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Abstract We continue our investigation of kinetic models of a one-dimensional gas in con-
tact with homogeneous thermal reservoirs at different temperatures. Nonlinear collisional
interactions between particles are modeled by a so-called BGK dynamics which conserves
local energy and particle density. Weighting the nonlinear BGK term with a parameter
α ∈ [0,1], and the linear interaction with the reservoirs by (1 − α), we prove that for some
α close enough to zero, the explicit spatially uniform non-equilibrium steady state (NESS)
is unique, and there are no spatially non-uniform NESS with a spatial density ρ belonging
to Lp for any p > 1. We also show that for all α ∈ [0,1], the spatially uniform NESS is
dynamically stable, with small perturbation converging to zero exponentially fast.

Keywords Kinetic equation · Uniqueness · Non-equilibrium steady state

B E. Carlen
carlen@math.rutgers.edu

R. Esposito
esposito@roma2.infn.it

J. Lebowitz
lebowitz@math.rutgers.edu

R. Marra
marra@roma2.infn.it

C. Mouhot
c.mouhot@dpmms.cam.ac.uk

1 Department of Mathematics, Rutgers University, 110 Felinghuysen Rd., Piscataway, NJ 08541,
USA

2 International Research Center, Università di l’Aquila, L’Aquila, (AQ) 67100, Italy

3 Department of Mathematics & Department of Physics, Rutgers University, 110 Felinghuysen Rd.,
Piscataway, NJ 08541, USA

4 Dipartimento di Fisica and Unità INFN, Università di Roma Tor Vergata, 00133 Roma, Italy

5 DPMMS, Centre for Mathematical Sciences, University of Cambridge, Wilberforce road,
Cambridge CB3 0WA, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s10440-019-00290-0&domain=pdf
mailto:carlen@math.rutgers.edu
mailto:esposito@roma2.infn.it
mailto:lebowitz@math.rutgers.edu
mailto:marra@roma2.infn.it
mailto:c.mouhot@dpmms.cam.ac.uk


E. Carlen et al.

1 Introduction

This paper is a contribution to the theory of non-equilibrium steady states (NESS), of open
systems in the particular context of kinetic theory. The understanding of NESS, their prop-
erties, uniqueness or lack thereof and stability or lack thereof, represents a challenge in
mathematical physics due to the fact that the dynamics are nonlinear, non-Markovian and
the absence of an entropy principle. Our main result is a uniqueness and stability theorem
for the NESS in a simple nonlinear model.

1.1 The Model

We briefly describe the sort of underlying particle model that would lead to the type of
kinetic equation that we study here. It consists of a gas of particles on the one-dimensional
torus T, that interact only through binary energy conserving collisions, however we also
suppose that there are two types of scatterers distributed on the torus according to some
Poisson distribution, as in a Lorentz model, except that each scatterer has a temperature, T1

or T2 depending on its type, and a certain radius of interaction, so that when a gas particle
travels across the interaction interval, a Poisson clock runs and if it goes off, the particle
assumes a new velocity chosen at random according to the Maxwellian distribution for the
temperature of the scatterer.

In an appropriate scaling limit, the net effect of the background scatterers is to produce
two uniform thermal reservoirs. Whatever the speed of a gas particle, its rate of interaction
with the reservoirs depends only on the density of the scatterers, again in an appropriate
limit in which their intervals of interaction are unlikely to overlap. The kinetic equation that
one would expect to arise from such a model in such a limit would be of the type (1.1)
below, except that one might expect a Kac-Povzner type collision kernel, also known as
a “soft-spheres” kernel [7, 13]. Our work concerns the kinetic equation itself, and not its
rigorous derivation from an underlying particle system, although the brief description of
such a system that we have given hopefully illuminates the physical context of our model.

We are concerned with the existence and uniqueness of NESS for our system. We make
a further simplification, and model the gas particle collisions with a BGK collision kernel
[4, 14, 15]. This will render the existence of NESS trivial, but the uniqueness is still a
challenging problem, and we shall only prove part of what we conjecture to be true.

These considerations bring us to the following one dimensional kinetic model:

∂tf + v∂xf = αMf + (1 − α)ρf

!
MT1 +MT2

2

"
− f (1.1)

where α ∈ [0,1], f = f (t, x, v), x ∈ T, v ∈ R, and

MTi
(v) := e

− |v|2
2Ti

√
2πTi

, Mf (t, x, v) := ρf (t, x)
e

− |v|2
2Tf (t,x)

#
2πTf (t, x)

, (1.2)

with
⎧
⎪⎪⎨

⎪⎪⎩

ρf (t, x) :=
(

R
f (t, x, v)dv,

Pf (t, x) :=
(

R
v2f (t, x, v)dv = ρf (x)Tf (t, x),

(1.3)
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being the spatial density and pressure corresponding to f . Tf is then the temperature corre-
sponding to f , and T1 and T2 ∈ (0,+∞) being the two temperatures of the reservoirs.

The linear terms on the right in (1.1) that are multiplied by (1 − α) model the interaction
of particles with two reservoirs, both acting everywhere in space. Each time a particle inter-
acts with one of the reservoirs, it velocity is replaced by a new velocity selected at random
from the corresponding Maxwellian distribution. We have taken both of these Maxwellians
to have zero mean velocity which is natural for static reservoirs.

The nonlinear term on the right in (1.1) that is multiplied by α represents the effect of
collisions between particles. The collision term Mf is of the BGK type (see [4]), except
that as usual in one dimensional kinetic models, it conserves only mass and energy, not
momentum. Indeed, binary collisions that conserve both energy and momentum are trivial
in one dimension: only an exchange of velocities is possible. For this reason, the mean
velocity of Mf is zero.

The term −f on the right in (1.1) is the loss term corresponding to both interactions
with the reservoirs and other particles: after such interactions, particles vacate their pre-
interaction state.

Without loss of generality, we choose units in which the torus has unit volume and there
is unit total mass:

T= [−1/2,1/2] and
( 1/2

−1/2

(

R
f (x, v)dx dv = 1.

1.2 Previous Results

In our previous papers [5, 6], we have studied related issues for related models. In [5] we
proved the existence of spatially homogeneous non-equilibrium steady states and exponen-
tial convergence to them for related spatially homogeneous models, but with more realistic
collision mechanisms, and also in higher dimensions. In [6] we studied the exponential rate
of convergence to steady state for a non spatially homogeneous equation of the type (1.1)
but with a modified collision mechanism that permitted the equation to be interpreted as
the Kolmogorov forward equation for a non-stationary Markov process: we replaced the
space-dependent local temperature Tf (t, x) by the global temperature

Tf (t) :=
(

T×R
v2f dx dv

of f that depends only on time. We were then able to apply Doeblin’s method [16] to prove
the exponential convergence. The use of Doeblin’s method to study linear dynamical models
originates with [3, 11].

The rigorous study of NESS for nonlinear kinetic equations remains very challenging.
One problem that has been studied by several authors is the Boltzmann equation in a slab
with different temperatures on the two walls, with and without external forces. At this level
of generality, one cannot always expect a unique NESS—there may be a symmetry breaking
transition, such as the onset of Rayleigh-Bernard flow. Even without external forces, exis-
tence of NESS for the slab problem is a highly non-trivial, and existing results [2, 8] do not
provide any information on uniqueness or non-uniqueness.

More recently, the Boltzmann equation in more general domains and with non-isothermal
boundary conditions has been investigated in [10] where it is proved that when the temper-
ature on the boundary is sufficiently close to constant, then there is a NESS that is close to
the uniform Maxwellian for the mean boundary temperature, and in a small neighborhood
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of this Maxwellian, there is no other NESS. However, it is not known that there are not other
NESS further away, no matter how small the non-zero temperature difference may be.

