
PROCEEDINGS OF SPIE

SPIEDigitalLibrary.org/conference-proceedings-of-spie

The random component-wise power
method

Oguzhan Teke, Palghat P. Vaidyanathan

Oguzhan Teke, Palghat P. Vaidyanathan, "The random component-wise
power method," Proc. SPIE 11138, Wavelets and Sparsity XVIII, 111381L (9
September 2019); doi: 10.1117/12.2530511

Event: SPIE Optical Engineering + Applications, 2019, San Diego, California,
United States

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 24 Sep 2019 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

The Random Component-Wise Power Method

Oguzhan Teke and Palghat P. Vaidyanathan

California Institute of Technology, 1200 E. California Blvd., Pasadena, USA

ABSTRACT

This paper considers a random component-wise variant of the unnormalized power method, which is similar
to the regular power iteration except that only a random subset of indices is updated in each iteration. For
the case of normal matrices, it was previously shown that random component-wise updates converge in the
mean-squared sense to an eigenvector of eigenvalue 1 of the underlying matrix even in the case of the matrix
having spectral radius larger than unity. In addition to the enlarged convergence regions, this study shows that
the eigenvalue gap does not directly affect the convergence rate of the randomized updates unlike the regular
power method. In particular, it is shown that the rate of convergence is affected by the phase of the eigenvalues
in the case of random component-wise updates, and the randomized updates favor negative eigenvalues over
positive ones. As an application, this study considers a reformulation of the component-wise updates revealing a
randomized algorithm that is proven to converge to the dominant left and right singular vectors of a normalized
data matrix. The algorithm is also extended to handle large-scale distributed data when computing an arbitrary
rank approximation of an arbitrary data matrix. Numerical simulations verify the convergence of the proposed
algorithms under different parameter settings.

Keywords: Fixed point iteration, randomized iterations, low-rank approximation, distributed computation.

1. INTRODUCTION

Computation of the dominant eigenvector of a matrix is an important problem with vast number of applications
in data processing. Due to its fundamental significance there is a rich literature on the numerical techniques that
can extract the dominant eigenvectors.1–5 The power method is one of the oldest techniques which is still used
today. One of its most prominent applications is the well-known PageRank algorithm.6 Given a square matrix
A of size N �N , the unnormalized power method is defined through the following recurrence relation:

xk � A xk-1, (1)

where xk denotes the vector at the kth iteration of the method. Iterations defined through the recurrence relation
in (1) are known to converge to the dominant eigenvector of the given matrix A P CN�N when the eigenvalues
of A satisfy |λ| ¤ 1 (or, if the vector xk is properly normalized after each iteration).

In this study we will consider a random and component-wise variant of the regular power method (1), in
which we select a random subset of rows of A in each iteration, compute the inner products between the rows
and the vector xk-1, and then update only the corresponding indices of the vector xk-1. The values of the
unselected indices remain unchanged. This randomized variant is first proposed in order to study the behavior of
autonomous networks7–9 in the context of graph signal processing. Here we will consider the randomized update
scheme from a purely linear algebraic point of view.

Regarding the randomized variant considered here we ask the following questions: Do the iterations converge?
If so, where and how fast do they converge? When A is a normal matrix, under mild boundedness assumptions
on the matrix A, it is proven that iterations indeed converge in the mean-squared sense to an eigenvector of A
with eigenvalue 1.7 However, convergence characteristics of the random updates differ significantly from that
of the regular power method in two ways. The first one is the region of convergence: random component-wise

Contact e-mails: oteke@caltech.edu, ppvnath@systems.caltech.edu. This work was supported in parts by the ONR
grant N00014-18-1-2390, the NSF grant CCF-1712633, and the Electrical Engineering Carver Mead Research Seed
Fund of the California Institute of Technology.

Wavelets and Sparsity XVIII, edited by Dimitri Van De Ville, Manos Papadakis, Yue M. Lu, Proc. of SPIE
Vol. 11138, 111381L · © 2019 SPIE · CCC code: 0277-786X/19/$21 · doi: 10.1117/12.2530511

Proc. of SPIE Vol. 11138 111381L-1
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 24 Sep 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

updates have a larger region of convergence on the eigenvalue plane. Thus, randomized updates are guaranteed
to converge whenever the regular power method converges. More importantly, randomized updates can converge
even when the regular power method does not.

In addition to the enlarged convergence regions,7 in this study we consider the effect of the randomized
updates on the rate of convergence. In this regard, we first demonstrate that randomized updates may converge
faster, or slower than the regular power method depending on the sign (or, phase) of the non-unit eigenvalues,
and the eigenvalue gap does not have a direct effect on the convergence rate unlike the regular power method.
Then, we explain the intricate relationship between the rate of convergence and the eigenvalues of A, and describe
the cases for which randomized updates are faster, or slower than the standard power iteration.

In this study, we also reformulate the random component-wise updates in order to compute the dominant
singular vectors of an arbitrary data matrix. In particular, we propose an algorithm that is proven to converge
to the dominant left and right singular vectors of a normalized data matrix. Then, we extend the algorithm to
compute an arbitrary rank approximation of an arbitrary matrix. Due to its asynchronous and component-wise
nature, we further extend the algorithm for a distributed computation. More precisely, the data is assumed
to be partitioned into smaller pieces, and each piece is stored and processed by a single core. These cores do
computations locally and communicate with a fusion center in a randomized and asynchronous manner.

1.1 Previous Literature

Due to the component-wise nature, the update scheme considered here resembles the coordinate descent type al-
gorithms.10–13 In particular, the approach by Lei, et al.14 considers the same update scheme in which the update
sets are selected deterministically and adaptively in each iteration in order to improve the rate of convergence.

In this study, the random component-wise updates will be analyzed from the view-point of the asynchronous
linear fixed point iterations (state recursions). We note that non-random versions of asynchronous (possibly
non-linear) fixed point iterations are well studied in the literature.15–17 For the linear model considered in this
study, the earliest study by Chazan and Miranker provided the necessary and sufficient condition under which the
asynchronous iterations are guaranteed to converge for any index sequence.15 More recent studies18,19 considered
the randomized variations of asynchronous iterations, in which indices are assumed to be selected with equal
probabilities, and they provided sufficiency conditions for the convergence.

In this study, we consider a stochastic model in which a random subset of indices is updated in each iteration.
Assuming that A is a normal matrix, we show that the iterations converge to a fixed point of A, i.e., an eigenvector
of eigenvalue 1, in the mean-squared sense even when the matrix has other eigenvalues with magnitudes greater
than unity. In addition, based on its convergence properties, we describe the conditions on the eigenvalues of A
under which the random asynchronous updates converge faster (or, slower) than its synchronous counter-part.

1.2 Outline

The paper is organized as follows. In Section 2 we first define the random component-wise power method where
we precisely describe the statistical model of the randomness. In Section 2.1 we present an upper bound on
the rate of convergence of the random updates. In Section 2.2 we characterize a region for the eigenvalues such
that random updates are guaranteed to converge. In Section 2.3 we compare and contrast the random updates
with the regular power method in terms of rate of convergence. We specify the cases under which randomized
updates converge faster, slower, or at a similar rate. In Section 3 we consider a reformulation of the power
method and propose an algorithm that is proven to converge to the left and right dominant singular vectors of a
normalized data matrix. In Section 3.1, we extend the proposed algorithm in order to obtain an arbitrary rank
approximation of an arbitrary data matrix. In Section 3.2 we leverage the component-wise and asynchronous
nature of the proposed algorithm in order to compute the singular vectors of distributed data with distributed
computations.

