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Abstract—Can Deep Learning be used to augment DSP tech-
niques? Algorithms in DSP are typically developed starting from
a mathematical model of an application. In some cases however,
simplicity of the model can result in deterioration of performance
when there is a severe modeling mis-match. This paper explores
the idea of implementing a DSP technique as a computational
graph, so that hundreds of parameters can jointly be trained to
adapt to any given dataset. Using the specific example of period
estimation by Ramanujan Subspaces, significant improvement in
estimation accuracies under high noise and very short datalengths
is demonstrated. 1
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I. INTRODUCTION

In data science, applications involving parameter estimation
can broadly be classified into two categories. The first consists
of situations where the underlying mechanics of the problem
can be modeled reasonably well mathematically. Examples in-
clude Direction of Arrival estimation in RADAR [10], analysis
of bio-medical metrics such as heart-rate from ECG, pitch
estimation in speech [3], detection of gravitation waves [1],
and so on. For such problems, DSP tools and techniques have
proven successful for more than six decades now.

On the other hand, there is a second category of applica-
tions where the underlying mechanics is practically impossible
to capture using explicit mathematical models. These include
applications such as credit score prediction, navigation strate-
gies in self-driving cars, emotion characterization from facial
images, and so on. The exceptional growth in computational
and data storage technology in the last decade has allowed us
to address several such rather abstract estimation applications
using a new generation of Machine Learning (ML) and AI
algorithms [2], [5].

Our hypothesis in this paper is as follows: Although many
parameter estimation problems easily fall under one of the
above two categories, there exists a large class of applications
where combining DSP and ML can lead to very beneficial
results. For instance, in DSP we often start with some sim-
plifying assumptions on the data, such as the noise being
additive, the signal being perfectly sinusoidal or periodic, i.i.d.
noise samples, availability of long enough data length, etc., for
the sake of analytical tractability. As long as these modeling
assumptions are reasonably valid, we can devise optimal
algorithms (such as say, maximum likelihood estimates) for
many applications. But what if we need to use a DSP model
in a situation where such modeling assumptions turn out to be
too simplistic?
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Step 1: DSP Technique
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Fig. 1. (Left) The proposed framework to use deep learning for
training DSP techniques for non-ideal datasets. (Right) The specific
context of Ramanujan Subspaces demonstrated in this paper.

For instance, a new family of period estimation techniques
were recently proposed based on number theoretic sequences
known as Ramanujan Sums [8], [23]. These included com-
pressed sensing based dictionaries [13], filterbanks [17], [21]
and eigen-space approaches [14]. These methods were shown
to outperform several existing techniques for applications
involving integer periods, such as in DNA microsatellites [18],
protein repeats [19], absence seizure detection [20], brain-
machine interfacing [9] and so on. Nevertheless, one of the
main challenges with these Ramanujan sums based methods
is that, the theoretical framework on which they were designed
assumes long enough datalength [15] or negligible noise.
The performance of these techniques deteriorates significantly
when the data becomes severely corrupted. For example, large
extents of insertion-deletions, and colored, non-stationary or
signal-dependent noise in the data can degrade their estimation
accuracy. On the other hand, mathematically adapting these
techniques for each new type of data non-ideality is practically
impossible.

Motivated by this, we propose the following general ap-
proach (Fig. 1): Start with a DSP technique, which possibly
has modeling mismatches with the data at hand. Implement
this DSP technique as a trainable Machine Learning model.
This model can then be trained in a supervised manner on data
with non-idealities, so that all its parameters are automatically
tailored for that specific data.

As one can imagine, if such an approach is indeed feasible,
it can offer several advantages over both plain DSP, and using
arbitrary machine learning architectures. The former is due to
adaptation of the algorithm to data non-idealities. The latter is
because, as opposed to arbitrary machine learning models, we
are already starting from an initialization that works to a certain
extent, and just needs fine-tuning. This paper demonstrates
this idea using the specific case of period estimation using
Ramanujan Sums. It will be shown that, for highly noisy and
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Fig. 2. Strength vs Period Plots. See Sec. II for details.

very short signal lengths, such a hybrid DSP-ML model offers
remarkable advantages. Before we proceed, it is worth noting
that different ways of bridging together DSP knowledge and
machine learning models is quickly gaining popularity across
many other domains as well, for e.g. [4], [7] and [11].

