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ABSTRACT

Signal strength maps are of great importance to cellular providers
for network planning and operation, however they are expensive
to obtain and possibly limited or inaccurate in some locations. In
this paper, we develop a prediction framework based on random
forests to improve signal strength maps from limited measurements.
First, we propose a random forests (RFs)-based predictor, with
a rich set of features including location as well as time, cell ID,
device hardware and other features. We show that our RFs-based
predictor can significantly improve the tradeoff between prediction
error and number of measurements needed compared to state-of-
the-art data-driven predictors, i.e., requiring 80% less measurements
for the same prediction accuracy, or reduces the relative error by
17% for the same number of measurements. Second, we leverage
two types of real-world LTE RSRP datasets to evaluate into the
performance of different prediction methods: (i) a small but dense
Campus dataset, collected on a university campus and (ii) several
large but sparser NYC and LA datasets, provided by a mobile
data analytics company.
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1 INTRODUCTION

Cellular providers rely on key performance indicators (a.k.a. KPIs)
to understand the performance and coverage of their network, as
well as that of their competitors. KPIs usually include wireless
channel measurements (the most important of which for LTE is
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arguably the reference signal received power, a.k.a. RSRP) as well as
other performance metrics [17] (e.g., throughput, delay, frequency
band, location, time) associated with the measurement. Signal maps
consist of a large number of measurements of KPIs and are of
crucial importance to cellular operators, for network management,
maintenance, upgrades, operations and troubleshooting [19].

Although cellular providers can collect measurements on the
network edge themselves (e.g., via wardriving [31]), they increas-
ingly choose to outsource the data collection to third parties for a
variety of reasons, including: cost, liability related to privacy con-
cerns of collecting data on end-user devices, and lack of access to
competitor networks. Mobile analytics companies (e.g., OpenSignal
[22], RootMetrics [28], Tutela [30] etc. ) crowdsource measurements
directly from end-user devices, via standalone mobile apps [22],
or measurement SDKs [30] integrated into partnering apps. Thus
large scale signal maps collection is achieved, but the measure-
ments can be sparse in space (depending on end-user location)
and time (measurements are collected infrequently so as to not
drain user resources, such as battery or cellular data). Either way,
signal strength maps are expensive for both carriers (paying mil-
lions dollars to third parties) and crowdsourcing companies (most
of which use cloud services, thus collecting more measurements
increases their operational cost). Moreover, trends, such as (i) 5G
dense deployment of small cells and (ii) smart city and IoT de-
ployments, will only increase the need for accurate performance
measurements [4, 9, 14, 16], while data may be sparse, unavailable,
or expensive to obtain.

Our goal in this paper is to improve the tradeoff between cost
(number of measurements) and quality (i.e., coverage and accuracy)
of signal maps via signal strength prediction from limited measure-
ments. In general, there are two approaches in RSRP prediction:
propagation models and data-driven approaches. Our approach
falls in the second category and we employ a powerful machine
learning framework that naturally incorporates multiple features.
More specifically, we make the following contributions.

1. RFs RSRP prediction framework. We develop a powerful
machine learning framework based on random-forests (RFs), con-
sidering a rich set of features including, but not limited to, location,
time, cell ID, device hardware, distance from the tower, frequency
band, and outdoors/indoors location of the receiver, which all of
them affect the wireless properties. To the best of our knowledge,
this is the first time that location, time, device and network infor-
mation are considered jointly for the problem of signal strength
prediction. We assess the feature importance and we find cell ID,
location, time and device type to be the most important. More-
over, this is the first time that RFs have been applied to the signal
maps estimation problem. Prior work on data-driven prediction
for signal maps was primarily based on geospatial interpolation
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Figure 1: LTE RSRP Map Examples from our datasets. (a)-(b): Campus dataset. Color indicates RSRP value. (c)-(d): NYC dataset.
Data for a group of LTE cells in the Manhattan Midtown area. Different colors indicate different cell IDs.

techniques [8, 20, 24], which do not naturally extend beyond loca-
tion features. We show that our RFs-based predictors can signifi-
cantly improve the tradeoff between prediction error and number
of measurements needed, compared to state-of-the-art data-driven
predictors. They can achieve the lowest error of these baselines
with 80% less measurements; or they can reduce the RMSE (root
mean square error) by 17% for the same number of measurements.