Proc. of SPIE Vol. 11138 111381L-2
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 24 Sep 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

1.3 Preliminaries and Notation

We will use Pr�s and Er�s to denote the probability and expectation, respectively. Positive definite and semi-
definite ordering will be denoted by and ¨, respectively. For a matrix X we will use XH to denote its conjugate
transpose, use Xr:, is to denote its ith column, and use Xri, :s to denote its ith row. We will use diagpXq to denote
the diagonal masking of X, that is, pdiagpXqqi,i � Xi,i and pdiagpXqqi,j � 0 for i � j. We will use T to denote
a subset of t1, � � � , Nu, and its size is denoted as |T |.

2. RANDOM COMPONENT-WISE POWER METHOD

In this study we will consider a random component-wise variation of (1) and always assume that A is a normal
matrix, i.e., A AH � AH A. More precisely, we consider the following type of recurrence relation:

pxkqi �
#
pA xk-1qi, i P Tk,
pxk-1qi, i R Tk,

(2)

where Tk � t1, � � � , Nu denotes a randomly selected set of indices at the kth iteration. In words, the kth iteration
of the scheme in (2) first computes the regular power iteration A xk-1, but it updates only the indices specified
by the random subset Tk. The values of the indices not belonging to Tk remain unchanged.

When the matrix A is considered as a local graph operator, i.e., the adjacency matrix, or the graph Laplacian,
the scheme in (2) models the random asynchronous behavior of the nodes of a graph.7,8 In this setting, the
random asynchronous model (2) allows us to design polynomial graph filters that result in clustering algorithms
for autonomous networks.7,8 When extended to have a constant input signal, the model (2) is also useful for a
node-asynchronous implementation of rational filters on graphs.9,20

When A is viewed as a data matrix, which is the case to be considered in this study, the component-wise
updates of (2) allow distributed computation of the dominant eigenvector since the rows of A need not be
accessed simultaneously. That is, the data matrix A can be partitioned (row-wise) into different agents, and
each agent uses only its own partition to update the corresponding indices of the shared memory. Due to the
point-wise update structure of (2), the agents are allowed to operate randomly and asynchronously. We will
elaborate on this idea later in Section 3.

It is assumed that the update set Tk is selected randomly and independently among all possible 2N different
subsets of t1, � � � , Nu at every iteration of (2). In this study, we consider the following stochastic model for the
selection of the subsets. There are two sources of randomness: 1) The size of the set Tk is selected randomly.
2) Once the size is determined, the content of the subset is selected uniformly randomly among all subsets of the
selected size. More precisely, the probability of Tk being equal to a specific subset T is given as follows:

Pr Tk � T s � pt

�
N

t

�1

, where t � |T |, (3)

where pt denotes the probability of Tk being of size t, i.e., pt � Pr |Tk| � t s for 1 ¤ t ¤ N . By adjusting the values
of pt’s, the stochastic model in (3) can capture different scenarios. For example, the case of p1 � 1 implies that
only one index is selected uniformly at random at every iteration. The case of pN � 1 implies that Tk is selected
to be t1, � � � , Nu with probability 1, which corresponds to the regular power method in (1). For the general
case, let T denote the size of the set Tk, i.e. T � |Tk|. Thus, T is a discrete random variable whose distribution
(specified by pt’s) will be shown to determine the convergence characteristics of the random component-wise
power method. More specifically, we define the following quantity:

δT � ErT pN � Tq s
ErT pN � 1q s �

N � µT � σ2
T{µT

N � 1
, (4)

where µT and σ2
T denote the mean and the variance of T, respectively. Notice that 0 ¤ δT ¤ 1 is always satisfied.

Furthermore, it is readily verified that

δT � 1 ðñ µT � 1, and δT � 0 ðñ µT � N. (5)

Proc. of SPIE Vol. 11138 111381L-3
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 24 Sep 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

That is, δT � 0 if and only if all the indices are selected at every iteration (regular power method), which requires
all the nodes to be updated simultaneously. On the other hand, δT � 1 if and only if exactly one index is selected
at every iteration, in which case no synchronization is required between consecutive updates. Based on this
observation, δT is referred to as the amount of asynchronicity of the updates.7 As we shall see in the next
section, the quantity δT plays a key role in the convergence characteristics of the random updates.

2.1 Convergence in the Mean-Squared Sense

We start by noting that the convergence properties of the model (2) were presented in a recent study.7 Never-
theless, we will summarize some of these results here in order to keep this study self-contained.

Since the matrix A is assumed to be normal, it has an orthonormal set of eigenvectors, but eigenvalues of
A need not be real valued. In order to ensure that the update model (2) has a fixed point, the matrix A is
required to have eigenvalue 1 (unit eigenvalue),7 and the eigenvalue 1 can have multiplicity m ¥ 1. We note that
the need for the unit eigenvalue can be eliminated when a normalized step is introduced to the update scheme
of (2), which will be elaborated later in Section 3.

Without loss of generality the eigenvalues of A can be enumerated such that λi � 1 for 1 ¤ i ¤ N -m, and
λi � 1 for i ¡ N -m. It is important to note that non-unit eigenvalues (λi for 1 ¤ i ¤ N -m) are not assumed be
strictly inside the unit circle: their magnitude may be larger than unity. Under these assumptions, we can write
the eigenvalue decomposition of A as follows:

A � �
U V1

�
����������

λ1
. . .

λN-m

1
. . .

1

����������
�
U V1

�H
, (6)

where V1 P CN�m is an orthonormal basis for the eigenspace of the unit eigenvalue, and U P CN�pN-mq cor-
responds to the eigenvectors of the non-unit eigenvalues. Since A is assumed to be a normal matrix, we have
UH V1 � 0, and UH U � I. We now define the following quantity:

ρ � λmax

�
UH diag

�
U UH

�
U
	
, (7)

where diagp�q denotes the diagonal masking operator for matrices. Notice that only the column space of U deter-
mines the value of ρ. More importantly, we have following property (whose proof is provided in Appendix A):

Lemma 1. The following holds true for any U P CN�pN-mq with UH U � I:

1

N
I ¨ UH diag

�
U UH

�
U ¨ I. (8)

We note that a looser version of the inequality (8) (which shows that 0 UH diagpU UHqU ¨ I only) was
mentioned in previous studies without a proof.7,21 However, this study presents the inequality (8) with a formal
proof. Furthermore, Lemma 1 implies the following inequality regarding the quantity ρ:

1

N
¤ ρ ¤ 1. (9)

Since the eigenspace V1 contains the fixed points of the update scheme of (2), and the iterand xk is expected
to converge to a fixed-point of the model (2) we define the residual vector rk at the kth iteration as follows:

rk � xk �V1 VH
1 xk � U UH xk, (10)

Proc. of SPIE Vol. 11138 111381L-4
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 24 Sep 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

which is the residual from the projection of xk onto the column space of V1. Notice that the convergence of
xk to an eigenvector of the unit eigenvalue (a fixed point) is equivalent to the convergence of rk to zero. The
following theorem (whose proof is presented in an earlier study7) provides an upper bound for rk as follows:

Theorem 1. The expected squared `2-norm of the residual at the kth iteration is bounded as follows:

E
� }rk}22 � ¤ Γk }r0}22, where Γ � max

1¤j¤N-m
c pλjq, (11)

and

c pλq � 1� µT

N

�
|λ|2 � 1� δT pρ� 1q |λ� 1|2

. (12)

♦

We first note that the function c pλq defined in (12) can be considered as the cost associated with an eigenvalue
regarding the convergence of the randomized asynchronous updates. Thus, the rate parameter Γ in (11) is
determined simply by the maximum cost corresponding to all non-unit eigenvalues.

