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a b s t r a c t 

Sparse arrays have drawn attention because they can identify O(N 2 ) uncorrelated source directions using 

N physical sensors, whereas uniform linear arrays (ULA) find at most N − 1 sources. The main reason is 

that the difference coarray, defined as the set of differences between sensor locations, has size of O(N 2 ) 

for some sparse arrays. However, the performance of sparse arrays may degrade significantly under sen- 

sor failures. In the literature, the k -essentialness property characterizes the patterns of k sensor failures 

that change the difference coarray. Based on this concept, the k -essential family, the k -fragility, and the 

k -essential Sperner family provide insights into the robustness of arrays. This paper proposes novel algo- 

rithms for computing these attributes. The first algorithm computes the k -essential Sperner family with- 

out enumerating all possible k -essential subarrays. With this information, the second algorithm finds the 

k -essential family first and the k -fragility next. These algorithms are applicable to any 1-D array. How- 

ever, for robust array design, fast computation for the k -fragility is preferred. For this reason, a simple 

expression associated with the k -essential Sperner family is proposed to be a tighter lower bound for 

the k -fragility than the previous result. Numerical examples validate the proposed algorithms and the 

presented lower bound. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Array signal processing [12,14,35] has been central to many

elds in science and engineering, such as communication [8] ,

adar [9,31] , imaging [10] , and radio astronomy [5] . In these ap-

lications, sparse arrays, where the sensing elements are placed

onuniformly, have recently drawn attention [10,20,24,34] . Some

parse arrays can resolve O(N 
2 ) uncorrelated sources using N

hysical sensors, while the ULA identifies at most N − 1 uncor-

elated sources with N sensors. For instance, these sparse arrays
� This work was supported in part by the ONR grant N0 0 014-18-1-2390, in part 

y the NSF grant CCF-1712633 , in part by the California Institute of Technology , in 
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nd NTU-108V0902 , in part by the Ministry of Science and Technology, Taiwan , un- 

er Grant Number MOST 108-2218-E-002-043-MY2 , and in part by the National Tai- 

an University. 
∗ Corresponding author at: Department of Electrical Engineering, National Taiwan 

niversity, Taipei 10617, Taiwan. 

E-mail addresses: chunlinliu@ntu.edu.tw (C.-L. Liu), ppvnath@systems.caltech. 

du (P.P. Vaidyanathan). 

f  

t  

o  

c  

t  

a  

m  

c  

e  

D

ttps://doi.org/10.1016/j.sigpro.2020.107517 

165-1684/© 2020 Elsevier B.V. All rights reserved. 
nclude the minimum redundancy arrays (MRA) [20] , the nested

rrays [24] , the coprime arrays [34] , and their generalizations

28] . The main reason why O(N 
2 ) uncorrelated sources are re-

olvable, is that the difference coarray (the set of differences be-

ween sensor locations), has an O(N 
2 ) -long central ULA segment.

ith this concept, the direction-of-arrival (DOA) of the sources

an be estimated by analyzing the samples on the difference coar-

ay [2,15,24,26,27,34,39] , and these methods were shown to resolve

ore uncorrelated sources than sensors. 

In the literature, two categories of DOA estimators are reported

or resolving more sources than sensors for sparse arrays. The first

ype of DOA estimators explicitly converts the array measurements

nto the difference coarray, to which the MUltiple SIgnal Classifi-

ation (MUSIC) [30] algorithm can be applied. Algorithms of this

ype, for example, include the coarray MUSIC algorithm [2,15,27] ,

nd the spatial smoothing MUSIC [24,25] . The other family refor-

ulates the DOA estimation as a sparse recovery problem asso-

iated with a dense grid of the DOA. Then popular sparse recov-

ry techniques such as � 1 minimization and LASSO can be used for

OA estimation [26,28] . 

https://doi.org/10.1016/j.sigpro.2020.107517
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
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mailto:ppvnath@systems.caltech.edu
https://doi.org/10.1016/j.sigpro.2020.107517
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In practice, sensor failure may lead to performance degradation

or even breakdown of the overall system [13,22] . Empirical results

showed that, for some sparse arrays, such as MRA, even one faulty

sensor could shrink the O(N 
2 ) -long ULA segment in the differ-

ence coarray significantly. Furthermore, small ULA segments in the

difference coarray typically degrade the estimation performance

[2,15,24,37] . Therefore, sparse arrays were usually considered not

to be robust to sensor failure. However, the impact of faulty sen-

sors on sparse arrays has to be analyzed rigorously, since these ob-

servations depend on array configurations. 

In array signal processing, sensor failures have been handled

with two approaches: 1) developing new algorithms that are func-

tional under sensor failures [21,23,36,38] and 2) analyzing the ro-

bustness of array configurations [3,6,18,19] . In this paper, we will

focus on the second approach, with an emphasis on the robustness

of the difference coarray, since the difference coarray plays a cru-

cial role in the applicability of some coarray-based DOA estimators

in [2,15,24,25,27] . 

This topic was recently investigated in [18,19] . To begin with,

a sensor is said to be essential if its deletion changes the differ-

ence coarray. A generalization of this (the k -essentialness prop-

erty and k -essential subarrays), is then defined in order to study

the effect of multiple sensor failures on the difference coarray. The

k -essential family is defined as a family of k -essential subarrays.

Then, the robustness of the difference coarray is quantified using

the notion of k -fragility, defined as the ratio of the number of k -

essential subarrays to the number of all subarrays of size k . This

quantity ranges from 0 to 1 while an array is more robust if the

fragility is closer to 0. Finally, the k -essential Sperner family serves

as a compact representation of the k -essential family. These at-

tributes have been studied in [19] for array configurations such as

the ULA, the MRA [20] , the nested array [24] , and the coprime ar-

ray [34] , to name a few. Nevertheless, it is more involved to extend

these theoretical analyses to arbitrary sparse arrays, and hence nu-

merical algorithms for the k -essential family, the k -fragility, and

the k -essential Sperner family are of considerable interest. 