1.3 Question Studied and Conjecture

Observe that the reservoirs will tend to damp out any mean velocity since MT1 and MT2 have
zero mean velocity. Likewise, Mf has zero mean velocity at each x, so the collision gain
term too will tend to damp out any mean velocity.

Therefore, if f = f (v) is any spatially homogeneous steady state,
)

R vf dv = 0. More-
over, the time and space homogeneity yield ∂tf = 0 and v∂xf = 0. Finally, multiplying both
sides of (1.1) by v2 and integrating over x and v shows

0= (α − 1)Tf + (1 − α)
T1 + T2

2
, Tf :=

(

R
v2f (v)dv.

Thus, the constant temperature in any spatially homogeneous steady state f must be T∞ :=
(T1+T2)/2 if α ≠ 1. Then for any spatially homogeneous steady state f , Mf =M(T1+T2)/2,
and (1.1) reduces to

αMT1+T2
2
+ (1 − α)ρf

!
MT1 +MT2

2

"
− f = 0.

Therefore the unique spatially homogeneous steady state is given by

f∞ := αMT∞ + (1 − α)
MT1 +MT2

2
, T∞ =

T1 + T2

2
. (1.4)

Observe that f∞ is not Maxwellian as soon as α ≠ 1.
If α = 0, the term Mf is not present, the only spatially homogeneous steady state is

f∞ = 1
2 (MT1 +MT2), and the equation (1.1) is linear. It can be interpreted as the forward

equation of a Markov process and in [6] we used probabilistic methods to prove that this
steady state is unique and is approached exponentially fast. Hence, for α = 0, there are no
steady states that are spatially inhomogeneous.

Next, consider the case α = 1: there are no thermal reservoirs and energy is conserved.
There is a one-parameter infinite family of steady states, namely MT for all T > 0. More-
over, if f0 is such that

(

T×R
v2f0(x, v)dx dv = T ,

(

T×R
f0(x, v) lnf0(x, v)dx dv <+∞,

and f (t, x, v) is the solution of (1.1) with initial datum f0, then

H
*
f (t, ·, ·)|MT

+
=
(

T×R
f (t, x, v) ln

f (t, x, v)

MT (v)
dx dv

decreases monotonically to zero, and is stationary only when f =MT . It follows that MT is
the unique steady state among solutions with second moment equal to T and finite entropy,
and thus every steady state for α = 1 with finite second moment and entropy is spatially
homogeneous (and equal to MT ).

The question that motivates this paper is the study of the NESS in the intermediate region
α ∈ (0,1). We conjecture the following:
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Conjecture (Uniqueness of the NESS for the BGK model with reservoirs) For all α ∈
[0,1], the non-equilibrium steady state of (1.1) is unique, regardless of the temperature
difference, spatially homogeneous and stable under perturbations. We also expect this con-
jecture to hold in higher dimensions x ∈ Td , v ∈ Rd .

1.4 Main Results

We give a partial answer to this conjecture, showing that it is satisfied when α is small
enough. We first prove the uniqueness:

Theorem 1 For all T1, T2, there is an explicitly computable α0 > 0 such that for all α ∈
[0, α0), every steady state solution f∞ of (1.1) that belongs to L1(T × R), has finite second
moment and is such that ρ ∈ Lp(T) for some p > 1, is constant in x.

Remark 1.1 Our method would also apply in higher dimensions provided there was non-
trivial spatial dependence in only one direction on the torus, say the x1 coordinate. The
decomposition between odd and even parts in the next section should be then modified by
splitting along v1 only. The rest of the analysis would be similar.

We also prove the stability under perturbation for all α ∈ [0,1]. For this, we introduce
the (real) Hilbert Space H1

α with inner product

⟨f,g⟩H1
α
=
(

T×R

*
f (x, v)

*
1 − ∂2

x

+
g(x, v)

+ 1
fα,∞

dx dv. (1.5)

Theorem 2 For all α ∈ [0,1], the spatially homogeneous steady state described above is
asymptotically stable under perturbation in H1

α . Small perturbations decay exponentially
fast in time in this space.

Theorem 2 shows that if for some α > α0 there do exist non-uniform steady states, they
do not arise as a branch bifurcating off the family of spatially homogeneous steady state
solutions.

1.5 Plan of the Paper

In Sect. 2, we establish some useful relations on the moments of any given NESS and in-
troduce a decomposition between odd and even parts. In Sect. 3, we prove lower and upper
pointwise bounds on local density and temperature of any given NESS. In Sect. 4, we ex-
plain the contraction mapping argument; it is in this section that we use that α is close to
zero. Finally in Sect. 5, we prove a local stability result of the spatially homogeneous steady
states for all α ∈ [0,1].

2 Preliminaries: Properties and Decompositions of NESS

2.1 Zero Momentum and Constant Pressure

A partial result supporting our conjecture is that the pressure is independent of x, as well as
the momentum mf (x) := ρf (x)uf (x), the latter being zero:
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Lemma 3 Let f (x, v) be a probability density on T × R such that v2f (x, v) is integrable,
and suppose that f (x, v) solves in a weak sense the equation

v∂xf (x, v)= F(x, v) − f (x, v) (2.1)

where F(x, v) is a measurable function such that (1+ |v|)F (x, v) is integrable and

∀x ∈ T,

(

R
F(x, v)dv = ρf (x) and

(

R
vF(x, v)dv = 0. (2.2)

Then the pressure is constant and the momentum is zero:
⎧
⎪⎪⎨

⎪⎪⎩

Pf (x)=
(

R
v2f (x, v)dv = P∞ ∈ R

mf (x)=
(

R
vf (x, v)dv = ρf (x)uf (x)= 0.

Remark 2.1 Evidently, Lemma 3 applies to any finite energy NESS of our equation.

Proof Integrating both sides of (2.1) in v yields

d
dx

mf (x)= ρf (x) − ρf (x)= 0.

This proves that mf (x) is a constant m∞ ∈ R. Now multiplying both sides of (2.1) by v and
integrating in v yields

d
dx

Pf (x)=−mf (x)=−m∞. (2.3)

Integrating both sides of (2.3) in x shows that m∞ = 0, and Pf (x) = P∞ ∈ R is con-
stant. !

Remark 2.2 The proof of Lemma 3 takes advantage of the dimension being one. In higher
dimension, the argument above would only show that mf is a divergence free vector field,
but not necessarily constant. We shall make further use of the one dimensionality of the
model when proving pointwise bounds on the NESS.

2.2 Higher Moments

Multiplying the steady-state equation

v∂xf = αMf + (1 − α)ρf

!
MT1 +MT2

2

"
− f (2.4)

by v2, and integrating in v yields

d
dx

(

R
v3f (x, v)dv = (1 − α)

!
T1 + T2

2

"*
ρf (x) − 1

+
,

since by Lemma 3, Pf (x) = (T1 + T2)/2. Next, multiplying (2.4) by v3 and integrating
yields

d
dx

(

R
v4f (x, v)dv =−

(

R
v3f (x, v)dv.
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Combining the last two equations yields

− d2

dx2

(

R
v4f (x, v)dv = (1 − α)

!
T1 + T2

2

"*
ρf (x) − 1

+
. (2.5)

Since the right hand side integrates to zero, we have
(

R
v4f (x, v)dv −

(

T×R
v4f (x, v)dx dv = (1 − α)

!
T1 + T2

2

"(

T
ψ(x − y)

*
ρf (y) − 1

+
dy

where

ψ(x)=
,

k≠0

e2πikx

4π2k2
so that

--ψ(x)
--≤ 1

12
.

It follows that
----

(

R
v4f (x, v)dv −

(

T×R
v4f (x, v)dx dv

----≤ (1 − α)

!
T1 + T2

12

"
. (2.6)

In particular, for α close to 1,
)

v4f (x, v)dv is nearly constant; its average is

(

T×R
v4f (x, v)dv dx = 3

.
α

!
T1 + T2

2

"2

+ (1 − α)
T 2

1 + T 2
2

2

/
(2.7)

and thus the spatial fluctuations in
)

v4f (x, v)dv are a small fraction of the mean for large
temperatures.