Unlike the regular power method whose behavior is solely determined by the eigenvalues, Theorem 1 shows
that the convergence of random component-wise updates depends also on the eigenspace geometry, ρ, as well as
the amount of asynchronicity, µT and δT, of the updates. Notice that in the case of δT � 0 (which also implies
µT � N), the cost of an eigenvalue reduces to c pλq � |λ|2, and the rate parameter reduces to Γ � max1¤j¤N-m |λj |2.
Thus, Theorem 1 is consistent with the well-known behavior of the regular power iteration.

More importantly, Theorem 1 reveals two key properties of the randomized asynchronous updates: 1) The
non-unit eigenvalues of A need not be inside the unit disk in order to ensure the convergence of the updates.
2) Not just the magnitude, but also the phase of an eigenvalue affect the associated cost, so the eigenvalue gap
(which is the key factor determining the rate of convergence of the regular power iteration) is not directly related
to the convergence rate of the randomized asynchronous counter-part. We will elaborate on these details in the
following sections.

2.2 Larger Convergence Regions

For the case of regular power method it is well known that an arbitrary nonzero initial vector x0 converges to
a nonzero x if and only if x satisfies Ax � x (i.e., 1 is an eigenvalue of A), and the remaining eigenvalues of A
satisfy |λ| 1. If there is another eigenvalue satisfying |λ| � 1, then the vector xk may fall into limit cycles, and if
|λ| ¡ 1, the vector grows in an unbounded manner through the iterations. On the contrary, random component-
wise updates have different convergence behavior. The following corollary characterizes a region for the non-unit
eigenvalues of the matrix A such that the residual defined in (10) converges to zero in the mean-squared sense
as the iterations progress.7

Corollary 1. Assume that all non-unit eigenvalues of A satisfy the following condition:����λ� α

α� 1

���� 1

α� 1
, where α � δT pρ� 1q. (13)

Then,
lim
kÑ8

E
� }rk}22 � � 0. (14)

♦

The convergence region given in (13) defines a disk on the complex plane centered at α{pα+1q with radius
1{pα+1q, which is visualized in Figure 1 below. We point out that 1{N ¤ pα� 1q ¤ 1 is always satisfied due to
the fact that 1{N ¤ ρ ¤ 1 (Lemma 1) and that 0 ¤ δT ¤ 1. Thus, the region defined in (13) always has a finite
area, and it always contains the open unit disk. It is important to note that the convergence region gets larger
as α approaches �1, and it is the smallest when α � 0, in which case it becomes the open unit disk itself.

Corollary 1 reveals the interplay between the amount of asynchronicity and the eigenspace geometry, and their
effect on the region of convergence. In the case of regular power iteration we have δT � 0, thus, α � 0 irrespective

Proc. of SPIE Vol. 11138 111381L-5
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 24 Sep 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

𝑅𝑅𝑅𝑅(λ)

𝐼𝐼𝐼𝐼(λ)

𝟏𝟏−𝟏𝟏𝜶𝜶 − 𝟏𝟏
𝜶𝜶 + 𝟏𝟏

Convergence region,
synchronous.

Convergence region,
random asynchronous.

Figure 1. The convergence region given in (13) for the eigenvalues such that random asynchronous updates are guaranteed
to converge.

of the eigenspace geometry. As a result, the convergence region of the eigenvalues is the well-known open unit
disk. As the updates become more asynchronous (less number of nodes are updated per iteration), the value of α
can decrease (i.e., become negative) but cannot increase (since ρ ¤ 1). Thus, the region of convergence never gets
smaller. Then, we conclude that random component-wise power iterations are guaranteed to converge whenever
the regular power method converges. Furthermore, if ρ 1 (which is the case in most practical applications),
then the region of convergence is the largest when δT � 1. That is, updating exactly one index per iteration
maximizes the region of convergence. As a result, random component-wise updates can converge even when the
regular power method diverges (depending on the eigenspace geometry).7 Furthermore, the random component-
wise updates do not necessarily converge to the dominant eigenvector; rather they converge to an eigenvector of
the eigenvalue 1 (a fixed-point) even when there are eigenvalues with magnitudes larger than unity.

2.3 Rate of Convergence

Although the region of convergence can only be expanded by random component-wise updates as explained in
the previous subsection, the rate of convergence has a more intricate behavior that requires a detailed discussion.
In the regular power method, the rate of convergence is determined by the eigenvalue gap, which is the difference
between the magnitudes of the two largest eigenvalues of the matrix A. Thus, the sign (or, the phase in the
complex case) of the eigenvalues are not important. Unlike the regular power method, sign of the eigenvalues do
matter in the random component-wise updates. As a result, the eigenvalue spectrum has an asymmetric impact
on the rate of convergence.

In order to explain the difference between the random component-wise and regular power methods in terms of
the rate of convergence, we will first present a numerical example that summarizes our key observations. Then,
we will explain the effect of the asynchronicity on the rate of convergence theoretically..

2.3.1 Numerical Observations

In this simulation, random component-wise updates select exactly one index per iteration (δT � 1), in which case
a single inner product is computed per iteration. On the contrary, the regular power method computes N inner
products per iteration. For a fair comparison between the two, we fix the total number of inner product, which
will be denoted by K. Thus, the regular power method will run rK{N s iterations, whereas the component-wise
variant will run K iterations.

For the numerical experiment we consider three symmetric matrices of size N � 100. All three matrices
are constructed such that λN � 1 is an eigenvalue with multiplicity m � 1, and the remaining N -1 eigenvalues
are selected to be |λi| 1 so that the power method (hence any random variant) is guaranteed to converge to
an eigenvector of the eigenvalue λN � 1. (See Corollary 1.) In the first two examples we consider a pair of
simultaneously diagonalizable matrices. The non-unit eigenvalues of the first matrix are selected to be positive
(visualized in Figure 2(a)), and the non-unit eigenvalues of the second matrix are selected to be the negative of
those of the first matrix (visualized in Figure 2(b)). In the third example we take a random symmetric matrix

Proc. of SPIE Vol. 11138 111381L-6
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 24 Sep 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

with non-unit eigenvalues satisfying �0.5 λi 0.5 (visualized in Figure 2(c)). Figures 2(d), 2(e) and 2(f) show
the value of Er}rK}22s{}r0}22 with respect to K for the three matrices described above.