This paper presents novel numerical algorithms for finding

the k -essential Sperner family, the k -essential family, and the k -

fragility recursively. The novelty of these algorithms is as follows.

It will be observed that the search space of the k -essential Sperner

family is smaller than that of the k -essential family. This prop-

erty is incorporated in the algorithms for a fast computation of the

k -essential Sperner family. Once the k -essential Sperner family is

available, the k -essential family and the k -fragility can be obtained.

For the reader’s convenience, sample MATLAB codes of these algo-

rithms can be found in [1] . 

However, the above-mentioned approach involves the enumer-

ation of the k -essential family before the k -fragility is obtained. For

applications such as robust sparse array design [17] , it is of interest

to compute the k -fragility directly. For this reason, we also provide

a lower bound for the k -fragility which simply depends on the car-

dinality of the k -essential Sperner family. This lower bound is sim-

ple to compute and more importantly, is tighter than the previous

result in [18] . 

The outline of this paper is as follows. Section 2.1 reviews the

data model of array signal processing and the difference coarrays.

Section 2.2 reviews the theory of the k -essentialness property, the

k -essential family, the k -fragility, and the k -essential Sperner fam-

ily. These results have been proposed in [18,19] . Section 3 proposes

novel algorithms for computing the k -essential Sperner family, the

k -essential family, and the k -fragility. Section 4 presents a lower

bound for the k -fragility. In Section 5 , the proposed algorithms and

the lower bound are demonstrated through numerical examples.

Section 6 concludes this paper. 
t  
. Preliminaries 

.1. The data model 

Consider D monochromatic sources with common wavelength λ
lluminating a one-dimensional (1-D) sensor array. The sensors are

ocated at n λ/2, where n belongs to an integer set S . The complex

mplitude and the DOA of the i th source are denoted by A i and θi ∈
 −π/ 2 , π/ 2] , respectively. The measurement vector on S , denoted

y x S , can be modeled as 

 S = 

D ∑ 

i =1 

A i v S ( ̄θi ) + n S , (1)

here n S is the additive noise term and v S ( ̄θi ) is the steering vec-
or with respect to the normalized DOA θ̄i � ( sin θi ) / 2 . In partic-
lar, if the integer set S = { n 1 , n 2 , . . . , n N } with n 1 < n 2 < . . . < n N ,

hen the steering vector is defined as 

 S ( ̄θi ) � 

[
e j2 πθ̄i n 1 e j2 πθ̄i n 2 . . . e j2 πθ̄i n N 

]T 
. (2)

With regard to (1) , we assume that the set S and the number of

ources D are fixed and known, while the normalized DOAs θ̄i are
xed but unknown . We assume that A i and n S are zero-mean and

ncorrelated. In other words, if s � 

[
A 1 A 2 . . . A D n 

T 
S 

]T 
,

hen we have 

 [ s ] = 0 , E 
[
ss H 
]

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

p 1 0 . . . 0 0 
0 p 2 . . . 0 0 
. . . 

. . . 
. . . 

. . . 
. . . 

0 0 . . . p D 0 
0 0 . . . 0 p n I 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. (3)

ere p i and p n are the powers of the i th source and the noise,

espectively. They are assumed to be fixed but unknown. The no-

ation E[ ·] is the expectation operator. Based on these assumptions,

he covariance matrix of x S is given by 

 S = 

D ∑ 

i =1 

p i v S ( ̄θi ) v 
H 
S 
( ̄θi ) + p n I . (4)

ext, let us define the difference coarray of the array S as follows

15,20,24,34] 

efinition 1 (Difference coarray) . Let S be an integer set. The dif-

erence coarray is defined as the set of differences between the

lements in S . More specifically, 

 � { n 1 − n 2 : n 1 , n 2 ∈ S } . (5)

Then we can construct the autocorrelation vector x D by vector-

zing R S and averaging duplicating elements 

 D = 

D ∑ 

i =1 

p i v D ( ̄θi ) + p n e 0 , (6)

here v D ( ̄θi ) denotes the steering vector on the difference coarray
nd the vector e 0 is given by 

 0 = [ 0 0 . . . 0 ︸ ︷︷ ︸ 
(| D |−1) / 2 

1 0 0 . . . 0 ︸ ︷︷ ︸ 
(| D |−1) / 2 

] T . (7)

he notation | · | denotes the cardinality of a set. Note that accord-
ng to Definition 1 , the element 0 belongs to D . Furthermore, D is

venly symmetric. More specifically, m ∈ D if and only if −m ∈ D .

herefore, | D | is an odd number and (| D | − 1) / 2 is an integer. 

Eq. (6) can be regarded as the measurement vector defined on

he difference coarray D . In particular, if we replace the physical
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Fig. 1. An illustration of the physical array S (red dots), the difference coarray D (blue dots), the central ULA segment of the difference coarray U (green dots), and the 

weight function w ( m ) (black). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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rray S with the difference coarray D , the source amplitude A i 
ith the source power p i , and the noise term n S with the vector

 n e 0 , then the array measurement on the physical array (1) be-

omes that on the difference coarray (6) . This observation also

as led to a vast development of sparse arrays in the last few

ears. For instance, for certain array configurations, quite a few

OA estimators on the difference coarray were proposed to achieve

igher resolution than DOA estimators based on the physical array

2,25,27,33,39] . Furthermore, since the size of the difference coar-

ay could be O(N 
2 ) , where N is the number of physical sensors,

t is possible to resolve more uncorrelated sources than sensors

2,25,27,33,39] . 

