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Abstract—In conventional ESPRIT, a single translational in-
variance in a sensor array is used to obtain high-resolution
direction-of-arrival (DOA) estimation. However, when the invari-
ance is greater than the classical sensor spacing λ/2, spatial
frequency ambiguity may occur. In this paper, we propose to use
multiple setwise coprime invariances to resolve this ambiguity.
While special cases of this were known in the literature, our
algorithm is more general in that we consider any number of
invariances, and that it can perfectly recover any number of
DOAs (limited only in terms of number of sensors) if infinite
snapshots are available. We also demonstrate through simulation
that our algorithm works well in a practical setting where only
finite snapshots are available.1

Index Terms—Linear sensor arrays, ESPRIT, multiple invari-
ance, coprime invariance, pairing problem.

I. INTRODUCTION

High-resolution direction-of-arrival (DOA) estimation is an
important topic in many sensor systems such as radar and
sonar [1]. There are various DOA estimators in the literature,
including MUSIC [2] and ESPRIT [3]. By requiring that
the sensor array possesses a translational invariance between
subarrays, ESPRIT obtains high-resolution DOA estimation at
a low cost in computation because ESPRIT does not require
searching over the parameter space [3]. ESPRIT also has
the advantage that array calibration is not required [3], and
continues to be of current research interest [4], [5].

When the translational invariance is greater than the clas-
sical sensor spacing λ/2, where λ is the wavelength of the
incoming monochromatic source signals, spatial frequency
ambiguity may occur [6]. This poses a limitation to the
application of ESPRIT. However, there is an incentive to use
a large invariance because this can yield a higher spatial res-
olution and a lower estimation error variance [6]–[8]. Several
previous works [6]–[8] tackle this problem by using multiple
invariances. In [7], it is shown that a sensor array with two
invariances M1λ/2 and M2λ/2 can resolve the ambiguity
for a single source if M1 and M2 are coprime integers. In
[8], two invariances λ/2 and M2λ/2, where M2 > 1, are
used. The half-wavelength invariance yields unambiguous but
high-variance DOA estimates, which are used to disambiguate
the low-variance but ambiguous estimates from the larger
invariance. Note that the half-wavelength invariance itself
already offers unambiguous estimates, so the purpose of using
the second invariance in [8] is to lower the error variance only.

A nontrivial pairing problem arises for such multiple invari-
ance scheme when there are multiple sources [6], [8]. From
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each invariance that is greater than λ/2, ESPRIT yields a
set of ambiguous estimates, or equivalently a set of residues
in modular arithmetic language, for the sources. However,
the correspondence between the elements in the set and the
sources is unknown at this point (see Sec. III below for clearer
explanation). Hence, we have to pair the elements in the set
obtained from one invariance with those obtained from another
invariance so that the estimates that correspond to the same
source are correctly grouped together. It is claimed in [7]
that this pairing problem can be solved for two sources if
three pairwise coprime invariances are used, but only up to
two sources are considered in [7]. In [8], another method
for solving the pairing problem for any number of sources is
proposed when the two particular invariances λ/2 and M2λ/2
with M2 > 1 are used.

In this paper, we generalize the idea of using multiple
coprime invariances in [7] to resolve the spatial frequency
ambiguity. We consider a linear array with sensors located
at nλ/2, where n belongs to an integer set S . Thus, the
array is fully defined by this set of integers S . The array
S is said to have an invariance Mλ/2 for some positive
integer M if and only if there exist two subarrays S1,S2 ⊂ S
such that S2 = S1 + M , and is said to have invariances
M1λ/2, . . . ,MNλ/2 if and only if there exist Sk1,Sk2 ⊂ S
such that Sk2 = Sk1 +Mk for k = 1, . . . , N .

To avoid the limitations on the number of sources and
requirement of pairwise coprimality in [7], we solve the
pairing problem by extending the method in [8] to the most
general case. In particular, we show that if infinite snapshots
are available, the DOA of each source can be perfectly
recovered for up to D sources given that (a) a set of N
invariances M1λ/2, . . . ,MNλ/2 that are setwise coprime, i.e.,
(M1, . . . ,MN ) = 1, are available to use, and (b) all subarrays
contain at least D sensors. In the above, (M1, . . . ,MN )
denotes the GCD of M1, . . . ,MN . Except for these condi-
tions, D, N , and Mk are arbitrary positive integers. Setwise
coprimality is a milder requirement than pairwise coprimality,
so our work broadens the applicability of ESPRIT. A practical
algorithm is also proposed for the finite-snapshot regime.

