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1. Introduction

Geometric measures of convex bodies in Euclidean space and their associated Minkowski
problems are of central interest in the subject of convex geometric analysis. In the classi-
cal Minkowski problem, it is the surface area measure of a convex body that is prescribed
(in the smooth case, it is the Gauss curvature). The solution to the classical Minkowski
problem has had many applications in various fields of analysis and geometry. See Section
8.2 in Schneider [47] for an overview. The Christoffel-Minkowski problem (prescribing
j-th surface area measures) and the Aleksandrov problem of prescribing j-th curvature
measures are two other important Minkowski problems in convex geometric analysis
that are still unsolved. See, for example, Sections 8.4 and 8.5 in [47]. These Minkowski
problems belong to the classical Brunn-Minkowski theory.

More recently, Lutwak [40] introduced the L, Brunn-Minkowski theory, where p =1
is the classical theory cited above, and posed the L, Minkowski problem (prescribing
L, surface area measure) as a fundamental question. The most important (and there-
fore most challenging) cases include, when p = 0, the logarithmic Minkowski problem
(see Boroczky-Lutwak-Yang-Zhang [10]) and, when p = —n, the centro-affine Minkowski
problem (see Chou-Wang [16] and Zhu [58]). The L,, Minkowski problem when p > 1 was
solved by Lutwak [40] for symmetric convex bodies and by Chou-Wang [16] in the gen-
eral case. Alternate proofs were given by Hug-Lutwak-Yang-Zhang [32]. The case where
p < 1 is still largely open (see Boroczky-Lutwak-Yang-Zhang [10], Huang-Liu-Xu [29],
Jian-Lu-Wang [33], and Zhu [57, [59]). For other recent progress on the L,-Minkowski
problem, see Boroczky-Trinh [I12] and Chen-Li-Zhu [I3] [I4]. The L, Minkowski problem
also plays a key role in establishing affine Sobolev inequalities (see, for example, Lutwak-
Yang-Zhang [41], 42], Cianchi-Lutwak-Yang-Zhang [I5], and Haberl-Schuster [27]).
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Very recently, Huang-Lutwak-Yang-Zhang [30] introduced dual curvature measures
éq, where ¢ € R, as the natural duals to Federer’s curvature measures. These are funda-
mental in the dual Brunn-Minkowski theory and the analogs of the surface area measures
in Brunn-Minkowski theory. This leads naturally to the dual Minkowski problem of pre-
scribing dual curvature measures. Remarkably, the family of dual Minkowski problems
connects the well-known Aleksandrov problem (¢ = 0) to the logarithmic Minkowski
problem (¢ = n) mentioned above. Here we present a complete solution to the dual
Minkowski problem within the class of origin-symmetric convex bodies for the critical
strip 0 < g < n.

The dual Brunn-Minkowski theory was first introduced by Lutwak, based on a con-
ceptual but mysterious dualityﬂ in convex geometry (see Schneider [47], p. 507 for a lucid
explanation). The power of the theory was demonstrated when intersection bodies, which
are central to the dual Brunn-Minkowski theory, played a crucial role in the solution to
the well-known Busemann-Petty problem. The solution relied on connections between
the dual theory and harmonic analysis. See, for example, Bourgain [5], Gardner [18],
Gardner-Koldobsky-Schlumprecht [20], Lutwak [39], and Zhang [53], and see Gardner
[17] and Koldobsky [34] for additional references.

Dual curvature measures, parameterized by g € R, are the analogues in the dual
Brunn-Minkowski theory of Federer’s curvature measures in the classical Brunn-Minkowski
theory. The 0-th dual curvature measure is (a constant multiple of) Aleksandrov’s inte-
gral curvature of the polar body. The n-th dual curvature measure is the cone volume
measure studied in Barthe, Guédon, Mendelson-Naor [4], Béroczky-Henk [7], Henk-Linke
[28], Ludwig-Reitzner [37], Stancu [50, [51], and Zou-Xiong [60]. Dual curvature measures
encode the geometry of a convex body’s interior, while their counterparts in the Brunn-
Minkowski theory reflect the geometry of the boundary. Dual curvature measures are
a new class of valuations (i.e., finitely additive geometric invariants of convex bodies)
that are dual to their counterparts in the Brunn-Minkowski theory. The latter have been
studied extensively in recent years. See, for example, Boroczky-Ludwig [9], Haberl [23],
Haberl-Ludwig [24], Haberl-Parapatits [25] [26], Ludwig [35], B6], Ludwig-Reitzner [37],
Schuster [48, [49], Zhao [54] and the references therein.

The dual Minkowski problem for dual curvature measures proposed in Huang-Lutwak-
Yang-Zhang [30] states:

The Dual Minkowski Problem. Given a finite Borel measure 1 on the unit sphere
S"~1 and a real number q, find necessary and sufficient conditions on u so that there
ezists a conver body K C R™ that solves,

Cy(K, ) = p, (1.1)

where CN'q (K,-) is the ¢-th dual curvature measure of K.
In the special case when the given measure (which is called the “data”) has a density
f, then (1.1)) reduces to the Monge-Ampere type equation on S™~! given by

det(Vh + hI) = n(|Vh|? + h2)(n—D/2p=1§, (1.2)

3Although Lutwak’s duality is motivated by the duality between intersections and projections in
projective geometry, it is a duality of concepts (such as mixed volumes) instead of the usual duality
between points and hyperplanes in a vector space.
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where f is a given non-negative integrable function, h is the unknown function, I is the

standard Riemannian metric on S"~!, while Vh and V’h are the gradient and Hessian
of h, with respect to I, respectively.

Dual Minkowski problems, including the logarithmic Minkowski problem, are more
challenging than previously solved Minkowski problems. This arises from the phe-
nomenon of measure concentration, which implies that there are singular prescribed
measures for which no solutions are possible. Thus, there is no straightforward way to
solve these general problems by first solving the smooth data case of and then using
an approximation argument to solve (L.I).

When ¢ = 0, the dual Minkowski problem is the classical Aleksandrov problem, which
was posed and solved by Aleksandrov [I], using a topological argument. See Guan-Li [22],
Oliker [43], [44], [45], and Wang [52] for other work on this problem and its variants. The
L, version of the Aleksandrov problem was introduced and studied by Huang-Lutwak-
Yang-Zhang [31].