-1 -0.5 0 0.5 1

0

(a) Eigenvalue gap: 0.0026

-1 -0.5 0 0.5 1

0

(b) Eigenvalue gap: 0.0026

-1 -0.5 0 0.5 1

0

(c) Eigenvalue gap: 0.5011

0 250 500 750 1000 1250 1500 1750 2000
K (Total Number of Inner Products)

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

A
v
e

ra
g

e
 R

e
s
id

u
a

l
N

o
rm

 S
q

u
a

re
d

Random Component-Wise

Regular Power Method

(d)

0 250 500 750 1000 1250 1500 1750 2000
K (Total Number of Inner Products)

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

A
v
e

ra
g

e
 R

e
s
id

u
a

l
N

o
rm

 S
q

u
a

re
d

Random Component-Wise

Regular Power Method

(e)

0 250 500 750 1000 1250 1500 1750 2000
K (Total Number of Inner Products)

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

A
v
e

ra
g

e
 R

e
s
id

u
a

l
N

o
rm

 S
q

u
a

re
d

Random Component-Wise

Regular Power Method

(f)

Figure 2. Non-unit eigenvalues of the (a) first, (b) second, (c) third examples. Eigenvalue gap is defined as the difference
between 1 and the magnitude of the largest non-unit eigenvalue. Normalized residual errors in the (d) first, (e) second,
(f) third examples. Since the regular power method requires N inner products per iteration, the residual error appears
only at integer multiples of N � 100. Results are obtained by averaging over 104 independent runs.

We first compare the results in Figures 2(d) and 2(e). Since the eigenvalues have the same magnitudes,
the regular power method behaves the same in both cases. Although the eigenvalue gap is the same in both
cases, the random component-wise method converges significantly faster when the second dominant eigenvalue
is negative. When the second dominant eigenvalue is positive, both the regular and the component-wise updates
behave similarly. In the third example, Figure 2(f), the matrix has a large eigenvalue gap, in which case the
random component-wise updates do not converge as fast as the regular power method.

2.3.2 Theoretical Justification

In order to explain the behavior in Figure 2, in this section we will assume a slightly simplified stochastic model
for the selection of the update sets in (2). Namely, we will assume that the scheme (2) updates exactly µT indices
per iteration. Thus, the random variable T (which denotes the size of the update sets) becomes a deterministic
quantity, and σ2

T � 0. So, the parameter δT (the amount of asynchronicity) reduces to the following form:

δT � N � µT

N � 1
. (15)

In this setting we note that an update in the form of (2) requires µT inner products per iteration. So, the
cost of a single power iteration, which requires N inner products, is equivalent to the cost of N{µT asynchronous
iterations in which µT indices are updates simultaneously. Since the associated cost of an eigenvalue defined in
(12) disregards the cost of an iteration, we consider the following quantity instead:

r
�
λ; µT, ρ

� � �
1� µT

N

�
|λ|2 � 1� δT pρ� 1q |λ� 1|2

�N{µT

, (16)

which results in a fair comparison among the component-wise updates with different amount of asynchronicity.
The quantity r

�
λ; µT, ρ

�
can be interpreted as the amount of reduction in the residual error when eigenvalue λ is

present in the matrix A with the eigenspace parameter ρ, and the model (2) updates µT indices simultaneously.
Thus, smaller values of r

�
λ; µT, ρ

�
indicate a better (faster) convergence of the randomized scheme in (2).

Proc. of SPIE Vol. 11138 111381L-7
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 24 Sep 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

We first note that the quantity r
�
λ; µT, ρ

�
can be equivalently re-written as follows:

r
�
λ; µT, ρ

� � �
1� µT

N
pα� 1q

����λ� α

α� 1

���2 � 1

pα� 1q2

�N{µT

, where α � δT pρ� 1q. (17)

Then, it is clear that the point λ� � α{pα� 1q minimizes r
�
λ; µT, ρ

�
over the variable λ, and r

�
λ; µT, ρ

�
(as a

function of λ) is circularly symmetric with respect to the point λ�. In addition, the inequality (9) ensures that
r
�
λ; µT, ρ

� ¥ 0. In order to demonstrate its behavior, we evaluate r
�
λ; µT, ρq numerically over the unit disk

(with respect to λ) for different values of µT and ρ. These computations are visualized in Figure 3.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Re(λ)

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1

Im
(λ

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) rpλ; N, 0.8q

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Re(λ)

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1

Im
(λ

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) rpλ; N{2, 0.8q

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Re(λ)

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1

Im
(λ

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) rpλ; 1, 0.8q

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Re(λ)

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1

Im
(λ

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) rpλ; 1, 0.6q

Figure 3. Numerical evaluation of r
�
λ, µT

�
for various different values of µT and ρ. The value of N is set to be N � 100.

In the case of synchronous updates we have µT � N , thus α � 0, and the quantity defined in (16) reduces
to r

�
λ; N, ρ

� � |λ|2 irrespective of the value of ρ, which can be seen clearly from Figure 3(a). Thus, as |λ|
approaches 1, the value of r

�
λ; N, ρ

�
approaches 1 irrespective of the phase of λ. So, only the magnitude of an

eigenvalue affects the convergence rate of the regular power iteration, which is a well-known result.

In the case of asynchronous updates we have µT N , and we will assume ρ 1 (which is the case in most
practical applications). Thus, we have α 0, and the phase of an eigenvalue becomes important since r

�
λ; µT, ρ

�
is no longer a circularly symmetric function of λ with respect to the origin. Figures 3(b), 3(c) and 3(d) visualize
this behavior clearly. In particular, note that as λ approaches 1, the quantity r

�
λ; µT, ρ

�
approaches 1 as well.

On the other hand, as λ approaches �1, the quantity r
�
λ; µT, ρ

�
stays bounded away from 1. More precisely,

r
�
1; µT, ρ

� � 1, r
��1; µT, ρ

� � �
1� µT

N
4α

�N{µT

. (18)

So, eigenvalues that are close to 1 result in a slower convergence, whereas eigenvalues can be arbitrarily close
to �1, yet the convergence does not necessarily slow down. Therefore, in light of (18) and Figure 3 we can
conclude that the random component-wise updates favor negative eigenvalues over positive ones. This conclusion
is consistent with the numerical observations made in Figures 2(d) and 2(e): when the second dominant eigenvalue
is close to 1, both the random component-wise updates and the regular power iteration converge slowly. On the
contrary, when the second dominant eigenvalue is close to �1, the random component-wise updates converge
faster than the synchronous (regular) counter-part. In fact, it is possible to construct a matrix A (by placing
the second dominant eigenvalue sufficiently close to �1) such that the randomized updates converge arbitrarily
faster than the regular power iteration.

