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Abstract—This study considers a randomized asynchronous
form of the discrete time-invariant state-space models, in which
only a random subset of the state variables is updated in each
iteration. When the system has a single input in the form of
a complex exponential, it is shown that the output signal still
behaves like an exponential in a statistical sense. The study
presents the necessary and sufficient condition that ensures the
stability of a randomized asynchronous system, which does not
necessarily require the stability of the state transition matrix.

Index Terms—Asynchronous models, randomized iterations,
state-space models, autonomous networks, graph filters.

I. INTRODUCTION

Linear time-invariant discrete systems are well studied, and
they find useful applications in a large number of different
fields ranging from mathematical finance to implementation
of digital filters [1]–[4]. They are also used in the recent
area of graph signal processing [5], [6], in which the state
variables are assumed to represent the nodes of a graph, and
the state transition matrix is considered as a local operator
of the underlying graph, e.g., the adjacency matrix, the graph
Laplacian, etc. With this formalism, the studies in [7]–[10]
extended infinite impulse response (IIR) digital filters to the
case of graphs.

In the context of graph signal processing state recursions are
interpreted as repeated communication between the neighbor-
ing nodes, in which all the nodes are assumed to exchange data
simultaneously, or wait for each other, before starting the next
round of communication. This type of implementation clearly
requires a synchronization over the whole network (graph). In
order to eliminate the need for such a synchronization, the re-
cent studies [11]–[14] considered a randomized asynchronous
variant of the state recursions and provided sufficiency con-
ditions under which the iterations are guaranteed to converge.
In fact, non-random variants of asynchronous state recursions
(possibly with non-linear updates) are well-studied problems
with early results dating back to late 60’s [15]–[17].

Whether random or non-random, the studies [13]–[17] con-
sidered the asynchronous updates from a fixed point iteration
viewpoint, in which the iterant (the state vector) is shown
to converge to a fixed point of the update model. Such an
approach corresponds to a state-space model with a constant
input. Differently in this study, we will consider randomized
asynchronous state recursions with a single input in the form
of a complex exponential that varies over iterations. Thus, the
state vector, hence the output signal, does not converge to a
point. Nevertheless, we show that the output signal, which is a
random quantity due to the randomness of the update scheme,
still behaves like a complex exponential in a statistical sense.
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We further show that the output signal “oscillates” at the
same frequency as the input signal on average, which allows
us to consider the “frequency response” of the randomized
asynchronous state recursions. In this regard, we first present
the necessary and sufficient condition under which the expecta-
tion of the output behaves like an exponential signal. Then, we
present the necessary and sufficient condition under which the
output has a bounded covariance, which ensures the stability
of the randomized asynchronous system.

Interestingly, we observe that the stability of the random-
ized asynchronous recursions does not necessarily require the
stability of the transition matrix of the state-space model. That
is to say, an unstable synchronous system may get stable with
a randomized asynchronicity, which is a remarkable property
observed also in [13], [14] for the case of zero-input. More
generally we conclude that the stability of the randomized
asynchronous updates and the stability of the synchronous
updates do not imply each other.

Section II presents the randomized asynchronous state recur-
sions and shows its convergence behavior (Lemmas 2 and 3).
In Section III we provide a numerical example that visualizes
the behavior of the randomized asynchronous recursions.

A. Preliminaries and Notation
We will use Pr�s and Er�s to denote the probability and ex-

pectation, respectively. For a matrix X we will use X� and XH

to denote its conjugate and conjugate transpose, respectively
and ρpXq to denote its spectral radius (the largest eigenvalue
in absolute sense). For a matrix X P CN�M we will use
vecpXq P CNM to denote a vector obtained by cascading the
columns of X. For a vector x we will use diagpxq to denote
a diagonal matrix with entries of x on the diagonal. We will
use b to denote the Kronecker product.

We will use T to denote a subset of t1, � � � , Nu, and use
DT P RN�N to denote a diagonal matrix that has value 1 only
at the indices specified by the set T . That is,

DT �
¸
iPT

ei e
H
i , (1)

where ei P RN is the ith standard vector that has 1 at the ith
index and 0 elsewhere.