Given a difference m , there could be multiple sensor pairs ( n 1 ,

 2 ) with n 1 − n 2 = m . The number of such pairs is characterized by

he weight function w ( m ): 

efinition 2. The weight function w ( m ) is defined as the number

f sensor pairs with separation m ∈ Z . This definition can be writ-

en as w (m ) = 

∣∣{(n 1 , n 2 ) ∈ S 
2 : n 1 − n 2 = m 

}∣∣. 
By definition, the weight function w ( m ) is integer-valued and

ts support (the set of m ’s such that w ( m ) � = 0) is exactly the dif-

erence coarray [24] . It can be shown that the weight function is

n even function, i.e. w (−m ) = w (m ) . Furthermore, for a 1-D sen-

or array S with N physical sensors, the weight function satisfies

24] 

 (0) = N, w ( max (S ) − min (S )) = 1 , 
∑ 

m ∈ D 
w (m ) = N 

2 , (8) 

here max (S ) and min (S ) denote the maximum and the mini-

um of the set S , respectively. 

Next we will define holes , which are important in analyzing the

erformances achieved by the difference coarray [34] . We say an

nteger h is a hole of the difference coarray D if min (D ) ≤ h ≤
ax (D ) but h / ∈ D . 

The central ULA segment of the difference coarray, denoted by

he set U , is the largest segment centered around 0 that consists of

onsecutive integers. In particular, U � { m : { 0 , ±1 , . . . , ±m } ⊆ D } .
he difference coarray is hole-free if there are no holes in the dif-

erence coarray, which is equivalent to the property that D = U .

ote that the central ULA segment U plays a significant role in

OA estimators such as spatial smoothing MUSIC [24,25] and coar-

ay MUSIC [2,15,27] . 

xample 1. Let us consider a sensor array with S =
 0 , 6 , 7 , 9 , 11 , 19 } , as depicted on the top of Fig. 1 . The differ-
nce coarray D , as defined in Definition 1 , is also illustrated in
ig. 1 . It can be observed that the sizes of S and D are 6 and 29,

espectively. The holes of the difference coarray are ± 14, ± 15,

16, ± 17, and ± 18, while the central ULA segment of the

ifference coarray contains consecutive integers from −13 to 13.

he weight function of S is shown on the bottom of Fig. 1 . In

articular, we have w (0) = 6 , w (19) = 1 , and 
∑ 

m ∈ D w (m ) = 36 ,

hich are consistent with the property in (8) . 

The difference coarray D and the weight function w ( m ) are uti-

ized to derive optimal sparse array configurations. For instance,

he minimum redundancy array (MRA) with N sensors has the

argest hole-free difference coarray [20] . The minimum hole array

MHA) has the smallest number of holes subject to the constraint

hat each nonzero difference originates from a unique sensor pair

4] . Both the MRA and the MHA have difference coarrays of size

(N 
2 ) . However, finding the sensor locations of the MRA and the

HA is computationally intractable for large number of sensors

4,11,20,29] . 

Recently, this issue has been addressed by sparse arrays with

arge difference coarrays. In particular, with N physical sensors, the

ize of the difference coarray is up to O(N 
2 ) . More importantly,

hese sparse arrays have closed-form expressions for the sensor lo-

ations, which are simple to compute. The arrays with these prop-

rties include the nested array [24] , the coprime array [34] the

eneralized coprime array [28] , and the super nested array [16] ,

o name a few. 

.2. Robustness of Difference coarrays of sparse arrays 

The structure of the difference coarray plays an important role

n the applicability of many coarray-based DOA estimators, such as

he coarray MUSIC algorithm [2,15,24,25,27] . In [18] , the influence

f a sensor failure on the difference coarray is described by the

ssentialness property: 

efinition 3. The sensor at n ∈ S is essential if the removal of that

ensor changes the difference coarray. 

To be more specific, let n belong to S , and S � S \{ n } be the ar-
ay configuration after the failure of the sensor at n . The difference

oarrays of S and S are denoted by D and D , respectively. We say

he sensor at n is essential if D � = D . In addition, n is said to be

nessential if D = D . 

The essentialness property can be utilized to quantify the ro-

ustness of array configurations. For instance, the more essential

ensors in an array, the more likely the difference coarray changes
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under sensor failures. In this scenario, coarray MUSIC is more likely

to fail. Thus the array is not robust. 

The essentialness property is also useful in assigning sensing

devices of different reliability and cost to different locations. For

example, suppose there are two sensing devices, Device I and De-

vice II, with different costs and qualities. Device I is costly but is

durable, i.e. with low failure probability. Device II is less expensive

but is easily broken. Therefore, to strike a balance between the cost

and the robustness of an array, Device I can be used as an essential

sensor, and Device II as an inessential sensor. 

The essentialness property can also be utilized to assess the

economy of an array [18] : 

Definition 4. A sensor array S is said to be maximally economic if

all the sensors in S are essential. 

These arrays are also called maximally economic sparse arrays

(MESA). It was proved in [ 19 , Theorem 1 ] that the MESA family in-

cludes the MRA, the MHA, parts of the nested array, and the Cantor

array. However, the ULA and the coprime arrays are not maximally

economic [19] . 

The essentialness property is closely related to one sensor fail-

ure in an array. However, multiple sensor failures are more realis-

tic. The k -essentialness property, a generalization of Definition 3 , is

defined for this purpose [18] : 

Definition 5. A subarray A of S is said to be k -essential with re-

spect to an array S if it has the following properties. 

1. A has size exactly k . 

2. The difference coarray changes when A is removed from S . 

Note that the k -essentialness is an attribute of a subarray A

of S , while the essentialness is an attribute of a sensor at n in

S . In particular, the essentialness of n ∈ S is equivalent to the

k -essentialness of { n } ⊆ S with k = 1 . The collection of the k -

essential subarrays constitutes the k -essential family [18] : 

Definition 6. The k -essential family E k with respect to a sensor ar-

ray S is defined as 

E k � { A : A is k -essential with respect to S } . (9)

Here k = 1 , 2 , . . . , | S | . 
The larger the size of E k is, the more likely that the difference

coarray tends to change under k faulty sensors. This concept leads

to the definition of the k -fragility [18] : 

Definition 7. The fragility or k -fragility of a sensor array S is de-

fined as 

F k � 

|E k | (| S | 
k 

) , (10)

where k = 1 , 2 , . . . , | S | . 
The k -fragility can be regarded as a scalar attribute to quantify

the robustness of an array, in the sense that the difference coarray

changes under k sensor failures. The larger F k is, the more fragile

(or the less robust) the array is. 

