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Abstract

Epithelial-to-mesenchymal transition (EMT) is a fundamental cellular process and plays an

essential role in development, tissue regeneration, and cancer metastasis. Interestingly,

EMT is not a binary process but instead proceeds with multiple partial intermediate states.

However, the functions of these intermediate states are not fully understood. Here, we focus

on a general question about how the number of partial EMT states affects cell transforma-

tion. First, by fitting a hidden Markov model of EMT with experimental data, we propose a

statistical mechanism for EMT in which many unobservable microstates may exist within

one of the observable macrostates. Furthermore, we find that increasing the number of

intermediate states can accelerate the EMT process and that adding parallel paths or transi-

tion layers may accelerate the process even further. Last, a stabilized intermediate state

traps cells in one partial EMT state. This work advances our understanding of the dynamics

and functions of EMT plasticity during cancer metastasis.

Author summary

Epithelial-mesenchymal transition (EMT) is a basic biological process, in which epithelial

cells undergo multiple biochemical changes, lose cell-cell junctions and polarization, and

become a mesenchymal phenotype with migratory and invasive properties. Recent studies

have illustrated the existence and importance of the partial EMT states. It has become

increasingly apparent that the EMT has strong differentiation plasticity. This plasticity is

heavily implicated in cancer cell invasion and metastasis. However, it is still unclear how

the number of intermediate states changes the EMT process. Here, we use a hidden Mar-

kov model to describe the EMT process. By fitting with the experimental data, we find

that unobservable microstates exist within the observable macrostates: epithelial, partial

EMT, and mesenchymal. Additionally, we find that increasing the number of states

between the start and end of EMT or including alternative transition avenues via parallel

paths or transition layers can accelerate the EMT process. This study suggests a non-trivial

function of the EMT plasticity during cancer metastasis.
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Introduction

Epithelial-to-mesenchymal transition (EMT) is a fundamental cellular process in which polar-

ized epithelial cells lose various cell-cell junctions and adhesion and gain migratory and inva-

sive properties to become mesenchymal cells [1, 2]. EMT is very important in embryonic

development, tumorigenesis, metastasis, tumor stemness, and therapy resistance [3, 4].

Remarkably, EMT is not a binary process but instead proceeds with multiple partial intermedi-

ate states, collectively known as partial or hybrid EMT states [3, 5–11]. The partial EMT state

retains some characteristics of epithelium but also shows features of mesenchymal cells [12–

14]. One partial EMT state was predicted through mathematical modeling of the EMT core

regulatory network and was verified with quantitative experiments by our previous works [5,

6]. Thereafter, many different partial EMT states were proposed [8, 9, 15–17]. More and more

experimental data shows a different number of partial EMT states in various cancer cell lines

[18–23]. Recently, several partial EMT phenotypes were found during cancer metastasis in
vivo in a skin cancer mouse model [24, 25] and prostate cancer [26]. While many partial EMT

states have been found, their functions are still not fully understood during cancer metastasis

[4, 27–29].

Currently, the function of partial EMT states has being studied in the context of coupling

with other cellular processes. For example, acquisition of stem-like properties dictates its cou-

pling with cancer stemness [11, 30–34], circulating tumor cells (CTCs) [35, 36], and drug resis-

tance [37]. Thus, the partial EMT cells hold the highest metastatic potential. Instead of full

EMT, partial EMT is found to be critical for renal fibrosis [38–40]. There are many potential

couplings of partial EMT and other biological processes, such as cell cycle [40], renal fibrosis

[41] and metabolisms [42]. The cross-talk among the regulators of EMT and other cellular pro-

cesses guides the coupling mechanism and full functional characteristics of partial EMT states.

While it is important to investigate specific functions of each partial EMT state in the con-

text of additional cellular processes, an interesting question about the general function is

whether the number of partial EMT states affect the transition itself. Given that different cell

lines may have different partial EMT states, epithelial cells in different systems may also

undergo different steps to become mesenchymal cells. Here, we use a general hidden Markov

model to describe cell fate transitions during the EMT process. Our analysis makes several

non-intuitive predictions. First, several microstates exist within one macrostate, which makes

EMT a non-Markov process. Second, increasing the number of intermediate states can acceler-

ate the EMT process. Third, transition in parallel and layer modes can further accelerate the

process. Lastly, the existence of a stabilized intermediate state traps cells within their current

phenotype. We conclude with discussions on how the dynamics and functions of EMT plastic-

ity are controlled by the number of states during cancer metastasis.

