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Role of reconnection in inertial kinetic-Alfvén turbulence

Stanislav Boldyrev1,2,* and Nuno F. Loureiro3

1Department of Physics, University of Wisconsin at Madison, Madison, Wisconsin 53706, USA
2Space Science Institute, Boulder, Colorado 80301, USA

3Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

(Received 28 January 2019; published 9 August 2019)

In a weakly collisional, low-electron-beta plasma, large-scale Alfvén turbulence transforms into inertial
kinetic-Alfvén turbulence at scales smaller than the ion microscale (gyroscale or inertial scale). We propose
that at such kinetic scales, the nonlinear dynamics tends to organize turbulent eddies into thin current sheets,
consistent with the existence of two conserved integrals of the ideal equations, energy and helicity. The formation
of strongly anisotropic structures is arrested by the tearing instability that sets a critical aspect ratio of the eddies
at each scale a in the plane perpendicular to the guide field. This aspect ratio is defined by the balance of the
eddy turnover rate and the tearing rate, and varies from (de/a)1/2 to de/a depending on the assumed profile of the
current sheets. The energy spectrum of the resulting turbulence varies from k−8/3 to k−3, and the corresponding
spectral anisotropy with respect to the strong background magnetic field from kz � k2/3

⊥ to kz � k⊥.

DOI: 10.1103/PhysRevResearch.1.012006

Introduction. Large-scale low-frequency fluctuations in
astrophysical systems such as the interstellar medium, the
solar wind, and others, are associated with nearly incom-
pressible magnetohydrodynamic (Alfvén) turbulence (e.g.,
Refs. [1–3]). The nonlinear Alfvén wave packets that com-
pose such turbulence are three-dimensionally anisotropic:
elongated along the strong background magnetic field and
resembling current sheets in the perpendicular plane [1,4–21].
At scales smaller than the plasma microscales, such as the
ion gyroscale or ion inertial scale, the shear-Alfvén modes
transform into kinetic-Alfvén modes. The character of tur-
bulence then changes qualitatively. Numerical and analytical
studies suggest that the energy spectrum becomes relatively
steep in the subproton range, with the spectral index between
−7/3 and −8/3, and fluctuations become compressible, with
density and magnetic field fluctuations comparable to each
other (e.g., Refs. [22–27]). Available solar-wind measure-
ments broadly agree with these predictions, with the measured
energy spectral slope scattered around a slightly steeper value
−2.8 [28–32].

Recently, it has been realized that magnetohydrodynamic
(MHD) turbulence becomes affected by the tearing instabil-
ity at scales larger than the usual Kolmogorov dissipation
scale [33–37]. This means that the MHD energy spectrum
inevitably gets modified by the tearing instability at small
scales. This picture seems to be supported by recent numer-
ical simulations [38,39], and it has also been extended to
the case of a collisionless plasma [40–43]. The role of the
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tearing instability and reconnection at kinetic scales, how-
ever, remains significantly less understood. Our preliminary
dimensional estimates [40] suggested that the spectrum of
tearing-mediated kinetic-Alfvén turbulence should become
relatively steep, with the spectral exponents ranging from
−8/3 to −3. In the present Rapid Communication, we pro-
pose a self-consistent phenomenological theory of tearing-
dominated kinetic-Alfvén turbulence.

Since large-scale Alfvén turbulence transforms into ki-
netic turbulence at small scales, kinetic-scale turbulence is
important for energy dissipation in a weakly collisional
plasma (e.g., Refs. [24,44,45]). In addition, kinetic-scale tur-
bulence may be crucial for scattering plasma particles and, in
particular, for shaping non-Maxwellian velocity distribution
functions of the energetic electrons in the solar wind (e.g.,
Refs. [46,47]). Our study also provides a possible theoretical
framework for the very recent measurements of electron-
only reconnection events in the Earth’s magnetosheath [48]
by NASA’s Magnetospheric Multiscale (MMS) mission [49].
Our results are consistent with these events being related
to reconnection-mediated kinetic-Alfvén turbulence at sub-
proton scales [40,50]. Indeed, the electron plasma beta is
smaller than one in the Earth magnetosheath, meaning that
the electron inertial scale, where the magnetic reconnection
can operate, is larger than the electron gyroscale, where strong
kinetic dissipation comes into play. It is also important to
note that a similar ordering of the plasma parameters is also
characteristic of the regions close to the solar corona (e.g.,
Refs. [51,52]), which will soon be studied by the recently
launched NASA Parker Solar Probe mission (e.g., Ref. [53]).