Although random component-wise updates converge faster when the second dominant eigenvalue is close to
�1, Figure 2(f) shows that randomized updates are not always faster than the synchronous counter-part. In
order to explain the behavior observed in Figure 2(f), we consider r

�
λ; µT, ρ

�
evaluated at λ � 0. More precisely,

r
�
0; µT, ρ

� � �
1� µT

N

�
δT pρ� 1q � 1

	�N{µT

¥
�

1� µT

N

�2N{µT

, (19)

Proc. of SPIE Vol. 11138 111381L-8
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 24 Sep 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

where the lower bound follows from (9). As long as the updates are randomized (the case of µT N), it is clear
from (19) that r

�
0; µT, ρ

�
is bounded away from zero. Figures 3(b), 3(c) and 3(d) visualize this behavior as well.

Then, we can conclude that in the case of random component-wise updates the associated cost of an eigenvalue
is bounded away from zero even when the eigenvalue itself is close to zero. This conclusion is consistent with
the simulation results presented in Figure 2(f). When the non-unit eigenvalues are close to zero, regular power
iteration converges faster than its randomized variant.

As a concluding remark, we note that the results presented in this section are valid when A is a normal
matrix, i.e, A is unitarily diagonalizable. The results of this section may not hold true when A is an arbitrary
matrix. Nevertheless, the normality condition is not a loss of generality if our goal is to construct a random
component-wise method that can compute the singular vectors of an arbitrary matrix. We elaborate on this in
the next section.

3. RANDOMIZED COMPUTATION OF THE DOMINANT SINGULAR VECTORS

In most of the data related applications A happens to be a rectangular matrix, and procedures such as principal
component analysis (PCA) require the singular vectors of the matrix A P CM�N . Due to the importance of
the singular vectors, many efforts have been made to develop fast algorithms, especially randomized ones.22–26

Although the random component-wise update considered in (2) is not directly applicable to rectangular matrices,
a reformulation allows us to compute the dominant singular vectors with random component-wise updates. In
this regard, we start by assuming that M ¤ N without loss of generality, and then consider the Hermitian
dilation of the given matrix A, which is defined as follows:

sA �
�

0 A

AH 0

�
P CpM�Nq�pM�Nq. (20)

It is clear that sA is an Hermitian matrix, i.e., sAH � sA. More importantly, the eigenvalue decomposition ofsA is closely related to the singular value decomposition of A. More precisely, let A have the following reduced
form singular value decomposition:

A � rU Σ rVH
where rU P CM�M , Σ P RM�M , rV P CN�M (21)

where rU and rV are the matrices consisting of the left and right singular vectors of A, respectively, and Σ is the
diagonal matrix consisting of the singular values of A, i.e., Σi,i � σi. We assume that the singular values are in
the descending order, i.e., σ1 ¥ � � � ¥ σM . Then, the eigenvalue decomposition of sA is as follows:

sA � Q Λ QH, where Q � 1?
2

� rU rUrV �rV
�
P CpM�Nq�2M , Λ �

�
Σ 0
0 �Σ

�
P R2M�2M . (22)

If A is a rank-r matrix, then it is clear from (22) that sA has 2r non-zero eigenvalues that come in positive
and negative pairs corresponding to the non-zero singular values of A, and sA has N �M � 2r zero eigenvalues.
Furthermore, the eigenvectors of sA clearly reveal the left and right singular vectors of A by inspection. As
a result, if the eigenvalue decomposition of sA given in (22) is obtained numerically, then the singular value
decomposition of A is readily available.

In order to obtain the dominant eigenvector of sA (which correspond to the dominant left and right singular
vectors of A), we will consider the random component-wise updates of (2) running on the matrix sA:

psxkqi �
#
psA sxk-1qi, i P Tk,
psxk-1qi, i R Tk,

(23)

where we assume that only one index is updated per iteration, i.e., |Tk| � 1, for the sake of simplicity. The case
of updating more than one index is a straightforward generalization of the approach considered here.

Proc. of SPIE Vol. 11138 111381L-9
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 24 Sep 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Let the iterand sxk P CM�N in (23) be partitioned as follows:

sxk � �
uk
vk

�
, where uk P CM , vk P CN . (24)

Then, the update scheme (23) can be expressed equivalently using the matrix A itself and the partitions uk and
vk. More precisely, we have the following:

If i ¤M, psxkqi � pukqi, and psA sxkqi � Ari, :s vk,

If i ¡M, psxkqi � pvkqi-M , and psA sxkqi � pAr:, i-MsqH uk. (25)

Due to (25) and the assumption that only one index is updated per iteration, the kth iteration of (23) can be
described as follows: select an index i randomly uniformly from the set t1 , � � � , M+Nu. If the index corresponds
to a row, i.e., i ¤M , then the ith index of uk-1 is updated as the inner product between the ith row of A and
the vector vk-1. If the index corresponds to a column, i.e., i ¡M , then the pi�Mqth index of vk-1 is updated
as the inner product between the pi�Mqth column of A and the vector uk-1. These updates are described as a
pseudo-code in Algorithm 1.

Algorithm 1 Dominant Singular Vector
without a Normalization Step

1: Assume }A}2 � 1.

2: Initialize u P RM , v P RN randomly.

3: while convergence do

4: i � Ut1, � � � , M �Nu
5: if i ¤M then

6: ui Ð Ari, :s v

7: else

8: iÐ pi�Mq
9: vi Ð

�
Ar:, is

�H
u

10: return u and v

Algorithm 2 Dominant r Singular Vectors with a
Normalization Step

1: Initialize C,U P RM�r, V P RN�r randomly.

2: while convergence do

3: i � Ut1, � � � , M �Nu
4: if i ¤M then

5: Cri, :s Ð Ari, :s V

6: Set U as C � U T with Ti,i ¥ 0.

7: else

8: iÐ pi�Mq
9: Vri, :s Ð

�
Ar:, is

�H
U

10: return U and V

Since sA is a normal matrix irrespective of the value of A and Algorithm 1 is equivalent to the update scheme
(23), we can use Theorem 1 to study the convergence of the algorithm. The following theorem shows that
Algorithm 1 indeed converges to the left and right dominant singular vectors of the matrix A.

Theorem 2. Assume that the matrix A P CM�N has }A}2 � 1, i.e. the maximum singular value is unity.
Assume further that the eigenspace parameter ρ of the matrix sA satisfies ρ 1. Then, u and v in Algorithm 1
converge to the left and right dominant singular vectors of A, respectively.

Proof. We start by noting that Algorithm 1 is equivalent to the update scheme of (23) due to the equivalence
in (25). Thus, the convergence of (23) is equivalent to the convergence of the algorithm.

Let σi denote the ith largest singular value of A. Since }A}2 � 1, we have 1 � σ1 ¥ σ2 ¥ � � �σM ¥ 0. From
(22) we have that sA is an Hermitian matrix with eigenvalues λpsAq � �σpAq with additional N �M zero
eigenvalues. Thus, sA has a unit eigenvalue, and its non-unit eigenvalues satisfy -1 ¤ λi 1.

Due to random component-wise nature of the update scheme in (23), we have δT ¡ 0. In addition, we assume
that the eigenspace parameter of sA satisfies ρ 1. Thus, Corollary 1 shows that the convergence region given
in (13) contains the interval r-1 1q due to the fact that α � δT pρ� 1q 0. Since all non-unit eigenvalues of sA
satisfy -1 ¤ λi 1, Corollary 1 guarantees that the iterand sxk in (23) converges to an eigenvector of sA with the
eigenvalue 1. Then, it is clear from (22) that the partitions of sxk defined in (24) converge to the left and right

Proc. of SPIE Vol. 11138 111381L-10
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 24 Sep 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

singular vectors of A corresponding to the singular value 1. That is, uk converges to the left dominant singular
vector A, and vk converges to the right dominant singular vector of A.