Lemma 4 Let f be a solution to (2.4) such that
(

T×R

*
1+ v2+f (x, v)dx dv < ∞

and recall that P∞ := (T1 + T2)/2. Then (2.6) is valid, and the spatial density ρf satisfies

ρf (x) ≥ 1

3(2 − α)+ (1−α)
6P∞

. (2.8)

Proof By the Cauchy-Schwarz inequality and Lemma 3,

∀ x ∈ T, P∞ = Pf (x)=
(

R
v2f (x, v)dv ≤

!(

R
v4f (x, v)dv

"1/2

ρ
1/2
f (x),

so that

ρf (x) ≥ P 2
∞

!(

R
v4f (x, v)dv

"−1

.

From (2.7), we have the bounds
⎧
⎪⎪⎨

⎪⎪⎩

(

T×R
v4f (x, v)dx dv ≤ 3(2 − α)P 2

∞

sup
x∈T

(

R
v4f (x, v)dv ≤ 3(2 − α)P 2

∞ +
(1 − α)P∞

6
.

Combining bounds yields the result. !
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2.3 Splitting Between Odd and Even Parts and a Wave-Like System

We split a given steady state f into even and odd parts f = E +O with respect to the v

variable. The steady state equation (1.1) can be rewritten as:

0
v∂xE =−O

v∂xO = Fα − E
(2.9)

where

Fα(x, v) := αMf (x, v)+ (1 − α)ρf (x)G(v), G :=
!

MT1 +MT2

2

"
. (2.10)

Combining the two equations in (2.9), we obtain

*
1 − v2∂2

x

+
E = Fα. (2.11)

Note that for each v ≠ 0, the operator (1 − v2∂2
x ) is invertible with a bounded kernel. The

equation (2.11) conveniently and efficiently expresses the iterated effects of velocity aver-
aging on the steady state, or rather on its even part.

Lemma 5 For each density ρ on T, there is at most one NESS f such that ρ = ρf .

Proof We have seen that for any NESS, P∞ = (T1 + T2)/2, and then by Lemma 3, ρf Tf =
P∞, so that Mf is determined by ρ. It follows that Fα is determined by ρ, and then since
(2.11) is uniquely solvable, the uniqueness of f follows. !

The formal solution of (2.11) is

E =
*
1 − v2∂2

x

+−1
Fα (2.12)

and can be written in terms of an explicit Green’s function. Integrating in v yields

ρf (x)=
(

R

1*
1 − v2∂2

x

+−1
Fα

2
dv. (2.13)

Lemma 6 Let T1, T2 > 0 and α ∈ (0,1) and P∞ = (T1+ T2)/2. For any probability density
ρ = ρ(x) on T, define T (x)= P∞/ρ(x) and

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

M[ρ](x, v) := ρ(x)√
2πT (x)

e
− v2

2T (x) = ρ3/2(x)√
2πP∞

e− v2ρ(x)
2P∞

Fα[ρ](x, v) := αMρ(x, v)+ (1 − α)ρ(x)G(v)

Ψα[ρ](x) :=
)

R
1
(1 − v2∂2

x )−1Fα[ρ]
2

dv

(2.14)

with G defined as in (2.10). Then for all ρ, Ψα[ρ] is a probability density on T, and ρ is the
spatial density of some NESS f if and only if ρ = Ψα[ρ], and in this case the unique such
NESS is given in terms of ρ by (2.15) and (2.16) below.
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Proof Let ρ be any density. Then Fα[ρ] is a probability density on T×R. Since (1+v2∂2
x )−1

preserves both integrals and positivity, (1+ v2∂2
x )−1Fα[ρ] is also a probability density on

T × R, and hence its marginal, Ψα[ρ], is a probability density on T.
Next, suppose that ρ(x)= ρf (x) for some NESS f (x, v). By Lemma 3, M[ρ](x, v)=

Mf (x, v), and therefore Fα[ρ](x, v) is given in terms of f by (2.10). Then E(x, v), given
by (2.12), is a probability density on T × R. E(x, v) is the even part of f (x, v) and finally
O(x, v), the odd part of f (x, v), is given by the first equation in (2.9). Then by (2.13),
ρ = Ψα[ρ].

Finally, suppose that ρ(x) is a probability density on T such that ρ = Ψα[ρ]. Define
Fα[ρ] by (2.14), and then define Eα[ρ](x, v) by

Eα[ρ] :=
*
1 − v2∂2

x

+−1
Fα[ρ], (2.15)

and then define

Oα[ρ] = −v∂xEα[ρ] and fρ(x, v)=Eα[ρ](x, y)+Oα[ρ](x, y). (2.16)

Then

v∂xfρ(x, v) = −Oα[ρ] − v2∂2
xEα[ρ]

= −Oα[ρ] − Eα[ρ] +
*
1 − v2∂2

x

+
Eα[ρ]

= Fα[ρ] − fρ.

Lemma 3 applies to this equation, and we conclude that ρfρ Tfρ = P∞. The fixed point
equation ρ = Ψα[ρ] implies ρfρ = ρ and M[ρ] =Mfρ . This shows that fρ is an NESS for
our equation, and concludes the proof that ρ is the spatial density of a NESS if and only if
it is a fixed point of Ψα . !

It follows from Lemma 6 that our conjecture would be proved if we could show that the
constant density is the only fixed point of Ψα for all α ∈ [0,1]. We prove this for sufficiently
small α in the next section.

3 Pointwise Bounds on the Moments of the NESS

3.1 Preliminaries

We define the standard Fourier series of an integrable function r = r(x) on the torus T =
[−1/2,1/2] by

r̂(k) :=
( 1

0
r(x)e−2iπkx dx, k ∈ Z,

and we recall the inversion formula (when, say, the Fourier modes (r̂(k))k∈Z are absolutely
summable)

r(x)=
,

k∈Z
r̂(k)e2iπkx .

Define ϕv(x) the fundamental solution to the Laplace equation

*
1 − (v∂x)

2+−1
ϕv(x)= δ0(x)
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on the torus T= [−1/2,1/2]. This fundamental solution is explicit:

ϕv(x)=
,

m∈Z
φv(x +m), φv(x) := 1

2|v|e
− |x|
|v|

and its formula in Fourier is

ϕ̂v(k)=
( 1/2

−1/2
e−i2πkxϕv(x)dx = 1

1+ (2π)2v2k2
, k ∈ Z.

The following bounds will be useful: ϕv ∈ Lp(T) for all p ∈ [1,+∞], and

∥ϕv∥Lp(R) =
!

1
p

" 1
p
!

1
2|v|

" p−1
p

, p ∈ [1,+∞), ∥ϕv∥L∞(R) =
!

1
2|v|

"
, (3.1)

and it satisfies the lower bound

∀x, y ∈ T, ϕv(x − y) ≥ 1
2|v|e

− 1
|v| . (3.2)

3.2 Lower Bound on the NESS

We have already proved a uniform lower bound on the spatial density of any NESS in
Lemma 4. We now prove a stronger result: a uniform lower bound holds for every density
in the range of Ψα .

Lemma 7 (Pointwise lower bound) Let α ∈ [0,1] and let ρ be any probability density on T
of the form ρ = Ψα[ρ0] for a probability density ρ0 on T. Then

∀ x ∈ T, ρ(x) ≥ r∞ :=
(1 − α)

4
√

e

(

1≤|v|≤2

!
MT1 +MT2

2

"
dv. (3.3)

Proof Define Fα[ρ0] in terms of ρ0 using (2.14). Then

ρ(x)=
(

T×R
ϕv(x − y)Fα[ρ0](y, v)dy dv. (3.4)

The operator (1 − (v∂x)
2)−1 preserves positivity, and since Fα[ρ0] ≥ (1 −α)ρ0G, we obtain

ρ(x) ≥ (1 − α)

(

R
G(v)

!(

T
ϕv(x − y)ρ0(y)dy

"
dv

≥ (1 − α)

(

1≤|v|≤2
G(v)

!(

T
ϕv(x − y)ρ0(y)dy

"
dv.

