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Sparse arrays have drawn attention because they can identify ©(N?) uncorrelated source directions using
N physical sensors, whereas uniform linear arrays (ULA) find at most N — 1 sources. The main reason is
that the difference coarray, defined as the set of differences between sensor locations, has size of O(N?)
for some sparse arrays. However, the performance of sparse arrays may degrade significantly under sen-
sor failures. In the literature, the k-essentialness property characterizes the patterns of k sensor failures
that change the difference coarray. Based on this concept, the k-essential family, the k-fragility, and the
k-essential Sperner family provide insights into the robustness of arrays. This paper proposes novel algo-
rithms for computing these attributes. The first algorithm computes the k-essential Sperner family with-
out enumerating all possible k-essential subarrays. With this information, the second algorithm finds the
k-essential family first and the k-fragility next. These algorithms are applicable to any 1-D array. How-
ever, for robust array design, fast computation for the k-fragility is preferred. For this reason, a simple
expression associated with the k-essential Sperner family is proposed to be a tighter lower bound for
the k-fragility than the previous result. Numerical examples validate the proposed algorithms and the

presented lower bound.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Array signal processing [12,14,35] has been central to many
fields in science and engineering, such as communication [8],
radar [9,31], imaging [10], and radio astronomy [5]. In these ap-
plications, sparse arrays, where the sensing elements are placed
nonuniformly, have recently drawn attention [10,20,24,34|. Some
sparse arrays can resolve O(N?) uncorrelated sources using N
physical sensors, while the ULA identifies at most N —1 uncor-
related sources with N sensors. For instance, these sparse arrays
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include the minimum redundancy arrays (MRA) [20], the nested
arrays [24], the coprime arrays [34], and their generalizations
[28]. The main reason why O(N2?) uncorrelated sources are re-
solvable, is that the difference coarray (the set of differences be-
tween sensor locations), has an ©(N?)-long central ULA segment.
With this concept, the direction-of-arrival (DOA) of the sources
can be estimated by analyzing the samples on the difference coar-
ray [2,15,24,26,27,34,39], and these methods were shown to resolve
more uncorrelated sources than sensors.

In the literature, two categories of DOA estimators are reported
for resolving more sources than sensors for sparse arrays. The first
type of DOA estimators explicitly converts the array measurements
onto the difference coarray, to which the MUItiple Signal Classifi-
cation (MUSIC) [30] algorithm can be applied. Algorithms of this
type, for example, include the coarray MUSIC algorithm [2,15,27],
and the spatial smoothing MUSIC [24,25]. The other family refor-
mulates the DOA estimation as a sparse recovery problem asso-
ciated with a dense grid of the DOA. Then popular sparse recov-
ery techniques such as ¢; minimization and LASSO can be used for
DOA estimation [26,28].
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In practice, sensor failure may lead to performance degradation
or even breakdown of the overall system [13,22]. Empirical results
showed that, for some sparse arrays, such as MRA, even one faulty
sensor could shrink the ©@(N?)-long ULA segment in the differ-
ence coarray significantly. Furthermore, small ULA segments in the
difference coarray typically degrade the estimation performance
[2,15,24,37]. Therefore, sparse arrays were usually considered not
to be robust to sensor failure. However, the impact of faulty sen-
sors on sparse arrays has to be analyzed rigorously, since these ob-
servations depend on array configurations.

In array signal processing, sensor failures have been handled
with two approaches: 1) developing new algorithms that are func-
tional under sensor failures [21,23,36,38] and 2) analyzing the ro-
bustness of array configurations [3,6,18,19]. In this paper, we will
focus on the second approach, with an emphasis on the robustness
of the difference coarray, since the difference coarray plays a cru-
cial role in the applicability of some coarray-based DOA estimators
in [2,15,24,25,27].

This topic was recently investigated in [18,19]. To begin with,
a sensor is said to be essential if its deletion changes the differ-
ence coarray. A generalization of this (the k-essentialness prop-
erty and k-essential subarrays), is then defined in order to study
the effect of multiple sensor failures on the difference coarray. The
k-essential family is defined as a family of k-essential subarrays.
Then, the robustness of the difference coarray is quantified using
the notion of k-fragility, defined as the ratio of the number of k-
essential subarrays to the number of all subarrays of size k. This
quantity ranges from 0 to 1 while an array is more robust if the
fragility is closer to 0. Finally, the k-essential Sperner family serves
as a compact representation of the k-essential family. These at-
tributes have been studied in [19] for array configurations such as
the ULA, the MRA [20], the nested array [24], and the coprime ar-
ray [34], to name a few. Nevertheless, it is more involved to extend
these theoretical analyses to arbitrary sparse arrays, and hence nu-
merical algorithms for the k-essential family, the k-fragility, and
the k-essential Sperner family are of considerable interest.

This paper presents novel numerical algorithms for finding
the k-essential Sperner family, the k-essential family, and the k-
fragility recursively. The novelty of these algorithms is as follows.
It will be observed that the search space of the k-essential Sperner
family is smaller than that of the k-essential family. This prop-
erty is incorporated in the algorithms for a fast computation of the
k-essential Sperner family. Once the k-essential Sperner family is
available, the k-essential family and the k-fragility can be obtained.
For the reader’s convenience, sample MATLAB codes of these algo-
rithms can be found in [1].