This paper is organized as follows. The signal model and
ESPRIT are reviewed in Sec. II. Then, our algorithm for
ESPRIT with multiple coprime invariances is introduced in
Sec. III. The algorithm for resolving ambiguity for a single
source is also presented. Multiple sources are considered in
Sec. IV, and the algorithm for solving the pairing problem is
described therein. In Sec. V, we show through simulation that
our algorithm works well in a practical setting with noise.
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II. REVIEW OF ESPRIT WITH ONE INVARIANCE

Consider a linear array S . Assume D sources with distinct
DOAs θ1, . . . , θD ∈ (−π/2, π/2) impinge on the array, with
θ measured from the normal to the line of array. Then the
received signal vector x is modeled as

x = As + w, (1)

where A = [a(ω1)a(ω2) · · · a(ωD)] with the steering vector
a(ω) being a column vector containing entries ejωn for n ∈ S
with ω = π sin θ, s contains source amplitudes si, and w
contains additive noise terms. Assume the noise w is white
with variance σ2 and uncorrelated with the source signals s.
Then, the covariance of x is

Rxx = E[xxH ] = ARssA
H + σ2I, (2)

where Rss = E[ssH ] is of rank D. In practice, we obtain
an estimate of the data covariance matrix Rxx using a finite
number K of snapshots,

R̂xx =
1

K

K∑
k=1

x(k)xH(k). (3)

The problem is to estimate the DOAs θi given the data
covariance estimate R̂xx.

The essence of ESPRIT lies in using a translational in-
variance buried in the geometry of an array. Suppose there
exist two subarrays S1,S2 ⊂ S such that S2 = S1 + M ,
and that each subarray contains at least D sensors [3]. Let Ji

denote the selection matrix such that Jia(ω) contains entries
ejωn for n ∈ Si, i = 1, 2. For example, if S = {0, 1, 2, 3},
S1 = {0, 1, 2}, and S2 = {1, 2, 3}, then J1 = [I3 0] and
J2 = [0 I3]. Since S2 = S1 +M , it can be shown that

J2A = J1AΦ, (4)

where Φ = diag{ejMω1 , . . . , ejMωD}. It is assumed in the
literature that JiA has full column rank, i = 1, 2.

Let Rxx = EΛEH be the eigenvalue decomposition of
Rxx, where the eigenvalues in Λ are in descending order.
Partition the columns of E so that E = [Es|En], where
Es contains the first D columns of E, and En contains the
remaining columns. We call R{Es} the signal subspace and
R{En} the noise subspace, where R{B} denotes the column
space (range) of the matrix B. From (2) we can derive that
R{Es} = R{A}. So there exists a unique invertible D ×D
matrix T such that

Es = AT. (5)

Using this and (4), we have

J2Es = J2AT = J1AΦT = J1EsT
−1ΦT. (6)

In other words, J1Es and J2Es share the same column space.
Hence, there exists a unique invertible matrix Ψ such that

J2Es = J1EsΨ. (7)

Since T−1ΦT is the eigenvalue decomposition of Ψ, we can
obtain Mωi mod 2π from the phase of the i-th eigenvalue of
Ψ and thus obtain

ri = ωi mod
2π

M
. (8)

Since ωi = π sin θi ∈ (−π, π), we can obtain the DOAs θi
without ambiguity only if M = 1. Otherwise, ωi is determined
only modulo 2π/M .

In practice, we can only compute the estimated signal
subspace Ês from the data covariance estimate R̂xx. Then,
R{J1Ês} 6= R{J2Ês} with probability one. Instead of
solving a set of exact equations J2Ês = J1ÊsΨ, we identify
Ψ such that these equations are satisfied approximately based
on the total least-squares (TLS) criterion [3]. It can be shown
[3], [9] that by computing the eigenvalue decomposition

[J1Ês|J2Ês]
H [J1Ês|J2Ês] = QΣQH (9)

and partitioning Q into D ×D submatrices

Q =

[
Q11 Q12

Q21 Q22

]
, (10)

we can obtain the TLS solution Ψ = −Q12Q
−1
22 .