2. Real-world datasets. Our study leverages two types of real-
world datasets: (i) a small but dense Campus dataset collected on
a university campus; and (ii) several large but sparser NYC and LA
datasets, provided by a mobile data analytics company. Examples
are depicted in Fig. 1 and information about the datasets is provided
in Table 2. We use these datasets to evaluate and contrast different
methods and gain insights into tuning our framework. For example,
cell ID is an important feature in areas with high cell density, which
is encountered in urban areas such as Manhattan Midtown; in con-
trast, cell ID should be used to train cell-specific RFs in suburban
areas. Furthermore, time features are important in cells with less
dispersed measurements, i.e., concentrated in fewer locations. To
the best of our knowledge, the NYC and LA datasets are the
largest used to date for RSRP (or other signal strength) prediction, in
terms of any metric (number of measurements, geographical scale,
number of cells etc. ). They contain 10.9 million LTE data points
in areas of 300km? and 1600km? for NYC and LA respectively, in-
stead of at most tens of km? and tens of thousands of measurements
in [13] or smaller scale in [8, 15, 20, 24].

The structure of the rest of the paper is as follows. Section 2
presents our random forests-based prediction approach as well as
baselines and prior work for comparisons. Section 3 presents the
available signal map datasets. Section 4 provides evaluation results.
Section 5 concludes the paper.

2 RSRP PREDICTION

2.1 Problem Statement

RSRP Definition. Although there are many KPIs related to re-
ceived signal strength (RSS), including RSRP, RSRQ (reference sig-
nal received quality), RSSI (RSS Indicator), in this paper we focus
specifically on reference signal received power (RSRP), defined by
3GPP in [12]. This choice is both because RSRP is widely used
for various operations in LTE (e.g., cell selection, handover deci-
sions [10], network quality assessment efc. ) and as a case study
that can potentially be applied to prediction of other RSS metrics.
Typically, RSRP is reported in dBm by UEs (user equipment) as the
average power over several, narrow-band, control channels.
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LTE Cells vs. Tracking Areas. A serving LTE cell is uniquely
identified by the CGI (cell global identifier) which is the concatena-
tion of the following identifiers: the MCC (mobile country code),
MNC (mobile network code), TAC (tracking area code) and the cell
ID. We abbreviate and refer to CGI as cell ID or cID. LTE also defines
Tracking Areas (which we will refer to as LTE TA) by the concate-
nation of MCC, MNC and TAC, to describe a group of neighboring
cells, under common LTE management for a specific area.

The RSRP Prediction Problem. Our goal is to predict the
RSRP value at a given location, time, and potentially considering
additional contextual information (Section 2.3), based on available
measurements either in the same cell ¢ID or in the same LTE TA.
Table 1 summarizes our prediction methods and related work.

2.2 Model-Based Prediction: LDPL

As a representative baseline from the family of model-based predic-
tors, we consider the Log Distance Path Loss (LDPL) propaga-
tion model [25], which is simple yet widely adopted in the literature
(e.g., [2], [8]). LDPL predicts the power (in dBm) at location Z; at

distance ||Ess - l; ||2 from the transmitting basestation (BS a.k.a. cell
tower), as a log-normal random variable (i.e., normal in dBm) [2]:

PE;)D (Z;) = Pét) — 10n;logy, (||ESS - Z;‘Hz/do) + w](t). (1)

IWe consider two cases regarding path loss exponent (PLE) n .

Homogeneous LDPL: Much of the literature assumes that the
PLE n; is the same across all locations. We can estimate it from
Eq. (1) from the training data points.

Heterogeneous LDPL: Recent work (e.g., [2, 8]) considers dif-
ferent PLE across locations. We considered several ways to par-
tition the area into regions with different PLEs, and we present
knn regression, where we estimate fz} from its k nearest neighbors,
weighted according to their Euclidean distance, which we refer to
as “LDPL-knn”.