However, the above-mentioned approach involves the enumer-
ation of the k-essential family before the k-fragility is obtained. For
applications such as robust sparse array design [17], it is of interest
to compute the k-fragility directly. For this reason, we also provide
a lower bound for the k-fragility which simply depends on the car-
dinality of the k-essential Sperner family. This lower bound is sim-
ple to compute and more importantly, is tighter than the previous
result in [18].

The outline of this paper is as follows. Section 2.1 reviews the
data model of array signal processing and the difference coarrays.
Section 2.2 reviews the theory of the k-essentialness property, the
k-essential family, the k-fragility, and the k-essential Sperner fam-
ily. These results have been proposed in [18,19]. Section 3 proposes
novel algorithms for computing the k-essential Sperner family, the
k-essential family, and the k-fragility. Section 4 presents a lower
bound for the k-fragility. In Section 5, the proposed algorithms and
the lower bound are demonstrated through numerical examples.
Section 6 concludes this paper.

2. Preliminaries
2.1. The data model

Consider D monochromatic sources with common wavelength A
illuminating a one-dimensional (1-D) sensor array. The sensors are
located at niA/2, where n belongs to an integer set S. The complex
amplitude and the DOA of the ith source are denoted by A; and 6; €
[—m /2, /2], respectively. The measurement vector on S, denoted
by Xs, can be modeled as

D

Xs =Y Aivs(6) +ng, (M
i=1

where ng is the additive noise term and vg (9_,-) is the steering vec-

tor with respect to the normalized DOA 6; £ (sin6;)/2. In partic-

ular, if the integer set S = {ny,ny,...,ny} with ny <ny <... <ny,

then the steering vector is defined as

Vs (0) 2 [er2nlm erznim]". 2)

With regard to (1), we assume that the set S and the number of
sources D are fixed and known, while the normalized DOAs 6; are
fixed but unknown. We assume that A; and ng are zero-mean and

uncorrelated. In other words, if s£[A; A, ... Ap ng]T,
then we have

ej27'r(§,n2

pi 0 0 o
0 p, ... 0 0

E[s] =0, E[ss"]=|: = -~ | 3)
0 0O ... pp O
0 0 ... 0 pl

Here p; and p, are the powers of the ith source and the noise,
respectively. They are assumed to be fixed but unknown. The no-
tation E[.] is the expectation operator. Based on these assumptions,
the covariance matrix of Xg is given by

D

Rs = pivs(0,)VE (0) + pal. (4)
i=1

Next, let us define the difference coarray of the array S as follows

[15,20,24,34]

Definition 1 (Difference coarray). Let S be an integer set. The dif-
ference coarray is defined as the set of differences between the
elements in S. More specifically,

D2 {n—ny:ny,nyeSh (5)
Then we can construct the autocorrelation vector X by vector-
izing Rs and averaging duplicating elements

D
Xp =Y iV (6)) + pneo, (6)

i=1

where VD(éj) denotes the steering vector on the difference coarray
and the vector ey is given by

e=[0 0 010 0 ... o] (7)

(Ip[-1)/2 (Ip[-1)/2

The notation | - | denotes the cardinality of a set. Note that accord-
ing to Definition 1, the element O belongs to D. Furthermore, D is
evenly symmetric. More specifically, m € D if and only if —m € D.
Therefore, |D| is an odd number and (|D| — 1)/2 is an integer.

Eq. (6) can be regarded as the measurement vector defined on
the difference coarray D. In particular, if we replace the physical
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Fig. 1. An illustration of the physical array S (red dots), the difference coarray D (blue dots), the central ULA segment of the difference coarray U (green dots), and the
weight function w(m) (black). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

array S with the difference coarray D, the source amplitude A;
with the source power p;, and the noise term ng with the vector
pne€g, then the array measurement on the physical array (1) be-
comes that on the difference coarray (6). This observation also
has led to a vast development of sparse arrays in the last few
years. For instance, for certain array configurations, quite a few
DOA estimators on the difference coarray were proposed to achieve
higher resolution than DOA estimators based on the physical array
[2,25,27,33,39]. Furthermore, since the size of the difference coar-
ray could be ®(N2), where N is the number of physical sensors,
it is possible to resolve more uncorrelated sources than sensors
[2,25,27,33,39].

Given a difference m, there could be multiple sensor pairs (ny,
n,) with nqy — ny = m. The number of such pairs is characterized by
the weight function w(m):

Definition 2. The weight function w(m) is defined as the number
of sensor pairs with separation m € Z. This definition can be writ-
ten as w(m) = |{(n1,n2) €eS?ing—ny = m}‘

By definition, the weight function w(m) is integer-valued and
its support (the set of m’s such that w(m) # 0) is exactly the dif-
ference coarray [24]. It can be shown that the weight function is
an even function, i.e. w(—m) = w(m). Furthermore, for a 1-D sen-
sor array S with N physical sensors, the weight function satisfies
[24]

w(0) =N, w(max(s)—min(s))=1, Y w(m)=N> (8)

mel

where max(S) and min(S) denote the maximum and the mini-
mum of the set S, respectively.