The following present some properties regarding the k -fragility

F k [18] : 

Theorem 1. Let S be an integer set denoting the sensor locations. The

k-fragility F k with respect to S has the following properties: 

1. F k ≤ F k +1 for all 1 ≤ k ≤ | S | − 1 . The equality holds if and only

if F k = 1 . 

2. F k = 1 for all k such that Q ≤ k ≤ | S | , where Q = min { Q 1 , Q 2 } .
The parameters Q 1 and Q 2 are given by 

Q 1 = | S | − |E 1 | + 1 , (11)
 s  
Q 2 = 

⌈ 

| S | −
√ 

8 | S | − 11 + 1 

2 

⌉ 

, for | S | ≥ 2 . (12)

3. Let F min denote min { 1 , 2 / | S |} . Then F min ≤ F k ≤ 1 for all 1 ≤
k ≤ | S | . 

Theorem 1 imposes some constraints on the k -fragility F k . Prop-

rty 1 indicates that F k is an increasing function, which is con-

istent with the concept that, as the number of faulty sensors in-

reases, the difference coarray tends to change. Property 2 is equiv-

lently saying that, if there are many faulty sensors (i.e. k ≥ Q ),

hen the difference coarray changes. Property 3 shows that F k is

ounded between min { 1 , 2 / | S |} and 1, which provides a numerical

ange for comparing the robustness of arrays. 

It may be computationally difficult to find E k and F k for any ar-
ay S . The reason is that, first there are as many as 

(| S | 
k 

)
subarrays

f size k . Second, for each subarray, we need to compare the corre-

ponding difference coarray D and then compare it with the orig-

nal difference coarray D , as in Definition 5 . These steps become

omputationally difficult for large | S | and k ≈ | S | / 2 . Furthermore,

he memory storage of E k is also challenging, due to the large size
f E k . 
To mitigate these issues, the k -essential Sperner family was pro-

osed in [18] as a compact representation of E k . The formal defini-

ion is as follows [18] : 

efinition 8. Let E k be the k -essential family with respect to the

rray S , where the integer k satisfies 1 ≤ k ≤ | S | . The k -essential
perner family E ′ 

k 
is defined as follows: 

 
′ 
k = 

{
E 1 , if k = 1 , 

{ A ∈ E k : ∀ B ∈ E k −1 , B �⊂ A } , if k = 2 , . . . , | S | . (13)

here B �⊂ A denotes that B is not a proper subset of A . 

The k -essential Sperner family with k = 1 is defined as the k -

ssential family with k = 1 . For 2 ≤ k ≤ | S | , the k -essential Sperner
amily extracts the portions of the E k which are not supersets of

ny elements in E k −1 . By doing so, it was demonstrated in [18] that

he size of the k -essential Sperner family E ′ 
k 
can be much smaller

han that of the k -essential family E k . This attribute makes it possi-

le to reduce the computational complexity, as we shall elaborate

n Section 3 . 

The term Sperner stems from the Sperner family in discrete

athematics [7,32] . A Sperner family is a family of sets in which

one of the elements is a subset of the other [7,32] . Based on

efinition 8 , it can be shown that E ′ 
k 
themselves form a Sperner

amily [19] . 

The k -essential family can be uniquely recovered from the k -

ssential Sperner family. More specifically, given the complete in-

ormation of E ′ 1 , E ′ 2 , . . . , E ′ k , the k -essentialness property can be
eadily verified by examining the inclusion between sets, as in the

ollowing lemma [18] : 

emma 1. Let E ′ 
k 
be the k-essential Sperner family of S with 1 ≤ k ≤

 S | . Then the k-essential family E k satisfies 

 k = 

⎧ ⎨ 

⎩ 

E ′ 1 , if k = 1 , 

{ A ∪ B : A ∈ E ′ � , 1 ≤ � ≤ k, 

B ⊆ S \ A , | B | = k − � } , otherwise. 

Lemma 1 is particularly useful in numerically evaluating the

 -essential family E k and the k -fragility F k . Given the k -essential
perner family E ′ 

k 
for all k , first E k can be constructed and the F k 

an be found. Another advantage is that if there are only few sen-

or failures, for example k = 1 , 2 , . . . , K max , then Lemma 1 can be
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pplied recursively for these k , which alleviates the computational

urden of finding all the E k ’s. 
The k -fragility can be utilized in designing new sparse array

onfigurations with enhanced robustness. For instance, the robust

inimum redundancy array (RMRA) [17] has the largest hole-free

ifference coarray and the property that F 1 = F min . Here F min is

iven in Property 3 of Theorem 1 . It was shown that RMRA has

he property that | D | = O(| S | 2 ) , which is as good as the MRA. Fur-

hermore, RMRA with N sensors is more robust than MRA with N

ensors, where the fragility F 1 is 2/ N for RMRA and 1 for MRA. 

. Numerical algorithms 

.1. The k -essential Sperner family E ′ 
k 

In general, it is very involved to derive closed-form expres-

ions for the k -essential family, the k -fragility, and the k -essential

perner family [19] . For arbitrary array configurations, closed forms

f E ′ 
k 

and F k for all k are not available, except for MESA and

oprime arrays [19] . Fortunately however, it is still possible to

ompute the k -essential family, the k -fragility, and the k -essential

perner family numerically . 

A straightforward approach to the numerical algorithm is as fol-

ows. For a given k in 1 ≤ k ≤ | S | , we first enumerate all 
(| S | 

k 

)
sub-

rrays to find E k . For each subarray, the k -essentialness property is
xamined, which requires the computation of D and a comparison

etween D and D ( Definitions 3 and 5 ). Once E k is known, the k -

ragility F k and the k -essential Sperner family E ′ 
k 
can be obtained

ccording to Definitions 7 and 8 , respectively. 