When ¢ = n, the dual Minkowski problem is the logarithmic Minkowski problem,
which was solved for even data (a measure that assumes the same value on antipodal Borel
subsets of S"71) by Boroczky-Lutwak-Yang-Zhang [10]. The logarithmic Minkowski
problem remains open for data that is not even (see, for example, Boroczky-Heged{is-
Zhu [6], Stancu [50, [51], Zhu [57]). Surprisingly, the logarithmic Minkowski problem is
closely connected to isotropic measures (see Boroczky-Lutwak-Yang-Zhang [I1]) and also
to curvature flows (see Andrews [2] B]). It was discovered that a measure concentration
condition (described in the next paragraph) is the precise obstruction to the existence of
solutions to this singular Monge-Ampere equation.

A finite Borel measure p on S™~ ! is said to satisfy the subspace concentration condi-
tion if

pu(En St < dim &
p(sm=t)y T om

for each proper subspace ¢ C R™ and, if equality holds for a subspace £, there exists a
subspace ¢’ C R™ complementary to ¢ such that p is concentrated on S~ N (€U ¢').
Boroczky-Lutwak-Yang-Zhang [10] proved that if p is an even finite Borel measure, then
there exists an origin-symmetric convex body whose cone volume measure is equal to u
if and only if p satisfies the subspace concentration condition.

A similar phenomenon arose in the attempt of Huang-Lutwak-Yang-Zhang [30] to
solve the dual Minkowski problem for symmetric convex bodies. However, the conditions
presented in the attempt of Huang-Lutwak-Yang-Zhang [30] turned out to be sufficient
but not necessary. A more refined subspace mass inequality, which first appeared in
[8, 58], is the following:

Subspace Mass Inequality. For 0 < ¢ < n, a finite Borel measure p on S”~! is said
to satisfy the g-th subspace mass inequality, if

(1.3)

(1.4)

p(é(i) nSn=1) - i/q, wheni < g,
u(Sm—1) 1,  when i > g,

for each proper i-dimensional subspace (i) C R™. Bordczky-Henk-Pollehn [8] showed
that, when 1 < g < n, the g-th subspace mass inequality is a necessary condition for



the existence of solutions to the dual Minkowski problem within the class of origin-
symmetric convex bodies. That is, the g-th dual curvature measure of every origin-
symmetric convex body satisfies the ¢-th subspace mass inequality. Zhao [55] showed
that, when ¢ € {2,...,n — 1}, the ¢g-th subspace mass inequality is also a sufficient
condition for the existence of solutions to the dual Minkowski problem. That is, every
even finite Borel measure satisfying the ¢-th subspace mass inequality is the ¢g-th dual
curvature measure of an origin-symmetric convex body. This provides a complete solution
to the dual Minkowski problem for even data and integer ¢ € {2,...,n — 1} within the
class of origin-symmetric convex bodies.

The aim of this paper is to give a complete solution to the dual Minkowski problem
for even data and all real ¢ € (0,n).

Theorem 1.1. Let 0 < g < n and p be a non-zero even finite Borel measure on Sn—t,
Then there exists an origin-symmetric convezr body K in R™ such that Cy(K,-) = p if
and only if u satisfies the g-th subspace mass inequality (1.4)).

When 0 < g < 1, the ¢g-th subspace mass inequality says that the measure u cannot
be concentrated on any great hypersphere. Theorem for this case was established in
[30]. When 1 < ¢ < n, the necessity of the ¢g-th subspace mass inequality was proved in
[8], and its sufficiency, when ¢ is an integer such that 1 < g < n, was established in [55].

The solution to the dual Minkowski problem for ¢ < 0 does not require any non-trivial
measure concentration conditions as shown by Zhao [56]. The dual Minkowski problem
for even data and ¢ = 0 is equivalent to the Aleksandrov problem for even data, which
was solved by Aleksandrov himself. Alternate approaches appear in [3I] and [45] (see
also [43], [44]). When ¢ = n, the dual Minkowski problem for even data is the even
logarithmic Minkowski problem, which was solved in [10].

Unlike the classical Minkowski problem, it is difficult to see how it might be possible
to reduce the case of the dual Minkowski problem where ¢ > 0 to the case where the
measure has a density. Moreover, estimates for the dual quermassintegrals of degree
q > 0, but ¢ # n, are much more difficult to obtain than when ¢ = n, where the dual
quermassintegral is just volume and only an entropy estimate is needed. More delicate
estimates for both entropy and the dual quermassintegrals are required when g > 0 but
q#n.

The proof presented here uses a variational approach. The maximization problem
associated with the dual Minkowski problem is described in Section Its solution
requires two crucial estimates. In Section 4] we prove an estimate for an entropy integral
using the technique of spherical partitions introduced in [10].

The role of barrier bodies in obtaining integral estimates is the same as that of barrier
functions in obtaining PDE estimates. Choosing a proper barrier body and establishing
a sharp estimate are critical in showing that the g-th subspace mass inequality is both
necessary and sufficient for solving the dual Minkowski problem. However, for a dual
quermassintegral of real degree ¢ > 0, choosing an appropriate barrier is considerably
more difficult than it was in [30] and [55]. In Section [5| we use a Gaussian integral trick
to establish the needed estimate.

In [30], a cross-polytope was used as the barrier to establish a sufficient condition for
the cases considered there. In [55], using the Cartesian product of an ellipsoid and a ball
as the barrier showed that is both necessary and sufficient. Unfortunately, this works
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only for integer ¢ € {2,...,n—1}. In this work, that is both necessary and sufficient
will be established for all real ¢ € (0,n) by taking as a barrier a Cartesian product of an
ellipsoid, a line segment, and a ball. The estimates of its dual quermassintegrals appear
in Section Bl

The work presented here extends significantly the results and techniques in [10], [30]
and [55].

2. Preliminaries

The needed basics from the theory of convex bodies will be reviewed in this section.
Details can be found in the books [17] and [47].

We will work in R™ equipped with the standard Euclidean norm. For z,y € R™, we
write x - y for the inner product of z and y, and let |z| = /z - z.

We shall write C(S™1) for the vector space of continuous functions on the unit
sphere S™~! equipped with the max norm; i.e., || f|| = max{|f(u)| : u € S?~'}, for each
feC(s™ ). Let CT(S"~1) C C(S™ 1) denote the cone of strictly positive functions,
C.(S™1) € C(S™!) the subspace of even functions, and CF(S"~1) = CT(S"~1)n
Ce(S™1).