The convergence guarantee provided by Theorem 2 is based on two assumptions. The first one, }A}2 � 1, is
in fact a necessary condition for the convergence of the updates in (23). Existence of a singular value 1 implies
the existence of a fixed point of the component-wise updates.7 The second one, which requires the eigenspace
parameter to satisfy ρ 1, is a technical assumption that is needed to prove the convergence precisely. It is not
a necessary condition, and it is in fact satisfied in many practical applications. It is also important to note that
Theorem 2 does not assume realness of the matrix A. The algorithm is guaranteed to converge even when A is
a complex matrix, in which case dominant singular vectors are complex as well.

3.1 Rank-r Approximation of an Arbitrary Matrix

Although the assumption }A}2 � 1 required by Algorithm 1 can be satisfied easily by normalizing the data matrix
A with its largest singular value, the computation of the largest singular value itself may not be very practical
especially when A is large in dimensions. It is, in fact, possible to remove this assumption by introducing a
normalization step into the algorithm. Furthermore, it is also possible to extend Algorithm 1 in such a way that
it converges to the dominant r singular vectors of A together with the top-r singular values for an arbitrary
value of r. The extended version of the algorithm is presented in Algorithm 2.

Algorithm 2 differs from Algorithm 1 in three ways: Firstly, the vector variables u and v in Algorithm 1 are
extended to be matrices with r columns. Secondly, Algorithm 2 uses an auxiliary variable C. Thirdly, and the
most importantly, Algorithm 2 uses a QR decomposition (Line 6) that serves as the normalization step. More
precisely, instead of updating the variable U directly, Algorithm 2 first updates the auxiliary variable C (Line 5),
and then updates U as the unitary part of the QR decomposition of C. We note that the matrix T in Line 6 of
the algorithm denotes the upper-triangular part of the QR decomposition of C. Without loss of generality, it is
assumed that T has non-negative diagonal entries, and its diagonal entries are in the descending order.

Although the convergence of Algorithm 1 is ensured by Theorem 2, we do not provide an explicit proof for
the convergence of Algorithm 2. Nevertheless, by the virtue of Theorem 2 we can argue for the convergence of
Algorithm 2 since it is a natural extension of Algorithm 1 with an additional normalization step. We observe
that the variables of Algorithm 2 converge as follows:

U Ñ rUr, T Ñ Σ2
r, V Ñ rVr Σr, (26)

where rUr and rVr are the first r columns of rU and rV, respectively, and Σr is the top-left r � r block of Σ. Thus,

the product U VH converges to Ar, which is the best rank-r approximation of A, i.e, Ar � rUr Σr
rVH

r .

In order to verify its convergence, we simulate Algorithm 2 on the test matrix MEDLINE,27 which is a
full-rank and sparse matrix of size 1033 � 5735. We measure the convergence of the algorithm in terms of the
squared Frobenius norm of the difference between Ar and the product U VH. Since the update index is selected
randomly (Line 3) in every iteration of Algorithm 2, the error term, i.e, }Ar �U VH}2F, is a random variable as
well. So, we compute the expected error by averaging over 103 independent runs of the algorithm. These results
are presented in Figure 4(a) for the cases of r P t1, 2, 3, 10u, which numerically verify the convergence of the
algorithm. Note that the algorithm requires more iterations to converge as the value of r gets larger.

We note that Line 5 of Algorithm 2 updates only a row of the auxiliary variable C in every iteration. Since
the matrix C is not expected to change significantly during an iteration, the normalization step in Line 6 can be
skipped in some iterations in order to reduce the overall computational complexity of the algorithm. In order
to verify this claim, we modify the implementation of the algorithm in such a way that Line 6 is executed with
probability γ. So, the modified implementation reduces to Algorithm 2 when γ � 1. For the case of r � 3, we
compute the expected error of the modified implementation by averaging over 103 independent runs. These
results are presented in Figure 4(b) for the values of γ P t1, 10-2, 10-3, 10-4u, which shows that the modified
implementation keeps converging for wide range of values of γ. More interestingly, the rate of convergence
remains visually the same even when the normalization step is executed with probability as low as γ � 10-2.
Moreover, the rate of convergence decreases marginally when γ � 10-3 � 1{M . This is consistent with the fact

Proc. of SPIE Vol. 11138 111381L-11
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 24 Sep 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

0 1 2 3 4 5 6 7 8 9 10 11 12

k/(M+N)
×10

2

10
-15

10
-13

10
-11

10
-9

10
-7

10
-5

10
-3

10
-1

10
1

10
3

10
5

E

[

∥ ∥

A
r
−

U
V

H
∥ ∥

2 F

]

r = 1
r = 2
r = 3
r = 10

(a)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

k/(M+N)
×10

2

10
-15

10
-13

10
-11

10
-9

10
-7

10
-5

10
-3

10
-1

10
1

10
3

10
5

E

[

∥ ∥

A
3
−

U
V

H
∥ ∥

2 F

]

γ = 1
γ = 10−2

γ = 10−3

γ = 10−4

(b)

Figure 4. (a) Convergence of Algorithm 2 for various different values of r. (b) Convergence of Algorithm 2 for the case
r � 3 when the normalization step in Line 6 is executed with probability γ. Here k indicates the number of iterations.

that an iteration of Algorithm 2 updates only one row of C that has M rows in total. Nevertheless, when γ has
a very small value, e.g., γ � 10-4, the algorithm indeed gets significantly slower.

Regarding the computational complexity of the algorithm, note that the cost of Line 5, Line 6 and Line 9
are OpNrq, OpMr2q, and OpMrq, respectively. However, the algorithm gets to Lines 5 and 6 with probability
M{pM+Nq, and it gets to Line 9 with probability N{pM+Nq. When we further assume that Line 6 is executed
with probability γ, the average cost of an iteration of Algorithm 2 can be found as follows:

Ercomputatinal cost per iterations � O
�
MNr � γM2 r2

M �N

� O

�
MNr

M �N

, (27)

where the approximation is valid when γ ¤ N{pMrq, which is acceptable in practice as suggested by Figure 4(b).
On the other hand, the synchronous form of (23) requires OpMNrq multiplications per iteration. In order to com-
pensate the additional factor of M+N , the iteration index k is normalized by M+N in both Figures 4(a) and 4(b).

Relevance of Algorithm 2 follows from its applicability for asynchronous and distributed implementation.
Since a single iteration of the algorithm requires a partial information of the matrix A, (i.e., a single column
or row) multiple processors can operate on the same matrix A simultaneously without requiring any ordering
among them. More importantly, it is possible to extend Algorithm 2 in such a way that the data matrix A is
partitioned into multiple smaller pieces, and each piece is stored in a different processing core as we discuss next.

