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Abstract—In conventional ESPRIT, a single translational in-
variance in a sensor array is used to obtain high-resolution
direction-of-arrival (DOA) estimation. However, when the invari-
ance is greater than the classical sensor spacing )\/2, spatial
frequency ambiguity may occur. In this paper, we propose to use
multiple setwise coprime invariances to resolve this ambiguity.
While special cases of this were known in the literature, our
algorithm is more general in that we consider any number of
invariances, and that it can perfectly recover any number of
DOAs (limited only in terms of number of sensors) if infinite
snapshots are available. We also demonstrate through simulation
that our algorithm works well in a practical setting where only
finite snapshots are available.'

Index Terms—Linear sensor arrays, ESPRIT, multiple invari-
ance, coprime invariance, pairing problem.

I. INTRODUCTION

High-resolution direction-of-arrival (DOA) estimation is an
important topic in many sensor systems such as radar and
sonar [1]. There are various DOA estimators in the literature,
including MUSIC [2] and ESPRIT [3]. By requiring that
the sensor array possesses a translational invariance between
subarrays, ESPRIT obtains high-resolution DOA estimation at
a low cost in computation because ESPRIT does not require
searching over the parameter space [3]. ESPRIT also has
the advantage that array calibration is not required [3], and
continues to be of current research interest [4], [5].

When the translational invariance is greater than the clas-
sical sensor spacing A/2, where A is the wavelength of the
incoming monochromatic source signals, spatial frequency
ambiguity may occur [6]. This poses a limitation to the
application of ESPRIT. However, there is an incentive to use
a large invariance because this can yield a higher spatial res-
olution and a lower estimation error variance [6]—[8]. Several
previous works [6]—[8] tackle this problem by using multiple
invariances. In [7], it is shown that a sensor array with two
invariances M;A/2 and My\/2 can resolve the ambiguity
for a single source if M; and My are coprime integers. In
[8], two invariances \/2 and Ms\/2, where My > 1, are
used. The half-wavelength invariance yields unambiguous but
high-variance DOA estimates, which are used to disambiguate
the low-variance but ambiguous estimates from the larger
invariance. Note that the half-wavelength invariance itself
already offers unambiguous estimates, so the purpose of using
the second invariance in [8] is to lower the error variance only.

A nontrivial pairing problem arises for such multiple invari-
ance scheme when there are multiple sources [6], [8]. From
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each invariance that is greater than A\/2, ESPRIT yields a
set of ambiguous estimates, or equivalently a set of residues
in modular arithmetic language, for the sources. However,
the correspondence between the elements in the set and the
sources is unknown at this point (see Sec. III below for clearer
explanation). Hence, we have to pair the elements in the set
obtained from one invariance with those obtained from another
invariance so that the estimates that correspond to the same
source are correctly grouped together. It is claimed in [7]
that this pairing problem can be solved for two sources if
three pairwise coprime invariances are used, but only up to
two sources are considered in [7]. In [8], another method
for solving the pairing problem for any number of sources is
proposed when the two particular invariances A\/2 and M>\/2
with My > 1 are used.

In this paper, we generalize the idea of using multiple
coprime invariances in [7] to resolve the spatial frequency
ambiguity. We consider a linear array with sensors located
at nA/2, where n belongs to an integer set S. Thus, the
array is fully defined by this set of integers S. The array
S is said to have an invariance MA/2 for some positive
integer M if and only if there exist two subarrays S1,S2 C S
such that S, = S&; + M, and is said to have invariances
MiM/2,...,MnA/2 if and only if there exist Sg1,Sk2 C S
such that Sgo = Sg1 + My for k=1,...,N.