II. ASYNCHRONOUS STATE RECURSIONS WITH
A SINGLE EXPONENTIAL INPUT

In this study, we consider a discrete time-invariant system
with a single input and possibly with multiple outputs whose
state-space description is given as follows:

xk+1 � Axk �Buk, (2)
yk � Cxk �Duk, (3)
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where x0 denotes the initial state vector (initial condition), and
the size of the matrices are as follows:

A P CN�N , B P CN�1, C P Cq�N , D P Cq�1, (4)

where A is referred to as the state transition matrix. We further
assume that the input signal uk has the following form:

uk � ejωk, (5)

where 0 ¤ ω   2π represents the frequency of the input.
It is well-known from linear system theory that the output

vector yk P Cq in (3) can be written as follows:

yk � yss
k � ytr

k, (6)

where yss
k denotes the steady-state component, and ytr

k denotes
the transient component that are given as follows:

yss
k � Hpejωq ejωk, ytr

k � CAk
�
x0 � xss

0

�
, (7)

where Hpejωq is referred to as the frequency response of the
system, and it is given as follows:

Hpejωq � D�C
�
ejωI�A

�-1
B, xss

0 � pejωI�Aq-1B. (8)

It is clear from (7) that when the state transition matrix A
is a stable matrix, i.e., the following holds true:

ρpAq   1, (9)

then the transient component ytr
k converges to zero as the

iterations progress leaving only the steady-state component yss
k

in the output signal. In fact, the stability of A is also necessary
for the transient part to converge to zero.

Discrete state-space models find many applications in var-
ious fields, one of which is the recent area of graph signal
processing [5], [6]. In this context the state transition matrix
A is assumed to be a local operator (shift matrix) on the graph
of interest. Assuming that each state variable corresponds a
node on the graph, the pi, jqth entry of A is non-zero if and
only if there is a path from the node j to the node i on the
graph. With this formalism, the state recursions in the form
of (2) are used for implementing IIR graph filters [7]–[11],
in which the graph signal is assumed to be constant, that is,
ω � 0, hence uk � 1.

In the context of graph signal processing, an iteration in
the form of (2) can be implemented on the graph as a data
exchange between the neighboring nodes. That is, (2) can be
written as follows:

pxk+1qi �
¸

jPNinpiq

Ai,j pxkqj �Bi, @ i, (10)

where Ninpiq denotes the incoming neighbors of the node i. In
this setting, B is considered as a signal defined on the graph,
where the nodes will be the “domain” analogous to time. The
index k will denote the round of communication, so the graph
signal B does not have any dependency on the iteration index.

Although the updates in (10) can be performed locally
by the nodes, its implementation requires a synchronization
mechanism among the nodes. That is, all the nodes should
send and receive data at the same time instance, or nodes
should wait until all the communications are terminated before
proceeding to the next iteration. In order to eliminate the
need for synchronization, the studies in [11]–[13] considered
a randomized asynchronous variant of (10) and presented
conditions that are sufficient to ensure the convergence.

Rather than focusing on the specific area of graph signal
processing, in this study we will consider the general state-
space models from a randomized asynchronous viewpoint, in
which the input signal is assumed to be a complex exponential.

More precisely, we consider the following randomized model:

pxk+1qi �

#
pAxkqi �Bi uk, i P Tk+1,

pxkqi, i R Tk+1,
(11)

yk � Cxk �Duk (12)

where Tk denotes the set of indices updated at the kth iteration.
Furthermore, the update set Tk is assumed to be selected

randomly and independently among all possible 2N different
subsets of t1, � � � , Nu in every iteration of (11). The specific
stochastic model considered in this study regarding the selec-
tion of the update sets will be elaborated next.