A drawback of this straightforward method is the large search

pace for E k . In principle, the k -essentialness property needs to
e examined over 

(| S | 
k 

)
subarrays. However, if we focus on the

 -essential Sperner family first, the search space could be much

maller. Therefore, in this paper, we will first propose a method to

nding E ′ 
k 
without the complete information of E k . 

The complete algorithm for the k -essential Sperner family is

ummarized in Algorithm 1 , whose objective is to compute E ′ 
k 
for

 = 1 , 2 , . . . , K max . Here K max is a pre-defined integer in the range

 ≤ K max ≤ | S | . This parameter indicates that sensor failures up to

ize K max are of interest. 

lgorithm 1 The k -essential Sperner family E ′ 
k 
. 

equire: The physical array S 

equire: An integer K max with 1 ≤ K max ≤ | S | 
1: function k -Essential-Sperner-Family ( S , K max ) 

2: E ′ 
k 

← ∅ for k = 1 , 2 , . . . , K max 

3: for all n ∈ S do 

4: if ( n is essential) then 

5: E ′ 
1 

← E ′ 
1 

∪ { n } 
6: end if 

7: end for 

8: I ← the set of inessential sensors in S 

9: Q ← min (Q 1 , Q 2 ) � Equations (11) and (12)

10: for k ← 2 , 3 , . . . , min (K max , Q ) do 

11: for all A ⊆ I and | A | = k do 

12: if ( A is a superset of some B ∈ E ′ � for 2 ≤ � ≤ k − 1 )

then 

13: Continue � Skip to another A

14: else if ( A is k -essential) then 

15: E ′ 
k 

← E ′ 
k 

∪ { A } 
16: end if 

17: end for 

18: end for 

19: return E ′ 1 , E ′ 2 , . . . , E ′ K max 

0: end function 
k  
Algorithm 1 is divided into two stages. The first stage is to com-

ute E ′ 
1 
while the second stage is to find E ′ 

k 
for k ≥ 2. In the first

tage, the essentialness property of all the sensors in S is exam-

ned, as shown in lines 3 to 7 in Algorithm 1 . 

The second stage focuses on computing E ′ 
k 
for k = 2 , . . . , K max . It

s not necessary to search over all possible subarrays A ⊆ S of size

 due to the following reasons. 

1. It suffices to compute 2 ≤ k ≤ min { K max , Q} . It was shown in

[18 , Lemma 8] that E ′ 
k 
is empty if k > Q = min { Q 1 , Q 2 } . Here

Q 1 and Q 2 are given in (11) and (12) , respectively. By defini-

tion, Q 1 and Q 2 can be readily computed from the number

of sensors | S | and the number of essential sensors |E ′ 1 | . 
2. We only need to consider all subarrays consisting of inessen-

tial sensors in finding E ′ 
k 
. The reason is as follows. Suppose

A � { n 1 , n 2 , . . . , n k } ⊆ S is a subarray of size k and with-

out loss of generality, n 1 ∈ S is essential. By definition, we

have { n 1 } ∈ E 1 , { n 1 , n 2 } ∈ E 2 , { n 1 , n 2 , . . . , n k −1 } ∈ E k −1 . Since

{ n 1 , n 2 , . . . , n k −1 } ⊂ A , the set A does not belong to E ′ 
k 
, due

to Definition 8 . As a result, n 1 is inessential with respect to

S . This chain of arguments shows that the set A consists of

inessential sensors. 

3. It is not necessary to compute the difference coarrays for all

the subarrays in Reason 2. Due to Lemma 1 , the k -essential

subarrays can be expressed as A ∪ B , where A ∈ E ′ � for some

1 ≤ � ≤ k . In other words, if a subarray of size k is a su-

perset of some � -essential subarray, then that subarray is k -

essential. Therefore, we can use the contents of E ′ � to accel-
erate the computation. 

These points are also taken into consideration in lines 10, 11,

nd 12 of Algorithm 1 . 

If the k -fragility with k = 1 is close to 1, Algorithm 1 is much

aster than computing the k -essential family directly. The reason

s that in Algorithm 1 , the subarrays are enumerated over the

nessential sensors (line 11), which are very few when F 1 is close

o 1. In particular, if an array is maximally economic, Algorithm 1 is

ble to detect the scenario in line 8 and then skip the enumeration

n lines 10 to 18. This mechanism reduces the computational time

ignificantly for MESA. 

.2. The k -essential Sperner family and the k -fragility 

Next we will discuss the algorithm for computing the k -

ssential family and the k -fragility, as shown in Algorithm 2 . Sup-

ose the physical array S and an integer K max with 1 ≤ K max ≤ | S |
re given. The k -essential Sperner family is first evaluated by using

lgorithm 1 , and then the k -essential family and the k -fragility can

e obtained. 

Due to the properties of the k -essential family, the following

wo points are used to accelerate the computation: 

1. The k -essential family E k has all the subarrays of size k for
k ≥ Q [ 19 , Theorem 1 ]. 

2. According to Lemma 1 , the k -essential family comprises the

supersets of the elements in the k -essential Sperner family. 

These points are in lines 6 to 14 of Algorithm 2 . Finally, the k -

ragility F k can be obtained from the sizes of E k , as in line 15 of
lgorithm 2 . 