Paper Outline: Sec. II presents a brief overview of period
estimation using Ramanujan Subspaces. A motivation of how
machine learning can be incorporated with Ramanujan sub-
spaces is also discussed. Sec. III develops the structure of
a computational graph to implement Ramanujan Subspaces.
Sec. IV includes multiple experimental results and their dis-
cussion.

II. PROBLEM MOTIVATION

In 1918, the Indian mathematician Ramanujan proposed
the following sequences known as Ramanujan sums, for every
integer q > 0:

cq(n) =

q∑
k=1

gcd(k,q)=1

ej2πkn/q (1)

where gcd is the greatest common divisor. It can be shown
that cq(n) has period q, and is integer valued for all n [8]. In
this work, by periodicity, we mean signals of the form:

x(n+ P ) = x(n) ∀ n ∈ Z (2)

Here, the integer P is known as a repetition index of x(n), and
the smallest positive repetition index is known as the period.

Following are some examples of Ramanujan sums, with
one period shown in each case:

c1(n) = 1, c2(n) = {1,−1}, c3(n) = {2,−1,−1},
c4(n) = {2, 0,−2, 0}, c5(n) = {4,−1,−1,−1,−1} (3)

Ramanujan originally proposed these sequences to show that
several arithmetic functions in number theory, such as the Euler
Totient function, Von Mangoldt function etc. can be expanded
in terms of the Ramanujan sums. More recently in [23], these
sequences were shown to have many useful properties in the
context of periodic signals. For instance, [23] generalizes (1) to
an entire subspace known as a Ramanujan Subspace as follows:

Sq = span{ej2πkn/q : gcd(k, q) = 1} (4)

The Ramanujan subspaces are orthogonal for different q [22],
[23]. Moreover, they satisfy the following (see Theorem 12 in
[22]):

Theorem 1. The LCM property let P be the period of a
signal x(n). If P1, P2, . . . , PN are the indices of Ramanujan
subspaces on which x(n) has non-zero projections, then:

P = lcm(P1, P2, . . . , PN ) (5)

While theoretically, the above is true only for infinitely
long noise-free signals, it is still approximately true for finite
duration signals with mild noise. For instance Fig. 2(a) plots
the projection energies vs the index of Ramanujan subspaces
for a signal of length 100 samples. The signal was generated
by adding randomly generated signals with periods 5, 7 and
9, so that the net period is 5× 7× 9 = 315. The true periods
are clearly seen in Fig. 2(a). We will refer to such plots as
Strength vs Period plots in the rest of the paper. In the
applications mentioned in Sec. I, such strength vs period plots
using various Ramanujan Subspaces based algorithms [13],
[17] were shown to outperform DFT-based and other currently
used techniques.

A. Why Machine Learning?

As long as the signal is reasonably ideal (low noise, large
enough data-length etc.), the strength vs period plot is clean
as in Fig. 2(a). But Fig. 2(b) shows the strength vs period plot
for the same signal when the SNR (with additive Gaussian
noise) decreases to 0dB. Notice that the period estimate in
this case depends critically on how we pick a threshold that
distinguishes the true peaks from spurious ones due to noise.
The green line gives the correct period estimates while the
yellow line estimates a spurious peak at period 2. How then
does one choose an optimal threshold?

As the noise increases further, there may in fact be no way
to pick a constant threshold that separates true peaks from
the spurious ones. Fig. 2(c) shows an example. The spurious
peak at period 4 is larger than the true peak at 3. But notice
that we only need to identify the true peaks so that the LCM
property can be used. Can we somehow generalize the LCM
property so that we do not have to explicitly separate the true
peaks from the spurious peaks in the strength vs period plot?
As one can imagine, this idea is almost impractical to explore
theoretically2.