To avoid the limitations on the number of sources and
requirement of pairwise coprimality in [7], we solve the
pairing problem by extending the method in [8] to the most
general case. In particular, we show that if infinite snapshots
are available, the DOA of each source can be perfectly
recovered for up to D sources given that (a) a set of NV
invariances My \/2,. .., MxA/2 that are setwise coprime, i.e.,
(My,...,My) = 1, are available to use, and (b) all subarrays
contain at least D sensors. In the above, (My,...,My)
denotes the GCD of My,..., My. Except for these condi-
tions, D, N, and M}, are arbitrary positive integers. Setwise
coprimality is a milder requirement than pairwise coprimality,
so our work broadens the applicability of ESPRIT. A practical
algorithm is also proposed for the finite-snapshot regime.

This paper is organized as follows. The signal model and
ESPRIT are reviewed in Sec. II. Then, our algorithm for
ESPRIT with multiple coprime invariances is introduced in
Sec. III. The algorithm for resolving ambiguity for a single
source is also presented. Multiple sources are considered in
Sec. IV, and the algorithm for solving the pairing problem is
described therein. In Sec. V, we show through simulation that
our algorithm works well in a practical setting with noise.
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II. REVIEW OF ESPRIT WITH ONE INVARIANCE

Consider a linear array S. Assume D sources with distinct
DOAs 64,...,0p € (—7/2,7/2) impinge on the array, with
6 measured from the normal to the line of array. Then the
received signal vector x is modeled as

Xx=As+w, (D

where A = [a(w)a(ws) - --a(wp)] with the steering vector
a(w) being a column vector containing entries e/“™ for n € S
with w = 7sin6, s contains source amplitudes s;, and w
contains additive noise terms. Assume the noise w is white
with variance o2 and uncorrelated with the source signals s.
Then, the covariance of x is

R., = E[xx] = AR, A" + o1, )

where Rss = E[ss!] is of rank D. In practice, we obtain
an estimate of the data covariance matrix R, using a finite
number K of snapshots,

N 1 K
Roo = 2 ;x(k:)xH(k)- 3)

The problem is to estimate the DOAs 6; given the data
covariance estimate R,.

The essence of ESPRIT lies in using a translational in-
variance buried in the geometry of an array. Suppose there
exist two subarrays S1,S2 C S such that S; = &1 + M,
and that each subarray contains at least D sensors [3]. Let J;
denote the selection matrix such that J;a(w) contains entries
ed“n for n € S;, i = 1,2. For example, if S = {0,1,2,3},
S = {0,1,2}, and S; = {1,2,3}, then J; = [I3 O] and
Jy = [0 I5]. Since S; = &1 + M, it can be shown that

JoA =J,AP, “)

where & = diag{e/M“1 ... /M@ Tt is assumed in the
literature that J; A has full column rank, i = 1, 2.

Let R,, = EAEY be the eigenvalue decomposition of
R.., where the eigenvalues in A are in descending order.
Partition the columns of E so that E = [E,|E,], where
E, contains the first D columns of E, and E,, contains the
remaining columns. We call R{E;} the signal subspace and
R{E,} the noise subspace, where R{B} denotes the column
space (range) of the matrix B. From (2) we can derive that
R{E,;} = R{A}. So there exists a unique invertible D x D
matrix T such that

E, = AT. (5)
Using this and (4), we have
JoE, = JoAT = J,APT = J,E, T '®T. (6)

In other words, J1E; and JoE; share the same column space.
Hence, there exists a unique invertible matrix ¥ such that

J.E, = J,E, V. )

Since T~'®T is the eigenvalue decomposition of ¥, we can
obtain Mw; mod 27 from the phase of the i-th eigenvalue of
W and thus obtain

27

= W d —. 8
r wmoM ()

Since w; = wsind; € (—m, ), we can obtain the DOAs 6;
without ambiguity only if M = 1. Otherwise, w; is determined
only modulo 27 /M.