The kernel ϕv(x − y) is bounded below by e−1/|v|/(2|v|). The function defined by
t > 0 -→ t−1e−t−1

vanishes as t approaches zero or infinity, is maximum at t = 1 and then
decreases as t increases, and has the value 1/(2

√
e) at t = 2. This implies

ϕv(x − y) ≥ 1
4
√

e

for all x, y whenever 1 ≤ |v| ≤ 2, which concludes the proof. !
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3.3 Upper Bound on the NESS

Lemma 8 (Gain of integrability of Ψα) Let α ∈ [0,1] and r ∈ [0,1), and let ρ0 ∈ L1+r/2(T)

a probability density. Then ρ := Ψα[ρ0] ∈ L1+r (T), and there are Ar,Br > 0 depending only
on r and degenerating as r → 1 such that

(

T
ρ1+r dx ≤ αAr

(

T
ρ

1+r/2
0 dx +Br. (3.5)

As a consequence, if ρ = ρ0 ∈ L1+r/2(T) is a fixed point of Ψα , there is a constant
Kr,α > 0 depending only on r and α and monotone increasing in α such that

(

T
ρ1+r dx ≤ Kr,α.

Remark 3.1 Note that the constant Kr,α is independent of ∥ρ∥L1+r/2(T). That is, knowing
only that

)
T ρ1+r/2 dx is finite, we obtain a universal bound on

)
T ρ1+r dx.

Proof Define again Fα[ρ0] in terms of ρ0 using (2.14) so that ρ(x) is given by (3.4).
Multiply (3.4) by ρr(x) and integrate in x:

(

T
ρ1+r (x)dx =

(

T
ρr(x)

!(

T×R
ϕv(x − y)Fα[ρ0](y, v)dy dv

"
dx

=
(

T×R

!(

T
ϕv(x − y)ρr(x)dx

"
Fα[ρ0](y, v)dy dv.

Equation (3.1) implies
(

T
ϕv(x − y)ρr

0(x)dx ≤ ∥ρ0∥r
L1(T)

∥ϕv∥
L

1
1−r (T)

≤ 1
(2|v|)r

.

Therefore
(

T
ρ1+r (x)dx ≤

(

T×R
|v|−rFα[ρ0](y, v)dy dv

≤
(

T×R
|v|−r

1
αMρ0(y, v)+ (1 − α)ρ0(y)G(v)

2
dy dv

≤ α

(

T×R
|v|−rMρ0(y, v)dy dv+

(

R
|v|−rG(v)dv.

Now using the definition of Mρ0 and Lemma 3:

(

T×R
|v|−rMρ0 dy dv ≤

(

T

!(

R
|v|−r ρ

3/2
0 (y)√
2πP∞

e− v2ρ0(y)
2P∞ dv

"
dy

and making the change of variable w = (ρ0(y)/P∞)1/2v,

(

R
|v|−r ρ

3/2
0 (y)√
2πP∞

e− v2ρ0(y)
2P∞ dv = ρ0(y)1+r/2 1

#
2πP r

∞

(

R
|w|−r e− |w|2

2 dw.
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This yields (3.5) with

Ar :=
1

#
2πP r

∞

(

R
|w|−r e− |w|2

2 dw and Br :=
(

R
|v|−rG(v)dv.

Now suppose that ρ = ρ0 ∈ L1+r/2(T) is a fixed point of Ψα . We have from the inequality
and Hölder’s inequality that

(

T
ρ1+r dx ≤ αAr

(

T
ρ1+r/2 dx +Br ≤ αAr

!(

T
ρ1+r dx

" 1+r/2
1+r

+Br.

Since the exponent (1+ r/2)/(1+ r) on the right is less than one, this proves that there is a
constant Kr,α > 0 depending only on r and α such that

)
T ρ1+r dx ≤ Kr,α . !

Lemma 9 (Pointwise upper bound) Let α ∈ [0,1] and let ρ be any probability density on
T that is a fixed point of Ψα , and such that ρ ∈ Lp for some p > 1. Then ρ satisfies the
pointwise upper bound ρ(x) ≤ R∞ where R∞ < ∞ only depends on the total energy, α and
on p, and is monotone increasing in α.

Proof In the case where p ∈ (1,7/4), finitely many applications of the previous lemma will
yield, for any q ∈ (7/4,2), a bound

(

T
ρq(x)dx ≤ Cr,α

for some finite constant Cr,α depending only on r and α. We deduce that for all p > 1, the
following control holds

(

T
ρ7/4(x)dx ≤ Cr,α.

We return to (3.4) and expand Fα to write

ρ(x)= α

(

T×R
ϕv(x − y)Mρ(x, v)dy dv + (1 − α)

(

T×R
ϕv(x − y)ρ(y)G(v)dy dv. (3.6)

Observe that Lemma 7 implies

Mρ(x, v)= ρ3/2(x)√
2πP∞

e− v2ρ(x)
2P∞ ≤ ρ

3/2
0 (x)√
2πP∞

e− r∞v2
2P∞ ,

which yields

(

T×R
ϕv(x − y)Mf (x, v)dy dv

≤ 1√
2πP∞

(

R
exp
.
− r∞v2

2P∞

/!(

T
ϕv(x − y)ρ3/2(y)dy

"
dv. (3.7)
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We apply Hölder’s inequality with conjugate exponents p = 7/6 and q = 7 to obtain

!(

T
ϕv(x − y)ρ3/2(y)dy

"
≤ ∥ϕv∥L7(T)

33ρ3/2
33

L7/6(T)

≤ ∥ϕv∥L7(T)∥ρ∥3/2
L7/4(T)

≤ |v|−6/7∥ρ∥3/2
L7/4(T)

≤ Cr,α|v|−6/7

where in the final step we have the used estimate (3.1) with p = 7. Using this in (3.7) and
noting that

(

R
exp
.
− r∞v2

2P∞

/
|v|−6/7 dv < ∞,

we deduce a universal upper bound on
)

T×R ϕv(x − y)Mf (x, v)dy dv.
The term

)
T×R ϕv(x − y)ρ(y)G(v)dy dv is bounded using Hölder inequality and (3.1):

(

T
ϕv(x − y)ρ(y)dy ≤ ∥ϕv∥L7/3(T)∥ρ∥L7/4(T) ≤ Cr,α|v|−4/7.

The two last inequalities combined with (3.6) imply the pointwise bound on ρ. !

4 The Contraction Mapping Argument

4.1 Setting of the Argument

Recall the relation ρf Tf = P∞ and

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Fα[ρ] = αρMT∞
ρ
+ (1 − α)ρG,

G :=
!

MT1 +MT2

2

"

Ψα[ρ] :=
(

R

*
1 − v2∂2

x

+−1
Fα[ρ]dv.

The local density of any steady state must be a fixed point of Ψα . When α = 0, the map Ψ0

is linear, and a consequence of the spectral analysis of the next Sect. 5 is that it is strictly
contractive in H 1 or L2 norms. To extend it to small positive α, we make use of the a-priori
bounds proved in the previous Sect. 3.

4.2 The Contraction Estimate

Lemma 10 Given any ε ∈ (0,1), define

Cε :=
0
ρ ∈ L2(T) :

(

T
ρ(x)dx = 1 and 0 < ε < ρ < 1/ε

4
.
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Then Ψα(Cε) ⊂ L2(T) for all α ∈ [0,1] and there are αε, δε ∈ (0,1) depending on ε such
that for all α ∈ [0, αε):

∀ρ1, ρ2 ∈ Cε,
33Ψα(ρ1) − Ψα(ρ2)

33
L2(T)

≤ (1 − δε)∥ρ1 − ρ2∥L2(T).