Materials and methods

Transition rate and energy barrier

In this work, we assume that the total energy barrier one epithelial cell has to cross to transition

to the mesenchymal state is ΔE. If there is no intermediate state, then following the Arrhenius

equation, the transition rate of EMT is k ¼ k0e�DE=kBT , where the value of k0 is a pre-exponential

factor, which determines the time scale of the system. For simplicity, we define the energy unit

as kBT, thus we can simplify the equation to k = k0e−ΔE. Suppose there are Nint intermediate

states between the epithelial and mesenchymal states and that the energy is divided into

Nint + 1 steps; the transition rate for step i is ki ¼ k0e�dEi where δEi is the energy barrier for this

step and ∑δEi = ΔE. We considered two scenarios:
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1. The energy is divided evenly into all the steps, and thus the transition rate for each step is

same: ki ¼ k0e�DE=ðNintþ1Þ.

2. There is one stabilized intermediate state where the energy barrier is δEs = mδEi. We con-

sidered case one: dEs þ
P

i6¼s dEi ¼ DE. The transition rate is ki ¼ k0e
�DE 1

ðNint þ mÞ for the tran-

sition from the regular intermediate states, and ks ¼ k0e
�DE m

ðNint þ mÞ for the transition from

the stabilized intermediate state, or case two: the transition rate is ki ¼ k0e
�DE 1

ðNint þ 1Þ for the

transition from the regular intermediate states (same as scenario 1), and ks ¼ k0e
�DE m

ðNint þ 1Þ

for the transition from the stabilized intermediate state.

Estimation of k0 and the energy barrier ΔE
The total energy barrier from epithelial to mesenchymal, ΔE and k0, were estimated by the fol-

lowing equations:

kfit ¼ k0e�DE=ðNfitþ1Þ

where Nfit = 9 is the number of intermediate states and the transition rate kfit = 3.4261 is from

the best fitting of the experimental data. For each ΔE, we can calculate k0 and the transition

rates for all cases.

Parameter fitting

Based on one intermediate state and an irreversible EMT process. First, we considered

one intermediate state in the model to fit the parameters. We assumed EMT to be an irrevers-

ible process under high dose of inducer TGF-β. ~pðtÞ ¼ ½pEðtÞ; pPðtÞ; pMðtÞ� is the vector that

represents the probability of a cell belonging in each state during the process of EMT. Thus,

the equation governing the dynamics of~p is

d
dt
~p ¼

�k1 0 0

k1 �k2 0

0 k2 0

2

6
6
6
4

3

7
7
7
5
~p

where k1 is the transition rate from the epithelial state to the pEMT state, and k2 is the transi-

tion rate from the pEMT state to the mesenchymal state.

The equations are solved and the solution is:

pEðtÞ ¼ e�k1t;

pPðtÞ ¼
k1

k2 � k1

e�k1t �
k1

k2 � k1

e�k2t;

pMðtÞ ¼ 1�
k2

k2 � k1

e�k1t þ
k1

k2 � k1

e�k2t:

Based on a flexible number of intermediate states and an irreversible EMT process.

The above model does not accurately describe the experimental data. Thus, we extended the

model by considering Nint + 1 microstates; this is based on an assumption that each

PLOS COMPUTATIONAL BIOLOGY Accelerating function of intermediate states in cancer metastasis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007682 March 10, 2020 3 / 22

https://doi.org/10.1371/journal.pcbi.1007682


macrostate, including the epithelial state and pEMT state, consist of multiple microstates. Sup-

pose that EMT is an irreversible process where the cells transition independently from one

microstate to the next at the same rate k. Based on the assumption that the ΔE is evenly divided

into these steps, the following equations can be used to represent the dynamics of the probabil-

ity of the microstates:

d
dt
~p ¼

�k 0 0 . . . 0 0 0

k �k 0 . . . 0 0 0

..

. ..
. ..

. . .
. ..

. ..
. ..

.