2.3 Proposed Data-Driven Prediction: RFs

We apply Random Forests (RFs) regression. RFs are an ensemble of
multiple decision trees [5], which provides a good trade-off between

IPO(t) is the received power at reference distance d (typically 1m), calculated by the
free-space path loss (Friis) transmission equation for the corresponding downlink

frequency, gain and antenna directionality, and l;s the location of the transmitting
antenna. nj, i.e, PLE, has typical values between 2 and 6. The log-normal shadowing

is modeled by wjm ~ N(0, cr]?(t)) (in dB), with variance oj?(t) assumed independent
across different locations. The cell, cID, affects several parameters in Eq. (1), including

Py, wj, the locations of transmitting (Igs) and receiving (I;) antennas.



Table 1: Overview of RSRP Prediction Methodologies evaluated in this paper. Methods proposed in this paper are marked in bold. Methods in regular font are

prior art, evaluated as baselines for comparison. Methods in light gray font are reviewed but not implemented in this paper.

(1) Model Based
(Radio Frequency Propagation Model)

() LDPL Eq. (1)
(Log Distance Path Loss)

1-(b) LDPL — knn
(heterogeneous PLE)

1(c) WINNER I/ [6], COST 231 [27]
Ray Tracing [32], Hata Model [29] etc

Limitations: Requires environment’s info e.g
topology, street width, BSs height, 3D map

2-(b) OKD:OK Detrending

(2) Geospatial Interpolation[8] (hybrid of model and data)

2(a) OK: Ordinary Kriging
Data

2-(c) OKP: OK partitioning
(spatial heterogeneous)

3(a) RFsx. g [26] 3-(b) RFsx,y, ¢
Spatial Features: x = (I, 1Y) Spatiotemporal:
P Uk =0%,19,4d, b

Driven (3) Random Forests (RF's)

3(c) RF s, Full Feats: (and in some scenarios: cid)
x=(I*%,19,d, h,dev, ||lps — Ljll2, freqq;, out)

(4) Other Data-Driven

4(a) Bayesian Compressive Sensing [15
Limitation: no arbitrary features

4(b) Deep Neural Nets [11]

Limitation: Needs 3D Map/LiDAR Data

bias and variance by exploiting the idea of bagging [5]. An RSRP
value P can be modeled as follows given a set of features vector x.

Plx ~ N (RFsy(x), o2) 2)

where RFs, (x), RFss (x) are the mean and standard deviation re-
spectively of the RSRP predictor, 62 = RFs, (x) + O'Izst and GI%FS
is the MSE of the predictor. The prediction P= RFs;,(x) is the MLE
(maximum likelihood estimation) value minimizing the MSE.

For each measurement j in our data, we consider the following
full set of features, available via the Android API:

xfUll = (1%, 17, d, b, cID, dev, out, |Ilps — [jllz, freqar)

« Location [; = (lj’.‘, l].y). These are the spatial coordinates and
the only ones considered by previous work on data-driven RSS
prediction [8, 20] or in the context of localization [19, 26].

« Time features tj = (d, h), where d denotes the weekday and h
the hour of the day that the measurement was collected. Using hasa
feature implies stationarity in hour-timescales, which is reasonable
for signal strength statistics.

e The cell ID, cID. This is a natural feature since RSRP is defined
per serving cell, i.e., the CGI defined in Section 2.1.

¢ Device hardware type, dev. This refers to the device model (e.g.,
Galaxy?9 or iPhone X) and not to device identifiers. This feature cap-
tures (i) the different noise figures (NF), i.e., electronic interference,
and reception characteristics across different devices and (ii) the
RSRP calculation may differ across devices and manufacturers [12].

e The downlink carrier frequency, freqy;. Radio propagation
and signal attenuation heavily depend on frequency calculated by
EARFCN (E-UTRA Absolute Radio Frequency Channel Number).

e out € {0,1} is an approximate indicator of outdoors or indoors
location, inferred from Android’s GPS velocity sensor.

e Euclidean distance IITBS - fj||2, of the receiver at location l;
from the transmitting antenna BS (base station or cell tower).

Among the above features, the cell ID cID is particularly im-
portant, as it will be shown in Section 4.2.1. When there is a large
number of measurements with the same cID, it is advantageous to
train a separate RFs model per cID, using the remaining features:

510 = (1%, 1¢, d, b, dev, out, |llgs — [jllz, freqar)-
When there are a few measurements per cID, then we can treat
cID as one of the features in xjf““. We denote as RFsy, y, RFsy, y, 1,
RFs,; the RFs predictors with only spatial (I*, 1Y), spatial (I, 1Y)
and temporal (d, h), and all features, respectively. In Section 4, we
assess feature importance in different datasets.