Model. Kinetic-Alfvén dynamics retaining electron-inertia
effects (the so-called inertial kinetic-Alfvén regime) have
been investigated recently [14] (see also Refs. [54,55]). In
the case when the fluctuations are highly oblique with respect
to the uniform large-scale magnetic field B0, a closed two-
field system of equations can be derived that describes the
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evolution of the magnetic fluctuations δB. In this case kz �
k⊥, so one can represent the fluctuating part of the magnetic
field as δB = −ẑ × ∇ψ + δBzẑ. We define the electron skin
depth as de = c/ωpe, and introduce the dimensionless fields,
ψ ′ = ψ/(deB0) and bz = δBz/B0, which we will use hence-
forth, omitting the prime signs for notational simplicity. The
resulting system of equations then takes the form [14]
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(
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e ∇2
⊥
)
ψ

− d4
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where βi = 8πn0Ti/B2 is the ion plasma beta (assumed order
unity), and �e is the electron cyclotron frequency. The non-
linearities in these equations enter through the terms in the
square brackets, and through the field-parallel gradients in the
right-hand sides, ∇‖ = ∂/∂z − de(ẑ × ∇ψ ) · ∇. Since we are
interested in the influence of the reconnection effects rather
than the dissipation terms on the energy cascade, here we as-
sume that the electron gyroradius is smaller than the electron
inertial scale; this corresponds to the electron plasma beta,
βe = 8πn0Te/B2 = 2ρ2

e /d
2
e , smaller than one. If the small

electron gyroradius terms need to be retained, our system (1)
and (2) has to be modified as it is done in Refs. [54,55];
such an analysis is, however, beyond the scope of the present
work as we concentrate only on the scales above the electron
gyroradius (and below the ion gyroradius).

Equations (1) and (2) have two ideal second-order invari-
ants: energy and helicity. At scales large than the electron
inertial scale, these invariants have the forms [56]

E = 1

2

∫ [(
1 + 2

βi

)
b2
z + d2

e (∇⊥ψ )2

]
d3 x, (3)

and

H =
∫

bzψ d3 x. (4)

Role of helicity. The tendency of kinetic-Alfvén turbulence
to form current sheets is known from numerical simulations
and observations (e.g., Refs. [25,27,50,57,58]). Let us discuss
how these may come about.

An analytical description of inertial kinetic-Alfvén turbu-
lence has to account for both the energy and the helicity
invariants. In a turbulent cascade that proceeds from large
(MHD) to kinetic scales, the value of the helicity invariant
[Eq. (4)] is set by the turbulence at the ion gyroscale. However,
in the presence of the energy cascade, helicity cannot cascade
to large wave numbers (e.g., Refs. [1,59]). The selective decay
of energy in the presence of conserved helicity can lead to the
formation of structures, which can be found from minimizing
the functional

F = E − μH, (5)

where μ is the Lagrange multiplier. We thus obtain

−d2
e ∇2

⊥ψ = μbz, (6)

bz = μ(1 + 2/βi )
−1ψ. (7)

As can be verified, such configurations imply that E = μH ,
and the parameter μ is proportional to the inverse scale of
the structure. The configurations minimizing E at constant
H correspond to small μ, which reflects the tendency of
decaying turbulence to create large-scale helical structures. A
similar relaxation to large-scale helical structures is known to
exist in magnetohydrodynamic turbulence (e.g., Refs. [1,60]).

One can, however, check that solutions of Eqs. (6) and
(7) correspond to vanishing nonlinearities in Eqs. (1) and
(2). In a turbulent steady state, however, the nonlinearities
cannot vanish as they are responsible for a constant energy
flux over scales. We may nevertheless expect that structures
generated in such turbulence should qualitatively resemble
those described by Eqs. (6) and (7); they should lead to
reduced, but not identically zero, nonlinear terms. Let us
denote the characteristic wave numbers of such a structure
in the x-y plane as kx and ky, which implies μ2 ∼ k2

x + k2
y .

The helicity then scales as H ∼ μψ2, while the nonlinear
terms are proportional to kxkyψ2. The nonlinear interaction is
minimized at constant helicity when one of the wave numbers
becomes significantly smaller than the other, which is consis-
tent with the formation of very anisotropic current sheets.