III. ESPRIT WITH MULTIPLE COPRIME INVARIANCES

As shown in (8), if the array has a single invariance Mλ/2,
there is spatial frequency ambiguity unless M = 1. In this
paper, we will prove:

Theorem 1: If (a) the array has a set of N setwise coprime
invariances M1λ/2, . . . ,MNλ/2, i.e., (M1, . . . ,MN ) = 1 for
some N , and (b) each subarray contains at least D sensors,
then the ambiguity can be resolved for D sources.

In the above, D, N , and Mk are arbitrary positive integers
except for the conditions mentioned in the theorem.

A nontrivial pairing problem arises if there are multiple
sources. The ESPRIT algorithm based on invariance Mk

produces a set of residues {r(Mk)
1 , . . . , r

(Mk)
D }, where

r
(Mk)
i = ωi mod

2π

Mk
(11)

for i = 1, . . . , D, and k = 1, . . . , N . The residues are derived
from the eigenvalues of Ψ in (7), so the correspondence
between the elements in this set and the sources is unknown
at this point. In particular, if we order the residues r(Mk)

i in
increasing order and order ωi in increasing order, it is not in
general true that the nth element in the first list came from
the nth element in the second list. Hence, we have to pair the
elements in the set obtained from one invariance with those
obtained from another invariance so that the elements corre-
sponding to the same source are correctly grouped together.

We focus on a single DOA in this section and then deal
with multiple sources and the pairing problem in Sec. IV.
In essence, our constructive proof of Theorem 1 (hence an
algorithm) for multiple sources and the pairing problem is
composed of three steps:

1) For each invariance, obtain a set of residues by ESPRIT
as presented in Sec. II.

2) Solve the pairing problem as described in Sec. IV.
3) Determine each DOA by the method in Sec. III-B.
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A. Proof of Uniqueness for a Single DOA
We first consider a single source with DOA ω. Applying

the ESPRIT algorithm for each invariance Mk, we obtain

r(Mk) = ω mod
2π

Mk
(12)

for k = 1, . . . , N . We show that ω is uniquely determined by
the N residues r(M1), . . . , r(MN ).

Theorem 2: A single DOA ω ∈ (−π, π) is uniquely
determined by the residues

r(Mk) = ω mod
2π

Mk
, (13)

k = 1, . . . , N if the positive integers M1, . . . ,MN are setwise
coprime, i.e., (M1, . . . ,MN ) = 1.

Proof: Suppose for the sake of a contradiction that there
exist integers lk, l′k ∈ [0,Mk − 1] with lk 6= l′k, k = 1, . . . , N
such that

r(M1) +
2πl1
M1

= r(M2) +
2πl2
M2

= · · · = r(MN ) +
2πlN
MN

(14)

and

r(M1) +
2πl′1
M1

= r(M2) +
2πl′2
M2

= · · · = r(MN ) +
2πl′N
MN

. (15)

Subtracting (15) from (14) and dividing the result by 2π, we
obtain

l1 − l′1
M1

=
l2 − l′2
M2

= · · · = lN − l′N
MN

. (16)

Since |lk− l′k| < Mk for each k, we can obtain the irreducible
fraction

h

g
=
l1 − l′1
M1

=
l2 − l′2
M2

= · · · = lN − l′N
MN

(17)

such that (g, h) = 1 and g > 1. Thus, Mk = g(lk − l′k)/h
for k = 1, . . . , N , which implies that g > 1 is a common
divisor of M1, . . . ,MN . This contradicts to (M1, . . . ,MN ) =
1, completing the proof.

B. Method for Determining a Single DOA
In Sec. III-A, we proved that a single DOA ω is uniquely

determined by the residue set {r(M1), . . . , r(MN )}. In this
subsection, we offer a method to recover ω from the residue
set. We first consider the case of two coprime invariances
M1 and M2 and then extend the method to more than two
invariances.

Suppose we have

ω = r(M1) +
2πl1
M1

= r(M2) +
2πl2
M2

, (18)

where r(M1) and r(M2) are known, while the integers lk ∈
[0,Mk − 1], k = 1, 2, and thus ω are to be determined.
A naive way is to do an exhaustive search of all possible
combinations of l1 and l2, but the complexity is quite large,
O(M1M2). Moreover, this naive way does not work if we
only have estimates of r(M1) and r(M2). Instead of doing this,
we write from (18)

d ,
(r(M1) − r(M2))M1M2

2π
= l2M1 − l1M2. (19)

Since (M1,M2) = 1, we can use the extended Euclidean
algorithm to find integers s and t such that sM1 + tM2 = 1,
or dsM1 + dtM2 = d. Then, we can show that the solution is

l1 = −dt mod M1, l2 = ds mod M2, (20)

and thus

ω = r(M1) + (r(M2) − r(M1))tM2 mod 2π (21)
= r(M2) + (r(M1) − r(M2))sM1 mod 2π. (22)

Both (21) and (22) yield the same solution of ω, so we can
use either of them. Besides, in practice, when we only have
the estimates of r(M1) and r(M2), these can still be applied to
get an estimate of ω.