A. Random Selection of the Update Sets
In the asynchronous model considered in (11), we assume

that the ith index is updated independently with probability pi
in every iteration. Thus, pi denotes the probability of i being
an element of the update set Tk. More precisely,

Pri P Tks � pi. (13)

As a result, both the content and the size of Tk are random
variables. We will use P to denote the average index selection
matrix for the index selection model in (13). More precisely,

P
∆
� E

�
DTk

�
� E

� ¸
iPTk

ei e
H
i

�
�

Ņ

i�1

pi ei e
H
i (14)

� diag
�
rp1 p2 � � � pN s

�
, (15)

which shows that P is a diagonal matrix consisting of the
probability pi’s. We note that P satisfies 0   P ¤ I, where
the positive definiteness follows from the fact that no index is
left out on average during the updates of (11). Moreover, the
case of P � I implies that all the indices are updated in every
iteration, which corresponds to the synchronous case in (2).

B. Frequency Response in the Mean
Due to the random selection of the update sets it is clear

from (11) that the state vector xk is a random vector. Thus, the
output signal yk in (12) is also a random vector. As a result,
even when the input signal is exponential as in (5), the output
signal will not be an exponential signal unlike the synchronous
case. Nevertheless, we can still consider the behavior of the
output vector from a statistical viewpoint. In particular, we
claim that yk still behaves like an exponential signal on
average, that is, the expectation of yk (with respect to the
random selection of the update sets) can be decomposed into
steady-state and transient parts similar to (6). The following
lemma presents this observation formally:

Lemma 1. The expectation of the output of the randomized
asynchronous state recursions described in (12) is as follows:

Eryks � yss
k � ytr

k, (16)

where

yss
k � sHpejωq ejωk, ytr

k � C sAk �
x0 � xss

0

�
, (17)

wheresHpejωq�D�C
�
ejωI� sA�-1 sB, xss

0 �pe
jωI� sAq-1 sB, (18)

and sA � I�P pA� Iq, sB � PB. (19)

Despite the random nature of the output vector yk, Lemma 1
shows that the steady-state component of Eryks remains an
exponential signal with the same frequency as the input,
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which allows us to talk about a “frequency response” of
the randomized asynchronous recursions. In this regard, we
consider the following quantity:

rk � yk � yss
k , (20)

which will be referred to as the error term since it is the
difference between the output signal yk itself and the steady-
state component of its mean.

Proof of Lemma 1: Due to asynchronous updates de-
scribed in (11), state vector xk can be written as follows:

xk �
¸
iRTk

ei e
H
i xk-1 �

¸
iPTk

ei e
H
i

�
Axk-1 �B ejωpk-1q�

�
�
I�DTk

pA� Iq
�
xk-1 �DTk

B ejωpk-1q. (21)

Taking expectation of (21) and using the fact that update
sets are selected independently, we have the following:

Erxks � sAErxk-1s � sB ejωpk-1q

� sAk
x0 �

k�1̧

i�0

sAi sB ejωpk-1-iq (22)

� pejωI� sAq-1 sB ejωk � sAk
px0 � pejωI� sAq-1 sBq,

where sA and sB are as in (19).
Then, due to (12) the expectation of yk is given as follows:

Eryks � CErxks �D zk � yss
k � ytr

k, (23)

where yss
k and ytr

k are as in (17).
In the case of synchronous updates, the error term defined

as in (20) is a deterministic quantity that corresponds to the
transient component of the output vector in (6). As a result, the
condition ρpAq   1 is both necessary and sufficient to ensure
that the transient part (hence, the error term rk) converges to
zero, in which case yk approaches the steady-state component
resulting in an exponential output signal.

In the asynchronous case the error term is a random quantity
due to the random nature of the updates in (11). In general,
rk itself may not converge to zero as the iterations progress.
Nevertheless, the following lemma provides the necessary and
sufficient condition that ensures that Errks converges to zero:

Lemma 2. The following holds true irrespective of C, the
input frequency ω and the initial condition x0:

lim
kÑ8

Errks � 0 (24)

if and only if
ρpsAq   1. (25)

Proof: We note that

Errks � Eryks � yss
k � ytr

k � C sAk �
x0 � xss

0

�
, (26)

which follows simply from (16) and (17). Thus, the condition
(25) is necessary and sufficient to ensure that Errks converges
to zero irrespective of the value of C, x0 and ω.