In practice, we can only compute the estimated signal
subspace E; from the data covariance estimate Rg.. Then,
R{JL1E;} # R{J:E;} with probability one. Instead of
solving a set of exact equations J QES =J 1:@5\11, we identify
W such that these equations are satisfied approximately based
on the total least-squares (TLS) criterion [3]. It can be shown
[3], [9] that by computing the eigenvalue decomposition

[J1E|J.E, )" [1,E,|T.E,] = Q2Q” ©)
and partitioning Q into D x D submatrices
Qi1 Qu2
= 10
Q |:Q21 Qaz]’ (19)

we can obtain the TLS solution ¥ = —Q;2Q5; .

III. ESPRIT WITH MULTIPLE COPRIME INVARIANCES

As shown in (8), if the array has a single invariance M\/2,
there is spatial frequency ambiguity unless M = 1. In this
paper, we will prove:

Theorem 1: If (a) the array has a set of N setwise coprime
invariances M1A\/2,..., MyA/2, ie., (My,...,My) =1 for
some N, and (b) each subarray contains at least D sensors,
then the ambiguity can be resolved for D sources.

In the above, D, N, and M), are arbitrary positive integers
except for the conditions mentioned in the theorem.

A nontrivial pairing problem arises if there are multiple
sources. The ESPRIT algorithm based on invariance M

produces a set of residues {r%M’“), o ,TE:,M’“)}, where
2
TZ(Mk) = w; mod il (11)
k

fori=1,...,D,and k =1,..., N. The residues are derived
from the eigenvalues of W in (7), so the correspondence
between the elements in this set and the sources is unknown
at this point. In particular, if we order the residues rEM’“) in
increasing order and order w; in increasing order, it is not in
general true that the nth element in the first list came from
the nth element in the second list. Hence, we have to pair the
elements in the set obtained from one invariance with those
obtained from another invariance so that the elements corre-
sponding to the same source are correctly grouped together.

We focus on a single DOA in this section and then deal
with multiple sources and the pairing problem in Sec. IV.
In essence, our constructive proof of Theorem 1 (hence an
algorithm) for multiple sources and the pairing problem is
composed of three steps:

1) For each invariance, obtain a set of residues by ESPRIT

as presented in Sec. II.
2) Solve the pairing problem as described in Sec. IV.
3) Determine each DOA by the method in Sec. III-B.
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A. Proof of Uniqueness for a Single DOA

We first consider a single source with DOA w. Applying
the ESPRIT algorithm for each invariance M}, we obtain

27
(Mg) — d ==
r w mo i,
for k=1,...,N. We show that w is uniquely determined by
the N residues (M1) . r(Mn),
Theorem 2: A single DOA w € (—m,7) is uniquely
determined by the residues

(12)

(My) _ 2i
r = w mod M,
k=1,...,N if the positive integers M, ..
coprime, i.e., (My,...,My) = 1.
Proof: Suppose for the sake of a contradiction that there
exist integers Iy, 1), € [0, M) — 1] with [, # 1}, k=1,...,N
such that

13)

., M are setwise

2ml 2wl 2ml
(My) ¢ 27 (M) 22 (M) 4 2Ny
r + : T + ; T + . (14)
and
2rl) 2rl! 2rl
(My) p 2001 _ (M) . 2072 (MN) L 200N (5
r + ) r + , r + . (15)

Subtracting (15) from (14) and dividing the result by 27, we
obtain

lo =1y

L =1 _ I — Iy

M, M, T My

Since |l —1},| < My, for each k, we can obtain the irreducible
fraction

(16)

h—=1p L=l Iy —ly
M, M, My
such that (g,h) = 1 and g > 1. Thus, My = g(lx — 1},)/h
for k = 1,..., N, which implies that ¢ > 1 is a common
divisor of My, ..., M. This contradicts to (M, ..., My) =
1, completing the proof. ]

B. Method for Determining a Single DOA

In Sec. III-A, we proved that a single DOA w is uniquely
determined by the residue set {r(™v) . . +(MN)Y In this
subsection, we offer a method to recover w from the residue
set. We first consider the case of two coprime invariances
M, and M5 and then extend the method to more than two
invariances.