Next we will define holes, which are important in analyzing the
performances achieved by the difference coarray [34]. We say an
integer h is a hole of the difference coarray D if min(D) < h <
max (D) but h ¢ D.

The central ULA segment of the difference coarray, denoted by
the set U, is the largest segment centered around O that consists of
consecutive integers. In particular, U2 {m: {0, +1,...,+m} C D}.
The difference coarray is hole-free if there are no holes in the dif-
ference coarray, which is equivalent to the property that D =U.
Note that the central ULA segment U plays a significant role in
DOA estimators such as spatial smoothing MUSIC [24,25] and coar-
ray MUSIC [2,15,27].

Example 1. Let wus consider a sensor array with S=
{0,6,7,9,11,19}, as depicted on the top of Fig. 1. The differ-
ence coarray D, as defined in Definition 1, is also illustrated in

Fig. 1. It can be observed that the sizes of S and D are 6 and 29,
respectively. The holes of the difference coarray are + 14, =+ 15,
+ 16, £ 17, and = 18, while the central ULA segment of the
difference coarray contains consecutive integers from —13 to 13.
The weight function of S is shown on the bottom of Fig. 1. In
particular, we have w(0) =6, w(19) =1, and } ., w(m) = 36,
which are consistent with the property in (8).

The difference coarray D and the weight function w(m) are uti-
lized to derive optimal sparse array configurations. For instance,
the minimum redundancy array (MRA) with N sensors has the
largest hole-free difference coarray [20]. The minimum hole array
(MHA) has the smallest number of holes subject to the constraint
that each nonzero difference originates from a unique sensor pair
[4]. Both the MRA and the MHA have difference coarrays of size
O(N?). However, finding the sensor locations of the MRA and the
MHA is computationally intractable for large number of sensors
[4,11,20,29].

Recently, this issue has been addressed by sparse arrays with
large difference coarrays. In particular, with N physical sensors, the
size of the difference coarray is up to O(N2?). More importantly,
these sparse arrays have closed-form expressions for the sensor lo-
cations, which are simple to compute. The arrays with these prop-
erties include the nested array [24], the coprime array [34] the
generalized coprime array [28], and the super nested array [16],
to name a few.

2.2. Robustness of Difference coarrays of sparse arrays

The structure of the difference coarray plays an important role
in the applicability of many coarray-based DOA estimators, such as
the coarray MUSIC algorithm [2,15,24,25,27]. In [18], the influence
of a sensor failure on the difference coarray is described by the
essentialness property:

Definition 3. The sensor at n € S is essential if the removal of that
sensor changes the difference coarray.

To be more specific, let n belong to S, and S = S\{n} be the ar-
ray configuration after the failure of the sensor at n. The difference
coarrays of S and S are denoted by D and D, respectively. We say
the sensor at n is essential if D % D. In addition, n is said to be
inessential if D = D.

The essentialness property can be utilized to quantify the ro-
bustness of array configurations. For instance, the more essential
sensors in an array, the more likely the difference coarray changes
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under sensor failures. In this scenario, coarray MUSIC is more likely
to fail. Thus the array is not robust.

The essentialness property is also useful in assigning sensing
devices of different reliability and cost to different locations. For
example, suppose there are two sensing devices, Device I and De-
vice II, with different costs and qualities. Device I is costly but is
durable, i.e. with low failure probability. Device II is less expensive
but is easily broken. Therefore, to strike a balance between the cost
and the robustness of an array, Device I can be used as an essential
sensor, and Device II as an inessential sensor.

The essentialness property can also be utilized to assess the
economy of an array [18]:

Definition 4. A sensor array S is said to be maximally economic if
all the sensors in S are essential.

These arrays are also called maximally economic sparse arrays
(MESA). It was proved in [19, Theorem 1] that the MESA family in-
cludes the MRA, the MHA, parts of the nested array, and the Cantor
array. However, the ULA and the coprime arrays are not maximally
economic [19].

The essentialness property is closely related to one sensor fail-
ure in an array. However, multiple sensor failures are more realis-
tic. The k-essentialness property, a generalization of Definition 3, is
defined for this purpose [18]:

Definition 5. A subarray A of S is said to be k-essential with re-
spect to an array S if it has the following properties.

1. A has size exactly k.
2. The difference coarray changes when A is removed from S.

Note that the k-essentialness is an attribute of a subarray A
of S, while the essentialness is an attribute of a sensor at n in
S. In particular, the essentialness of neS is equivalent to the
k-essentialness of {n} €S with k=1. The collection of the k-
essential subarrays constitutes the k-essential family [18]:

Definition 6. The k-essential family &, with respect to a sensor ar-
ray S is defined as

& = {A 1 A is k-essential with respect to S}. (9)
Here k=1,2,...,[S|.

The larger the size of &, is, the more likely that the difference
coarray tends to change under k faulty sensors. This concept leads
to the definition of the k-fragility [18]:

Definition 7. The fragility or k-fragility of a sensor array S is de-
fined as

F 2 @ (10)

(%)
where k=1,2,...,S|.