Why RFs for Data-Driven Prediction? First, RFs can natu-
rally incorporate all aforementioned features, since geospatial inter-
polation [8, 24] does not naturally extend to arbitrary features. Sec-
ond, RFs, partition the feature space with axis-parallel splits [21].
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Figure 2: Example of decision boundaries chosen by RFsy,y for Campus
cell x306. We can see that RFs can naturally identify spatially correlated mea-
surements, i.e., regions with similar wireless propagation characteristics.
An example of decision boundaries produced by RFsy, y is depicted
in Fig. 2. One can see the splits according to the spatial coordinates
(lat, Ing) and the produced areas agree with our knowledge of the
placement and direction of antennas on campus. Automatically
identifying these regions with spatially (and temporal) correlated
RSRP comes for free to RFs and is particularly important in RSRP
prediction because wireless propagation has different properties
across neighborhoods [26]. In contrast, prior art (OKP, [8]) requires
additional preprocessing for addressing this spatial heterogeneity.

2.4 Baseline: Geospatial Interpolation

State-of-the-art approaches in data-driven RSS prediction [8, 13,
20, 24] have primarily relied on geospatial interpolation, which
however is inherently limited to only spatial features (I*,[Y). The
best representative of this family of predictors is ordinary krig-
ing (OK) [20] and its variants [8], which are used as baselines for
comparison in this paper.

Ordinary Kriging (OK): It predicts RSS at the testing location
i} = (l;.‘ , ljy) as a weighted average of the K nearest measurements
in the training set: P; = Zfi 1 wiP;. The weights w; are computed
by solving a system of linear equations that correlate the test with
the training data via the semivariogram function y(h) [8].

Ordinary Kriging Partitioning (OKP) [8]: Voronoi-based
partitioning is used to identify regions with the same PLE and
apply a distinct OK model in each region. It is comparable to the
heterogeneous LDPL, yet is impractical for city wide signal maps.

Ordinary Kriging Detrending (OKD) [8, 24]: OK assumes
spatial stationarity, which does not hold for RSRP. OKD incorpo-
rates a version of LDPL in the prediction in order to address this
issue [8]. This can be thought as a hybrid approach of geospatial
and LDPL and serves as our baseline for comparison in this paper.

3 DATA SETS

Table 2 summarizes the two datasets used in this paper. The first is
a campus dataset and the second consists of two city-wide datasets
from NYC and LA. Fig. 1 depicts some examples and Table 3 sum-
marizes representative LTA TAs examples used in our evaluation.



Table 2: Overview of Signal Maps Datasets used in this study.

Dataset [ Period [Areas [Type of Measurements [Characteristics Source ]
LTE KPIs: RSRP, [RSRQJ. No. Cells = 25, No. Meas & 180K
Campus 02/10/17 -| Univ. Campus Context: GPS Location, timestamp, dev, cid. Per Cell Density: 0.01 - 0.66 (Table 3) Ourselves [3]

06/18/17 | Area & 3km?

Features: x = (z;.f, 19.d. h, dev, out, ||l - 7,-||2)

Overall Density: 0.06

NYC Metropolitan
Area = 300km?
LA metropolitan

09/01/17-
11/30/17

NYC & LA LTE KPIs: RSRP, [RSRQ, CQI].

Context: GPS Location, timestamp, dev, cid. EARFCN.

Area & 1600k m? | Features:x = (lf 1. d. h, cid, dev, out, ||lys - levare‘Zdl) Density LA-all & 0.0042 N /m?

No. Meas NYC = 4.2M, No. Cells NYC = 88k

Density NYC-all & 0.014 N /m? Aﬁb’i .
No. Meas LA = 6.7M, No. Cells LA = 111K Y
Company

3.1 Campus dataset

Dataset Overview. We collected the first dataset on UC Irvine
campus. This Campus dataset is relatively small: 180,000 data
points, collected by seven different users, using 2 cellular providers.
In terms of geographical area, it covers approximately 3km?, as
the devices move between locations (e.g., housing, office etc. ) on
campus. Some examples are depicted in Fig. 1(a)-(b). Although small,
the cells in this dataset exhibit a range of characteristics (reported
in Table 4) regarding the (i) number of measurements, (ii) mean
and variance of RSRP and (iii) dispersion and density (e.g., multiple
measurements over time on the same or nearby locations).