Suppose we have

h_ (17)
g

2l _ ) | 212
M, M

where (M) and r(M2) are known, while the integers I, €
[0, M — 1], k = 1,2, and thus w are to be determined.
A naive way is to do an exhaustive search of all possible
combinations of [; and ls, but the complexity is quite large,
O(M;Ms). Moreover, this naive way does not work if we
only have estimates of #(M1) and (M) Instead of doing this,
we write from (18)

d é (T(Ml) i r(]\/IZ))MlMQ
2m

w=r®) 4 (18)

=M — LM,y (19)

Since (My, M3) = 1, we can use the extended Euclidean
algorithm to find integers s and ¢ such that sM; + tMy =1,
or dsMy + dtMs = d. Then, we can show that the solution is

l1 = —dt mod Mi,ls = ds mod My, (20)

and thus
w =M (p(M2) _p(MOYEAL mod 27 (21)
= (M) (T(Ml) — T(M"‘))le mod 2. (22)

Both (21) and (22) yield the same solution of w, so we can
use either of them. Besides, in practice, when we only have
the estimates of 7(*1) and r(2) these can still be applied to
get an estimate of w.

Now suppose for some N > 2 we have

o) 27 o) | 2T

w=r A Mx

(23)
where (M) r(MN) are known, while the integers [}, €
[0, My — 1], k=1,..., N, and thus w are to be determined.
Here we only have setwise coprimality (My,..., My) = 1.
Suppose (M;, Ms) = Py and My, = P1Qy, for k = 1, 2. Using
this and (23), we obtain

Piw=PrM) 4 LWh = pr(M2) 4
Ql 2

Il oy

Since (Q1,Q@2) = 1, we can use an expression similar to (21)
or (22) to obtain Pjw mod 27. Thus, we can obtain

w = 7‘(1\41;]\42) + 27Tp1 R

P, (25)

where r(M1:M2) s known, while the integer p; € [0, P, — 1]
is to be determined. Combining (25) and
— (Ms3) %
w=r + M,
from (23), we can then similarly obtain P,w mod 27, where
Py, = (P, M3) = (M, M, M3). Continuing this process,
we can finally obtain Py_jw mod 27w, where Py_1 =
(Pn_2,My) = (My,...,My) = 1. That is, the unambigu-
ous w is obtained.

In our proposed method above, we need to compute ei-
ther (21) or (22) for N — 1 times, so its complexity is
O(N'), much lower than O(II}_, M},) of the exhaustive search.
Moreover, the integers s and ¢ from the extended Euclidean

algorithm can be precomputed because they do not depend on
T(Ml), . ,T(MN).

(26)

IV. PAIRING PROBLEM FOR MULTIPLE SOURCES

In this section, we propose an algorithm to solve the pairing
problem described in the beginning of Sec. III. The ESPRIT
algorithm based on each invariance M} produces a set of
residues {rgM"‘), . ,TEDMk)} as defined in (11). We have to
pair the elements in the set obtained from one invariance with
those obtained from another invariance so that the elements
corresponding to the same source are correctly grouped to-
gether. Note that there are (D!)V~! possible ways of pairing
for D sources and NN invariances.
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Although not all ways of pairing can result in feasible
solutions, there are indeed scenarios where multiple ways of
pairing are all feasible, i.e., ambiguity occurs [7]. In [8], it is
proposed that the pairing problem for two invariances M;\/2
and My\/2 with M; = 1, M5 > 1 can be solved for any
number of sources by using the matrix T in (5) in the ESPRIT
algorithm. We extend the method in [8] to solve the pairing
problem for the most general case, i.e., any number D of
sources and any number N of setwise coprime invariances
MiM/2,...,MNyA/2 with (My,...,My) = 1.