0 0 0 . . . k �k 0

0 0 0 . . . 0 k 0

2

6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
5

~p:

The solution of this equation is:

pnðtÞ ¼
1

ðn� 1Þ!
e�ktkn�1tn�1; ð1 � n � Nint þ 1Þ;

pMðtÞ ¼ 1�
XNintþ1

n¼1

pnðtÞ:

Based on a flexible number of intermediate states and a reversible EMT process. EMT

has some probability to be reversible even under high dose of inducer TGF-β, which may result

from the noise in the cell or other stochasticity. We also considered a case where the EMT pro-

cess is reversible with the cells transitioning independently between one microstate and the

next at the forward rate k1 and backward rate k−1. The following equations can be used to rep-

resent the dynamics of the probability of the microstates:

d
dt
~p ¼

�k1 k�1 0 . . . 0 0 0

k1 �k�1 � k1 k�1 . . . 0 0 0

..

. ..
. ..

. . .
. ..

. ..
. ..

.

0 0 0 . . . k1 �k1 � k�1 k�1

0 0 0 . . . 0 k1 �k�1

2

6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
5

~p:

First arrival time

The first arrival time (FAT) distribution is used to quantify the time cells take to be transi-

tioned into the mesenchymal state or stabilized state in various scenarios. The FAT distribu-

tion is fMðtÞ¼ d
dt pMðtÞwith normalization (

R1
0
fMdt ¼ 1).

PLOS COMPUTATIONAL BIOLOGY Accelerating function of intermediate states in cancer metastasis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007682 March 10, 2020 4 / 22

https://doi.org/10.1371/journal.pcbi.1007682


For the one-path scenario. When there is a total of Nint intermediate states, the probabil-

ity of a cell being in the n-th intermediate state is given by:

pnðtÞ ¼
1

ðn� 1Þ!
e�ktkn�1tn�1; ð1 � n � Nint þ 1Þ;

fMðtÞ ¼
1

Nint!
e�ktkNintþ1tNint :

The corresponding mean first arrival time (MFAT) to the mesenchymal state is

hfMi ¼
Z 1

0

ðfM � tÞdt ¼
Nint þ 1

k
¼

Nint þ 1

k0e�DE=ðNintþ1Þ

which indicates that the MFAT non-linearly depends on Nint.

For the parallel path scenario. The probability of a cell in the ni-th intermediate state of

the i-th path is given by:

pniðtÞ ¼
knii

ðki � kAÞ
ni � e�kAt � e�kit

Xni�1

j¼0

ððki � kAÞtÞ
j

j!

� � !

:

The FAT distribution is given by:

fMðtÞ ¼
dpM
dt
¼
XNpth

i¼1

kipNi
;

where Npth is the number of paths and Ni is the number of intermediate states in the i-th path.

The MFAT to the mesenchymal state is

P ki þ Ni � kA
k2
A

;

where kA = ∑ki and ki is transition rate in the i-th path.

For the layered scenario. The probability of a cell in the i-th layer is given by:

pLiðtÞ ¼ NL1 �
e�NL1kt

ð1� NL1Þ
i � e�kt

Xi

j¼1

ðktÞi�j

ði� jÞ!ð1� NL1Þ
j

 !

;

and the FAT distribution is given by:

fMðtÞ ¼ NL1 � k �
e�NL1kt

ð1� NL1Þ
Nly
� e�kt

XNly

j¼1

ðktÞNly�j

ðNly � jÞ!ð1� NL1Þ
j

 !

;

and the MFAT to the mesenchymal state is given by:

Nly þ 1=NL1

k
;

where NL1 is the number of states in the first layer, Nly is the number of layers, and k is the tran-

sition rate from one intermediate state to the next (the same for all steps in the layered case).
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The cases with one stabilized state

For any case that has one stabilized state at S, such that 1< S< Nint + 1, the probability of a

cell in each state goes as follows:

PEðtÞ ¼ e�k1t

P1 ¼ k1te�k1t

..

.

PS�1 ¼
kS�1

1

ðS� 1Þ!
tS�1e�k1t

PS ¼
kS

1

ðk1 � k2Þ
S e
�k2t �

XS

i¼1

kS
1
ti�1

ðk1 � k2Þ
Sþ1�i
ði� 1Þ!

e�k1t

PSþ1 ¼
kSþ1

1
k2

ðk1 � k2Þ
Sþ1

e�k2t �
XSþ1

i¼1

kSþ1
1

k2ti�1

ðk1 � k2Þ
Sþ2�i
ði� 1Þ!

e�k1t

..

.