Summarizing, the proposed algorithms ( Algorithms 1 and 2 ) are

ble to find the k -essential Sperner family, the k -essential family,

nd the k -fragility of any 1-D array configuration. In Algorithm 1 ,

he essential sensors are found first, and then the k -essential

perner family E ′ 
k 
for k ≥ 2 is constructed from the inessential sen-

ors. Based on the results of Algorithm 1 , Algorithm 2 finds the

 -essential family and the k -fragility, by comparing the inclusion
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Algorithm 2 The k -essential family E k and the k -fragility F k . 
Require: The physical array S 

Require: An integer K max with 1 ≤ K max ≤ | S | 
Require: The k -essential Sperner family E ′ 

1 
, E ′ 

2 
, . . . , E ′ 

K max 

1: function k -Essential-Family-Fragility ( S , K max , E ′ 1 , E ′ 2 , . . . , 
E ′ 
K max 

) 

2: E 1 ← E ′ 1 
3: F 1 ← |E 1 | / | S | 
4: Q ← min (Q 1 , Q 2 ) � Equations 11 and 12 

5: for k ← 2 , 3 , . . . , K max do 

6: if ( k < Q) then 

7: for all A ⊆ S and | A | = k do 

8: if ( A is a superset of some B ∈ E ′ � for 1 ≤ � ≤ k ) 

then 

9: E k ← E k ∪ { A } 
10: end if 

11: end for 

12: else 

13: E k ← the family of all subarrays of S of size k 

14: end if 

15: F k ← |E k | / 
(| S | 

k 

)
16: end for 

17: return E 1 , E 2 , . . . , E K max 
, F 1 , F 2 , . . . , F K max 

18: end function 
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between sets. These algorithms are more flexible than the closed

forms in [19] , which are only applicable to certain array configura-

tions. 

4. Lower bounds for the k -fragility 

In the design of sparse arrays with enhanced robustness, it is of

primary interest to specify the level of robustness in terms of the

k -fragility, rather than the explicit expressions for the k -essential

family E k [17] . As a result, in these applications, it is redundant
to first construct the k -essential family in line 13 of Algorithm 2 ,

and then to determine the size the k -essential family in line 15 of

Algorithm 2 . 

This issue can be addressed by studying the lower bounds for

F k . These bounds have to be tight and simple to compute. A candi-

date for the lower bounds is F min in Property 3 of Theorem 1 . This

quantity is simple to compute. However, it is a loose bound, since

only the information of the number of sensors is utilized in F min . 

In principle, as long as we have the information of the k -

essential Sperner family, it is possible to derive a lower bound

for the k -fragility which can be readily computed and tighter than

F min . The following lemma states the improved lower bound L k as-

sociated with the sizes of the k -essential Sperner family: 

Lemma 2. For an array S , consider the k-essential Sperner family E ′ 
k 

and the k-fragility F k defined in Definitions 8 and 7 , respectively. Let

I be the set of inessential sensors in S . Then F k satisfies 

F k ≥ L k , for k = 1 , 2 , . . . , | S | − |E ′ 1 | − 2 , (14)

where the lower bound L k is given by 

L k = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

|E ′ 1 | | S | , if k = 1 , 

|E ′ 1 | | S | 
(
2 − |E ′ 1 |−1 

| S |−1 

)
+ 

|E ′ 2 | 
( | S | 2 ) 

, if k = 2 , 

1 − 1 

( | S | k ) 

[(| I | 
k 

)
−
(| I |−2 
k −2 

)
C − |E ′ 

k 
| ], if 3 ≤ k ≤ | S | − |E ′ 1 | − 2 . 

The cardinality of I is | I | = | S | − |E ′ 
1 
| and the parameter C �

min {|E ′ 2 | , 1 } . Furthermore, the equality in (14) holds true for k = 1

and k = 2 . 
roof. If k = 1 , then according to Definitions 7 and 8 , we have F 1 =
E 1 | / | S | = |E ′ 1 | / | S | , so F 1 = L 1 . If k = 2 , then the k -essential subarray

 can be divided into two non-overlapping categories: 

1. The subarray A has at least one essential sensor. This case

is the complement of the event that all sensors in A are

inessential. As a result, there are 
(| S | 
2 

)
−
(| I | 
2 

)
choices of A . 

2. The subarray A belongs to E ′ 
2 
. There are |E ′ 

2 
| subarrays. 

As a result, the cardinality of E 2 can be expressed as |E 2 | =| S | 
2 

)
−
(| I | 
2 

)
+ |E ′ 

2 
| and the k -fragility with k = 2 becomes 

 2 = 

|E 2 | (| S | 
2 

) = 1 −
(| I | 
2 

)(| S | 
2 

) + 

|E ′ 2 | (| S | 
2 

) = L 2 , 

here the last equality is due to | I | = | S | − |E ′ 1 | . 
Let us consider the case when 3 ≤ k ≤ | S | − |E ′ 

1 
| − 2 . Assume

hat A is a k -essential subarray of S . According to Lemma 1 , the

 -essential family E k can be decomposed into four components G 1 ,
 2 , H, and E ′ 

k 

 k = { A ∪ B : A ∈ E ′ 1 , B ⊆ S \ A , | B | = k − 1 } ︸ ︷︷ ︸ 
G 1 

(15)

 { A ∪ B : A ∈ E ′ 2 , B ⊆ S \ A , | B | = k − 2 } ︸ ︷︷ ︸ 
G 2 

(16)

 { A ∪ B : A ∈ E ′ � , B ⊆ S \ A , | B | = k − �, 2 < � < k } ︸ ︷︷ ︸ 
H 

∪ E ′ k . (17)

hen the cardinality of E k can be written as 

E k | = |G 1 ∪ G 2 ∪ H ∪ E ′ k | 
= |G 1 | + |G 2 \G 1 | + | (H\G 1 ) \G 2 | + | ((E ′ k \G 1 ) \G 2 ) \H| . (18)

ext let us analyze the four terms in (18) separately. 

1. The elements in G 1 correspond to the subarrays with at least

one essential sensor. Similar to the first category in the anal-

ysis of F 2 , we have |G 1 | = 

(| S | 
k 

)
−
(| I | 
k 

)
. 