We always assume that a measure is nonzero and finite. A measure is said to be even,
if its value on a measurable set is equal to that of its antipodal set. The total measure
of a measure p will be written as |u|. Throughout the paper, an expression c..., with
a subscript containing a list of parameters, represents a “constant”, whose exact value
depends on the parameters listed but may change from line to line. For example, ¢, 4
depends only on n, k, ¢, and nothing else. At times, this may also be written as c¢(n, k, q).
Denote by |¢] the floor function whose value is the largest integer less than or equal to
q.

We say that K C R" is a convez body if it is a compact convex set with non-empty
interior. The boundary of K is written as K. The set of all convex bodies in R" is
denoted by X™. The set of all convex bodies containing the origin in the interior is
denoted by X7, and the set of all origin-symmetric convex bodies by X7. Obviously,
Xy c Xy cXm.

Associated with a compact convex K C R”™ is its support function hyx : R™ — R
defined, for x € R"™, by

hig(x) =max{z-y:y € K}. (2.1)

For real ¢ > 0, define the compact convex set ¢K by h.x = chg. A sequence of convex
bodies K; is said to converge to a compact convex set K C R™ with respect to the
Hausdorff metric provided that

||hKl — hKH — 0.

If K C R™ is compact and star-shaped with respect to the origin, its radial function
pr : R"\{0} — R is defined, for € R™\ {0}, by

pr(x) =max{t > 0:tx € K}. (2.2)

If px is positive and continuous, K is called a star body, and the set of star bodies is
denoted by 8”. Obviously, X" C 8”. We shall need the trivial observation that if K € 8*
5



and L € 8"%, then, for (z,y) € R¥ x R"~* with x,y # o,

prxi(7,y) = min{pk (), pr.(y)}- (2.3)

Note that, for K € X7, both hx and pgx are positive. The volume (i.e., Lebesgue
measure) of K will be denoted V,,(K). When it is clear that the ambient dimension n
is, the subscript is often suppressed, and we will write simply V(K). It is easily shown

that
1

V(K)=— /Sn_1 px (u)"du, (2.4)

n

where du represents the spherical Lebesgue measure.
For each h € CT(S™1), the Wulff shape generated by h, denoted [h], is the convex
body defined by
W ={z €R":z-v<h(v), forallve "'}

The Wulff shape, also known as the Aleksandrov body, is a key ingredient in Aleksandrov’s
variational formula for volume, which is an essential ingredient in solving the classical
Minkowski problem. It is easy to see that

him < h, (2.5)
and that, for K € X7, we have
lhkl = K. (2.6)
Obviously,
[chl = clhl, (2.7)

for real ¢ > 0. We shall make use of the trivial observation that
fecr(s™h) = I[flex”. (2.8)

Suppose hg € CT(S"71) and f € C(S" 1), while § > 0 and, for each ¢ € (—46,6), the
function o(t,-) € C(S"~1) satisfies

o ot )l

t—0 t

=0.

Then, for each t € (—4,6), define hy : "1 — (0,00) by
log hi(v) = log ho(v) + tf(v) + o(t, v), (2.9)

for v € S"~1. The family of Wulff shapes generated by h; is called a family of logarithmic

Wulff shapes generated by hg and f. We sometimes denote the family [k by [ho, f, 1],

or, when hg is the support function of a convex body K, denote it simply by [K, f, .
The supporting hyperplane of K € X" in the direction v € S"~! is given by

Hix(w)={x eR":2z-v="hg(v)}.

A vector v € S"7! is called an outer unit normal of K at the point 2 € K provided
x € Hi (v).



If K€ X} and w C S, then the radial Gauss image ak(w) is the set of all outer
unit normals of K at the boundary points px (u)u where u € w, i.e.,

ag(w) = U {ve 8" pr(u)u-v=hg)}. (2.10)

uew

If n € ™71, then the reverse radial Gauss image o (n) is the set of all radial directions
u € S™~! such that the boundary point px (u)u has at least one element in 7 as its outer
unit normal, i.e.,

aje(n) = J{ue " pr(u)u-v = hg(v)}. (2.11)

ven

Lemma 2.2.14 of Schneider [47] (see also Lemma 2.1 in [30]) tells us that, when 7 is a

Borel set, the set a}.(n) is measurable with respect to spherical Lebesgue measure.
Dual quermassintegrals, which include volume as a special case, are fundamental

geometric invariants in the dual Brunn-Minkowski theory. For i = 1,...,n, the (n —i)-

th dual quermassintegral ’V\[;é@z(K ) of K € 8" is proportional to the mean of i-dimensional
volumes of the intersections of K with i-dimensional subspaces. That is,
Wn

W) =2 [ v ngds (212)
Wi JG(n,i)
where V; denotes i-dimensional volume, G(n,i) is the Grassmannian manifold of -
dimensional linear subspaces £ C R", and the integration is with respect to the Haar
measure on G(n,:). The dual quermassintegrals have the following integral representa-
tion (see [38]),
1

W (K) = - /S o (u)idu. (2.13)

Using this, rV[v/,ETi)q is defined in the obvious manner for all g € R:

1

WA, (K) =~ /S () (2.14)

) . \
=, (K) simply as

When the dimension n of the ambient space is clear, we will write Wén

ﬁ//n_q(K ), omitting the superscript.
It is easy to see that the (n — ¢)-th dual quermassintegral is homogeneous of degree
q; i.e., for ¢ >0 and K € 87,

/I/Iv/n_q(cK) =cl Wn_q([(),

since p.x = cpr. The origin-centered unit ball in R™ shall be denoted by B™ and its
volume by w, = V;,(B™). If there is no ambiguity about its dimension, we shall write
simply B rather than B™. Note that, for all g,

W—g(B") = wh,. (2.15)



If ut is a Borel measure on S™~!, then the entropy functionalof u, E,, : C*(S"™1) = R,
is defined by

1
Eu(f) = - log f(v) dp(v), (2.16)
il Jgn-a
for f € CT(S™1). We shall make use of the trivial observation that
Ey(ef) = Bu(f) — loge, (2.17)

for real ¢ > 0. When f is the support function hx of a convex body K, define
B (K) = Bu(hs). (2.18)

Since hp =1,
E,(B)=0. (2.19)

3. The even dual Minkowski problem via maximization

The dual curvature measures of the dual Brunn-Minkowski theory are the counter-
parts of Federer’s curvature measures in the classical Brunn-Minkowski theory. Huang-
Lutwak-Yang-Zhang [30] reformulated the dual Minkowski problem as the maximization
problems described below. N

For K € X and real ¢ # 0, the ¢g-th dual curvature measure Cy(K,-) of K, can be
defined via the integral representation

d ~

%/V\V/n—q([Kv fv t])’t:() = q/sn,f1 f(’U) Cq(K,’U>,

for each f € C(S™~1). There is a similar integral representation for the case where ¢ = 0.
The g-th dual curvature measure has the following explicit definition,

- 1

Gttt = [ oy (31)
aj(n

for each Borel set 7 C S"~!. There are also Steiner-type formulas associated with dual
curvature measures, similar to the Steiner formulas for area and curvature measures. See
[30] for details.