This is where Machine Learning seems very promising.
The hope is that, if we can implement Ramanujan Subspacess
as a trainable model, then the thresholding operations, the
desired generalization of the LCM property etc. can automat-
ically be learned from the data. Not just that, the projection
matrices and the basis vectors of the Ramanujan subspaces
themselves can be adapted to the particular dataset. This not
only avoids the need to theoretically reanalyze each new
dataset, but also avoids using any explicit modeling assump-
tions for the non-idealities.

Does this idea actually work? The following sections reveal
interesting results in this regard. While we limit this paper’s
scope to the case of additive noise and small data-lengths,
one can easily use the same idea for datasets having other

2The LCM property is quite involved theoretically [22], [23].
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Fig. 3. A simple example of a computational graph depicting the
operation A× (x ∗ y). Here A is a fixed (not trained) matrix, x for
instance could be the input vector, and y a filter whose coefficients
are to be trained. See Sec. III.

Period Filter 1 Filter 2 Filter 3 Filter 4 Filter 5 Filter 6

1 1 0 0 0 0 0

2 X 1 0 0 0 0

3 X 0 1 0 0 0

4 X X 0 1 0 0

5 X 0 0 0 1 0

6 X
X

1
X

1
X

0
0

0
0

0
1

Table 1: LCM Property as a Truth Table

non-idealities such as insertion deletion errors, time varying
amplitudes, changing periodicity, non-integer periods etc.

III. RAMANUJAN SUBSPACE AS A MACHINE LEARNING
MODEL

Which ML model is ideally suited for implementing Ra-
manujan Subspaces? In our experience, computational graphs
are well suited, not just here, but for implementing a number
of signal processing methods.

A. Computational graphs for implementing DSP algorithms

Most signal processing techniques can be viewed as a
sequence of operations/transformations from an input signal
to the output. In deep learning literature, a computational
graph is essentially a directed graph representing sequences
of operations. A simple example is shown in Fig.3. Each edge
represents an intermediary variable that occurs in the compu-
tational pipeline between the input and the output variables.
Each node in the graph represents a piecewise differentiable
operation on variables entering that node. The most important
property of a computational graph is that it is amenable to
parameter training using backpropagation through the graph.
As is evident, such a model is flexible enough to capture
the steps of many signal processing techniques. The standard
multi-layer neural networks and convolutional neural networks
(CNNs) are just two examples of computational graphs. In the
following, we will design a CNN-like computational graph in
a layer-by-layer fashion to implement the period estimation
pipeline using Ramanujan Subspaces.

We will start by assuming that the input signal is a D× 1
vector, where D is the datalength of the signal. We further
assume that the input’s period is known to be ≤ Pmax for
some large enough Pmax. Specifically in our simulations in
Sec. IV, we consider Pmax = 15 for demonstration.

B. Convolutional Layer

Our first step is to project the D× 1 input signal onto the
Ramanujan Subspaces (Fig. 4). It turns out that the projec-
tion matrices for Ramanujan Subspaces are in fact circulant,
meaning that they can be implemented using convolutions.

This is proved in [22], [23], [21]. The impulse responses of
the required filters turn out to be just truncated version of
Ramanujan sums [17], [21]. We would need Pmax filters in this
layer, one for every Ramanujan Subspace (shown in Fig. 4).
The output of each filter is a D × 1 vector corresponding to
the projection vector.

C. Square Activation and Average Pooling Layers

The next step is to compute the energies in the projection
vectors from the previous layer. This can be achieved using
the following two layers:

1) Square Activation Layer: Computing point-wise
squares of the outputs of the conv layer. The resulting
vectors are still Pmax in number, each of size D×1.

2) Average Pooling: Computes the average of each D×1
vector from the square activation layer.

Notice that plotting the outputs of the Average Pooling layer
would essentially give us a strength vs period plot similar to
Fig. 2(a). The LCM of those periods that have a large energy
must be the estimate of the period. Our subsequent layers must
hence be built to identify peaks in the strength vs period plot
and computing the LCM.