The k-fragility can be regarded as a scalar attribute to quantify
the robustness of an array, in the sense that the difference coarray
changes under k sensor failures. The larger F; is, the more fragile
(or the less robust) the array is.

The following present some properties regarding the k-fragility
F, [18]:

Theorem 1. Let S be an integer set denoting the sensor locations. The
k-fragility F, with respect to S has the following properties:

1. F < Fq for all 1 < k < [S| — 1. The equality holds if and only
if F, = 1.

2. F, =1 for all k such that Q <k < S|, where Q = min{Qy, Q3}.
The parameters Q; and Q, are given by

Q =S| - &l +1. (11)

V8IS —11+1

Q=|IS][- VBl -1+ 1 |2 : for |S|>=2. (12)

3. Let Fy, denote min{1,2/|S|}. Then Fp;, < Fy < 1 forall 1<
k<|S|.

Theorem 1 imposes some constraints on the k-fragility Fj. Prop-
erty 1 indicates that F, is an increasing function, which is con-
sistent with the concept that, as the number of faulty sensors in-
creases, the difference coarray tends to change. Property 2 is equiv-
alently saying that, if there are many faulty sensors (i.e. k > Q),
then the difference coarray changes. Property 3 shows that F, is
bounded between min{1, 2/|S|} and 1, which provides a numerical
range for comparing the robustness of arrays.

It may be computationally difficult to find &, and F, for any ar-
ray S. The reason is that, first there are as many as (li‘) subarrays
of size k. Second, for each subarray, we need to compare the corre-
sponding difference coarray D and then compare it with the orig-
inal difference coarray D, as in Definition 5. These steps become
computationally difficult for large |S| and k ~ |S|/2. Furthermore,
the memory storage of &, is also challenging, due to the large size
of (‘:k.

To mitigate these issues, the k-essential Sperner family was pro-
posed in [18] as a compact representation of &;. The formal defini-
tion is as follows [18]:

Definition 8. Let &, be the k-essential family with respect to the
array S, where the integer k satisfies 1 < k < |S|. The k-essential
Sperner family &, is defined as follows:

8/— 5], ifk=1, (_13)
K l{ae&:VBe& 1, BeA), ifk=2,....]S|

where B ¢ A denotes that B is not a proper subset of A.

The k-essential Sperner family with k=1 is defined as the k-
essential family with k = 1. For 2 < k < S|, the k-essential Sperner
family extracts the portions of the &, which are not supersets of
any elements in &,_;. By doing so, it was demonstrated in [18] that
the size of the k-essential Sperner family é‘lé can be much smaller
than that of the k-essential family &. This attribute makes it possi-
ble to reduce the computational complexity, as we shall elaborate
in Section 3.

The term Sperner stems from the Sperner family in discrete
mathematics [7,32]. A Sperner family is a family of sets in which
none of the elements is a subset of the other [7,32]. Based on
Definition 8, it can be shown that & themselves form a Sperner
family [19].

The k-essential family can be uniquely recovered from the k-
essential Sperner family. More specifically, given the complete in-
formation of £},¢&;,...,¢&,, the k-essentialness property can be
readily verified by examining the inclusion between sets, as in the
following lemma [18]:

Lemma 1. Let SIQ be the k-essential Sperner family of S with 1 <k <
|S|. Then the k-essential family &, satisfies

&, ifk=1,
E=3{AUB:A€E, 1<t<k,

B C S\A, |B| =k—¢}, otherwise.

Lemma 1 is particularly useful in numerically evaluating the
k-essential family &, and the k-fragility F,. Given the k-essential
Sperner family &; for all k, first & can be constructed and the Fy
can be found. Another advantage is that if there are only few sen-
sor failures, for example k=1, 2, ..., Knax, then Lemma 1 can be
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applied recursively for these k, which alleviates the computational
burden of finding all the &,’s.

The k-fragility can be utilized in designing new sparse array
configurations with enhanced robustness. For instance, the robust
minimum redundancy array (RMRA) [17] has the largest hole-free
difference coarray and the property that F = Fy;,. Here F.;, is
given in Property 3 of Theorem 1. It was shown that RMRA has
the property that |D| = O(|S|2), which is as good as the MRA. Fur-
thermore, RMRA with N sensors is more robust than MRA with N
sensors, where the fragility F; is 2/N for RMRA and 1 for MRA.

3. Numerical algorithms
3.1. The k-essential Sperner family SIQ

In general, it is very involved to derive closed-form expres-
sions for the k-essential family, the k-fragility, and the k-essential
Sperner family [19]. For arbitrary array configurations, closed forms
of & and F for all k are not available, except for MESA and
coprime arrays [19]. Fortunately however, it is still possible to
compute the k-essential family, the k-fragility, and the k-essential
Sperner family numerically.

A straightforward approach to the numerical algorithm is as fol-
lows. For a given k in 1 < k < |S|, we first enumerate all ('i‘) sub-
arrays to find &. For each subarray, the k-essentialness property is
examined, which requires the computation of D and a comparison
between D and D (Definitions 3 and 5). Once & is known, the k-
fragility F, and the k-essential Sperner family £, can be obtained
according to Definitions 7 and 8, respectively.