Huang-Lutwak-Yang-Zhang [30] posed the dual Minkowski problem: Given ¢ € R,
what are necessary and sufficient conditions on a given Borel measure p on S"~! so
that the measure is precisely the ¢-th dual curvature measure of some convex body in
R™. Since the unit balls of finite dimensional Banach spaces are origin-symmetric convex
bodies and the dual curvature measures of origin-symmetric convex bodies are even, it
is of great interest to study the even dual Minkowski problem.

The Even Dual Minkowski Problem. Given ¢ € R and an even Borel measure p on
S™=1 find necessary and sufficient conditions on u so that there exists a K € X such
that



When ¢ = 0, the even dual Minkowski problem is the even Aleksandrov problem,
whose solution was given by Aleksandrov. When ¢ = n, the even dual Minkowski prob-
lem is the even logarithmic Minkowski problem, whose solution was given by Boroczky-
Lutwak-Yang-Zhang [10].

The g-th subspace mass condition was discovered and defined independently in
[8] and [55]. In [8], it was shown that, when 1 < ¢ < n, is a necessary condition. In
[55], it was shown that, for ¢ =2,...,n — 1, (1.4) is also a sufficient condition.

It is the aim of this work to give a complete solution to the even dual Minkowski
problem for ¢ € (1,n). Specifically, we shall prove that, when 1 < ¢ < n, the ¢-th
subspace mass condition is both necessary and sufficient for the existence of a solution
to the even dual Minkowski problem.

We use the variational method to solve the even dual Minkowski problem. Here, for
completeness, we recall results from [30], but give a slightly different treatment.

The maximization problem whose Euler-Lagrange equation is ([1.1)) was formulated in
[30]. To derive the Euler-Lagrange equation for the maximization problem, the following
variational formula established in [30] is critical. If ¢ # 0, then

d ~
aWn,q([ho,f7 i)

. = q/sw1 f()dCy(lhol, v), (3.2)

for each hg € C*(S"71) and f € C(S™1). Here lho, f,1 is the logarithmic family of
Wulff shapes generated by hg and f, as defined in Section 2] The corresponding formula
when ¢ = 0 is also given in [30].

Let 1 be an even Borel measure on S"~! and ¢ # 0. Define the functional

¢, :CHS" ) —R

by . N
O,(f) = Eu(f) + PR Wa—q(If1), (3.3)

for f € CH(S"1). Observe that, since Wn,q is homogeneous of degree ¢, it follows

immediately from (2.7) and (2.17) that
Du(cf) = @ulf), (3-4)

for all real ¢ > 0.

Maximization Problem I. Given an even Borel measure p on S™ !, does there exist
an fo € C5(S"1) such that

sup{®,(f) : f € CT(S"™1)} = @u(fo)? (3-5)

Note that the set of support functions of convex bodies in K7 is a convex sub-cone of
CF(S™~1). If the functional ®, is restricted to this sub-cone and the support function
of a convex body is identified with the convex body, the functional ®, can be treated as
a functional on K7,

¢, K — R,
9



given by
1 —~
@,(K) = Bu(K) + log W), (3.6)

for K € X?. Thus,
®,(K)=,(hk). (3.7

Note that, from (2.15) and (2.19)), we see that, for fixed g # 0,
1
®,(B) = glogwn. (3.8)

This leads to the following variational problem.

Maximization Problem II. For real ¢ # 0, and a given even Borel measure y on S™ !,
does there exist a convex body Ky € X such that

sup{®,(K) : K € X"} = ®,(K0)? (3.9)

The following lemma shows that if we identify a convex body K with its support
function hg, then a solution to Maximization Problem II is a solution to Maximization
Problem 1.

Lemma 3.1. Suppose q is a nonzero real number and p is an even Borel measure on
Sn=L. If there exists Ko € X such that

®,(Ko) =sup{®,(K) : K € X}, (3.10)

then
B,u(hiey) = sup{®,(f) : f € CH(S" )}, (3.11)

Proof. Let f € CH(S™1). From (2.8) we know that [f] € X”. From (3.7) and (3.10)),

we have

D, (hic,) = @u(Ko) > @, (1f1).
From (2.5) and definition (2.16)), it immediately follows that

E,(If)) = E.(f). (3.12)
But and definition yield
B, (1) = B (1) + - 10g Wy (1)
> B (f) + élog Wo o (L)
=®,(f)

Hence, ®,,(hk,) > ®,(f), for all f € CFH(S"™1), as was desired. O

The next lemma shows that a solution to Maximization Problem I is a solution to
the even dual Minkowski problem.
10



Lemma 3.2. Suppose q is a nonzero real number and p is an even Borel measure on
Sn=L. If there exists Ko € X such that

(I)ll«(hKo) = Sup{q),u(f) : f € C:(Sn_l)}a
then there exists ¢ > 0 such that
Hn= éq(CK07 )

Proof. Since the (n — ¢)-th dual quermassintegral is homogeneous of degree g # 0, we
can choose ¢ > 0 so that

Wa—g(cKo) = ¢" Wy 4(Ko) =[] (3.13)
Since hex, = chg,, from , we have
D, (hery) = Ppulhi,) = sup{®,(f) : f € CH(S" 1)} (3.14)

Suppose g € C.(S™~1). Define h, € CF(S"~1) by

log hy = log hek, + tg. (3.15)
Now ([3.15)) and definition (2.16)) yield
1 1
E,(h) = —— log her, dp — t—/ gdpu. (3.16)
lul Jgn-1 lul Jgn-1

From (3.14) and (3.15), we know that,
(I)M(ho) = (I)u(tho) 2 (bu(ht)-

From this fact, together with (3.3)), the definition of ®,,, together with (3.15)), (3.2), and
(3.13)), it follows that

_d
Tt
:d(E (he) + S log W, ([h]))
dt JTARAS q 3 n—q t
d
dt

0 (I)u(ht)

t=0

t=0

(Emt) +Liog Wn_qacm,g,t])) 3

1 1 ~
= —m o g(v) d,u,(v) + m ‘/Sn_1 g(v) qu(CKo,’U)

n Sn-1

Since this holds for arbitrary g € C.(S™71), it follows that

1= CylcKo. ).