Let us denote the shorter dimension of such a current
sheet as a ∼ 1/kx and the longer one as ly ∼ 1/ky � a. A
fluctuating magnetic field b⊥ = −ẑ × ∇ψ corresponding to
such a structure is aligned with the y direction within a small
angle ∼a/ly, while its magnitude varies on a scale a in the
x direction. This, in general, reduces the nonlinear terms
in Eqs. (1) and (2) by a factor ∼a/ly with respect to their
dimensional estimates. For instance, the nonlinear term in the
right-hand side of Eq. (1) is estimated as (ẑ × ∇ψ ) · ∇bz ∼
(a/ly)ψbz/a2.

Strongly anisotropic current sheets are thus to be expected
in inertial kinetic-Alfvén turbulence. Motivated by the recent
studies mentioned in the Introduction, we may now inquire as
to their stability to the tearing mode.

Tearing instability at subproton scales. In order to for-
mulate our theory of kinetic-Alfvén turbulence mediated by
the tearing instability, we first need to analyze the tearing
mode arising in a very anisotropic current sheet described by
Eqs. (1) and (2). We introduce local coordinates such that the
x and y axes are across and along the reconnecting current
sheet, respectively, and z is along the large-scale field B0. We
denote the thickness of the current sheet (in the x direction) as
a, its length (in the y direction) as ∼1/k0, and assume that it
is uniform in the z direction.

We represent the reconnecting part of the magnetic field
in such a structure as δB⊥ = ba f (x)ŷ + b⊥(x, y), where f (x)
describes the profile of the reconnecting (sheared) field, and
b⊥ = −ẑ × ∇ψ̃ = (∂ψ̃/∂y,−∂ψ̃/∂x) is a small perturbation.
Regarding the sheared part of the parallel magnetic field, we
may assume that it is negligible, so that only the tearing
perturbation is left, bz = b̃z(x, y) [61]. Following standard
procedure, we Fourier transform the perturbations in the
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y direction,

ψ̃ = ψ̄ (ξ ) exp (ik0y) exp (γ t ), (8)

b̃z = −ib̄z(ξ ) exp (ik0y) exp (γ t ), (9)

where ξ = x/a. As we will see, the fastest growing tearing
mode is the largest mode that can fit in an eddy, i.e., its length
scale in the y direction is ∼1/k0. In what follows, we use only
the variables ψ̄ and b̄z and omit the overbar sign. Linearizing
Eqs. (1) and (2) with respect to the small perturbations, we
obtain the system of equations governing the tearing mode in
the kinetic-Alfvén case,

λψ − f bz = λ
d2
e

a2
ψ ′′, (10)

− f (ψ ′′ − ε2ψ ) + f ′′ψ = λb′′
z − λ

a2

d2
e

(
1 + 2

βi

)
bz, (11)

where the dimensionless growth rate is λ = γ /(k0vA,e), the
electron-Alfvén speed is defined with respect to the recon-
necting part of the magnetic field, vA,e = ba/

√
4πmen0, and

all the derivatives are with respect to ξ . As can be verified
after the tearing-mode solution is obtained, λ is a small
parameter. It also turns out that the fastest growing tearing
mode corresponds to sufficiently anisotropic current sheets,
so that ε ≡ k0a is a small parameter as well.

Due to the smallness of the parameter λ, the right-hand
sides in Eqs. (10) and (11) are relevant only in the inner
region of the mode, where the derivatives are large. As will be
shown later, the inner scale δin is much smaller than de in the
case of a small tearing parameter [the so-called Furth-Killeen-
Rosenbluth (FKR) regime [62]], and it approaches de in the
case of a large tearing parameter (the so-called Coppi regime
[63,64]). So, in our analysis we may neglect the last term in
the right-hand side of Eq. (11) as this will not qualitatively
change the solution.

A useful observation is that Eqs. (10) and (11) describing
the kinetic-Alfvén tearing instability are then structurally
identical to the MHD tearing equations [e.g., Eqs. (11) and
(12) in Ref. [65]] with the only modification that the magnetic
diffusivity η should be replaced by γ d2

e in the kinetic-Alfvén
case (see a similar discussion in, e.g., Refs. [66–68]). This
reflects the fact that in our case of a collisionless plasma,
reconnection is driven by electron inertia rather than resistive
effects. This allows us to straightforwardly derive the
growth rate and the corresponding inner scale of the tearing
instability.