D. Neural Layers: LCM computation as a Truth Table

Determining period from the strength vs period plot using
the LCM property (Theorem 1) can be represented as a truth
table. Table 1 illustrates the idea for the simple case of Pmax =
6. A ‘1’ in the table indicates that the corresponding conv layer
filter has a significant peak in the strength vs period plot, and
‘0’ indicates otherwise. An ‘X’ indicates that the state of that
filter output does not matter in the LCM computation. For
instance, if filter 4 has a peak, then the LCM is unaffected by
whether filter 2 has a peak or not. Notice that some periods,
such as 6, can occur in multiple ways.

Table 1 can be used to write logic expressions for indicator
variables for each possible period. For instance, consider the
following:

P6 = F2.F3.F4.F5.F6 + F4.F5.F6 (6)

Here ‘.’ is the logical AND, and ‘+’ the logical OR operation.
P6 will be 1 only when the LCM of the significant peaks is
6, i.e, when the input’s period is 6. Using similar indicator
variables for each period in the range 1 ≤ P ≤ Pmax, we can
estimate the input’s period from the strength vs period plot.

Furthermore, it is well known that any truth table can be
implemented as a two layer neural network. For example, the
first term in the R.H.S. of (6) can be implemented as a neuron:

t1 = sign(f2 + f3 + (1− f4) + (1− f5) + (1− f6)− 4.5) (7)

where each fi is a real number with value 1 or 0 corresponding
to the binary variable Fi. The second term in (6) similarly is:

t2 = sign((1− f4) + (1− f5) + f6 − 2.5) (8)

and they can be combined using a third neuron as:

p6 = sign(t1 + t2 − 0.5) (9)

For trainability of the previous layers using back-propagation,
we need to replace each sign(·) in the above expressions
with a sigmoidal function σ(γ(·)), where γ can be a trainable
parameter. It can be shown that for our case of Pmax = 15,
the first LCM layer needs 21 neurons, and the second 15, as
indicated in Fig. 4.
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Fig. 4. The handcrafted Ramanujan Computational Graph. See Sec. III for details.

Can we directly connect these neural layers at the output of
the average pooling layer? Unfortunately this does not work.
This is because, these neural layers as designed above expect
the inputs to be exactly either 1 or 0. In a typical strength vs
period plot (Fig. 2(a)), all the detected component periods may
not be equal to 1. Similarly, there may be a small noise floor
for the non-periods, so that they are not exactly 0. To take care
of this, we need two additional operations as follows.

E. Normalizing and Thresholding Layers

Our first operation is normalizing the strength vs period
plot. This can be done by a layer which, for every channel i,
computes:

x̄i =
xi

max1≤j≤Pmax
xj

(10)

Here xi is the output of the ith average pooling operation. This
ensures that all the resulting outputs are in the range [0, 1].
However, notice in Fig 2(a) that not all component periods
have the same strength. We need an additional operation
that thresholds all peaks above a certain threshold to 1, and
everything else to 0. This can be implemented as:

σ(α(x̄i − β)) (11)

where σ(·) is the sigmoidal function as before and α is a
trainable scale parameter. The parameter β is exactly the
thresholding operation used to identify the peaks from non-
peaks in Fig. 2, which we can now train from the data. Once
we add these layers after the average pooling layer, we can
then connect the two-layer neural network as discussed above.
We finally add a softmax layer at the end of the neural layers.
Notice that the way we have designed this structure, the period
estimate is one-shot encoded at the output of the softmax layer.
That is, for each estimate of the period, there is one correspons-
ding output of the softmax layer that attains value 1, while all
other outputs are 0. This makes categorical cross entropy an
appropriate loss function to minimize while training. Cross
entropy, which is a popular metric from Information Theory
to quantify distances between probability distributions [12],
has gained wide popularity in machine learning for categorical
classification applications [2], [5].

IV. EXPERIMENTS AND DISCUSSION

We will divide our experiments into three categories:

A. Very small datalength and low SNR

Table 2 shows the performance of the architecture devel-
oped in the previous section. The SNR is low (0dB), and
the data length D is quite small, varied between 30 and
50 samples. The training, validation and test data consisted
of randomly generated periodic signals with the indicated
datalength values, with periods in the range 1 to 15. These
datasets also included sums of periodic signals, for example
period 3 + period 4, whose resulting periods are ≤ 15. There
were 5000 synthetic training signals for each combination of
periods. The percentages shown in Table 2 are the fraction of
test data for which the period was correctly estimated.