Data Collection. We developed a user-space app [1, 3] that
uses the Android APIs to obtain radio layer and other information
needed for RSRP prediction. Although the design of the monitoring
system itself is challenging, we defer to [3] due to space limitations.
No personally identifiable information is collected.

3.2 NYC and LA datasets

Dataset Overview. The second type consists of much larger data-
sets: 10.9M measurements in total, covering approx. 300km? and
1600km? in the metropolitan areas of NYC and LA, respectively,
for a period of 3 months (Sep’17 - Nov’17). Key characteristics are
summarized in Table 2. An example of the NYC Midtown Manhat-
tan neighborhood is depicted in Fig. 1(c)-(d). While these are large
datasets, they are also relatively sparse in space and heterogeneous.
For example, the density is now approx. 300 measurements per cell
on average and up to the order of 20 thousands max. We only con-
sider cells with more than 100 measurements. There is also sparsity
in time: unlike the Campus dataset, there are no longer multiple
measurements at different times for the same location.

Data Collection. This dataset was collected by a major mobile
analytics crowdsourcing company and shared with us. They collect
measurements from a large user base infrequently so as to not
burden each end-users, which explains the smaller overall density
of the dataset, as shown in Table 2. Each location data point is
accompanied by rich network and contextual information, except
for device or other personal identifiers.

3.3 Common Description of Datasets

Data Format. For the purposes of RSRP prediction, we use the same
subset of information from all datasets, i.e., RSRP values and the
corresponding features defined in Section 2.1. We utilize GeoJSON
format to represent and process our data, which offers several
practical advantages.

Properties of Datasets. For each dataset, the following metrics
describe characteristics that affect RSRP prediction.

« Data Density: Number of measurements per unit area (N /m?).
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Table 3: NYC and LA datasets: LTE TAs Examples.

’ ‘ NYC (MNC-1) NYC (MNC-1) [LA (MNC—Z)‘
Manhattan Midtown | E. Brooklyn | Southern

No. Measurements ~ 63K =~ 104K ~ 20K

Area km 18km? (Fig. 1 (c-d)) | 448 km? | 220 km?

Data Density N/m2 =~ 0.035 =~ 0.002 ~ 0.0001

No. Cells [C] 429 721 353

Cell Density |C|/ km? || 238.3 16.1 16

« Cells Density: Number of unique cells (cids) per unit area, i.e.,
|C|/km?. The higher it is, the more cID helps as a feature.

« Dispersion: In order to capture how concentrated or dispersed
are the measurements in an area, we use the Spatial Distance Devi-
ation (SDD) metric [18], defined as the standard deviation of the
distance of measurement points from the center.

OpenCellID. Both the LDPL and in the RFs predictors need
the distance between the transmitting antenna and the receiver’s
location (where RSRP is measured or predicted), ||f]35 - l; [|2. To that
end, we lookup the location of the BS, 2535, using the public APIs of
a popular online crowdsourced database opencellid.org.

4 PERFORMANCE EVALUATION

4.1 Setup

4.1.1 RFs Setup. The most important hyper-parameters for RFs
are the number of decision trees, i.e., nirees, and the maximum
depth of each tree, i.e., maxgep .. We used a grid search over the
parameter values of the RFs estimator [23] in a small hold-out part
of the data to select the best values. For the Campus dataset, we
select ngrees = 20 and maxgep.p, = 20 via 5-Fold Cross-Validation
(CV); larger maxgep,p values could overfit RFs. For the NYC and
LA datasets, we select nyyees = 1000 and maXgeprh = 30; more
and deeper trees are needed for larger datasets. One important de-
sign choice is what granularity we choose to build our RFs models:
per cID or per LTE TA (defined in Section 2.1).

Training per cID: We can train a separate RFs model per cell
using all features except cID (xj_CID), since RSRP is measured per
serving cell, but requires many measurements per cell. This is the
case in Campus dataset but not in NYC and LA datasets.

eTraining per LTE TA: Another option is to train one RFs mo-
del per LTE TA and use cID as one of the features in Xjf“u. This
is particularly useful in the NYC dataset, where there are less
measurements per cell unit area, insufficient to train a model per
cID. In urban areas, there is very high cells density in a region and
data points from different cells in the same LTE TA can be useful.