11



From Lemmas [3.2 and [3.I] we see that a solution to Maximization Problem II is a
solution to the even dual Minkowski problem. This is now stated formally in the following
lemma.

Lemma 3.3. Suppose q is a nonzero real number and p is an even Boreal measure on
Sn=L. If there exists Ko € X" such that

(I)H(KO) = Sup {(I’H(K) tK e X},
then there exists ¢ > 0 such that
1= Cy(cKo, -).

Therefore, to solve the even dual Minkowski problem, it suffices to solve Maximiza-
tion Problem II. Solving Maximization Problem II requires delicate estimates for the
functional F,, and the dual quermassintegral W,,_,, which will be dealt with in the next
two sections.

4. Estimates for the entropy functional E,,

In this section, we will estimate the functional £, under the assumption that u
satisfies the subspace mass inequality .

Let ¢ > 0 be a real number. Recall that an even Borel measure y on S"~! is said to
satisfy the g-th subspace mass inequality provided

. n—1 i h . <
ue@ns—) g w eni<g (4.1)
|| 1, when i > g,

for each proper i-dimensional subspace £(i) C R™. We assume, for the rest of this section,
that 1 < ¢ < n and p is an even Borel measure on S"~! that satisfies the g-th subspace

mass inequality .

The key technique for estimating F,, is to use an appropriate spherical partition. This
general approach was introduced in [10].

Let ej,...,e, be an orthonormal basis in R™. For each § € (0, in), define the

partition {€;5}7; of S"~! with respect to e, ...,en, by
Qis={vesS" " :|v-el>6and |v-e;] <4, for all j > i} (4.2)
For notational convenience, let
& =span{ey,...,e;}, i=1,...,n,

and & = {0}. It was shown in [10] that, for any Borel measure y on S"~ 1,

Sim, 1(Qis) = p((&\ &im) N S™1) (4.3)
and, therefore,
lim (M(Ql,é) + -+ N(Qi,é)) = ,LL(EZ n Snil). (44)

6—0+

We also will need the following elementary lemma.
12



Lemma 4.1. Suppose A1,..., A\, € [0,1] are such that
M+ + A =1
Suppose further that ay,...,a, € R are such that
a1 <az <o < agy.
Assume there exists 0g,01,...,0m € [0,00), with o9 =0, o, =1, such that
Mt N Loy, for i=1,....,m. (4.5)
Then . .
D a2 ) (o= o)
i=1 i=1
Proof. Let sp =0, and, fori =1,...,m,
Si =AM+ -+ A (4.6)

Observe that
i = 8; — Si_1, for i=1,...,m. (4.7)

From this and the facts that so = 0 and s,, = 1, we see that,

i Aia; = i(si —8i—1)a;
i=1 1=1
= Z 8, — Z SiGit1 (4.8)
i=1

= amy + Z si(ai — GJZ'_._l).

Note that o9 = 0, 8, = 0., = 1, and s; < o, when 1 < i < m — 1. Since
a1 < ag <+ < Gy, it follows from (4.6), , and the facts stated immediately above
that

Z)\azzam"‘za—z Q; az+1
=am + Z o0 — Zgi—lai
=1 1=2

m m

=D _oia Z Tio10;
i=1 i—1
m

= Z(Ui - 0171)%7
i=1

which is the desired conclusion. O
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The following lemma provides the key estimate for E,,.

Lemma 4.2. Suppose q € (1,n) and g9 > 0. Suppose further that (eyy,...,en), where
1 =1,2,..., is a sequence of ordered orthonormal bases of R™ converging to the ordered
orthonormal basis (e1,...,en), while (ayy,...,an) is a sequence of n-tuples satisfying,
for all l,

0<ay<ay < <ay and ap > €o-

For eachl =1,2,..., let
Qu={z eR":|z-ey*/aly + -+ |- eul?/ay < 1}

denote the ellipsoid generated by the (e, ...,en) and (ay,...,an). Let p be an even
Borel measure on S"~1 that satisfies the q-th subspace mass inequality

MGEOIaR ) < 3’ when i < q,
|l 1, wheni> g,

for each proper i-dimensional subspace (i). Then there exist to, do,lo > 0 and cq.eq 10,60
and Ce, 1,60, bOth independent of I, such that, for each | > ly,

log(ayi--ajg)  logajgiiig

E(Q) < +tologai; + ceg 0,60 4.9
W(@) 2 - lg) TRB ot (49)
when q € (1,n — 1), while
log(al’l : "anfl,l)
E#(Ql) < - +tologay + Cq,e0,t0,60 (4'10)

when ¢ € [n—1,n).

Proof. Fix q € (1,n).
For each 6 € (0,1/y/n), define the partition {; s} ; of S"~!, with respect to the
orthonormal basis ey, ..., e,, as in (4.2):

Qis={vesS" ' :|v-el>6and v e <4, for all j > i}

Let Q
Ny = H8is) (4.11)
|l
Note that
Ms+ -+ s =1 (4.12)
Letting & = span{ey,...,e;}, it follows from (4.4) and (4.1]) that
i N sn—1
lm (Ais+--+Nis) = penS"T) < min{i/q, 1}, (4.13)
=0+ |l
fori=1,2,...,n — 1. Since the inequality is strict, we may choose tg, dp > 0 such that
Mo+ F Aig, <min{i/q, 1} —to := 0y, (4.14)

14



fori=1,2,...,n— 1. Since lim;_,, e;; = ¢; for each ¢ = 1,...,n, we may choose [y > 0
such that 5
lei — el < 50, for each i =1,...,n, and each | > [o. (4.15)

We shall assume, for the rest of the proof, that it is always the case that [ > [y, so that

([4.15) always holds.