Ram UT refers to the untrained (UT) Ramanujan CNN
developed in the previous section. Ram T is the same, but
after training. Random UT and Random T are the same
architecture that was developed in the previous section, but
with randomly initialized weights for all the layers instead
of carefully chosen values as in Ram UT. Random T can
be interpreted as a ML model, whose architecture is fully
DSP inspired, but weights are random. The training was
performed using back-propagation (stochastic gradient descent
implemented using ADAM [6]). For both Ram T and Random
T, the model with the best validation error was picked at the
completion of the training process.

As evident from Table 2, this experiment clearly establishes
the main message of this paper: Combining DSP and Deep
Learning can result in remarkable benefits. Ram T (the hybrid
DSP/ML) shows that the percentage of success almost triples
over Ram UT (just DSP). The Random UT also seems to
be training to reasonably good accuracies. What subspaces
do the conv layer of Random T represent? Do they imitate
Ramanujan Subspaces? This direction of investigation leads to
some interesting observations, which we will present elsewhere
due to space limitations in this paper.

B. Good Datalengths and SNR

Table 3 considers a regime where the design assumptions
of Ramanujan Subspace models are reasonably accurate. The
datalength D is 200 samples, and the SNR is varied between
2.5 to 10 dB. Ram UT performs quite well especially at 5 and
10 dB, since its modeling assumptions match the data quite
well. It can be seen that as the SNR drops to 2.5 dB, the
training process does improve the performance of Ram T. It
is also very interesting to see that Random T can also reach
comparable performances, although starting from a random
initializations.
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Datalength Ram UT Ram T Random UT Random T

50 29.5% 88% 4% 85%

45 27.9% 87% 4% 84%

30 21.6% 78% 4% 73%

Table 2: Small Datalengths, SNR 0dB

Table 3:  Datalength 200,  relatively high SNRs

SNR Ram UT Ram T Random UT Random T

10 98.1% 98.1% 4.7% 94%

5 96.5% 96.5% 4.7% 94%

2.5 89.6% 95.5% 4.7% 93.5%

(Hybrid DSP/ML) (Hybrid DSP/ML)

(Hybrid DSP/ML) (Hybrid DSP/ML)

C. Comparison to other ML models

What if we directly use machine learning models, which
are not necessarily inspired from DSP? Table 4 shows some
arbitrarily chosen architectures of 2 and 3 layered neural
networks (indicated as NN’s, along with the number of neurons
in each layer), and a CNN with a perturbed architecture than
Ram T3. While our hybrid DSP/ML model Ram T does
outperform the models shown here, and also several other
models that we tested in our experiments, we must emphasize
the following.

We are not claiming that there doesn’t exist any ML model
that outperforms Ram T. Rather, it is highly non-obvious how
one can find such an architecture. More generally, how does
one come up with a principled way of choosing a Machine
Learning model for a given estimation problem? The approach
proposed in this paper, of building computational graphs im-
plementing DSP algorithms, and using them as initializations
in deep learning seems like a promising step in this direction.

V. CONCLUDING REMARKS

This paper aims to demonstrate the benefits of combining
the tools and techniques of DSP with the versatile trainability
of deep learning architectures. A simple case study using
Ramanujan Subspaces was used as an example. We postulate
that a similar approach for other DSP algorithms will also
result in remarkable performance improvements over data-
sets that were traditionally considered too non-ideal in DSP.
Furthermore with the help of DSP, one might even obtain
good insights on what ML architecture to use, the minimum
architecture size (number of layers, number of neurons per
layer) required etc., for a particular application. For e.g., [16]
explores the minimum number of convolutional filters needed
to identify periodicity in data. Such insights are quite rare in
the world of deep learning today, and insights from DSP might
be promising in this regard in the coming years [4], [11], [7].
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