4.1.2  Baselines’ Setup. For LDPL-knn: we select empirically k =
100 neighbors for the Campus dataset and k = 10% of the train-
ing data points in each cell for the NYC and LA datasets. For
Geospatial Predictors, the number of neighbors was empirically set
to k = 10; a larger k did not show significant improvement. An
exponential fitting function of the semivariogram function y(h)
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Figure 4: RMSE in NYC and LA datasets. This figure makes multiple com-
parisons: (1) urban vs suburban LTE TAs; (2) cID as feature vs. training a
different RFs model per cID; (3) providers MNC-1 vs. MNC-2.

was selected [8]; the maximum lag (h) was set to 200m, as in [8],
for the Campus and NYC environments, while it was set to 600m
for the LA suburban environment. The empirical semivariogram

y(h) was calculated per 10m [8].

4.1.3  Splitting Data into Training and Testing. We select randomly
70% of the data as the training set {X;rqin, Ptrain} and 30% of the
data as the testing set {X;ess, Prest} for the problem of predicting
missing RSRP values. The results are averaged over S = 5 indepen-
dent random splits. These default choices are used unless otherwise
stated. An exception is Fig. 5, where we vary the size of training set
and we show that our RFs-based predictors degrade slower than
baselines with decreasing training size.

4.1.4  Evaluation Metrics. We evaluate the performance of the pre-
dictors in terms of absolute error (RMSE) and Absolute Relative
Improvement (ARI) as well as feature importance in RFs.

Root Mean Square Error (RMSE): If P is an estimator for P, then

RMSE(P) = \/MSE(I?) = \/E((P - P)2), in dB. We report RMSE
for each predictor at different levels of granularity, namely: (i) per
cID (ii), per LTE TA (in NYC and LA), (iii) over all data (Campus).

Absolute Relative Improvement (ARI): This captures the improve-
ment of each predictor over the variance in the data: ARl = 1 —
(1/1C)) Xiec(MSE;/Var;), where |C| is the number of the different
cells in the dataset, and Var; is cell i’s variance.

Mean Decrease Impurity (MDI), a.k.a. Gini Importance: It captures
how often a feature is used to perform splits in RFs. It is defined as
the total decrease in node impurity, weighted by the probability of
reaching that node (approx. by the proportion of samples reaching
that node), averaged over all trees in the ensemble [23].

4.2 Results

4.2.1 Feature Importance.
a. Campus dataset: We train one RFs model per cID for the set

of features x = (l]’.c, l;./, d, h, ||st - l; |2, out, dev). Results w.r.t. MDI
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Table 4: Campus dataset: Comparing Predictors per cell

Cell Characteristics RMSE (dB)
N 2 || LDPL | LDPL RFs|RFs |RFs
cID N m? spp| E[P]| o bom | kN N |OK [OKD .y |xu.t|all

x312[10140| 0.015[941 |-120.6| 12.0|| 17.5| 1.63|1.70|1.37| 1.58| 0.93|0.92
x914 | 3215| 0.007[791 | -94.5| 96.3|| 13.3| 3.47|3.59|2.28| 3.43| 1.71| 1.67
x034 | 1564 | 0.010(441 |-101.2{337.5|| 19.5| 7.82|7.44|5.12| 7.56| 3.82|3.84
x901 (16051 | 0.162|355 |-107.9| 82.3 89| 4.60(4.72|3.04| 4.54| 1.73| 1.66
x204 55566 | 0.666|325 | -96.0| 23.9 6.9| 3.84/3.85(2.99| 3.83| 2.30]2.27
x922 | 3996 0.107|218 |-102.7| 29.5 5.6 3.1{3.16(2.01| 3.10| 1.92| 1.82
x902 (34193 | 0.187(481 |-111.5| 8.1|| 21.0| 2.60|2.47|1.64| 2.50| 1.37|1.37
x470 | 7699| 0.034[533 |-107.3| 16.9|| 24.8| 3.64|2.73|1.87| 2.78| 1.26| 1.26
x915| 4733| 0.042(376 |-110.6[203.9|| 14.3| 7.54|7.39|4.25| 7.31| 3.29|3.15
x808 [ 12153 0.035|666 |-105.1| 7.7 || 4.40| 2.41|2.42|1.60| 2.34| 1.75| 1.59
x460 | 4077| 0.040[361 | -88.0| 32.8|| 11.2| 2.35|2.28|1.56| 2.31| 1.84| 1.84
x306 | 4076| 0.011|701 | -99.2|133.3|| 18.3| 4.85|4.30|2.80| 3.94 3.1] 3.06
x355 (30084 | 0.116[573 | -94.3| 42.6 93| 2.42(231|1.85| 2.26| 1.79|1.79