Now suppose for some N > 2 we have

ω = r(M1) +
2πl1
M1

= · · · = r(MN ) +
2πlN
MN

, (23)

where r(M1), . . . , r(MN ) are known, while the integers lk ∈
[0,Mk − 1], k = 1, . . . , N , and thus ω are to be determined.
Here we only have setwise coprimality (M1, . . . ,MN ) = 1.
Suppose (M1,M2) = P1 and Mk = P1Qk for k = 1, 2. Using
this and (23), we obtain

P1ω = P1r
(M1) +

2πl1
Q1

= P1r
(M2) +

2πl2
Q2

. (24)

Since (Q1, Q2) = 1, we can use an expression similar to (21)
or (22) to obtain P1ω mod 2π. Thus, we can obtain

ω = r(M1,M2) +
2πp1
P1

, (25)

where r(M1,M2) is known, while the integer p1 ∈ [0, P1 − 1]
is to be determined. Combining (25) and

ω = r(M3) +
2πl3
M3

(26)

from (23), we can then similarly obtain P2ω mod 2π, where
P2 = (P1,M3) = (M1,M2,M3). Continuing this process,
we can finally obtain PN−1ω mod 2π, where PN−1 =
(PN−2,MN ) = (M1, . . . ,MN ) = 1. That is, the unambigu-
ous ω is obtained.

In our proposed method above, we need to compute ei-
ther (21) or (22) for N − 1 times, so its complexity is
O(N), much lower than O(ΠN

k=1Mk) of the exhaustive search.
Moreover, the integers s and t from the extended Euclidean
algorithm can be precomputed because they do not depend on
r(M1), . . . , r(MN ).

IV. PAIRING PROBLEM FOR MULTIPLE SOURCES

In this section, we propose an algorithm to solve the pairing
problem described in the beginning of Sec. III. The ESPRIT
algorithm based on each invariance Mk produces a set of
residues {r(Mk)

1 , . . . , r
(Mk)
D } as defined in (11). We have to

pair the elements in the set obtained from one invariance with
those obtained from another invariance so that the elements
corresponding to the same source are correctly grouped to-
gether. Note that there are (D!)N−1 possible ways of pairing
for D sources and N invariances.
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Although not all ways of pairing can result in feasible
solutions, there are indeed scenarios where multiple ways of
pairing are all feasible, i.e., ambiguity occurs [7]. In [8], it is
proposed that the pairing problem for two invariances M1λ/2
and M2λ/2 with M1 = 1,M2 > 1 can be solved for any
number of sources by using the matrix T in (5) in the ESPRIT
algorithm. We extend the method in [8] to solve the pairing
problem for the most general case, i.e., any number D of
sources and any number N of setwise coprime invariances
M1λ/2, . . . ,MNλ/2 with (M1, . . . ,MN ) = 1.

A. Solution to the Pairing Problem
As shown in Sec. II, for each invariance Mk, the set

of residues {r(Mk)
1 , . . . , r

(Mk)
D } are obtained through the

eigenvalues of the matrix Ψ(Mk) that satisfies J
(Mk)
2 Es =

J
(Mk)
1 EsΨ

(Mk). An important observation is that according
to (6), Ψ(Mk) can always be decomposed into Ψ(Mk) =
T−1Φ(Mk)T for k = 1, . . . , N , where T is the unique matrix
satisfying (5). If each Ψ(Mk) has distinct eigenvalues, then its
eigenvalue decomposition Ψ(Mk) = [T(Mk)]−1Φ(Mk)T(Mk)

is unique up to row permutations of T(Mk). Thus, by matching
the rows of T(Mk) for all k, we can pair the eigenvalues
contained in Φ(Mk) for different k, and thus pair the elements
in the set of residues {r(Mk)

1 , . . . , r
(Mk)
D } from one invariance

with another.
In general, Φ(Mk) may have some eigenvalues with mul-

tiplicity greater than one. Suppose there are Rk distinct
eigenvalues in Φ(Mk), grouped as