We first note that Lemma 2 is consistent with the syn-
chronous case: when all the indices are updated simultaneously
we have P � I, in which case sA � A, thus the condition (25)
reduces to the stability of the state transition matrix A.

Importance of Lemma 2 follows from the fact that the
convergence of Errks to zero implies that the output signal
yk behaves the same as the steady-state component yss

k on
average after a sufficient number of iterations. More precisely,

Eryks
kÑ8
ÝÝÝÑ yss

k � sHpejωq ejωk, (27)

which shows that when (25) is satisfied an exponential input
results in an exponential output on average even with the
randomized asynchronous state recursions. (See Figure 2 to
be explained later in Section III.) Furthermore, the termsHpejωq can be considered as the “frequency response” of the
randomized asynchronous system.

From (18) it is clear that the frequency response of the
randomized model depends on the matrix P, namely update
probability of the state variables. In fact, from the frequency
response viewpoint random asynchronous updates running on
a system denoted with pA,B,C,Dq can be represented equiv-
alently as psA, sB,C,Dq. We note that sA corresponds to a row-
wise convex combination of A and the identity matrix with
combination coefficients being the update probabilities of the
state variables, and the matrix sB is a row-wise scaled version
of B with scaling coefficients being the update probabilities.
As a result, even when a single state variable updates its
value with a different probability, the response of the overall
system changes. Nevertheless, the output stays as a complex
exponential (on average) with frequency ω irrespective of the
underlying update probabilities.

Although the condition (25) allows us to interpret the
average behavior of the output signal from a frequency re-
sponse viewpoint, it should be noted that yk itself is not an
exponential signal due to it being random. As a result, the
system (11)-(12) does not produce an exponential output even
with an exponential input. The condition (25) ensures merely
that Errks converges to zero, hence Eryks behaves like an
exponential signal, which does not necessarily imply that the
error term has a bounded covariance as the iterations progress.
In addition to (25), if rk is guaranteed not to diverge, only
then the interpretation of Eryks from a frequency response
viewpoint is meaningful.

In the next section we will analyze the correlation matrix of
the error term defined in (20) and provide the necessary and
sufficient condition for rk to have a bounded covariance.

C. Convergence of the Error Correlation Matrix
In order to analyze the second order characteristics of the

error term defined in (20), we consider the following error
correlation matrix:

Rk � E
�
rk rH

k

�
P Cq�q. (28)

Since the error correlation matrix having bounded entries
implies that the error term rk has a bounded covariance,
the matrix Rk should be guaranteed to stay bounded as the
iterations progress. Namely, we need to ensure the following:

lim
kÑ8

Rk   8, (29)

so that Eryks is meaningful to interpret from a frequency
response viewpoint.

It should be noted that the error correlation matrix depends
on the iteration index k, and in general Rk may not converge
to a point, i.e., the limit considered in (29) may not exist. In
fact, when the input signal is a linear combination of different
frequencies the error correlation matrix shows an oscillatory
behavior, yet it can still stay bounded. Due to its intricate
details, the case of multiple frequencies will be elaborated
in a later study. Nevertheless, when the input signal consists
of a single frequency (as considered in this study), the error
correlation matrix either converges to a point or increases
unboundedly. In this regard, we define the following:

lim
kÑ8

Rk
∆
� R. (30)

The following lemma, whose proof is omitted due to space
limitations, provides the necessary and sufficient condition for
R to be finite and provides its exact closed form expression:
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Lemma 3. If the following holds true:

ρpSq   1, (31)

then, the limit of the error correlation matrix is as follows:

vecpRq � 4 sin2pω{2q � (32)

pC� bCq pI� Sq-1 J vec
�
xss

0 pxss
0 q

H pP-1 � Iq
	
,

where ω denotes the frequency of the input signal, and the
matrices S P CN2�N2

and J P RN2�N2

are as follows:

S � sA�
b sA�

�
pI�PqbP

	
J
�
pA��IqbpA�Iq

	
, (33)

J �
Ņ

i�1

pei e
H
i q b pei e

H
i q � diagpvecpIqq P RN2�N2

. (34)

If the condition (31) is violated, then Rk increases unbound-
edly as k goes to infinity, that is, R is not bounded.