A. Solution to the Pairing Problem

As shown in Sec. II, for each invariance M, the set
of residues {rng), . ,rgw’“)} are obtained through the
eigenvalues of the matrix W(Mr) that satisfies JéM’“)ES =
J gM’“)Es\II(Mk). An important observation is that according
to (6), (M) can always be decomposed into W(Mr) —
T '®MIT for k=1,..., N, where T is the unique matrix
satisfying (5). If each W(Mx) has distinct eigenvalues, then its
eigenvalue decomposition W(Mr) = [T(Mr)]=1 (M) (M)
is unique up to row permutations of T(*+), Thus, by matching
the rows of T(Mx) for all k, we can pair the eigenvalues
contained in ®(M+) for different k, and thus pair the elements
in the set of residues {r%M’“) . ,rng)} from one invariance
with another.

In general, @) may have some eigenvalues with mul-
tiplicity greater than one. Suppose there are Ry distinct
eigenvalues in ®(M*) grouped as

M) — diag {)\gM"‘), o AR MM

P

n(II\/Ik) n;lwk)
...,Agf“,...,ng’c)}, 27)
(M)
nR,
and
TN = [T T 28)

where rows of T,(flw *) contain the (left) eigenvectors corre-
sponding to the eigenvalue )\%M ) When each ®(M&) has
all distinct eigenvalues, each T(M+) is equal to TM1) af-
ter some row permutations. When some of the eigenvalues
have multiplicities, the corresponding eigenvectors can be
any set of vectors that form a basis of the eigenspace.
Therefore, for each m,k, there must exist invertible ma-

trices Ug,L]\/[‘“'),ngvh)7 ... ,Vg\fl) and row selection matrices

Jgﬁﬂk), e ,JE%E such that
M M1) (M
Jgn,lk)vg 1)T§ 1)
UG TME = : 19
M, My M,
T h Vi T
where m = 1,..., R;. Let S,(,i”“ denote the eigenspace
corresponding to )\S,iw 2 Eq. (29) implies that
Hrows (J%’;)) = dim (Sf,ffw N S,gMﬂ) . (30)

which equals the number of times for which we should pair
)\%M ®) and )\;Ml). We show how to obtain this number in the
following theorem.

Theorem 3: For each k, m,n, define

dgr%k) = rank ((T(Mk)[T(Ml)]l)I(Mk) I’(Ml)) , B

(My) _

where Iy, { M) gy nl(M’“)} is the in-

dex set corresponding to the eigenvalue )\%u’“), and Bz s

denotes the submatrix of the matrix B corresponding to the
rows and columns specified by the index sets Z and J,
respectively. Then, we have

dM) = dim (S;Mw N SgMﬂ) : (32)
Proof: Multiplying (29) by [T*1)]~1, we obtain
U
_Jsff)vgzvjl)Tng)
= : [Ty (33)
) v
IOy (M) 0
- . (34
(My) 7 (M1)
O I K Vi

Thus, using (30), (31), (34), and the fact that UL and
VSLMI) are invertible, we can derive

dMx) = rank ((Tgyk)[T(Ml)]l)'I(Ml))

— rank ((U%Mk)ka)[T(Ml)]l) I’(Ml)> (36)

(35)

0
= rank Jg,lj\/,[,’i)V%Ml) (37
0
— #rows (J%>) (38)
= dim (S 1 SM), (39)

where B. 7 denotes the submatrix of the matrix B correspond-
ing to the columns specified by the index set 7. [ ]
According to Theorem 3, if the exact signal subspace E,
(obtained from infinite snapshots) is available, then by comput-
ing and grouping the exact eigenvalues and eigenvectors as in
(27) and (28) and computing d%’“) as defined in (31), we solve
the pairing problem by pairing AN and A for dAk)
times, form=1,...,Rg,n=1,...,Ryand k =2,..., N.