Proof Recall that in our normalization the global conserved quantities satisfy

ρ∞ :=
(

T×R
f (x, v)dx dv = 1, T∞ :=

1
ρ∞

(

T×R
v2f (x, v)dx dv = T1 + T2

2
.

The fact that Ψα(Cε) ⊂ L2(T) is straightforward and we only prove the contraction prop-
erty. We linearize the map Ψα around a profile ρ̄ ∈ Cε with global mass 1 and global temper-
ature T∞. The local temperature is T̄ (x)= T∞/ρ̄(x). We write the fluctuation

ρ = ρ̄ + σ with σ ∈ L2(T) and
(

T
σ(x)dx = 0.

The functional derivative of Ψα is:

DΨα[ρ̄] · σ = α

(

R

1
1 − v2∂2

x

2−1
!

3σ

2
MT∞

ρ̄
σ − v2ρ̄σ

2T∞
MT∞

ρ̄

"
dv

+ (1 − α)

(

R

1
1 − v2∂2

x

2−1
σ G(v)dv.

We estimate by duality for σ1, σ2 ∈ L2(T):

5
σ2,DΨα[ρ̄] · σ1

6
= α

(

T×R

*1
1 − v2∂2

x

2−1
σ2
+!3σ1

2
MT∞

ρ̄
− v2ρ̄σ1

2T∞
MT∞

ρ̄

"
dx dv

+ (1 − α)

(

T×R

*1
1 − v2∂2

x

2−1
σ2
+
G(v)σ1(x)dx dv

=:D1 +D2.

Let us study the first term D1. Using the controls ρ̄ ∈ Cε we deduce

.(

T

!
3
2
MT∞

ρ̄
+ v2ρ̄

2T∞
MT∞

ρ̄

"2

σ(x)2 dx

/1/2

≤ Cεe
−νεv

2∥σ∥L2(T)

for some constant Cε, νε > 0 depending on ε, and therefore

(

T×R

*1
1 − v2∂2

x

2−1
σ2
+!3

2
MT∞

ρ̄
− v2ρ̄

2T∞
MT∞

ρ̄

"
σ1(x)dx dv

≤ Cε∥σ1∥L2(T)

(

R

!(

T

*1
1 − v2∂2

x

2−1
σ2
+2 dx

"1/2

e−νεv
2

dv

≤ Cε∥σ1∥L2(T)

(

R

!(

T
σ 2

2 dx

"1/2

e−νεv
2

dv

≤ Cε∥σ1∥L2(T)∥σ2∥L2(T)
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where we have used that ∥ϕv∥L1(T) = 1. We conclude that

D1 ≤ αCε∥σ1∥L2(T)∥σ2∥L2(T).

Let us now study the second term D2. We Fourier transform it in x:

(

T×R

*1
1 − v2∂2

x

2−1
σ2
+
G(v)σ1(x)dx dv =

,

k∈Z

(

R

σ̂2(k)

[1+ (2π)2v2k2]G(v)σ̂1(k)dv.

The perturbation σ has zero mass, hence σ̂ (0)= 0 and

----

(

T×R

*1
1 − v2∂2

x

2−1
σ2
+
G(v)σ1(x)dx dv

----≤
,

k∈Z, k≠0

(

R

σ̂2(k)

[1+ (2π)2v2k2]G(v)σ̂1(k)dv

≤
!(

R

G(v)

1+ (2π)2v2
dv

" ,

k∈Z, k≠0

σ̂1(k)σ̂2(k)

≤ (1 − δG)∥σ1∥L2(T)∥σ2∥L2(T)

with δG ∈ (0,1), where we have used that

!(

R

G(v)

1+ (2π)2v2
dv

"
<

!(

R
G(v)dv

"
= 1.

Therefore the operator DΨα[ρ̄] is bounded from L2(T) → L2(T) with the operator norm
bounded by

33--DΨα[ρ̄]
33--= sup

∥σ1∥
L2(T)

≤1, ∥σ2∥
L2(T)

≤1

5
σ2,DΨα[ρ̄] · σ1

6
≤ αCε + (1 − α)(1 − δG).

For α small enough we deduce ∥|DΨα[ρ]∥|< (1 − δε) with δε ∈ (0,1). Finally, since the set
Cε is convex, the mean value theorem gives, for ρ1, ρ2 ∈ Cε:

33Ψα(ρ1) − Ψα(ρ2)
33

L2(T)
=
3333

( 1

0
DΨα

1
(1 − t)ρ1 + tρ2

2
· (ρ2 − ρ1)dt

3333
L2(T)

≤ (1 − δε)∥ρ1 − ρ2∥L2(T)

which shows the contraction property for the nonlinear map. !

4.3 Proof of the Main Theorem 1

We now prove Theorem 1. By Lemma 7 and Lemma 9, there is a ε > 0, depending only on
T1 and T2 such that every steady state of (1.1) with α < 1/2 belongs to the set Cε , defined in
Lemma 10. Then by Lemma 10, there is an α0 with 0 < α0 ≤ 1/2 such that Ψα is a strictly
contractive mapping on this convex set Cε , and hence there is a unique fixed point in Cε .
Since there is always one spatially uniform steady state, it is the unique steady state.
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5 Perturbative Stability of the Spatially Uniform NESS

5.1 Strategy

In this section we investigate the perturbative stability of the spatially homogeneous NESS

f∞,α := αMT∞ + (1 − α)G(v), G(v) := MT1 +MT2

2
, T∞ :=

T1 + T2

2
. (5.1)

When the reservoirs have different temperatures and are coupled to the system, that is
for α ∈ (0,1), there is transfer of heat through collisions from the hot reservoir to the cold
reservoir, and there is no detailed balance; i.e., time reversal invariance is broken in the
steady state. This is reflected in the fact that the linearized operator is a non-self-adjoint
operator on Hα = L2(f −1

∞,α) for α ∈ (0,1), as we shall see.
Nonetheless, we shall prove that the linearized collision operator still satisfies a micro-

scopic coercivity inequality (see (5.9)), expressing the dissipative nature of the linearized
evolution on the orthogonal complement of the null space of the generator. This fact is
striking since we do not derive it, through linearization, from a nonlinear entropy principle,
which is the usual source of such inequalities. In our non-equilibrium setting, there is no
analog of the H -Theorem, and therefore we must prove it by direct analysis of linearized
collision operator.

Once the microscopic coercivity is proven, we can prove that our system is hypocoercive
by a variety of methods, and we briefly describe two of these.

5.2 Linearization Around a Spatially Homogeneous NESS

Consider densities f that are close to f∞,α with fluctuations denoted
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

h(x, v) := f (x, v) − f∞,α(v)

ρ(x) = 1+ σ(x) with σ(x) :=
(

R
h(x, v)dv,

P (x) = T∞ + τ(x) with τ(x) :=
(

R
v2h(x, v)dv.

(5.2)

The fluctuations of the local density and local pressure have zero mean:
(

T
σ(x)dx = 0 and

(

T
τ(x)dx = 0. (5.3)

Consider the weighted L2 Hilbert space of real valued functions defined by the norm

∥h∥2
Hα
=
(

T×R

--h(x, v)
--2 1

f∞,α(v)
dx dv. (5.4)

We expand Mf − Mf∞,α to first order in terms of h, σ , τ :

Mf (x, v) − Mf∞,α (v)= (1+ σ)3/2(x)√
2π(T∞ + τ(x))

e
− v2(1+σ(x))

2(T∞+τ (x)) − 1√
2πT∞

e− v2
2T∞

≈
!