It can be shown that the condition (31) is more restrictive
than the one in (25). As a result, (31) is sufficient to make
Eryks to behave like an exponential as in (27), whereas (25)
alone does not guarantee that the error term has a bounded
covariance. (See Figure 1.)

More importantly, the stability of the matrix S, i.e., the
condition (31), does not necessarily imply the stability of
the state transition matrix A, i.e., the condition (9). That
is, even when ρpAq ¥ 1 it may be possible to find a set
of probabilities P such that ρpSq   1. Thus, even when the
state recursions defined in (2) are unstable it may be possible
to stabilize them using randomized asynchronicity. This is a
remarkable property of the randomized asynchronous updates,
which is observed also in [12], [13] for the case of zero
input B � 0. We also note that the study [13] provides only
a sufficiency condition that is valid only when A is a normal
matrix, whereas Lemma 3 presents the necessary and sufficient
condition that is valid for any A.

It should be clear that not every unstable synchronous sys-
tem gets stable with randomized asynchronicity. Conversely,
a stable synchronous system may get unstable with asyn-
chronicity as well. In short, we conclude that the stability of
the randomized asynchronous updates and the stability of the
synchronous updates do not imply each other in general. In
order to support this claim we consider the following:

A1�

�
-0.9 0.8
0.8 -0.3

�
, A2�

�
1.2 -1.1
0.3 0.4

�
, (35)

which can be verified to satisfy ρpA2q   1   ρpA1q. Then,
we construct the matrices sA and S as in (19) and (33),
respectively for both A1 and A2 for all possible values of
P � diagprp1 p2sq. Figure 1 presents the regions of P for
which sA satisfies (25), or S satisfies (31).

We first note that synchronous updates correspond to P�I,
in which case the matrix S reduces to S � A� bA with
ρpSq � ρ2pAq. As a result, the condition (31) reduces to the
stability of the matrix A. This can be seen clearly from
Figures 1(a) and 1(b) since the top-right corner represents
P � I and A2 is a stable matrix, whereas A1 is not.

Although A1 itself is unstable Figure 1(a) shows that there
exist some set of probabilities for which the randomized
asynchronous updates on A1 remain stable, that is, the error
term has a bounded covariance. On the other hand, the matrix
A2 itself is stable and the randomized asynchronous updates
are stable for some set of probabilities as well. However,
it should also be noted that asynchronous updates may get
unstable for both matrices for some set of probabilities. Thus,

(a) (b)
Fig. 1. The set of probabilities that ensures the stability of the randomized
asynchronous updates for the matrices (a) A1, (b) A2 defined in (35). The
top-right corner indicates P � I, which corresponds to the synchronous case.

we conclude that the stability of the updates depends heavily
on the update probabilities as well as the transition matrix.

At this point it is important to point out that non-random
asynchronous state recursions in the form of (11) (with ω � 0,
C � I, D � 0) is a well-studied problem in the literature
[15]–[17]. In fact, the first analysis of the problem can be
traced back to the study in [15] (and references therein), which
assumes that only one index is updated per iteration and allows
the use of the past values of the iterant. The study showed that
the following condition is both necessary and sufficient for the
convergence of the updates:

ρp|A|q   1, (36)

where |A| is the matrix obtained by replacing the elements of
A by their absolute values. It can be shown that the condition
(36) is more restrictive than the stability of the matrix A. Thus,
if A is unstable, then (36) is not satisfied, and [15] proved that
the updates do not converge in the sense that there exits an
index sequence for which iterations diverge. On the other hand,
Lemma 3 shows that the convergence can be achieved for some
set of probabilities. (See Figure 1(a).) Although these results
appear to be contradictory, the key difference is the notion of
convergence. The study [15] ensures the convergence for any
index sequence, whereas Lemma 3 considers the convergence
in a statistical mean squared sense (for the case of ω � 0).