are shown on Fig. 3. We observe that, in cells with high data density
and low dispersion, the most important are the time features (d,
h) w.r.t. to MDI. An example of such a cell is x204 (depicted in
Fig. 1(a)), which has SDD = 325, density=0.66 points/m?® and its
MDI is shown in Fig. 3(a). Feature importance for dev and out are
close to zero, which is expected because of the small number of
devices in the Campus dataset. For more dispersed and less dense
cells, such as cell x355 (SDD = 573,0.116N/m?, map in Fig. 1(b)),
the location features (l]?‘ , l]!./) have higher MDI; results are omitted.

b.NYC and LA datasets: In this case, freqy; is available and
the datasets contain thousands of cells. We start with a RFs model
per LTE TA. As a representative example, we report the feature
importance, in Fig. 3(b), for the LTE TA of a major mobile network
carrier (MNCarrier-1) located in NYC Midtown Manhattan and
already depicted in Fig. 1(c)-1(d). The most important features turn
out to be the spatial features (l]’F s ljy) as well as the cell ¢cID and dev.
This is because the data are sparser and the whole LTE TA is served
by geographically adjacent or overlapping cells.

We also investigated whether we should train a separate RFs per
cID, or cID should be used as one of the features in a single RFs. For
arepresentative urban LTE TA (Manhattan Midtown), in Fig. 4(a) we
calculate the RMSE for two cases: (i) when ¢ID is used as a feature
in a single RFs per LTE TA and (ii) when a separate RFs model is
produced per cell. Interestingly, the prediction is better when cID is
utilized as a feature. Given the sparsity of the data and the high
overlap of the cells, RFs benefit from the features of the additional
measurements. Manhattan Midtown has a cells density of 238 per
km? (see Table 3): the cell size does not exceed the size of a few
blocks or sometimes there are multiple cells within a skyscraper.
On the contrary, for the suburban LA dataset, where the cells are
not so densely deployed, a unique RFs model per cell performs
better than RFs per LTE TA, as shown in Fig. 4(c). In the Campus
dataset (lower density than NYC), the RFs model per c¢ID did
better than using as a feature in a single RFs model for the entire
LTE TA. Similar results and findings were observed for the rest of
cells and TAs, but are omitted due to space constraints. In general,
RFs trained per cID is usually a better option, but ¢ID should be
used as a feature in urban areas with high cells density.

4.2.2  Comparing RSRP Predictors. We compare against baselines,
both geospatial interpolation (OK and OKD) and model-driven
(LDPL-knn and LDPL-hom).

a. Campus dataset: Table 4 reports the RMSE for all predictors

for each cell in the Campus dataset, for the default 70-30% split.
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Figure 5: Campus dataset: RMSE vs. Training Size. Our methodology
(RFs with more than spatial features, i.e, RFsy 4, ;, RFsyy;) significantly im-
proves the RMSE-cost tradeoff: it can reduce RMSE by 17% for the same
number of measurements compared to state-of-the-art data-driven predic-
tors(OKD); or it can achieve the lowest error possible by OKD (=~ 2.8dB) with
10% instead of 90% (and 80% reduction) of the measurements.

Fig. 7 compares all methods, calculating RMSE over the entire
Campus dataset, instead of per cell. We can see that our RFs-
based predictors (RFsy,y,s, RFs,y;) outperform model (LDPL)
and other data-driven (OK, OKD) predictors.