The results depend on the assumed profile of the re-
connecting magnetic field f (ξ ). As in previous work (e.g.,
Refs. [35,40,65]), we consider two plausible profiles that yield
qualitatively different scalings of the tearing mode: the Harris
profile [69], f (ξ ) = tanh(ξ ); and a sinusoidal profile, f (ξ ) =
sin(ξ ). For the Harris profile, the tearing growth rate in the
low �′ (FKR) regime is

γ ∼ vA,e

a

1

(k0a)

(
de
a

)3

, (12)

and the corresponding inner scale is

δin ∼ de

(
de
a

)
1

(k0a)
. (13)

Both the growth rate and the inner scale increase as the
anisotropy parameter k0a decreases. The anisotropy of the
FKR mode cannot, however, be arbitrarily large. The FKR
solution is applicable when k0a � de/a, which justifies our
assumption that the inner scale of the tearing mode is smaller
than the electron inertial scale. At k0a ∼ de/a, the FKR
regime crosses over to the Coppi regime (a large �′ regime),
at which point the tearing mode has the fastest growth rate

γ∗ ∼ vA,e

a

(
de
a

)2

, (14)

and the inner scales approaches de.
For the sinusoidal magnetic profile, the FKR tearing

growth rate is given by

γ ∼ vA,e

a

1

(k0a)3

(
de
a

)3

, (15)

and the corresponding inner scale is

δin ∼ de

(
de
a

)
1

(k0a)2
. (16)

The FKR regime is applicable when k0a � (de/a)1/2; it tran-
sitions to the Coppi regime at k0a ∼ (de/a)1/2, at which scale
the tearing rate reaches its maximal value

γ∗ ∼ vA,e

a

(
de
a

)3/2

. (17)

The corresponding inner scale at this point becomes compa-
rable to de.

We now use the tearing growth rates and anisotropies of the
corresponding tearing modes just derived to address the influ-
ence of the tearing instability on kinetic-Alfvén turbulence.

Kinetic-Alfvén turbulence mediated by tearing instability.
The helicity-conservation arguments presented earlier suggest
that a typical turbulent eddy in the inertial interval (di �
a � de) is anisotropic in the plane perpendicular to the local
mean magnetic field, i.e., k0 � 1/a. From Eqs. (1) and (2) we
may then estimate the characteristic nonlinear time of such a
structure as

γnl ∼ k0vA,e

(
de
a

)
. (18)

Obviously, as the anisotropy of the structure increases (that is,
k0 decreases), the nonlinear rate (18) will decrease, while the
tearing growth rate, Eq. (12) or (15), will increase. There is,
therefore, a limitation on the anisotropy of the structures that
can be created by turbulence; very anisotropic structures will
be destroyed by the tearing instability. By equating the non-
linear rate (18) to the tearing rate (12) or (15), one finds that,
remarkably, the rates balance when γ = γ∗ in both cases. The
evolution rate of such a critically anisotropic eddy will there-
fore be governed by the corresponding fastest tearing rate.

In other words, conservation of helicity subject to en-
ergy dissipation suggests the tendency of the turbulence
to form elongated, quasi-one-dimensional structures. These,
however, cannot survive the tearing instability if their field-
perpendicular anisotropy is such that the fastest tearing mode
fits in such a structure. We conjecture, therefore, that the
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tearing instability is the physical mechanism that sets the
eddies’ aspect ratio in the field-perpendicular direction.

From Eq. (3) we expect bz ∼ ∇⊥ψ ∼ ba at each scale a
in the inertial range of the turbulence. We can estimate the
energy flux at this scale as ε ∼ b2

aγ∗ = const. We then derive

ba ∝ ad−2/3
e , (19)

ba ∝ a5/6d−1/2
e , (20)

for the tanh and sin profiles, respectively. The corresponding
Fourier energy spectra of tearing-mediated kinetic-Alfvén
turbulence are then [40]

E (k⊥)dk⊥ ∝ k−3
⊥ dk⊥, (21)

E (k⊥)dk⊥ ∝ k−8/3
⊥ dk⊥. (22)