3.2 Distributed Implementation with Partial Data Storage

In this section we will assume that the matrix A P CM�N represents a collection of data points where each
column of the matrix is a data point in the M -dimensional feature space, and A has N data points in total. In
some of the applications the number of the data points, N , can be too large for A to be stored in a single core.
Thus, the data needs to be partitioned into smaller collections and stored in different cores. It could also be the
case that the data is already located in different places and may not be available directly due to privacy concerns.
The asynchronous (component-wise) nature of Algorithm 2 makes it suitable to compute the dominant singular
vectors of A in these scenarios. Although Algorithm 2 is not directly applicable, it can be modified to handle
these scenarios as well. For this purpose assume that the matrix A is partitioned into P blocks as follows:

A � rAp1q Ap2q � � � ApP qs, (28)

where Appq P CM�Np denotes the pth partition holding corresponding Np data points, so
°P
p�1Np � N .

When Algorithm 2 is utilized on the partitioned data, the column selection phase can be done in a straightfor-
ward manner since columns of A are assumed to be the individual data points. On the contrary, the row selection

Proc. of SPIE Vol. 11138 111381L-12
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 24 Sep 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

phase of Algorithm 2 (Line 5) requires to access the same row of all the partitions. Due to the distributed nature
of the data it may not be possible for a processor to access all the partitions simultaneously. Nevertheless, the
required inner product can be written as a sum of partial inner products, which then can be computed locally.
For this purpose, we first partition the variable V P CN�r in Algorithm 2 with respect to the partitions given
in (28). More precisely, assume that the pth core holds a local variable Vppq P CNp�r. Then, the inner product
involving the rows of A can be written as follows:

Ari,:s V �
P̧

p�1

A
ppq
ri,:s Vppq. (29)

Notice that the quantity A
ppq
ri,:s Vppq can be computed in the pth core locally. Once it is obtained, it can be sent to

a fusion center in order to update the value of the variable U. Based on this observation, we propose Algorithm 3
for the computation of the dominant singular vectors for the case of distributed data.

Algorithm 3 Distributed Computation of Dominant r Singular Vectors

1: Initialize C P RM�r�P , U P RM�r, Vp1q P RN1�r, � � � ,VpP q P RNP�r randomly.

2: while convergence do

3: p � Ut1, � � � , P u � Select a partition randomly

4: i � Ut1, � � � , M �Npu � Select an index randomly

5: if i ¤M then

6: Cri, :, ps Ð A
ppq
ri, :s Vppq � Partial inner product

7: Compute pC as pCi, j � P̧

p�1

Ci, j, p � Data fusion

8: Set U as pC � U T with Ti,i ¥ 0. � QR decomposition

9: else

10: iÐ pi�Mq
11: V

ppq
ri, :s Ð

�
A
ppq
r:, is

�H
U � Update the local variable

It is important to note that Algorithm 3 can be implemented in a distributed manner with the help of a data
fusion center and a shared memory. In such implementation the variable C corresponds to the data collected by
the fusion center, and the variable U is assumed to be in a shared memory. On the contrary, the data matrix
Appq and the variable Vppq are stored in the pth processor locally. Then, Algorithm 3 proceeds as follows: it
first selects the pth partition randomly uniformly among all P partitions (Line 3). Then, the processor randomly

selects and performs either one of the following two actions: 1) It uses the local variable Vppq, computes a
partial inner product, and sends it to the fusion center (Line 6). 2) It uses the global shared variable U in

order to update the local variable Vppq (Line 11). In the mean-time, whenever the fusion center is updated, it
first computes the full inner products (Line 7), and then updates the global variable U via QR decomposition
(Line 8). We also note that in the case of a single partition, i.e., P � 1, Algorithm 3 reduces to Algorithm 2.

Algorithm 3 has two major benefits. First, the pth processor uses the pth data partition only, thus all the
computations can be done locally on a processor. More importantly, the data itself is never shared: a summary
of the data (in the form an inner product) is sent to the fusion center. Only shared information is the variable
U, which converges to the dominant r left singular vectors of the whole data matrix A. Secondly, due to the
randomized nature of the algorithm, a synchronization between the processors is not required. The processors
are allowed to interact with the fusion center independently at any order.

Similar to Algorithm 2, the variable U of Algorithm 3 converges to rUr, and the variables Vppq converge
to the corresponding partitions of rVr Σr similar to (26). In order to verify the convergence of Algorithm 3
numerically, we use the test matrix MEDLINE27 and divide it into P blocks as in (28), where each partition has

Proc. of SPIE Vol. 11138 111381L-13
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 24 Sep 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

0 0.5 1 1.5 2 2.5 3 3.5 4

k
×10

6

10
-15

10
-13

10
-11

10
-9

10
-7

10
-5

10
-3

10
-1

10
1

10
3

10
5

E

[

∥ ∥

A
3
−
U

V
H
∥ ∥

2 F

]

P = 1

P = 2

P = 3

P = 5

P = 10

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

k
×10

6

10
-15

10
-13

10
-11

10
-9

10
-7

10
-5

10
-3

10
-1

10
1

10
3

10
5

E

[

∥ ∥

A
3
−
U

V
H
∥ ∥

2 F

]

γ = 1

γ = 10
−3

γ = 10
−4

(b)

Figure 5. (a) Convergence of Algorithm 3 for the case of r � 3, i.e., rank-3 approximation, for different numbers of P
data partitions. (b) Convergence of Algorithm 3 for the case r � 3 with P � 5 partitions when the normalization step in
Line 8 is executed with probability γ. Here k indicates the number of iterations.

size (approximately) N{P . We consider the case of r � 3, i.e., rank-3 approximation, and the error is computed
as the expected value of }A3 �U VH}2F where V denotes the matrix constructed by cascading the local variables

Vppq. The expected error is computed by averaging over 103 independent runs of the algorithm, and the results
are presented in Figure 5(a) for the cases of P P t1, 2, 3, 5, 10u, which verify the convergence numerically.

In order to demonstrate the robustness of Algorithm 3 to stale data in the case of distributed implementation,
we modify the algorithm in such a way that the normalization step in Line 8 is executed with probability γ. Thus,
the processors do not always use the value of U that corresponds to the most recent value of C; rather, they use
an outdated value of U. The modified implementation is simulated for the case of r � 3 with P � 5 partitions,
and the error is computed as before by averaging over 103 independent runs. The simulation results are presented
in Figure 5(b) for the values of γ P t1, 10-3, 10-4u. It is clear from the figure that even when the shared memory
(the variable U) is updated with probability as low as γ � 10�3 � 1{M , the modified implementation continues
to converge as fast as Algorithm 3 itself, which indicates the robustness of the algorithm to the use of stale data.

4. CONCLUSION

In this paper we studied a random component-wise variant of the regular power iteration. We showed that
the randomized updates have significantly different convergence characteristics. In particular, we proved that
random updates converge in the mean-squared sense to an eigenvector of the eigenvalue 1 even when the matrix
has a spectral radius larger than unity. We also demonstrated and discussed how the sign (or, the phase when
complex) of an eigenvalue affects the rate of convergence of random component-wise updates. As an application,
we reformulated the component-wise power iteration in order to compute the dominant singular vectors of a
given data matrix. The proposed approach is proven to converge when computing the rank-1 approximation of
a normalized data matrix, and its convergence is verified numerically for an arbitrary rank approximation of an
arbitrary data matrix. The proposed algorithm is extended in order to handle large-scale distributed data with
distributed asynchronous computation. The convergence of the extended algorithm is verified numerically for
various different number of data partitions.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Dimitri Van De Ville for the invitation to write this article.

