5)
axlq

where o, € {0,1, —1}. This leads to a efficient digital implementation of the Ramanujan filter bank,
which is essentially free of multipliers. The detailed derivation of such a structure can be found in
[31]. The final form of the multiplierless structure is shown in fig. 4 of [31] using standard signal
processing notations.

6. Minimum data length for integer period estimation

It is shown in [32] that the minimum number of dictionary atoms needed to identify the period
of a signal is given by @(Q) in equation (3.10). So the number of columns in the dictionary should
be at least @(Q). As explained in §4b, the minimum number of rows required Ly, has also
been derived in [23,33]. This gives the number of samples necessary to identify periods using
dictionary methods. More fundamentally, what is the minimum number of consecutive samples
necessary regardless of methods used for period identification? To be specific, assume we have
the a priori knowledge that x(n) is periodic with integer period

Pe{Py,P,,...,Pg)}. (6.1)
Then what is the data length i.e. number Ly, of consecutive samples
x(0), x(1), ..., ¥(Lmin — 1) (6.2)

required, in order to identify P through any computational means at all (not necessarily using the
above dictionaries)? It is shown in [23] that

Lmin =

Fit By = (Bu ) 6.3
plrpje{ll’)r]l,ap)z(,...,PQ}( 1+ ] ( i ])) ( )

For example suppose x(1) is known to have period either 6 or 14. To tell what its period is, we need
at least Liin =6 + 14 — (6, 14) = 18 samples. Figure 6 shows a case of two signals with periods 6
and 14, where the first 17 samples are identical, demonstrating that these samples are not enough
to tell which of the two signals they came from. As another example, if we have the a priori
information that the period of x(n) belongs in the set {1,2,3, ... Q} then [23] Lyin =2Q — 2 which
is slightly smaller than the minimum number of samples (Lpyin =2Q) required in the dictionary
approach (§4b).

These results have also been extended to the case where multiple hidden periods have to
be identified. It has also been shown that if the samples of the signal are allowed to be non-
contiguous then the minimum required number of samples can be considerably reduced [34].
Finally, some limited extensions to the case of multidimensional periodic lattices have been
reported in [35].
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Figure 6. (a,b) Signals with period 6 and 15. The first 17 samples are identical for the two signals, so it is not possible to know
the true signal based only on the first 17 samples.

7. Conclusion

In this paper, we presented an overview of the impact of Ramanujan sums in signal processing,
especially integer-period estimation in real or complex signals. These methods have recently been
used in identification of integer periodicities in DNA molecules [36] and in protein molecules [37].
As shown in these references, these new methods are quite competitive and often work better than
existing state of the art methods. Ramanujan filter banks have also been shown to be applicable in
the identification of epileptic seizures in patients, which are characterized by sudden appearance
of periodic waveforms in the measured EEG records [38]. Other interesting applications have
recently been reported by a number of authors such as, for example in source-separation [39],
RF communications [40], ECG signal processing [41] and brain-computer interfacing [42,43].
For details, the reader is requested to consult the above papers and references therein. More
recently, a well-known algorithm called the MUSIC algorithm [44,45], which is popularly used for
identifying sinusoids in noise, has been extended to the case of integer period identification using
Ramanujan-subspace ideas [46]. This method, known as iMUSIC, has also been compared with
other well-known methods for multipitch estimation [47], and the details can be found in [46].

It is satisfying indeed when one finds that a well-known mathematical concept has practical
impact in engineering, even though the original mathematical ideas may not have been inspired
by any such application. Engineers have seen this happening over and over again in disciplines
such as information theory, coding, digital communications, system theory and machine learning.
Indeed, the classical view that pure mathematics of the highest quality is bound to be “useless’
for real-life applications [48] is evidently not valid as the last several decades of science and
engineering have amply demonstrated. What is often regarded as pure mathematics sometimes
impacts engineering in wonderful ways. A classic example is the theory of finite fields and
rings, which has impacted the practice of error-correction coding in digital communications, data
compression, and digital storage. Other examples include graph theory which has had many
engineering, network and signal processing applications. Yet another is number theory which has
impacted nearly all aspects of science and engineering such as acoustical hall designs, computer
music, and so forth [49,50].
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