Our model also allows us to derive the anisotropy of the
turbulent eddy with respect to the background magnetic
field. The linear frequency of the kinetic-Alfvén wave, ω =
kzVA,ek⊥de(1 + 2/βi )−1/2, where VA,e is a constant electron-
Alfvén velocity defined with the background field B0. Bal-
ancing this equation with the nonlinear evolution rate γ∗ at
scale a ∼ 1/k⊥ (the critical balance condition), we find using
Eqs. (19) and (20) the field-parallel size of the eddy,

kz ∝ k⊥, (23)

kz ∝ k2/3
⊥ , (24)

for the tanh and sin cases, correspondingly.
The energy spectra (21) and (22) are not far from those

obtained from direct solar-wind measurements, and they seem
to be broadly consistent with numerical simulations. Mea-
surements of the guide-field anisotropy are, however, more
subtle and they are currently less definitive compared to
the measurements of the spectra. Existing phenomenological
models, not involving tearing effects, predict energy spectra
ranging from −7/3 to −8/3 and anisotropy relations from
kz ∝ k1/3

⊥ to kz ∝ k2/3
⊥ (e.g. Refs. [25,70,71]); the steepening

of the spectrum beyond −7/3 is attributed in these models
to either the Landau damping or intermittency effects. Our
theory, on the contrary, does not invoke dissipation effects
or intermittency; the mechanism we propose is different and
complementary to the previously developed models. Accord-
ing to our results, steeper energy spectra and weaker kz vs k⊥
anisotropy may be indicative of the presence of tearing effects
in kinetic-Alfvén turbulence.

Discussion and conclusion. We have proposed a conceptual
framework to describe a turbulent cascade in the inertial
kinetic-Alfvén regime—relevant to the Earth’s magnetosheath
region and to the solar wind in the proximity of the solar
corona. The existence of two ideal invariants of the model
equations (energy and helicity) is demonstrated to imply the
formation of current sheets, whose instability to the tearing
mode becomes a critical physical mechanism governing tur-
bulence at these scales. As in previous recent work [35,40],
we conjecture that the turbulent cascade is determined by the
timescale associated with the fastest tearing instability at each
scale. This assumption enables us to compute the expected

energy spectra, Eqs. (21) and (22) for two idealized, limiting-
case magnetic field configurations: a hyperbolic tangent
(Harris) and a sinusoidal profile. Reconnecting magnetic
fields occurring in realistic turbulence are probably described
by profiles ranging between these two configurations, suggest-
ing that the energy spectra power-law exponent may in fact lie
between −8/3 and −3.

We note that our analysis is also applicable to the turbu-
lence of inertial whistler modes, which generally exist in the
same environments as kinetic-Alfvén modes but at higher fre-
quencies. Although these modes belong to a different branch
of the plasma dispersion relation and exist at frequencies
higher than those of kinetic-Alfvén modes, the equations
governing nonlinear oblique whistler modes are structurally
identical to the equations governing the kinetic-Alfvén modes.
As can be shown (e.g., Ref. [14]), the whistler equations
can be obtained from system (1) and (2) if one neglects the
term 1/βi. Our theory is, therefore, applicable to the systems
described by electron MHD as well.

It is worth analyzing our results in the context of MMS’ ob-
servations of “electron-only” reconnection [48]. Note first that
any reconnection event occurring in the framework described
by Eqs. (1) and (2) will have a typical outflow velocity of vA,e

(the electron Alfvén speed computed with the reconnecting
component of the magnetic field), consistent with the observa-
tions. Second, we can use our model to compute the scale be-
low which such reconnection cannot involve the ions. Indeed,
the length of the current sheet (eddy), set by the tearing mode,
is 1/k0 ∼ a2/de for the Harris profile, or 1/k0 ∼ a(a/de)1/2

for a sinusoidal profile. Therefore, requiring 1/k0 � di results
in a � √

dide or a � d2/3
i d1/3

e , respectively. It is encouraging
that the measured thickness of the reconnection layer is a ∼
4de, compatible with these (rough) estimates.

Lastly, we remark that our findings have important implica-
tions for numerical studies of turbulence at these scales. First,
the inner scale of the tearing mode occurring in any eddy in
the range di � a � de is approximately de. Second, helicity
conservation (an essential ingredient in the turbulent cascade
model that we propose here) implies that correctly capturing
this range requires a consistent determination of helicity at
the ion scales—which, in a real plasma, is naturally set by the
cascade through the MHD scales. In other words, the usual
numerical strategy of studying kinetic-scale turbulence with
turbulent forcing imposed at around the ion scales may need to
be reconsidered. The implication is that numerical simulations
of inertial kinetic-Alfvén turbulence may need to range from
large MHD scales all the way to sub-de scales to correctly
capture the relevant physical mechanisms at play—a rather
demanding requirement.
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