As a final note, although the condition (31) does not depend
on the input frequency ω, the limit of the error correlation
matrix given in (32) does depend on the input frequency.
That is, the covariance of the error term rk depends on the
input frequency. Numerical examples show that R does not
necessarily decrease monotonically with the input frequency
due to the implicit dependence on ω through the term xss

0
defined in (18). Nevertheless, as the frequency gets lower R
tends to be smaller. That is, when the input oscillates less,
the covariance of the error term rk tends to be less. In the
particular case of ω � 0, which corresponds to a constant
input, it is clear from (32) that R � 0 irrespective of the
value of P. That is, the random vector yk converges to
D�C pI�Aq-1 B in the mean squared sense as long as the
condition (31) is satisfied.

III. NUMERICAL EXAMPLES

In this section, we will visualize the behavior of the output
signal yk with respect to the iteration index k and the update
probabilities for the state variables. We consider the following
state-space model of size N � 4:

A�
1

10

����
-4 -1 2 -6
4 -6 -5 3
2 -2 7 2
5 9 -3 1

����, B�

����
1
4
2
3

����, C �

����
1
1
1
1

����
T

, D�0, (37)
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where the matrix A itself is not stable since ρpAq � 1.0441.
For the randomized model in (11) we assume that all the

variables are updated with equal probabilities and assume that
the input signal has the following frequency:

ω � 2π{100, and P � p I, (38)

where p denotes the probability of an index being updated
during the iterations. We have numerically verified that as long
as 0   p ¤ 0.9542 is satisfied the condition (31) is met, thus
the error term keeps having a bounded covariance.

In Figure 2 we visualize a realization of the output signal
yk together with the steady-state component yss

k as well as the
input signal uk for three different update probabilities, namely,
p P t0.1, 0.3, 0.6u, all of which are guaranteed to result in a
bounded error correlation matrix. We also note that the figure
shows only the real part of the signals for convenience.
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Fig. 2. A realization of the output signal with the state-space model in (37),
the frequency in (38), and the probabilities (a) p�0.1, (b) p�0.3, (c) p�0.6.

From Figure 2 it is clear that yk is not exponential in a strict
sense, yet it still behaves like an exponential (in expectation)
as in (27). We also note that yk has the same “frequency”
as the input signal irrespective of the update probabilities.
However, it should be noted that the probabilities do affect
the covariance of the error term, which is apparent both from
(32) and Figure 2. Namely, as the indices get updated with
higher probabilities, the matrix R tends to be smaller. For
the particular example considered here the value of R can be
found approximately as 28, 3.1, 0.46 for the probabilities 0.1,
0.3, 0.6, respectively, which explain why Figure 2(a) has the
highest error variance, and Figure 2(c) has the smallest.

It should also be noted from Figure 2 that the steady-state
component yss

k is different in each case. This follows from the
fact that the response of the asynchronous system does depend
on the update probabilities as given in (18). Thus, different
update probabilities result in different “frequency responses”
while leaving the output frequency unchanged.

IV. CONCLUDING REMARKS & FUTURE WORK

In this paper, we considered a randomized asynchronous
form of the discrete time-invariant state space models, in which
only a random subset of the state variables is updated in each
iteration and the remaining ones are kept unchanged. Although
the input signal is assumed to be a complex exponential, the
output of the system is not exponential in a strict sense due to
its being random. We presented the necessary and sufficient
condition under which the output of the randomized asyn-
chronous system behaves like an exponential in expectation. In
addition, we presented the necessary and sufficient condition
under which the error correlation matrix stays bounded and
converges to a point whose closed form expression is also
provided. We provided numerical examples in which an un-
stable synchronous system became stable for some specific
set of update probabilities. We also visualized a realization
of the random output signal and presented its exponential-like
behavior with an exponential input.

In future work we plan to investigate the relation between
the presented stability condition and the state transition matrix
more thoroughly. In particular, we will investigate the cases
for which an unstable system gets stable with a randomized
asynchronicity. We will study the relation between the input
frequency and the update probabilities, and their combined
effect on the error correlation matrix. We will also extend the
results to the case of multiple input frequencies.
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