Φ(Mk) = diag
{
λ
(Mk)
1 , . . . , λ

(Mk)
1︸ ︷︷ ︸

n
(Mk)

1

, λ
(Mk)
2 , . . . , λ

(Mk)
2︸ ︷︷ ︸

n
(Mk)

2

,

. . . , λ
(Mk)
Rk

, . . . , λ
(Mk)
Rk︸ ︷︷ ︸

n
(Mk)

Rk

}
, (27)

and

[T(Mk)]T =
[
[T

(Mk)
1 ]T · · · [T(Mk)

Rk
]T
]
, (28)

where rows of T
(Mk)
m contain the (left) eigenvectors corre-

sponding to the eigenvalue λ
(Mk)
m . When each Φ(Mk) has

all distinct eigenvalues, each T(Mk) is equal to T(M1) af-
ter some row permutations. When some of the eigenvalues
have multiplicities, the corresponding eigenvectors can be
any set of vectors that form a basis of the eigenspace.
Therefore, for each m, k, there must exist invertible ma-
trices U

(Mk)
m ,V

(M1)
1 , . . . ,V

(M1)
R1

and row selection matrices
J
(Mk)
m,1 , . . . ,J

(Mk)
m,R1

such that

U(Mk)
m T(Mk)

m =


J
(Mk)
m,1 V

(M1)
1 T

(M1)
1

...
J
(Mk)
m,R1

V
(M1)
R1

T
(M1)
R1

 , (29)

where m = 1, . . . , Rk. Let S(Mk)
m denote the eigenspace

corresponding to λ(Mk)
m . Eq. (29) implies that

#rows
(
J(Mk)
m,n

)
= dim

(
S(Mk)
m ∩ S(M1)

n

)
, (30)

which equals the number of times for which we should pair
λ
(Mk)
m and λ(M1)

n . We show how to obtain this number in the
following theorem.

Theorem 3: For each k,m, n, define

d(Mk)
mn = rank

((
T(Mk)[T(M1)]−1

)
I(Mk)
m ,I(M1)

n

)
, (31)

where I(Mk)
m =

{∑m−1
l=1 n

(Mk)
l + 1,

∑m
l=1 n

(Mk)
l

}
is the in-

dex set corresponding to the eigenvalue λ
(Mk)
m , and BI,J

denotes the submatrix of the matrix B corresponding to the
rows and columns specified by the index sets I and J ,
respectively. Then, we have

d(Mk)
mn = dim

(
S(Mk)
m ∩ S(M1)

n

)
. (32)

Proof: Multiplying (29) by [T(M1)]−1, we obtain

U(Mk)
m T(Mk)

m [T(M1)]−1

=


J
(Mk)
m,1 V

(M1)
1 T

(M1)
1

...
J
(Mk)
m,R1

V
(M1)
R1

T
(M1)
R1

 [T(M1)]−1 (33)

=


J
(Mk)
m,1 V

(M1)
1 O

. . .
O J

(Mk)
m,R1

V
(M1)
R1

 . (34)

Thus, using (30), (31), (34), and the fact that U
(Mk)
m and

V
(M1)
n are invertible, we can derive

d(Mk)
mn = rank

((
T(Mk)

m [T(M1)]−1
)
:,I(M1)

n

)
(35)

= rank

((
U(Mk)

m T(Mk)
m [T(M1)]−1

)
:,I(M1)

n

)
(36)

= rank

 O

J
(Mk)
m,n V

(M1)
n

O

 (37)

= #rows
(
J(Mk)
m,n

)
(38)

= dim
(
S(Mk)
m ∩ S(M1)

n

)
, (39)

where B:,J denotes the submatrix of the matrix B correspond-
ing to the columns specified by the index set J .

According to Theorem 3, if the exact signal subspace Es

(obtained from infinite snapshots) is available, then by comput-
ing and grouping the exact eigenvalues and eigenvectors as in
(27) and (28) and computing d(Mk)

mn as defined in (31), we solve
the pairing problem by pairing λ

(Mk)
m and λ

(M1)
n for d(Mk)

mn

times, for m = 1, . . . , Rk, n = 1, . . . , R1 and k = 2, . . . , N .