A drawback of this straightforward method is the large search
space for &. In principle, the k-essentialness property needs to
be examined over (li’l) subarrays. However, if we focus on the
k-essential Sperner family first, the search space could be much
smaller. Therefore, in this paper, we will first propose a method to
finding S{( without the complete information of &,.

The complete algorithm for the k-essential Sperner family is
summarized in Algorithm 1, whose objective is to compute &; for
k=1,2,..., Kmax. Here Knax is a pre-defined integer in the range
1 < Kmax < |S|. This parameter indicates that sensor failures up to
size Kmax are of interest.

Algorithm 1 The k-essential Sperner family 5,2.

Require: The physical array S
Require: An integer Kmax With 1 < Kpax < |S|
1: function k-ESSENTIAL-SPERNER-FAMILY(S, Kmax)
2: 5,£<—@f0rk=1,2,~--,1(max
3 for all n €S do
4 if (n is essential) then
5: & <& uin)
6: end if
7: end for
8 I « the set of inessential sensors in S
9: Q < min(Qq, Qy) > Equations (11) and (12)
10: for k< 2,3,..., min(Kpax, Q) do

11: for all A CT and |A| =k do

12: if (A is a superset of some Be &) for 2<¢<k-1)
then

13: Continue > Skip to another A

14: else if (A is k-essential) then

15: & < & U{A}

16: end if

17: end for

18: end for

19:  return £, &, ... &

20: end function

Algorithm 1 is divided into two stages. The first stage is to com-
pute & while the second stage is to find &, for k > 2. In the first
stage, the essentialness property of all the sensors in S is exam-
ined, as shown in lines 3 to 7 in Algorithm 1.

The second stage focuses on computing SIQ fork=2,..., Knpax. It
is not necessary to search over all possible subarrays A C S of size
k due to the following reasons.

1. It suffices to compute 2 < k < min{Knax, Q}. It was shown in
[18, Lemma 8] that &; is empty if k > Q = min{Qy, Qz}. Here
Q: and Q, are given in (11) and (12), respectively. By defini-
tion, Q; and Q, can be readily computed from the number
of sensors [S| and the number of essential sensors |£]].

2. We only need to consider all subarrays consisting of inessen-
tial sensors in finding 5,2. The reason is as follows. Suppose
A={ny,ny,...,m}CS is a subarray of size k and with-
out loss of generality, nq € S is essential. By definition, we
have {n} e &, {ny,n3} € &, {ny,ny,...,n_1} € &_4. Since
{ny.ny, ..., n_1} C A, the set A does not belong to &, due
to Definition 8. As a result, n; is inessential with respect to
S. This chain of arguments shows that the set A consists of
inessential sensors.

3. It is not necessary to compute the difference coarrays for all
the subarrays in Reason 2. Due to Lemma 1, the k-essential
subarrays can be expressed as A UB, where A € &, for some
1 < ¢ < k. In other words, if a subarray of size k is a su-
perset of some ¢-essential subarray, then that subarray is k-
essential. Therefore, we can use the contents of &, to accel-
erate the computation.

These points are also taken into consideration in lines 10, 11,
and 12 of Algorithm 1.

If the k-fragility with k=1 is close to 1, Algorithm 1 is much
faster than computing the k-essential family directly. The reason
is that in Algorithm 1, the subarrays are enumerated over the
inessential sensors (line 11), which are very few when F; is close
to 1. In particular, if an array is maximally economic, Algorithm 1 is
able to detect the scenario in line 8 and then skip the enumeration
in lines 10 to 18. This mechanism reduces the computational time
significantly for MESA.

3.2. The k-essential Sperner family and the k-fragility

Next we will discuss the algorithm for computing the k-
essential family and the k-fragility, as shown in Algorithm 2. Sup-
pose the physical array S and an integer Kmax with 1 < Kpax < |S|
are given. The k-essential Sperner family is first evaluated by using
Algorithm 1, and then the k-essential family and the k-fragility can
be obtained.

Due to the properties of the k-essential family, the following
two points are used to accelerate the computation:

1. The k-essential family &, has all the subarrays of size k for
k > Q[19, Theorem 1].

2. According to Lemma 1, the k-essential family comprises the
supersets of the elements in the k-essential Sperner family.

These points are in lines 6 to 14 of Algorithm 2. Finally, the k-
fragility F, can be obtained from the sizes of &, as in line 15 of
Algorithm 2.