B. Practical Algorithm in the Finite-Snapshot Regime

In practice, we only have the estimated Es (obtained from fi-
nite snapshots) and thus estimated eigenvalues in (27). Hence,
the eigenvalues obtained are all distinct with probability one.
However, when two eigenvalues are close to each other, the
corresponding eigenvectors are likely to influence each other
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Fig. 1. Average MSE of DOAs.

due to effects of finite snapshots and noise. Thus, it is still
beneficial to regard these eigenvalues as equal and group them
together. Notice that the eigenvalues in (27) ideally have unit
magnitudes in the infinite-snapshot case. So in our algorithm,
we propose to regard two eigenvalues as equal if their phases
are within a threshold n. Then we replace the eigenvalues
in the same group by the average of them. How to set the
threshold 7 is a design problem and should depend on the
error variances of the eigenvalues. One may refer to [6] for
the analysis of the error variances of the eigenvalues, but
the expressions are very complex, and the marginal effect of
incorporating them into our algorithm is not very significant.

After grouping the eigenvalues based on the threshold 7,
instead of computing rank as in (31), we compute the singular
values of the R; matrices

My, M, Mip)1—1
Sgnnk) = (T( k)[T( 1)] )I%\dk)’z(lml) ’ (40)
n =1,..., Ry. Then, among all these singular values, we take

the nS,i”’C) largest ones. We pair )\%M’“) and )\%Ml) for cf%")
times if there are d%k) singular values of SEnAfL’“) in the set of

the n%v i) singular values mentioned above. Repeat the method

form=1,...,Ryand k=2,... N.
Note that according to (27) and (32), we can derive

R] Rm
iyt =3 A M) = Y A @
n=1 m=1

By design, our algorithm always yield CZ%U satisfying

Ry
nhe) =N " dMe), 42)
n=1
as in (41). However, JS,%’“) may not satisfy
R
M =y Ao, 43)
m=1

as in (41). Hence, for each Monte Carlo trial, if (43) is not
satisfied for some n, we declare failure. According to our
simulations, with a suitable threshold 7, the failure rate can be
essentially zero, which shows that our algorithm is practical.

V. SIMULATIONS

A numerical example is given in Fig. 1 to show the
effectiveness of our algorithm in a practical setting. Only
N = 2 coprime invariances, M7 = 2 and My = 3, are

used to estimate D = 5 sources. The sensor array is given by
S = §1US,US3, where &1 = {0, 10,...,70,79,88, ..., 133},
Sy = 51+ 2, and S5 = Sy + 3. (Sensor spacing is
measured in A/2.) Note that there are no pair of sensors
in S that are separated by A/2. Standard methods for DOA
estimation will therefore only yield ambiguous results, and
are not compared with our method in Fig. 1. The DOAs are
—45°,-30°, 0, 30°,45°, where the third DOA 6 is varied from
—29° to 29°. The sources are uncorrelated with equal power
J? = 1, and the noise power is 02 = 0.1. The number of
snapshots is K = 500. The average mean square error (MSE)
of the DOAs, defined as (372, Y2, (@;(1) — wi)?)/DL, is
computed using L = 500 Monte Carlo trials, where J;(1) is
the estimate of w; = 7 sin 6; obtained from the [-th trial. The
threshold for grouping the eigenvalues is 1 = 0.04. With this
threshold, the failure rates for (43) are all zero in this example.
Moreover, as shown in Fig. 1, over the whole range of DOAs
experimented, the average RMSEs are reasonably small. As
presented in Sec. III, in our algorithm any number of setwise
coprime invariances can be used to resolve D sources as long
as each subarray contains at least D sensors. In particular, 2
coprime invariances are sufficient. This example shows that
our algorithm does quite well for resolving 5 sources using
only 2 coprime invariances in a practical setting.

VI. CONCLUSION

A scheme for ESPRIT using multiple setwise coprime
invariances is proposed. While special cases of this were
known in the literature, our algorithm is more general in
that we consider any number of invariances, and that it can
perfectly recover any number of DOAs (limited only in terms
of number of sensors) if infinite snapshots are available. A
numerical example also shows that our algorithm works well
in a practical finite-snapshot regime. Future directions include
designing a systematic way to setting the threshold 7 for
grouping the eigenvalues.
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