Proc. of SPIE Vol. 11138 111381L-14
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 24 Sep 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

APPENDIX A. PROOF OF LEMMA 1

We note that U P CN�pN-mq has orthonormal columns, i.e., UH U � I and prove the upper bound in (8) first.
Note that U UH ¨ I. Then we can write the following:

pU UHqi,i � eH
i U UH ei ¤ eH

i ei � 1 ùñ diag
�
U UH

�
¨ I ùñ UH diag

�
U UH

�
U ¨ I (30)

where ei denotes the ith column of the identity matrix of dimension N .

We now prove the lower bound in (8). Let ui denote the ith row of U, then it is clear that pU UHqi,j � ui u
H
j .

Let x P CN be an arbitrary vector. Then,

xH U UH x � ��xH U UH x
�� � ����� Ņ

i�1

Ņ

j�1

x�i pU UHqi,j xj
����� �

����� Ņ
i�1

Ņ

j�1

x�i ui u
H
j xj

����� ¤ Ņ

i�1

Ņ

j�1

|xi|
��ui uH

j

�� |xj | (31)

¤
Ņ

i�1

Ņ

j�1

|xi| }ui}2}uj}2 |xj | �
�

Ņ

i�1

|xi| }ui}2
�2

¤ N
Ņ

i�1

|xi|2 }ui}22 � N xH diag
�
U UH

�
x. (32)

Then, the inequity (32) implies that

U UH ¨ N diag
�
U UH

� ùñ UHU UH U ¨ N UH diag
�
U UH

�
U, (33)

which proves the lower bound due to the fact that UH U � I.

REFERENCES

[1] Parlett, B. N., [The Symmetric Eigenvalue Problem (Classics in Applied Mathematics)], Society for Indus-
trial and Applied Mathematics (1987).

[2] Halko, N., Martinsson, P. G., and Tropp, J. A., “Finding structure with randomness: Probabilistic algo-
rithms for constructing approximate matrix decompositions,” SIAM Review 53(2), 217–288 (2011).

[3] Yuan, X.-T. and Zhang, T., “Truncated power method for sparse eigenvalue problems,” Journal of Machine
Learning Research 14(1), 899–925 (2013).

[4] Hardt, M. and Price, E., “The noisy power method: A meta algorithm with applications,” in [Advances in
Neural Information Processing Systems 27], 2861–2869 (2014).

[5] Journe, M., Nesterov, Y., Richtrik, P., and Sepulchre, R., “Generalized power method for sparse principal
component analysis,” The Journal of Machine Learning Research 11, 517–553 (2010).

[6] Page, L., Brin, S., Motwani, R., and Winograd, T., “The pagerank citation ranking: Bringing order to the
web.,” technical report, Stanford InfoLab (November 1999).

[7] Teke, O. and Vaidyanathan, P. P., “Random node-asynchronous updates on graphs,” IEEE Trans. Signal
Process. 67, 2794–2809 (June 2019).

[8] Teke, O. and Vaidyanathan, P. P., “Asynchronous nonlinear updates on graphs,” in [Asilomar Conf. on
Signals, Systems and Computers], 998–1002 (Oct. 2018).

[9] Teke, O. and Vaidyanathan, P. P., “Node-asynchronous implementation of rational filters on graphs,” in
[Proc. Int. Conf. Acoust. Speech, Signal Process. (ICASSP)], 7530–7534 (May 2019).

[10] Kaczmarz, S., “Angenaherte auflosung von systemen linearer gleichungen,” Bull. Internat. Acad. Polon.
Sci. Letters A , 335–357 (1937).

[11] Wright, S. J., “Coordinate descent algorithms,” Mathematical Programming 151, 3–34 (Jun 2015).

[12] Wang, J., Wang, W., Garber, D., and Srebro, N., “Efficient coordinate-wise leading eigenvector computa-
tion,” arXiv 1702.07834 (2017).

[13] Beck, A. and Tetruashvili, L., “On the convergence of block coordinate descent type methods,” SIAM
Journal on Optimization 23(4), 2037–2060 (2013).

[14] Lei, Q., Zhong, K., and Dhillon, I. S., “Coordinate-wise power method,” in [Advances in Neural Inf. Process.
Systems (NIPS)], 2064–2072 (2016).

Proc. of SPIE Vol. 11138 111381L-15
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 24 Sep 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

[15] Chazan, D. and Miranker, W., “Chaotic relaxation,” Linear Algebra and its Applications 2, 199–222 (Apr.
1969).

[16] Baudet, G. M., “Asynchronous iterative methods for multiprocessors,” J. ACM 25, 226–244 (Apr. 1978).

[17] Bertsekas, D. P., “Distributed asynchronous computation of fixed points,” Mathematical Programming 27,
107–120 (Sep. 1983).

[18] Avron, H., Druinsky, A., and Gupta, A., “Revisiting asynchronous linear solvers: Provable convergence rate
through randomization,” J. ACM 62, 51:1–51:27 (Dec. 2015).

[19] Peng, Z., Xu, Y., Yan, M., and Yin, W., “Arock: An algorithmic framework for asynchronous parallel
coordinate updates,” SIAM Journal on Scientific Computing 38(5), A2851–A2879 (2016).

[20] Teke, O. and Vaidyanathan, P. P., “IIR filtering on graphs with random node-asynchronous updates,”
Submitted to IEEE TSP (June 2019).

[21] Teke, O. and Vaidyanathan, P. P., “The asynchronous power iteration: A graph signal perspective,” in
[Proc. Int. Conf. Acoust. Speech, Signal Process. (ICASSP)], 4059–4063 (Apr. 2018).

[22] Hardt, M. and Roth, A., “Beyond worst-case analysis in private singular vector computation,” in [Proceed-
ings of the Forty-fifth Annual ACM Symposium on Theory of Computing], 331–340 (2013).

[23] Shamir, O., “A stochastic pca and svd algorithm with an exponential convergence rate,” in [Proc. of the
32st Int. Conf. Machine Learning (ICML 2015)], 144–152 (2015).

[24] Shamir, O., “Fast stochastic algorithms for svd and pca: Convergence properties and convexity,” in [Proc.
of the 33st Int. Conf. Machine Learning (ICML 2016)], 248–256 (2016).

[25] Warmuth, M. K. and Kuzmin, D., “Randomized online pca algorithms with regret bounds that are loga-
rithmic in the dimension,” The Journal of Machine Learning Research 9, 2287–2320 (2008).

[26] Mitliagkas, I., Caramanis, C., and Jain, P., “Memory limited, streaming pca,” in [Advances in Neural
Information Processing Systems 26], 2886–2894 (2013).

[27] Text to Matrix Generator, “http://scgroup20.ceid.upatras.gr:8000/tmg/,” (2019).

Proc. of SPIE Vol. 11138 111381L-16
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 24 Sep 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