Summarizing, the proposed algorithms (Algorithms 1 and 2) are
able to find the k-essential Sperner family, the k-essential family,
and the k-fragility of any 1-D array configuration. In Algorithm 1,
the essential sensors are found first, and then the k-essential
Sperner family €, for k > 2 is constructed from the inessential sen-
sors. Based on the results of Algorithm 1, Algorithm 2 finds the
k-essential family and the k-fragility, by comparing the inclusion
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Algorithm 2 The k-essential family &, and the k-fragility Fy.
Require: The physical array S
Require: An integer Kmax with 1 < Kmax < [S]

Require: The k-essential Sperner family&;, ). ..., Sj(max

1: function k-ESSENTIAL-FAMILY-FRAGILITY(S, Kmax, £1. &}. ...,
gl(max)

2: & « {;‘{

3 R < &al/1s|

4: Q <~ min(Qq, Qy) > Equations 11 and 12

5: for k< 2,3,...,Knax do

6: if (k<Q) then

7: for all AcSand |[A| =k do

8: if (A is a superset of some Be &, for 1 <¢ <k)
then

9: 5I< < (":k 0] {A}

10: end if

11: end for

12: else

13: & < the family of all subarrays of S of size k

14: end if

15: F < |gk|/(|§|)

16: end for
17: return &, &y, ..
18: end function

- Ekmax B B2 By

between sets. These algorithms are more flexible than the closed
forms in [19], which are only applicable to certain array configura-
tions.

4. Lower bounds for the k-fragility

In the design of sparse arrays with enhanced robustness, it is of
primary interest to specify the level of robustness in terms of the
k-fragility, rather than the explicit expressions for the k-essential
family &, [17]. As a result, in these applications, it is redundant
to first construct the k-essential family in line 13 of Algorithm 2,
and then to determine the size the k-essential family in line 15 of
Algorithm 2.

This issue can be addressed by studying the lower bounds for
F. These bounds have to be tight and simple to compute. A candi-
date for the lower bounds is F;, in Property 3 of Theorem 1. This
quantity is simple to compute. However, it is a loose bound, since
only the information of the number of sensors is utilized in Fpp,.

In principle, as long as we have the information of the k-
essential Sperner family, it is possible to derive a lower bound
for the k-fragility which can be readily computed and tighter than
Fpin- The following lemma states the improved lower bound L; as-
sociated with the sizes of the k-essential Sperner family:

Lemma 2. For an array S, consider the k-essential Sperner family &,
and the k-fragility F, defined in Definitions 8 and 7, respectively. Let
T be the set of inessential sensors in S. Then F, satisfies

F, > L, fork=1,2,....IS| - |&] -2, (14)
where the lower bound L, is given by

ﬁh ifk=1,
L= 4(-595)+ & ifk=2.

1= 10 = ()e-1e]. 3 <k=lsl-1eg -2

The cardinality of 1 is |I| =S| —|£;| and the parameter C2
min{|&}|, 1}. Furthermore, the equality in (14) holds true for k=1
and k = 2.

Proof. If k = 1, then according to Definitions 7 and 8, we have F; =
[£11/1S] = 1€11/IS], so F = Ly. If k = 2, then the k-essential subarray
A can be divided into two non-overlapping categories:

1. The subarray A has at least one essential sensor. This case
is the complement of the event that all sensors in A are
inessential. As a result, there are (E') - (‘g') choices of A.

2. The subarray A belongs to £). There are |£}| subarrays.

As a result, the cardinality of & can be expressed as |&| =
(5) = (5) + €3] and the k-fragility with k = 2 becomes
polel (), 1

G NG
where the last equality is due to [I| = [S| — [£]].

Let us consider the case when 3 <k <|S| - |£]| — 2. Assume
that A is a k-essential subarray of S. According to Lemma 1, the
k-essential family &, can be decomposed into four components Gy,
Gy, H, and 5,’(

=L,

& ={AUB:Acé&, BCS\A, |B|=k-1} (15)
G
U{AUB:Aecé&), BCS\A, |B|=k-2} (16)
G2

U{AUB:A€&, BSS\A, [Bl=k—¢ 2<t¢<klUg,. (17)

H
Then the cardinality of &, can be written as

&l =161UG UHU &
=1G1] + |G2\G1| + [(H\G)\Ga2| + [((E\G1)\GD\H|.  (18)
Next let us analyze the four terms in (18) separately.

1. The elements in G; correspond to the subarrays with at least
one essential sensor. Similar to the first category in the anal-
ysis of F,, we have |G| = (El) - (li‘).

2. The cardinality G,\G; can be simplified as follows. First, if £,
is empty, then |G,\G;| = 0. Second, if £ is not empty, then
there exists a set X e £. Based on X, let us define a family
X as

X2 (XUY:YCS\X, |Y|=k-2,
Y consists of inessential sensors}. (19)

According to (15), (16), and 319), it can be shown that X c
Go\G1 50 |Go\G1| > |X| = (|’E:22)' Therefore, combining the
cases of empty &), and non-empty &} leads to the following
relation

|G2\G1] = <|I]i|—_22>c’ (20)

where C £ min{|&|, 1}.
3. The cardinality of a family is nonnegative so we have
|(H\G1)\G2| = 0.
4. According to Definition 8, the families G; UG, U#H and & are
disjoint. Therefore |((£,\G1)\G2)\H| = |&].
Based on these cases, for 3 <k < [S| — |£{] — 2, we have [§] >
(‘i') - (‘IE') + (',]i‘:ZZ)C +1£,]. so that F > L. O
The lower bound F;, and the lower bound L, represent dif-
ferent tradeoffs between the computational complexity and tight-
ness of the bounds. The lower bound F,;, has lower computa-
tional complexity than L. The reason is as follows. Evaluating F,;,
only requires the number of sensors, but for L, the sizes of the k-
essential Sperner family have to be known, so Algorithm 1 has to

be executed first. As a trade-off, L, is a tighter lower bound than
Fpin, @s demonstrated in Section 5.3 later.
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Fig. 2. The k-fragility of ULA with N = 10, 15, and 20 physical sensors.