3
2

− v2

2T∞

"
MT∞(v)σ (x)+

!
− 1

2T∞
+ v2

2T 2
∞

"
MT∞(v)τ (x)
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=MT∞(v)σ (x)+ 1
2

!
v2

T∞
− 1
"

MT∞(v)

!
1

T∞
τ(x) − σ(x)

"
. (5.5)

The fluctuation h= f − f∞,α satisfies the equation

∂th+ v∂xh= α(Mf − Mf∞,α )+ (1 − α)σG − h. (5.6)

To first order we obtain the linearized equation

∂th+ Sh= Lαh (5.7)

with the free streaming operator S := v∂x and the linearized collision operator

Lαh(x, v) := σ(x)f∞,α(x, v)+ α

2

!
τ(x)

T∞
− σ(x)

"!
v2

T∞
− 1
"

MT∞(v) − h(x, v). (5.8)

Note that both Lα and Hα depend on α and that Lα is bounded on Hα for all α ∈ [0,1]:
observe that f∞,α ≥ αMT∞ and therefore

∥Lαh∥2
Hα

" ∥σ∥2
L2(T)

+ α

3333
τ

T∞
− σ

3333
2

L2(T)

!(

R

!
v2

T∞
− 1
"2

MT∞(v)2

f∞,α

dv

"

" ∥σ∥2
L2(T)

+
3333

τ

T∞
− σ

3333
2

L2(T)

!(

R

!
v2

T∞
− 1
"2

MT∞(v)dv

"

" ∥σ∥2
L2(T)

+ 1
T∞

∥τ∥2
L2(T)

" max
0

1; 1
T∞

4
∥h∥2

Hα
.

5.3 Microscopic Coercivity

We shall now prove that the null space of L is the space of functions σ(x)f∞,α(v) for
σ ∈ L2(T) and prove a spectral gap on the orthogonal of this null space.

Lemma 11 Let α ∈ [0,1] and Lα defined as in (5.8). Then for all h ∈ Hα ,

⟨h,Lαh⟩H ≤ −1 − α

2

(

T×R

----h(x, v) − f∞,α(v)

(

R
h(x,w)dw

----
2 1
f∞,α(v)

dx dv. (5.9)

Remark 5.1 If we had taken Hα to consist if complex valued functions, we would need a
real part on the left side of the inequality since Lα is not self-adjoint. Note that for α ∈ [0,1),
the constant λα = 1−α

2 is strictly positive but λα → 0 as α → 1. This reflects the fact, see
the proof below, that the dissipativity in the energy mode is lost because there is energy
conservation in this limit. In fact in this limit case the microscopic coercivity nevertheless
holds once accounting for the larger null space of L1. We are not concerned in this case
for which the NESS is already known, and we refer to [1] for a study of the microscopic
coercivity and hypocoercivity for the equation of this limit case; This could also be deduced
from the abstract results in [12].

Proof Let us define the following orthonormal family in L2(f −1
∞,αdv):

H0(v) := f∞,α, H1(v) := 1√
T∞

vf∞,α, H2(v) := cα

!
v2

T∞
− 1
"

f∞,α, (5.10)
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where cα > 0 is the normalizing constant so that ∥H2∥Hα = 1 (one can check that c−2
α =

3(α+ (1 −α)(2 − T1T2
T 2∞

))− 1). We also define the corresponding orthogonal projections Π0,

Π1, Π2 in L2(f −1
∞,αdv) (note that they all depend on α):

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Π0(h)(v) :=
!(

R
h(w)dw

"
H0(v),

Π1(h)(v) :=
!(

R
h(w)

w√
T∞

dw

"
H1(v),

Π2(h)(v) :=
!(

R
h(w)cα

!
w2

T∞
− 1
"

dw

"
H2(v)=

!
τ

T∞
− σ

"
cαH2(v).

(5.11)

Finally we denote Π⊥ the orthogonal projection on {H0,H2}⊥ (note that this projection
includes Π1 in its range).

The linearized collision operator Lα can be written using this notation a

Lαh=Π0(h)+ α

2c2
α

Π2(h)
MT∞

f∞,α

− h. (5.12)

We then compute the Dirichlet form

⟨Lαh,h⟩Hα =
33Π0(h)

332
Hα
+ α

2c2
α

7
Π2(h)

MT∞

f∞,α

,Π2(h)

8

Hα

+ α

2c2
α

7
Π2(h)

MT∞

f∞,α

,Π⊥(h)

8

Hα

− ∥h∥2
Hα

where we have used that H2MT∞f −1
∞,α is orthogonal to H0 and H1 in L2(f −1

∞,αdv).
Let us define

Uα(v) :=H2(v)
MT∞(v)

f∞,α(v)
. (5.13)

The projection of this function on H0 and H1 in L2(f −1
∞,αdv) is zero and its projection on H2

has coefficient

(

R
Uα(v)H2(v)

1
f∞,α(v)

dv = c2
α

(

R

!
v2

T∞
− 1
"2

MT∞(v)dv = 2c2
α.

Its norm satisfies

(

R
Uα(v)2 1

f∞,α(v)
dv = c2

α

(

R

!
v2

T∞
− 1
"2

MT∞(v)2

f∞,α(v)
dv

≤ c2
α

α

(

R

!
v2

T∞
− 1
"2

MT∞(v)dv ≤ 2c2
α

α

where we have used in the last line f∞,α ≥ αMT∞ . We then decompose orthogonally Uα =
Π2(Uα)+Π⊥(Uα) and deduce by Pythagoras’ theorem that

33Π⊥(Uα)
332

L2(f −1∞,α)
≤ 4c4

α

1 − α2

α2
. (5.14)
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We deduce on the one hand that

α

2c2
α

7
Π2(h)

MT∞

f∞,α

,Π2(h)

8

Hα

= α

2

(

T×R

!
τ

T∞
− σ

"2

Uα(v)H2(v)dx dv

= αc2
α

(

T

!
τ

T∞
− σ

"2

dx = α
33Π2(h)

332
Hα

.

We deduce on the other hand

α

2c2
α

7
Π2(h)

MT∞

f∞,α

,Π⊥(h)

8

Hα

= α

2cα

(

T×R

!
τ

T∞
− σ

"
Π⊥(Uα)Π

⊥(h)dx dv

≤ α

2cα

33Π⊥(Uα)
33

L2(f −1∞,α)

!(

T

!
τ

T∞
− σ

"2

dx

"1/233Π⊥(h)
33

Hα

≤ α

2c2
α

33Π⊥(Uα)
33

L2(f −1∞,α)

33Π2(h)
33

Hα

33Π⊥(h)
33

Hα

≤
*
1 − α2+1/233Π2(h)

33
Hα

33Π⊥(h)
33

Hα

where we have used (5.14) in the last line.
We therefore obtain

⟨Lαh,h⟩Hα ≤ (α − 1)
33Π2(h)

332
Hα
+
*
1 − α2+1/233Π2(h)

33
Hα

33Π⊥(h)
33

Hα
−
33Π⊥h

332
Hα

.

The quadratic form on the right hand side is negative for α ∈ [0,1) since then (1 − α2) <

4(1 − α)2. It degenerates at α = 1. The matrix of the quadratic form

(V1,V2) ∈ R2 -→ (α − 1)V1 − V2 +
*
1 − α2+1/2

V1V2

has characteristic polynomial

P (X)=X2 + (2 − α)X+ 1
4
(1 − α)(3 − α)

whose roots are α/2+ 1± 1/2. The greatest eigenvalue is therefore (α − 1)/2 which con-
cludes the proof. !