2. The cardinality G 2 \G 1 can be simplified as follows. First, if E ′ 
2 

is empty, then |G 2 \G 1 | = 0 . Second, if E ′ 2 is not empty, then

there exists a set X ∈ E ′ 
2 
. Based on X , let us define a family

X as 

X � { X ∪ Y : Y ⊆ S \ X , | Y | = k − 2 , 

Y consists of inessential sensors } . (19)

According to (15), (16) , and (19) , it can be shown that X ⊆
G 2 \G 1 so |G 2 \G 1 | ≥ |X | = 

(| I |−2 
k −2 

)
. Therefore, combining the

cases of empty E ′ 2 and non-empty E ′ 2 leads to the following

relation 

|G 2 \G 1 | ≥
(| I | − 2 

k − 2 

)
C, (20)

where C � min {|E ′ 
2 
| , 1 } . 

3. The cardinality of a family is nonnegative so we have

| (H\G 1 ) \G 2 | ≥ 0 . 

4. According to Definition 8 , the families G 1 ∪ G 2 ∪ H and E ′ 
k 
are

disjoint. Therefore | ((E ′ 
k 
\G 1 ) \G 2 ) \H| = |E ′ 

k 
| . 

Based on these cases, for 3 ≤ k ≤ | S | − |E ′ 
1 
| − 2 , we have |E k | ≥

| S | 
k 

)
−
(| I | 
k 

)
+ 

(| I |−2 
k −2 

)
C + |E ′ 

k 
| , so that F k ≥ L k . �

The lower bound F min and the lower bound L k represent dif-

erent tradeoffs between the computational complexity and tight-

ess of the bounds. The lower bound F min has lower computa-

ional complexity than L k . The reason is as follows. Evaluating F min 

nly requires the number of sensors, but for L k , the sizes of the k -

ssential Sperner family have to be known, so Algorithm 1 has to

e executed first. As a trade-off, L k is a tighter lower bound than

 , as demonstrated in Section 5.3 later. 
min 
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Fig. 2. The k -fragility of ULA with N = 10 , 15, and 20 physical sensors. 
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Fig. 3. The dependence of the running time for Algorithms 1 and 2 on the number 

of physical sensors N in ULAs. 
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. Numerical examples 

.1. Robustness of ULA 

In this subsection, the robustness of ULA with N sensors will be

tudied using the proposed algorithms. 

In the first experiment, we assume that N = 10 so the array

onfiguration is S ULA = { 0 , 1 , . . . , 9 } . Using Algorithm 1 with K max =
0 leads to the k -essential Sperner family of S ULA : 

 
′ 
1 = {{ 0 } , { 9 }} , (21)

 
′ 
2 = {{ 1 , 8 }} , (22)

 
′ 
3 = {{ 1 , 2 , 7 } , { 2 , 7 , 8 }} , (23)

 
′ 
4 = {{ 1 , 2 , 3 , 6 } , { 2 , 3 , 4 , 5 } , { 2 , 3 , 6 , 7 } , { 2 , 4 , 5 , 7 } , 

{ 3 , 4 , 5 , 6 } , { 3 , 6 , 7 , 8 } , { 4 , 5 , 6 , 7 }} , (24) 

 
′ 
5 = {{ 1 , 3 , 4 , 5 , 7 } , { 1 , 3 , 5 , 6 , 7 } , { 2 , 3 , 4 , 6 , 8 } , { 2 , 4 , 5 , 6 , 8 }} , 

(25) 

nd E ′ 
k 

= ∅ for 6 ≤ k ≤ 10. It can be observed that (21) to (23) are

n accordance with the closed forms in [ 19 , Theorem 2]. Further-

ore, Algorithm 1 is able to find E ′ 
4 
and E ′ 

5 
, as in (24) and (25) ,

espectively, which are not given in the closed forms of [ 19 , Theo-

em 2]. 

The second experiment considers the k -fragility of ULA with

 physical sensors. Fig. 2 depicts the k -fragility F k of ULAs with

 = 10 , 15, and 20 physical sensors. These F k ’s are numerically

omputed by using Algorithms 1 and 2 . Several observations can

e drawn from Fig. 2 . First, the fragility F 1 decreases as the num-

er of sensors N increases, which is in accordance with the explicit

xpression F 1 = 2 /N for the ULA with N ≥ 4 [19 , (30)]. Furthermore,

or a fixed k, F k reduces as N increases (assuming that F k is well-

efined for that k ). For instance, for k = 6 , the k -fragility F k is 1 for

 = 10 , approximately 0.8 for N = 15 , and around 0.6 for N = 20 . 

Fig. 3 shows the running time of Algorithms 1 and 2 for ULA

ith N sensors. The simulation program is implemented on a

orkstation with Intel® Core TM i7-8700 CPU 3.20GHz, 32GB RAM,

buntu 16.04.6 LTS, and MATLAB® R2018b. 

It is observed in Fig. 3 that for N < 15, Algorithm 2 takes less

ime, while for N > 15, Algorithm 1 is less time-consuming. This

henomenon is due to the following: 

1. First let us compare the number of subarrays A to be ex-

amined in these algorithms. According to lines 3 to 18 of
Algorithm 1 and lines 5 to 16 of Algorithm 2 , the number of

subarrays A is upper bounded by 

Algorithm 1 : | S | + 

K max ∑ 

k =2 

(| I | 
k 

)
, (26)

Algorithm 2 : 

K max ∑ 

k =2 

(| S | 
k 

)
. (27) 

Here the first term in (26) results from E ′ 
1 
, where | S | com-

parisons are needed. The second term in (26) represents the

total number of subarrays from sizes k = 2 to K max . Similarly,

the number of subarrays A in Algorithm 2 is given in (27) .

It was known in [ 19 , Theorem 2] that the ULA has exactly

two essential sensors if the number of sensors N ≥ 4, im-

plying that | I | = | S | − 2 . Therefore, for sufficiently large | S | ,
the quantity in (26) is smaller than that in (27) . 