5. Numerical examples
5.1. Robustness of ULA

In this subsection, the robustness of ULA with N sensors will be
studied using the proposed algorithms.

In the first experiment, we assume that N =10 so the array
configuration is Sy;a = {0, 1, ..., 9}. Using Algorithm 1 with Kpax =
10 leads to the k-essential Sperner family of Sya:

&1 = {{0}. {9}, (21)
&={{1.8}}. (22)
& =1{1,2,7).{2,7.8}}, (23)

& =1{{1,2,3,6},{2,3,4,5},{2,3,6,7},{2,4,5,7},
{3,4,5,6},{3,6,7,8},{4,5.6,7}}, (24)

& =1{1.3,4,57}.{1.3,5,6,7},{2.3,4.6.8}.{2,4,5.6,8}}.
(25)

and 8{( =@ for 6 < k < 10. It can be observed that (21) to (23) are
in accordance with the closed forms in [19, Theorem 2]. Further-
more, Algorithm 1 is able to find &£ and &Z, as in (24) and (25),
respectively, which are not given in the closed forms of [19, Theo-
rem 2].

The second experiment considers the k-fragility of ULA with
N physical sensors. Fig. 2 depicts the k-fragility F, of ULAs with
N =10, 15, and 20 physical sensors. These F,’s are numerically
computed by using Algorithms 1 and 2. Several observations can
be drawn from Fig. 2. First, the fragility F; decreases as the num-
ber of sensors N increases, which is in accordance with the explicit
expression F; = 2/N for the ULA with N > 4 [19, (30)]. Furthermore,
for a fixed k, F, reduces as N increases (assuming that F; is well-
defined for that k). For instance, for k = 6, the k-fragility F, is 1 for
N = 10, approximately 0.8 for N = 15, and around 0.6 for N = 20.

Fig. 3 shows the running time of Algorithms 1 and 2 for ULA
with N sensors. The simulation program is implemented on a
workstation with Intel® Core™ i7-8700 CPU 3.20GHz, 32GB RAM,
Ubuntu 16.04.6 LTS, and MATLAB® R2018b.

It is observed in Fig. 3 that for N < 15, Algorithm 2 takes less
time, while for N > 15, Algorithm 1 is less time-consuming. This
phenomenon is due to the following:

1. First let us compare the number of subarrays A to be ex-
amined in these algorithms. According to lines 3 to 18 of

10?

F T 2
f 57
1 . L |
W' “‘_‘.‘g— E
8 E o A B
CI ¥ ]
s 0 R i
é 10 E e - El
3 g ~F 1
| A ]
g 1L a5 i
£ 107tk 2 <
=] E - E
z B Lkl 1
< F -+ 1
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1072¢" 0" Y
(;.-" = = Algorithm 1 |
[ - «@-: Algorithm 2 ||

10-3 I I I I I I I
10 11 12 13 14 15 16 17 18 19 20

The number of sensors, N

Fig. 3. The dependence of the running time for Algorithms 1 and 2 on the number
of physical sensors N in ULAs.

Algorithm 1 and lines 5 to 16 of Algorithm 2, the number of
subarrays A is upper bounded by

Kn]EX
Algorithm 1: [S|+ ) (';i'), (26)
k=2
) ‘ Kmax |S|
Algorithm 2 : >~ ) (27)
k=2

Here the first term in (26) results from £}, where [S| com-
parisons are needed. The second term in (26) represents the
total number of subarrays from sizes k = 2 to Kpnax. Similarly,
the number of subarrays A in Algorithm 2 is given in (27).
It was known in [19, Theorem 2] that the ULA has exactly
two essential sensors if the number of sensors N > 4, im-
plying that |I| = |S| — 2. Therefore, for sufficiently large |S|,
the quantity in (26) is smaller than that in (27).

2. Next let us consider the worst-case complexity for each sub-
array A in these algorithms. In Algorithm 1, each A involves
the comparison of sets (lines 12 and 14) and the evaluation
of the difference sets (line 14). However, in Algorithm 2, only
the comparison of sets (line 8) is required. Therefore, for
each subarray A, Algorithm 2 typically enjoys less complex-
ity than Algorithm 1, in the worst-case scenario.

The overall complexity is the combination of both factors. The
results in Fig. 3 indicate that

1. For small N, the complexity for each subarray A is more
prominent than the number of subarrays.

2. For large N, the number of subarrays is more crucial than
the complexity for each A, due to the growth of the gap be-
tween (27) and (26).

5.2. Numerical comparison of the robustness of sparse arrays

The proposed algorithms also facilitate the study of the robust-
ness of a variety of array configurations. In this subsection, the fol-
lowing array configurations will be considered:

a) ULA with 19 sensors [35].

b) The nested array with Ny =9, N, = 10 [24].

c) The prototype coprime array with M =9 and N = 11 [34].

d) The (extended) coprime array with M =7 and N =6 [34].

e) The coprime array with compressed inter-element spacing
(CACIS). The parameters are M =9, N=11, and p =3 [28].