B. Practical Algorithm in the Finite-Snapshot Regime

In practice, we only have the estimated Ês (obtained from fi-
nite snapshots) and thus estimated eigenvalues in (27). Hence,
the eigenvalues obtained are all distinct with probability one.
However, when two eigenvalues are close to each other, the
corresponding eigenvectors are likely to influence each other
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Fig. 1. Average MSE of DOAs.

due to effects of finite snapshots and noise. Thus, it is still
beneficial to regard these eigenvalues as equal and group them
together. Notice that the eigenvalues in (27) ideally have unit
magnitudes in the infinite-snapshot case. So in our algorithm,
we propose to regard two eigenvalues as equal if their phases
are within a threshold η. Then we replace the eigenvalues
in the same group by the average of them. How to set the
threshold η is a design problem and should depend on the
error variances of the eigenvalues. One may refer to [6] for
the analysis of the error variances of the eigenvalues, but
the expressions are very complex, and the marginal effect of
incorporating them into our algorithm is not very significant.

After grouping the eigenvalues based on the threshold η,
instead of computing rank as in (31), we compute the singular
values of the R1 matrices

S(Mk)
mn =

(
T(Mk)[T(M1)]−1

)
I(Mk)
m ,I(M1)

n

, (40)

n = 1, . . . , R1. Then, among all these singular values, we take
the n(Mk)

m largest ones. We pair λ(Mk)
m and λ

(M1)
n for d̂(Mk)

mn

times if there are d̂(Mk)
mn singular values of S

(Mk)
mn in the set of

the n(Mk)
m singular values mentioned above. Repeat the method

for m = 1, . . . , Rk and k = 2, . . . , N .
Note that according to (27) and (32), we can derive

n(Mk)
m =

R1∑
n=1

d(Mk)
mn , n(M1)

n =

Rm∑
m=1

d(Mk)
mn . (41)

By design, our algorithm always yield d̂(Mk)
mn satisfying

n(Mk)
m =

R1∑
n=1

d̂(Mk)
mn , (42)

as in (41). However, d̂(Mk)
mn may not satisfy

n(M1)
n =

Rm∑
m=1

d̂(Mk)
mn , (43)

as in (41). Hence, for each Monte Carlo trial, if (43) is not
satisfied for some n, we declare failure. According to our
simulations, with a suitable threshold η, the failure rate can be
essentially zero, which shows that our algorithm is practical.

V. SIMULATIONS

A numerical example is given in Fig. 1 to show the
effectiveness of our algorithm in a practical setting. Only
N = 2 coprime invariances, M1 = 2 and M2 = 3, are

used to estimate D = 5 sources. The sensor array is given by
S = S1∪S2∪S3, where S1 = {0, 10, . . . , 70, 79, 88, . . . , 133},
S2 = S1 + 2, and S3 = S2 + 3. (Sensor spacing is
measured in λ/2.) Note that there are no pair of sensors
in S that are separated by λ/2. Standard methods for DOA
estimation will therefore only yield ambiguous results, and
are not compared with our method in Fig. 1. The DOAs are
−45◦,−30◦, θ, 30◦, 45◦, where the third DOA θ is varied from
−29◦ to 29◦. The sources are uncorrelated with equal power
σ2
i = 1, and the noise power is σ2 = 0.1. The number of

snapshots is K = 500. The average mean square error (MSE)
of the DOAs, defined as (

∑D
i=1

∑L
l=1(ω̂i(l) − ωi)

2)/DL, is
computed using L = 500 Monte Carlo trials, where ω̂i(l) is
the estimate of ωi = π sin θi obtained from the l-th trial. The
threshold for grouping the eigenvalues is η = 0.04. With this
threshold, the failure rates for (43) are all zero in this example.
Moreover, as shown in Fig. 1, over the whole range of DOAs
experimented, the average RMSEs are reasonably small. As
presented in Sec. III, in our algorithm any number of setwise
coprime invariances can be used to resolve D sources as long
as each subarray contains at least D sensors. In particular, 2
coprime invariances are sufficient. This example shows that
our algorithm does quite well for resolving 5 sources using
only 2 coprime invariances in a practical setting.

VI. CONCLUSION

A scheme for ESPRIT using multiple setwise coprime
invariances is proposed. While special cases of this were
known in the literature, our algorithm is more general in
that we consider any number of invariances, and that it can
perfectly recover any number of DOAs (limited only in terms
of number of sensors) if infinite snapshots are available. A
numerical example also shows that our algorithm works well
in a practical finite-snapshot regime. Future directions include
designing a systematic way to setting the threshold η for
grouping the eigenvalues.
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