Suppose v € Q;5,. Since (e1,...,en) is orthonormal, it follows immediately from
the definition of (); that +a;e; € @ and, hence, hg,(v) > auley - v|. This, together
with the fact that v is a unit vector, the definition of €, 5,, and (4.15)), give

5
ha, () > aileq - v > ay (|ei - v| — |e; — ea]) > ailgo. (4.16)

From the definition of E,,, the fact that {€; s, }/"_; is a partition of S"~!, together with

(4.16), and finally (4.11]), we have

1 ]

W(Qr) < — Z?/ 5 (loga;; + log Eo)dy(v)
=1 1 0

(4.17)

1)
= —log 50 - Z Ai,so log ai,i-

i=1
Let 0g = 0 and let o,, = 1, and recall that
o; =min{i/q, 1} — to
fori=1,...,n—1. Observe that, when 1 < g <n —1,

1/g —tg, wheni=1,

1/q, when 1 <i < |q],
o;—0i-1 =< 1—|q]/q, wheni=|q]+1, (4.18)
0, when [¢] +1<i<mn,
to, when ¢ = n,
and, whenn — 1 < ¢ <n,
1/q — to, when ¢ = 1,
o, —0i—1 =14 1/q, when 1 <i<mn-—1, (4.19)

1—(n—1)/q+ty, wheni=n.

The fact that 0 < ay; < -+ < ayy, together with (4.12)) and (4.14)), shows that the
hypothesis of Lemma [£.1] is satisfied and thus, we have, for 1 < ¢ < n,

Z)\i,gologazl Z i — 0i—1)loga. (4.20)

15



When 1 < ¢ <n—1, from (4.20) together with (4.18)), we have

ZA’F‘SO loga;
= (4.21)
1 La] lq]
> (5 —to) log ay; + Z 7 loga; + (1 — 7) loga|g) 41,1+ tologan.
i=2
When n — 1 < ¢ < n, from (4.20) together with (4.19), we have
i 1 1 n—1
Z)\MO loga;; > (6 —tg)logay; + Z glog ay + (1 - T +to)logay,. (4.22)
i=1 i=2
When 1 < ¢ <n —1, combine (4.17)) and (4.21)) to get
5o 1 La]
E, Qi) < —log 5 (6 —tg)logay — Zglogail
i=2
Lq
—(1—=)loga 1.1 — tologan
q Lal+ (4.23)
) log(ay;---a
= —log 2 +tylogay — log(ay -~ ajqp)
2 q
log aq)+1,
— ———— —toglogay.
/(¢ lal)
When 1 < ¢ <n — 1, equation ([#.23) and the fact that a,; > ¢ give (&.9).
When n — 1 < g < n, combine (4.17) and (4.22)) to get
Eu(Ql)
n—1
S 1 1 n—1
< —10g5 — (5 —tg)logay — ; 5logail —(1- e + o) log an; (4.24)
0o log(ay ;- an-1;) log a,, ;
= —log — +tplogay — : s — : —tologay;.
2 q q/(g—n+1)
Again, the fact that a,; > &g together with (4.24) give (4.10). O

5. Estimates for dual quermassintegrals

Solving the even dual Minkowski problem when 1 < ¢ < n requires estimates for
dual quermassintegrals, which are in general difficult to establish. One indication of
this is that, when ¢ is an integer, the dual quermassintegrals involve lower dimensional
cross sections of a convex body and are defined using integration over Grassmannians, as
shown by . This is a new obstacle that is not present in the logarithmic Minkowski
problem. In [30] this was overcome by choosing a barrier convex body and bounding
the dual quermassintegral by using general spherical coordinates to decompose the dual
quermassintegral into a sum of integrals and estimating each integral separately.

When n — 1 < ¢ < n, we use a Cartesian product of an ellipsoid and a ball as the
barrier. The following lemma was proved in [55]. It also follows from Lemma [5.3| below.

16



Lemma 5.1. Suppose k € [1,n — 1] is an integer and k < ¢ < n. Let ey, - ,e, be an

orthonormal basis in R™, while ay,...,a; > 0, and define
2 2
T-e T-e
T:{xeR":'CL;'—i—“--l-' a2k| <1, |$-6k+1|2+'-~+|$~6n|2§1}.
1 k

Then there exists a cn 1,q > 0 such that

Wi—q(T) < Cnpgor---ak.

Although Lemma [5.1]is sufficient for solving the even dual Minkowski problem when
g € {1,2,...,n — 1} (see [55]) and when n — 1 < g < n, (see Lemma in Section
@, stronger estimates are needed for non-integer ¢ € (1,n — 1). This requires a more
careful choice of the barrier convex body and sufficiently sharp estimates for the dual
quermassintegrals of this body. The rest of this section will focus on deriving these
estimates. These estimates can be proved using the same approach used in proofs of
earlier results, such as Lemma but the calculations are quite complicated. Instead,
we show below how the estimate can be obtained more easily using what we call the
Gaussian integral trick.

For the rest of this section we always assume that the dimension n is at least 3.

The following lemma shows that the dual quermassintegral, defined in , can
also be written as a Gaussian integral.

Lemma 5.2. Given g < n,

/ pg(z)qe_lzl2 dz = co(n, Q)Wp_4(9),
where -
co(n,q) = n/ e~ pmatn—l dr,
0
for each star body S € 87.
Proof.

/ PS(Z)qe_IZPdZZ/ / ps(U)qe_Tzr_q"'"_ldrdu
n Sn—1J0

o0
2
— ps(u qdu/ e "t gy
/s"f1 (u) 0 (5.1)

1
olma) 5 [ pstuytn

= co(n, ¢) Win—q(5).

O

We begin with an upper bound for the dual quermassintegral of the Cartesian product
of two convex bodies.
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Lemma 5.3. If 1 <k < q <n, then, for each K € X and L € X%,

co(n, Q) Wy—q(KxL) =/ prL(z)qe_‘z‘2 dz <
z€ER™

g —co(n—k, q—k) Vi (K) W ().

Proof. From ({2.3) we know that

/ prxn(z)te I dz = / (min(p (), pr ()] e dzdy. (5.2)
z€R™

(z,y) ERF xR —F

We shall decompose the integral in as the sum of two integrals, I; and I, over
the sub-regions of (z,7) € R* x R"~* one being where the characteristic function
L pw(@)<pr(y)} 18 Positive and the other where 1, (2)>,. ()} 18 Positive.