(f) The super nested array with Ny =9, N, =10, and Q = 2 [16].

All these array configurations have 19 physical sensors. Fig. 4 il-
lustrates the essential sensors in red diamonds, the inessential sen-
sors in green squares, and the nonnegative parts of the difference
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Fig. 4. The array configurations of (a) ULA, (b) the nested array, (c) the prototype coprime array, (d) the (extended) coprime array, (e) CACIS with p =3, and (f) the super
nested array with Q = 2. The essential sensors and the inessential sensors are shown in red diamonds and green squares, respectively. The nonnegative parts of the difference
coarray are illustrated in blue dots while crosses denote empty space. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)
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Fig. 5. The k-fragility of several array configurations with 19 physical sensors.

Table 1

The profiles of the arrays (a) to (f) in Fig. 4.
Array @ (b (9 (d (e ()
Aperture 18 99 90 78 88 99
|DJ 37 199 117 127 157 199
|U| 37 199 39 97 137 199
Hole-free Yes Yes No No No Yes
1€ 2 19 3 12 16 19

coarrays in blue dots. The essential sensors and inessential sensors
in Fig. 4 are found according to Algorithm 1. The negative parts of
the difference coarrays are not shown due to symmetry. Note that
among these arrays, the robustness of the prototype coprime array,
the CACIS, and the super nested array has not been fully studied in
the literature. With the proposed algorithms, it is possible to analyze
the robustness of all these arrays numerically.

Table 1 lists the profiles of these arrays, including the aperture
(max(S) — min(S)), the size of the difference coarray |D|, the size
of the central ULA segment of the difference coarray |U|, the hole-
free property, and the number of essential sensors |£7|. Among
these arrays in Fig. 4, the ULA has the smallest aperture and the
fewest essential sensors. The nested array and the super nested ar-
ray have the largest aperture and the most essential sensors (in
particular, the nested array with N, > 2 was shown to be maxi-
mally economic [19, Theorem 1]). The ULA, the nested array, and
the super nested array have hole-free difference coarrays. On the
other hand, the prototype coprime array, the (extended) coprime
array, and the CACIS have holes, but they are not maximally eco-

T T T T T T T T T
1+ SO Y R S TN -
¢*+
o
’
= 08 f * A
z /+ =4 - F
= &
06 é =0 Fin
< ie L
g 3 k
= p
L 04l ¥ =
/
0.2} B
¢ ©0:0:00-0-0-0-060:-0-0-"0-0-0--0-0-0--0
0 | | | | | | | | |
0 2 4 6 8 10 12 14 16 18 20

The number of faulty sensors, k

Fig. 6. The k-fragility Fy, the lower bound in Property 3 of Theorem 1, and the
lower bound L, in Lemma 2 for the ULA with N = 19 sensors.

nomic. Among these three arrays, the prototype coprime array has
the smallest difference coarray, followed by the (extended) co-
prime array, and finally the CACIS. The smallest number of essen-
tial sensors is owned by the prototype coprime array, followed by
the (extended) coprime array, and finally the CACIS.

Finally Fig. 5 compares the k-fragility F, of these arrays, by us-
ing Algorithms 1 and 2. It can be observed that the ULA is the
most robust array, since it has the smallest F, for all k. The nested
array and the super nested array are maximally economic (F, =1
for all 1 < k < |S|). The prototype coprime array, the (extended) co-
prime array, and CACIS are less robust than the ULA, but more ro-
bust than the nested array and the super nested array.

5.3. The k-fragility and the lower bounds

In this example, we consider the ULA with 19 sensors. Fig. 6
compares the k-fragility with the lower bound F,;, in Property
3 of Theorem 1 and the lower bound L, in Lemma 2. The fol-
lowing observations can be drawn. First, both F.;, and L, are
lower bounds for F,, which are in accordance with Property 3 of
Theorem 1 and Lemma 2. Second, L; is a tighter lower bound than
Fuin for 2 < k < N. The reason is that the information of the k-
essential Sperner family is utilized in the bound L;. On the other
hand, only the number of sensors is needed in the lower bound
Frin- Therefore the lower bound L, follows the k-fragility F;, more
closely than F,.
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6. Concluding remarks

This paper proposed numerical algorithms for evaluating cer-
tain characterizations of the robustness of the difference coarrays
to sensor failures. The robustness of arrays was built upon the the-
ory of the k-essentialness property, the k-essential family, the k-
fragility, and the k-essential Sperner family. These attributes can be
numerically evaluated by the newly proposed algorithms. The first
algorithm efficiently finds the k-essential Sperner family, while
the second algorithm computes the k-essential family and the k-
fragility. We also presented a new lower bound for the k-fragility.
This lower bound is not only simple to compute, but also tighter
than the lower bound in [18].

In the future, it is of considerable interest to study the robust-
ness of arrays not covered in [19], with the help of the proposed
numerical algorithms. Detailed computational analyses of the pro-
posed algorithms are of future interest as well.
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