5.4 Hypocoercivity

With the microcoercivity at hand we can now readily prove hypocoercivity: That is, we
shall prove that for some constant C < ∞ and some λ > 0, every solution ht in Hα of our
linearized evolution equation satisfies

∥ht∥Hα ≤ Ce−λt∥h0∥Hα . (5.15)

With this in hand, it is a simple matter to prove the nonlinear stability. We discuss two
approaches to proving (5.15) for our model. One approach applies when the steady state
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is symmetric in v, as in our case. As noted in [1], whenever this is the case, there is a
natural orthonormal basis such that in this basis the streaming operator is represented by
uncoupled tridiagonal blocks, while the gain term in Lα is represented by uncoupled lower
triangular blocks. This structure permits the extraction of simple, explicit bounds on µ.
Another approach, developed in [9] is more abstract and not requiring symmetry of the
steady state, provides an efficient route to (5.15). In this section we prove:

Theorem 12 The decay estimate (5.15) is valid with the following explicit values of λ
and C:

(1) If c2
α

1−α
2
√

T∞
< 1

2 , we may take C = 4 and λ= 1−α
8 .

(2) c2
α

1−α
2
√

T∞
≥ 1

2 , we may take C = 4 and λ=
√

T∞
8 .

This is also true, with the same constants, if we replace Hα by H1
α , the latter Hilbert

space being defined in (1.5).

Remark 5.2 This result is stronger than Theorem 2 in that it provides explicit bounds on
the exponential rate of convergence. The reason for the

√
T∞ dependence of λ for small

T∞ is that hypocoercivity depends on the effects of the streaming operator v∂x to “mix” the
conserved mass mode into the dissipated modes, and the tridiagonal representation of the
streaming operator given in (5.17) shows that its mixing effects are proportional to

√
T∞.

When T∞ is large, there is rapid mixing, but this can do only so much good: The dissipativity
of the non-conserved modes as estimated in Lemma 11 is bounded independent of T∞, but
the mixing only shares this dissipativity around, it cannot improve the dissipativity no matter
how fast it runs.

It is also worth noting that we have simple bounds on cα : By the arithmetic-geometric
mean inequality, 0 ≤ T1T2

T 2 ≤ 1, and hence 2 ≤ c−2
α,T ≤ 3(2 − α) − 1.

The proof of Theorem 12 is quite short once one has computed matrix representations of
v∂x and Lα with respect to a basis that we now introduce: The basis is {eikxgm(v)}m≥0,k∈Z
where {gm(v)}m≥0 is the sequence one gets by applying this Gram-Schmidt orthonormal-
ization procedure to the sequence of functions vmf∞,α(v) for m ≥ 0. We write these in the
form gm(v)=Hm(v)f∞,α(v) where Hm is a polynomial of degree m. For h ∈ Hα , we write

h=
,

m≥0,k∈Z
ik9hm(k)eikxgm(v). (5.16)

The action of the free streaming operator S := v∂x then is

Sh(x, v)=
,

m≥0,k∈Z
ik9hm(k)eikxvgm(v).

It is a simple consequence of the fact that f∞,α is even in v that for each m ≥ 1, vgm is a
linear combination of gm−1 and gm+1; see [1]. Since the operation of multiplication by v is
self-adjoint, it follows that there exist numbers {an}m≥1 such that

vgm(v)=
#

T∞am+1gm+1(v)+
#

T∞amgm−1(v) with the convention g−1 := 0.

For m= 0, by (5.10), vg0(v)= vf∞,α =
√

T∞g1, and hence a1 = 1. Likewise,

vg1(v)= 1√
T∞

v2f∞,α =
#

T∞

!
v2

T∞
− 1
"

f∞,α +
#

T∞g0(v)
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and hence a2 = c−1
α . One can work out am for or higher values of m, but these are not needed

here.
Let9h(k) denote the element of ℓ2 whose mth component is9hm(k). Then the correspond-

ing vector of coefficients for Sh is given by ikS9h(k) where S is the tri-diagonal matrix

S=
#

T∞

⎛

⎜⎜⎜⎜⎜⎝

0 a1 0 0 · · ·
a1 0 a2 0 · · ·
0 a2 0 a3 · · ·
0 0 a3 0 · · ·
...

...
...

...
. . .

⎞

⎟⎟⎟⎟⎟⎠
=
#

T∞

⎛

⎜⎜⎜⎜⎜⎝

0 1 0 0 · · ·
1 0 c−1

α 0 · · ·
0 c−1

α 0 a3 · · ·
0 0 a3 0 · · ·
...

...
...

...
. . .

⎞

⎟⎟⎟⎟⎟⎠
. (5.17)

We now turn to the gain term in the linearized collision operator. The linearized collision
operator does not act on the spatial variable. By projecting (5.12) in our basis we get

@Lαh(k, v)=9h0(k)g0(v)+ α

2c2
α

9h2(k)H2(v)MT∞(v) −9h(k, v). (5.18)

For each k, the action of Lα in the {gn}m≥0 basis is given by

@Lαhm(k)=
*
Lα
9h(k)

+
m

where Lα + Id is the matrix whose first column is the unit vector (1,0,0, . . . ), whose third
column is the vector (0,0, α, b3, b4, . . . ), with all other columns being zero, and with

bm :=
α

2c2
α

9h2(k)

(
H2(v)Hm(v)MT∞(v)dv,

so that, in particular, b0 = b1 = 0 and b2 = α.
Therefore, we may rewrite our linearized equation as the decoupled system of equations

∂t
9h(k)= (Lα − ikS)9h(k), (5.19)

for each k ∈ Z. For k = 0 we simply have from (5.18) ∂t
9h(0)=−9h(0) since9h(0)0 =9h(0)2 =

0.
For each k ≠ 0, define Ck = −(Lα − ikS). We seek a positive definite matrix Pk such

that for some fixed λ > 0,

∀k ∈ Z, C∗
kPk + PkCk ≥ 2λPk. (5.20)

Then if we define the Lyapunov function e(h) by e(h) =Ak∈Z ωk⟨9h(k),Pk
9h(k)⟩ℓ2 , for

any sequence {ωk}k∈Z of positive numbers we have that for any solution of our linearized
equation with initial data h0 with e(h) < ∞,

d
dt

e
*
h(t)

+
≤ −2λe

*
h(t)

+
=⇒ e

*
h(t)

+
≤ e−2tλe(h0). (5.21)

We will construct the matrices Pk so that for some C > 0

∀k ∈ Z\{0}, KI ≤ Pk <
1
K

I. (5.22)

This implies that the function e(h) is equivalent to the norm on Hα if we take each ωk = 1.
We then conclude that (5.15) is valid with C = 1

K
and the value of λ appearing in (5.20). By
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making other choices for ωk , we obtain decay in various Sobolev type norms. For instance,
taking ωk = 1 + k2, we would obtain decay in the norm defined in (1.5). With the matrix
representation computed, and Lemma 11 at our disposal, we are ready to prove Theorem 12.

Proof of Theorem 12 Because Lα is lower triangular with positive diagonal entries that are
uniformly bounded away from zero except of course for the zero in the upper left, and
because S is tridiagonal, a simple prescription from [1] provides Pk . For a parameter c ∈
(0,1) to be chosen later, define Pk(a) by entering

!
1 −ic/k

ic/k 1

"
(5.23)

as its upper-left 2×2 block, with all other entries being those of the identity. The eigenvalues
of Pk(a) are 1, 1+ c/k and 1 − c/k, and hence (5.22) is satisfied with K = 1 − c.

Then simple computations show that

C∗
kPk(a)+ Pk(a)Ck =

*
2I − L − LT

+
+R

where R is the matrix whose upper 3 × 3 block is
⎛

⎝
2c

√
T∞ −ic/k c

√
T∞c−1

α

ic/k 0 0
c
√

T∞c−1
α 0 0

⎞

⎠ (5.24)

and whose remaining entries are all zero. Hence for any (real) h= (h0, h1, h2 . . . ) ∈ ℓ2,

⟨h,Rh⟩ℓ2 = 2c
#

T∞h2
0 + 2c

#
T∞c−1

α h0h2 ≥ c
#

T∞
*
h2

0 − c−2
α h2

2

+
.