Using the fact that the radial function is homogeneous of degree —1 and, in the end,

Lemma [5.2]

b= / / L )<y P (3) 71701 da dy
yGR"7k IER’“

—|yl? 2
:/ e vl (/ Lo (@) <pr () P () dw) dy
yERn—k 2ERF

2 o0
/ e ! (/ / ]l{PK(Te)SpL(ZI)}pK(Te)qu_ldrdg) dy
yeRn—k Sk—1J0o

2 oo
/ e (/ pK(G)q/ Lok 0)/prt)<r} quld’"d") dy
yeRn—k Sk—1 0
:/ eIl / pK(G)q/ rE=1=9dr dp | dy
yERn—F Sk—1 PK(6)

rr (v)

1 .
:fk/ pr(y)Fe Y dy/ pic (0)* do
q yeRn—k Skil

k ~ (e
= geln =k = W Vi(K) WD (L),

IN

On the other hand, using the fact that the radial function is homogeneous of degree —1
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and, in the end, Lemma[5.2]
22— lyl?
122/ / Lipsc@y>pn vy pL ) e da dy
yeRn—k JxecRF

_ 2
g/ pr(y)le vl / Lipx@)>pr(y)} dr dy
yERn—k zERFK

=/ pr(y)te V! / / L (r)>pr ()" dr d dy
yeRn—k S’k—l O

PK (9)

(y)
:/ pL(y)qef‘yF/ /pL "= dr df dy
yeRn—k Sk—1Jo

o [ (28

1 2
— [ ety [ oo as
yeRn—k Sk—1

= co(n —k,q — k) Vi () W F(L).

O

We now state and prove the estimate needed for the proof to the main theorem. It is,
however, convenient to introduce some notation first. Given a = (ay,...,aq) € (0,00)4,
let E4la] denote the origin-centered d-dimensional ellipsoid

Egla] = {(z1/a1)” + - + (wa/aq)” < 1}
and, given a real w > 0, let I[w] denote the origin-centered line segment [—w, w].

Lemma 5.4. If k is an integer such that 1 < k < ¢ < k+ 1 < n, then there exists
C(n,k,q) > 0 such that, for all a = (a1,...,ax) € (0,00)*¥ and 0 < b < 1,

Wi—o(Exla) x I[b] x B"*=1) < C(n, k, q)aras - - - arb?".
Proof. For simplicity we denote E = Ey[a], I = I[b], and B = B"¥~1. Recall that
Vk(E) = wgay - ag.

From Lemma we know there exists a ¢/(n, k, ¢) > 0 such that

Wog(E x I x B) < ¢(n, k,q)Vi(E) / e dy

Rn—k

_ 2
:C/(nak;q)(ﬂ%a1~~.ak/ p?xké(y)e [yl dy

Rn—k

It therefore suffices to prove that there exists a constant ¢(n, k, ¢) > 0 such that

/ ple(y)q*ke*“’l2 dy < ¢(n, k,q)bq*k. (5.3)
]Rnfk
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Recall that

pr(t) = |ZZ| and pp(x) = é (5.4)

We shall decompose the integral in as the sum of two integrals, I; and I,
over the sub-regions of (¢,z) € R x R" %=1 one being where the characteristic function
L4, (t)<ps(2)y 18 positive and the other where 1, (1>, (2)} 1S positive.

From , we see that, for real t # 0, real > 0, and # € S"¥~2, we have

Lipiwy<pnro)y = Liv/iti<pn (o)} = Lije>ro}-
Thus, from ([2.3), while keeping in mind that -1 < k—¢<0and -1 <n —k — 2,

Il = // ]l{pl(t)<p3(l“)}p](t)qik67t2*|x|2 e dt
R JRn—k—1

o0 oo 2 9
:/ /0 /s L Mo pr ()T T2 dg dr

o0 o0 5 )
= 2bq_k/ d9/ / th=ae=t pn=k=2c=""q¢ dr
Sn—k—2 0 rb

< 2bq_k(n —k— 1)wn,k,1/ th=ae=t" g / k2= gy
0 0

Similarly, from (5.4]), we see that, for real t # 0, real » > 0, and 6 € S *=2 we have

Lpr2pnrory = Liosiz1/ry = Lijgi<rny-
Thus, from ({2.3]), while keeping in mind that 0 < ¢—k <1land 0 < b <1,

.[2 = / / ﬂ{pl(t)ZpB(ﬂf)}pB(x)q_ke_t2—|z‘2 de dt
R JRn—k—1

/ / / Lo )2 5005 (r0) " Frm K =2e 210 dg dr d
- 0 Sn—k—2 =
Ay

oo
/ / ]1{|t‘grb}’r‘n_q_2€_t2_r2 df dr dt
_ 0 S 2
[eS) rb
:/ d9/ pn—i-2g=1" / e dt | dr
Sn—k—2 0 —rb

g/ d@/ P42~ Obr dy
Sn—k—2 0

o0
< 2bq_k(n —k—1Dwp—k-1 / rn=a=Lle="’ g
0

[
88

3
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6. Solutions to the dual Minkowski problem

In this section we present the solution to Maximization Problem II and thus, via
Lemma [3.3] solve the even dual Minkowski problem for 1 < ¢ < n. The solution for
n —1 < g < n relies on Lemmas and while the solution for 1 < ¢ < n — 1 uses
Lemmas 2] and .4

The following lemma gives a positive answer to Maximum Problem II.

Lemma 6.1. Let u be an even Borel measure on S~ ! and 1 < q < n. If ju satisfies the
q-th subspace mass inequality, then there exists K' € X" such that

B, (K') = sup{®,(K) : K € K"}. (6.1)

Proof. Let {K;} be a maximizing sequence; i.e., K; € X" and
1
lim ®,(K;) =sup{®,(K): K € X[} > ®,(B) = — logwy,.
=00 q

Since @, is homogeneous of degree 0, we may assume that each K; has diameter 1.
By Blaschke’s selection theorem, there is a subsequence that converges to an origin-
symmetric compact convex set Ky. The continuity of ®,, with respect to the Hausdorff
metric shows that if Ky has nonempty interior, then K’ = K satisfies , establishing
the lemma. To prove that Ky has nonempty interior, we argue by contradiction and
assume that K is contained in some proper subspace of R".