2. Next let us consider the worst-case complexity for each sub-

array A in these algorithms. In Algorithm 1 , each A involves

the comparison of sets (lines 12 and 14) and the evaluation

of the difference sets (line 14). However, in Algorithm 2 , only

the comparison of sets (line 8) is required. Therefore, for

each subarray A , Algorithm 2 typically enjoys less complex-

ity than Algorithm 1 , in the worst-case scenario. 

The overall complexity is the combination of both factors. The

esults in Fig. 3 indicate that 

1. For small N , the complexity for each subarray A is more

prominent than the number of subarrays. 

2. For large N , the number of subarrays is more crucial than

the complexity for each A , due to the growth of the gap be-

tween (27) and (26) . 

.2. Numerical comparison of the robustness of sparse arrays 

The proposed algorithms also facilitate the study of the robust-

ess of a variety of array configurations. In this subsection, the fol-

owing array configurations will be considered: 

(a) ULA with 19 sensors [35] . 

(b) The nested array with N 1 = 9 , N 2 = 10 [24] . 

(c) The prototype coprime array with M = 9 and N = 11 [34] . 

(d) The (extended) coprime array with M = 7 and N = 6 [34] . 

(e) The coprime array with compressed inter-element spacing

(CACIS). The parameters are M = 9 , N = 11 , and p = 3 [28] . 

(f) The super nested array with N 1 = 9 , N 2 = 10 , and Q = 2 [16] .

All these array configurations have 19 physical sensors. Fig. 4 il-

ustrates the essential sensors in red diamonds, the inessential sen-

ors in green squares, and the nonnegative parts of the difference
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Fig. 4. The array configurations of (a) ULA, (b) the nested array, (c) the prototype coprime array, (d) the (extended) coprime array, (e) CACIS with p = 3 , and (f) the super 

nested array with Q = 2 . The essential sensors and the inessential sensors are shown in red diamonds and green squares, respectively. The nonnegative parts of the difference 

coarray are illustrated in blue dots while crosses denote empty space. (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 

Fig. 5. The k -fragility of several array configurations with 19 physical sensors. 

Table 1 

The profiles of the arrays (a) to (f) in Fig. 4 . 

Array (a) (b) (c) (d) (e) (f) 

Aperture 18 99 90 78 88 99 

| D | 37 199 117 127 157 199 

| U | 37 199 39 97 137 199 

Hole-free Yes Yes No No No Yes 

|E ′ 1 | 2 19 3 12 16 19 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. The k -fragility F k , the lower bound in Property 3 of Theorem 1 , and the 

lower bound L k in Lemma 2 for the ULA with N = 19 sensors. 
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c

coarrays in blue dots. The essential sensors and inessential sensors

in Fig. 4 are found according to Algorithm 1 . The negative parts of

the difference coarrays are not shown due to symmetry. Note that

among these arrays, the robustness of the prototype coprime array,

the CACIS, and the super nested array has not been fully studied in

the literature. With the proposed algorithms, it is possible to analyze

the robustness of all these arrays numerically . 

Table 1 lists the profiles of these arrays, including the aperture

( max (S ) − min (S ) ), the size of the difference coarray | D | , the size
of the central ULA segment of the difference coarray | U | , the hole-
free property, and the number of essential sensors |E ′ 

1 
| . Among

these arrays in Fig. 4 , the ULA has the smallest aperture and the

fewest essential sensors. The nested array and the super nested ar-

ray have the largest aperture and the most essential sensors (in

particular, the nested array with N 2 ≥ 2 was shown to be maxi-

mally economic [ 19 , Theorem 1 ]). The ULA, the nested array, and

the super nested array have hole-free difference coarrays. On the

other hand, the prototype coprime array, the (extended) coprime

array, and the CACIS have holes, but they are not maximally eco-
omic. Among these three arrays, the prototype coprime array has

he smallest difference coarray, followed by the (extended) co-

rime array, and finally the CACIS. The smallest number of essen-

ial sensors is owned by the prototype coprime array, followed by

he (extended) coprime array, and finally the CACIS. 

Finally Fig. 5 compares the k -fragility F k of these arrays, by us-

ng Algorithms 1 and 2 . It can be observed that the ULA is the

ost robust array, since it has the smallest F k for all k . The nested

rray and the super nested array are maximally economic ( F k = 1

or all 1 ≤ k ≤ | S | ). The prototype coprime array, the (extended) co-

rime array, and CACIS are less robust than the ULA, but more ro-

ust than the nested array and the super nested array. 

.3. The k -fragility and the lower bounds 

In this example, we consider the ULA with 19 sensors. Fig. 6

ompares the k -fragility with the lower bound F min in Property

 of Theorem 1 and the lower bound L k in Lemma 2 . The fol-

owing observations can be drawn. First, both F min and L k are

ower bounds for F k , which are in accordance with Property 3 of

heorem 1 and Lemma 2 . Second, L k is a tighter lower bound than

 min for 2 ≤ k ≤ N . The reason is that the information of the k -

ssential Sperner family is utilized in the bound L k . On the other

and, only the number of sensors is needed in the lower bound

 min . Therefore the lower bound L k follows the k -fragility F k more

losely than F . 
min 
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. Concluding remarks 

This paper proposed numerical algorithms for evaluating cer-

ain characterizations of the robustness of the difference coarrays

o sensor failures. The robustness of arrays was built upon the the-

ry of the k -essentialness property, the k -essential family, the k -

ragility, and the k -essential Sperner family. These attributes can be

umerically evaluated by the newly proposed algorithms. The first

lgorithm efficiently finds the k -essential Sperner family, while

he second algorithm computes the k -essential family and the k -

ragility. We also presented a new lower bound for the k -fragility.

his lower bound is not only simple to compute, but also tighter

han the lower bound in [18] . 

In the future, it is of considerable interest to study the robust-

ess of arrays not covered in [19] , with the help of the proposed

umerical algorithms. Detailed computational analyses of the pro-

osed algorithms are of future interest as well. 
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