By Lemma (11),

5
h,
*
2I − L − LT

+
h
6
ℓ2

≥ (1 − α)

∞,

m=1

h2
m.

Combining these estimates with I ≥ (1 − c)Pk , (5.20) then holds with

2λ=
#

T∞ min
0
c,

1 − α√
T∞

− cc−2
α

4
(1 − c).

We now choose c so that c=min{ 1
2 , c2

α
1−α

2
√

T∞
}. If c2

α
1−α

2
√

T∞
< 1

2 , then λ ≥ 1−α
8 . If c2

α
1−α

2
√

T∞
≥ 1

2 ,

then λ ≥
√

T∞
8 . !

We now explain another route to (5.15) which is relies on general abstract results obtained
in [9].

Theorem 13 (Abstract result of hypocoercivity from [9]) Consider a Hilbert space H and
two closed unbounded operators S and L such that:

(H1) Microscopic coercivity: There exists an orthogonal projection Π0 such that LΠ0 =
Π0L= 0 and there is λm > 0 such that

∀h ∈ Domain(L), −⟨Lh,h⟩ ≥ λm

33(I − Π0)h
332

.
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(H2) Macroscopic coercivity: The operator S satisfies S∗ = −S (skew symmetry) and there
exists λM > 0 such that

∥SΠ0h∥2 ≥ λM ∥Π0h∥2 for all h ∈ H such that Π0(h) ∈ Domain(S).

(H3) Consistency: Π0SΠ0 = 0.
(H4) Auxiliary operator: Define A := (1 + (SΠ0)

∗(SΠ0))
−1(SΠ0)

∗ and assume that
AS(1 − Π0) and AL are bounded with a constant CM > 0 such that

∀h ∈ H,
33AS(1 − Π0)h

33+ ∥ALh∥ ≤ CM

33(1 − Π0)h
33.

Then there exist positive constants λ > 0 and C > 0, which are explicitly computable in
terms of λm, λM , and CM , such that

∀h ∈ H, ∀ t ≥ 0,
33et(L−S)h

33≤ Ce−λt ∥h∥.

We give a short proof of here for the convenience of the reader.

Proof of Theorem 13 Define the modified norm

H[h] := 1
2

∥h∥2 + ε ⟨Ah,h⟩

where ε > 0 will be chosen small enough below. Given ht := et(L−S)h, we compute

d
dt

H[ht ] = ⟨Lht , ht ⟩ − ε⟨ASΠ0ht , ht ⟩ − ε
5
AS(1 − Π0)ht , ht

6

+ ε⟨SAht , ht ⟩ + ε⟨ALht , ht ⟩
=: − D[ht ].

We have used here that L∗A= 0 which follows from A=Π0A and Π0L= 0 in (H1). By
(H1), (H2), and by ASΠ0 = (1+ (SΠ0)

∗(SΠ0))
−1(SΠ0)

∗(SΠ0), the sum of the first two
terms in D[ht ] is coercive:

−⟨Lht , ht ⟩ + ε⟨ASΠ0ht , ht ⟩ ≥ min
0
λm,

ελM

1+ λM

4
∥ht∥2.

Let us prove that the operators A and SA are bounded:

∀h ∈ H, ∥Ah∥ ≤ 1
2

33(1 − Π0)h
33 and ∥SAh∥ ≤

33(1 − Π0)h
33. (5.25)

The equation Ah= g =Π0g (remember that A=Π0A) is equivalent to

(SΠ0)
∗h= g + (SΠ0)

∗(SΠ0)g.

Taking the scalar product of the above equality with g and using (H3), we get

∥g∥2 + ∥SΠ0g∥2 = ⟨h,SΠ0g⟩ =
5
(1 − Π0)h,SΠ0g

6

≤
33(1 − Π0)h

33∥SΠ0g∥ ≤ 1
4

33(1 − Π0)h
332 + ∥SΠ0g∥2,

which completes the proof of (5.25).
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The first inequality in (5.25) implies that H[h] is equivalent to ∥h∥2:

1
2
(1 − ε)∥h∥2 ≤ H[h] ≤ 1

2
(1+ ε)∥h∥2. (5.26)

The second inequality in (5.25) and (H1)-(H2)-(H3)-(H4) imply

D[f ] ≥ λm

33(1 − Π0)ht

332 + ελM

1+ λM

∥Π0ht∥2 − ε(1+CM)
33(1 − Π0)ht

33∥ht∥

≥
.
λm − ε(1+CM)

1
2δ

/33(1 − Π0)ht

332 + ε

.
λM

1+ λM

− (1+CM)
δ

2

/
∥Π0ht∥2

for an arbitrary δ > 0. By choosing first δ and then ε small enough, a positive constant κ can
be found, such that D[ht ] ≥ κ∥ht∥2. Using (5.26), this implies

d
dt

H[ht ] ≤ − 2κ

1+ ε
H[ht ],

completing the proof with λ= κ/(1+ ε) and C =
√

1+ ε/
√

1 − ε. !

Second proof of Theorem 2 We consider α ∈ [0,1) (for α = 1 the result is already
known from [1]). We apply the previous Theorem 13 with H being the subspace of
Hα = L2(f −1

∞,αdxdv) consisting of functions that satisfy the zero global mass condition)
T×R h(x, v)dx dv = 0. We take S = v∂x and L = Lα , the linearized operator defined

in (5.12), and Π0(h)= (
)

R hdv)f∞,α defined in (5.11). Then (H1) is proved in Lemma 11
and (H2) follows from

(

T×R
(v∂xσf∞,α)

2 dx dv

f∞,α

= T∞∥∂xσ∥2
L2(T)

≥ T∞∥σ∥L2(T)

where we have used the Poincaré inequality in the unit torus, and the zero global mass
condition. (H3) follows from

)
R vf∞,α(v)dv = 0. Finally, to prove (H4), we first figure out

some explicit formula for A:
⎧
⎪⎪⎨

⎪⎪⎩

Ah=−
1*

1 − T∞∂2
x

+−1
∂xj
2
f∞,α, j (x) :=

(

R
vh(x, v)dv

ASh=−
1*

1 − T∞∂2
x

+−1
∂2

x τ
2
f∞,α, τ (x) :=

(

R
v2h(x, v)dv.

Since (1 − T∞∂2
x )−1∂x and (1 − T∞∂2

x )−1∂2
x are bounded operators on L2(T), we deduce

that A and AS are bounded, and (H4) follows since Lα is bounded and LαΠ0 = 0. This
concludes the proof of hypocoercivity for our linearized operator Lα − S .

5.5 Nonlinear Stability

We close this section by proving nonlinear stability. Let α ∈ [0,1) and consider a probability
density fin ∈ Hα and define hin := fin − f∞,α ∈ Hα . This fluctuation has zero global mass
by definition. We define the solution through

ht = et(Lα−S)hin +
( t

0
e(t−s)(Lα−S)R[hs]ds
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with the nonlinear remainder term defined by

R[h] :=Mf − Mf∞,α −
.
MT∞σ + 1

2

!
v2

T∞
− 1
"

MT∞(v)

!
1

T∞
τ − σ

"/

with σ and τ defined in terms of h as before. Taylor expansions and straightforward calcu-
lations, using the multiplicative property of the H 1(T) Sobolev norm, show that

33R[h]
33

H1
α
" ∥σ∥2

H 1(T)
+ ∥τ∥2

H 1(T)
" ∥h∥2

H1
α
.

(For more detail in a closely related argument, see [1].) We deduce the a priori estimate

∥ht∥H1
α
≤ Ce−λt∥hin∥H1

α
+C ′

( t

0
e−λ(t−s)∥hs∥2

H1
α

ds

for some constants C,C ′, λ > 0, and one can use the values of C and λ provided by Theo-
rem 12. By a standard argument, this shows global existence and exponential decay at rate
λ when ∥hin∥H1

α
is small enough. !
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