For each K;, we let Q; to be the John ellipsoid associated with Kj; i.e., Q; is the
ellipsoid of largest volume that’s contained in K;. We choose an orthonormal basis
€1, - .., en and real numbers 0 < ay; < ag < -+ - < a,y < 1 such that

Q={reR":|z-ey|®/af, +  +|z-eul’ /a2, <1}
John’s theorem (see, e.g., Schneider [47]) tells us that, since K is origin symmetric,

QC K, C \/EQZ (6.2)

Since the diameter of K is 1, the diameter of \/nQ); is greater than 1. But the diameter
of Q; is 2ay;, and, therefore, a,; > ﬁ By taking subsequences, we may assume that the
sequence of orthonormal bases {eyy, ..., e, } and the sequences {ay;}, ..., {an} converge.
Since K| is contained in some proper subspace of R", there must exist an integer k,
where 1 < k < n —1, such that, as |l — 00, a;; = 0 for 1 < i < k, and a;; — a; > 0 for
k+1<i<n.

We first consider the case of n — 1 < ¢ < n. From and Lemma we conclude
that there exist tg, dg, lp > 0 such that, for all [ > Iy,

1
E,u(Kl) S E[L(Ql) S _5 log(all e anfl,l) + tO IOg ai + Cn,q,t0,60~ (63)

Define the ellipsoidal cylinder,

2 . 2
T, = wERnZM‘F""FWSland|l"enl|§1 .
ay; A1,
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Since a,; < 1, we have

K; C \/’EQZ - \/ﬁTl (6.4)
Since tg > 0, one can choose gy so that ¢ < go < n and
1 1
n—1)——-)+1t >0. 6.5
S o

By ([2.14)), the monotonicity of L, norms with the fact that ¢y > ¢, (6.4), the homogeneity
of a dual quermassintegral, and Lemma [5.1] we have

1 —~ 1 a 1
—log W, —q(K;) = log </ pr, (u)? du> + —logwy,
q Sn—1 q

NWy,

1
1 w0 ]
< IOg (nw / L PK, (u)qo du) i + glogwn
n JSn—

1
1 w 1
<log </s PV (u)® du) "y alogwn

NWy,

(6.6)

1 o~
= log Wi, g (T1) + ¢n,q,90

1
< ™ log(ais---an-1,1) + Cn,q,q-
0

From (3.6)), (6.3)), , the fact that gy > ¢, together with a;; < --- < ap,—1,; and
(6.5), now imply that

1 —~
q)u(Kl) = EM(KI) + glog Wn_q(Kl)

1 1
< (q - q) log(a; -+ an—1,1) + tolog ai; + cn,q,q0,t0,0
0

1 1
S ((n — ].) < - q> + tO) logall + Cn,q,qo,t0,50

q0
— —00,

as | — o0o. The last step follows since a1; — 0. But

l—o0

1
—oo0 = lim ®,(K;) = ®,(Ky) > ®,(B) = —logw,
q

is the contradiction that shows that our assumption that K is contained in some proper
subspace of R™ is impossible.

Next, we consider the case when 1 < ¢ < n — 1. If n = 2, there is nothing to show.
We therefore consider only the case where n > 3.

From and Lemma we see that there exists tg, dg,lo > 0 such that, for each
I > 1y, we have

log(ay---ajg)  logagjyi
q q/(a = lq])
22

Eu(Kl) < E,u,(Ql) < + to IOg ay; + Cn,to,80- (67)



Since to > 0, there exists go € (¢,n — 1) sufficiently close to ¢ so that go is a non-integer
satisfying |qo| = |¢] and

(n—2) <1 - ;) +0> 0. (6.8)
Let k¢ be the integer so that gy — 1 < kg < qo, that is,
o = Lao) = La). (6.9)
Let E; be the ellipsoid defined by
Ey={zeRF |z ey|®/al, + - + |z exul*/ai, < 1},
where R0 is the span of ey, ... s €kol- Let I be the segment defined by
I = [—Qky+1,1€k0+1,1, Qho+1,1€ko+1,1]-
Let B; be the ball defined by
B, = {a: e R ko1 . €k0+2,1|2 + 4z enl|2 < 1},
where R"%0—1 ig the span of exy42.7,...,€n. Let
G, =E; x I} x By.
Note that since a1; < -+ < an; < 1, we have Q; C G;. By ,
K; c v/nQ; C v/nGi. (6.10)

Note that 1 < kg < n — 2. By (2.14), the monotonicity of L, norms with the fact that
qo > ¢, (6.10)), the homogeneity of dual quermassintegral, Lemma and ,

1
1 -~ a 1
—log Wn—q(Kl) = log ( / PK, (u)q du) + — logwy,
q gn-1 q

Wy,
1
1 o 1
< log pr, (W) du + —logw,
nwy, Jgn-1 q
<log [ / (@ du)” + 11
o u)® du —logwy,
=8 o S PG Fiat (6.11)

1 —~
= log Wy, 40 (G1) + €ng.q0

qo — ko

1
< ™ log(ay; - - - ag,) + log aky+1,0 + € ko,q.q0

q0

1 q — g
= —log(ay; - -- anJ,l) + L] loga|q+1,0+ Cnqq0-
qo qo
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From (6.7), (6.11]), the fact that ¢ < go < n — 1, the fact that 0 < ay; < -+ < ay < 1,
and (6.8)), we conclude that, when [ > [y,

1 —~
(I),u(Kl) = E#(Kl) + glog Wn,q(Kl)

1 1 1 1

< qT) - 5 log(ai -+~ ajq) ) + la] 5 - qio loga|g)4+1,0 +tologai + cns.to.q.90
1 1

< i log(a1 -+~ ajqy1) + tologai + cn.s0,t0.q,00
0

1 1
< lq ( - ) logay +tologai + ¢n.s50.t0,q.00
9 g
1 1
S (TL - 2) (* - 7) + tO log ay + Cn.,80,t0,9,90
G g
— —00,
as [ — oo, where the last step uses the fact that lim; ..o a;; = 0. As before, this
contradicts the assumption that K is contained in some proper subspace of R", thereby
establishing the lemma. O

Lemma together with Lemma [3.3| gives a complete solution to the even dual
Minkowski problem for 1 < ¢ < n. When this is combined with the solution of the even
dual Minkowski problem for ¢ € (0, 1], given in [30], the result is:

Theorem 6.2. If0 < g <n and u is an even Borel measure on S then there exists
K € X2 such that p = Cy(K,-) if and only if i satisfies the g-th subspace mass inequality

)

The necessary condition of Theorem m when 1 < ¢ < n, was proved in [§], and the
sufficient condition of Theorem when ¢ € {2,...,n — 1}, was established in [55].
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