Fig. 5 shows the RMSE as a function of the training size (as % of
all measurements in the dataset). First, the performance of OK and
RFsy,y is almost identical, as it can be seen for RMSE over all mea-
surements (Fig. 5 and Fig. 7) and RMSE per cell (Table 4). This result
can be explained by the fact that both predictors are essentially
a weighted average of their nearby measurements, although they
achieve that in a different way: OK finds the weights by solving an
optimization problem while RFsy, ;, uses multiple decision trees and
data splits. Second and more importantly, considering additional
features can significantly reduce the error. For the Campus data-
set, when time features t = (d, h) are added, RFsy, ut significantly
outperforms OKD: it decreases RMSE from 0.7 up to 1.2 dB. Alter-
natively, in terms of training size, RFsy,y,; needs only 10% of the
data for training, in order to achieve OKD’s lowest error (~ 2.8dB)
with 90% of the measurement data for training. Our methodology
achieves the lowest error of state-of-the-art geospatial predictors
with 80% less measurements. The absolute relative improvement of
RFsy,y,+ compared to OKD is 17%, shown in Fig. 7(b).

b.NYC and LA datasets: Fig. 6 shows the error for two differ-
ent LTE TAs, namely for NYC Manhattan Midtown (urban) and
for southern LA (suburban), where RFs have been trained per cID.
CDFs of the error per cID of the same LTE TA are plotted for dif-
ferent predictors. Again, OK performance is very close to RFsy,y,
because they both exploit spatial features. However, RFs,;; with
the rich set of features improves by approx. 2dB over the base-
lines for the 90th percentile, in both LTE TAs. Interestingly, the
feature dev is important, which is expected since this data, has
heterogeneous devices reporting RSRP.

There are multiple reasons why RFs,;; outperform geospatial
interpolation predictors. The mean and variance of RSRP depend
on time and location and the complex propagation environment.
RFs can easily capture these dimensions instead of modeling a
priori every single aspect. For example, RFsy, 4 ¢ predicts a time-
varying value for the measurements at the same location in Fig. 1(a),
while RFsy, y or OK/OKD produce just a flat line over time. OK also
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Figure 6: NYC and LA datasets: CDFs for RMSE per cID for two different

LTE TAs, for the same major MNCarrier-1. RFs,;; offer 2dB gain over the
baselines for the 90th percentile.
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Figure 7: Comparison of all predictors over the entire Campus dataset. Left
(a) RMSE(dB) under various scenarios, Right (b) ARI over all data points. Our
Approaches (RFsy, y, ¢, RFs,j;) outperform prior art in all scenarios.

relies on some assumptions (same mean over space, semivariogram
depending only on the distance between two locations), which do
not hold for RSRP. Even hybrid geospatial techniques (OKD) cannot
naturally incorporate additional features (e.g., time, device type, etc.
). Finally, RFs significantly outperform propagation models, except
for a few areas with limited number of measurements.

4.2.3 Location density and overfitting. In the Campus dataset,
we observed that a significant fraction of the data comes from a
few locations, i.e., from grad students’ home and work, which begs
the question whether this leads to overfitting. We investigated this
question and found that our RFs predictors neither get a perfor-
mance boost nor overfit. To that end, we utilize HDBSCAN [7], a
state-of-the-art clustering algorithm, to identify very dense (spa-
tially) clusters of measurements (cluster size 5% of the cell’s data).
We refer to data from those locations as “dense”; we remove them
and we refer to the remaining ones as “sparse-only” data. Fig. 7(a)
reports the RMSE of different methods when training and testing is
based on (i) all-data, (ii) sparse-only data and (iii) sparse-only data
with a 5% randomly sampled from the dense data. It can be clearly
seen that our RFsy, y,; and RFs,;; have similar performance in
all scenarios and consistently outperform baselines (similarly in
cell-by-cell basis; results omitted). Please note that OK and LDPL-
knn’s errors slightly decrease for “sparse-only”; OK cannot handle
repeated locations and LDPL-knn may overfit.

5 CONCLUSION

We developed a machine learning framework for cellular signal
strength prediction, which is important for creating signal maps in
a cost-efficient way, crucial for future 5G and IoT deployments. We
used the powerful tool of random forests, which we adapted in this
context by evaluating different features. The datasets under study
are the largest used in this context and provide unique insight into
city-wide signal map prediction. Future work includes a hybrid
ML-propagation model to harvest the diversity of both worlds.
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