PN ¼
kN

1
k2

ðk1 � k2Þ
N e
�k2t �

XN

i¼1

kN
1
k2ti�1

ðk1 � k2Þ
Nþ1�i
ði� 1Þ!

e�k1t

PMðtÞ ¼ 1�
XN

i¼1

PPi
ðtÞ

 !

� PEðtÞ:

Here, k1 denotes the transition rate from the non-stabilized state and k2 the transition from the

stabilized intermediate state. In order for the state to be stabilized as described, it must be true

that k2 < k1.

The MFAT to the stabilized state. The MFAT to the stabilized state is

Sþ 1

k1

:

Thus, the acceleration effect of increasing the number of intermediate states or adding

paths or layers also applies to the stabilized state.

Mean dwelling time. The mean dwelling time distribution is used to quantify the time

cells spend within the stabilized intermediate state for various cases. The ODE of the probabil-

ity of cells in the stabilized intermediate state is

P0S ¼ k1PS�1 � k2PS

where k1PS−1 represents the transition into the stabilized state and k2PS represents the transi-

tion out. The mean dwelling time (DS(t)) is defined as the average time that cells spend within

this intermediate state, which only depends on k2. DS(t) is as follows:

DSðtÞ ¼
R1

0
te�k2t

R1
0
e�k2t

dt ¼
1

k2

:

Stochastic model

To simulate the stochasticity of the cell state transitions during EMT at the single-cell level, we

also developed a stochastic model using the Gillespie algorithm.
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1. Define the system according to the cell state transitions during EMT, using the following

matrices: S is the cell state the transition comes from, P is the cell state that the transition is

to, and vector K denotes the transition rates. For example, for the system with only one

path and Nint intermediate states, S and P have Nint + 2 columns and Nint + 1 rows while K
has one column and Nint + 1 rows, with the pattern:

S ¼

1 0 0 . . . 0 0

0 1 0 . . . 0 0

..

. ..
. ..

. ..
. ..

. ..
.

0 0 0 . . . 1 0

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

; P ¼

0 1 0 . . . 0 0

0 0 1 . . . 0 0

..

. ..
. ..

. ..
. ..

. ..
.

0 0 0 . . . 0 1

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

; K ¼

k

k

..

.

k

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

:

2. Initialize the system with time t0 and cell state x0 = [1; 0; . . .; 0] as one column vector.

3. Determine the rate of each cell transition: a = Sx0K, and a0 = ∑a.

4. Generate two uniformly distributed random numbers, rn1 and rn2, between [0 1].

5. Determine the time it takes for the cell state transition: dt = ln(1/rn1)/a0,

6. Determine the step in which the cell state transition occurs, r, which satisfies:
Pi¼r�1

i¼1
aðiÞ < rn2 � a0 <

Pi¼r
i¼1

aðiÞ.

7. Update the system: x0 = x0 − S(r, :) + P(r, :) and t = t + dt.

8. Repeat step 3–7 until t is more than the maximum time, Tmax.

Results

EMT is a non-Markov process

Consistent with theoretical prediction [5], three steady states were found in TGF-β induced

EMT in the MCF10A cell line with quantitative measurements of E-cadherin and Vimentin at

the single cell level [6]. That is, EMT progresses through three functional cell states in this cell

line: from the initial epithelial state to the partial EMT state, where cells lose some of the cell-

cell adhesion, and then to the full mesenchymal state (Fig 1A). As shown in Fig 1B (left), this

system can be represented with a metaphorical three-well landscape in one dimension along

the mesenchymal marker (M-Marker) axis. Each well represents a stable or metastable cell

phenotype during the EMT process and the transitions among them are indicated with arrows.

With high concentration of TGF-β, the cell will be driven from the epithelial state (the first

well) to the mesenchymal state (last well) through the partial EMT state (middle well), indi-

cated by solid arrows. It is noted that the energy barrier for the forward transition is much

smaller than the energy barrier for the reverse transition of each step at high concentration

of TGF-β. Thus, the forward transition rate (Fig 1B, solid arrows) is much larger than the

reverse transition rate (Fig 1B, dash arrows). The dynamics of the M-Marker (measured by the

Vimentin protein) at the single cell level shows two steps with cells staying in the intermediate

state temporally (Fig 1B, right) [5]. The underlying mechanism is that during EMT the pheno-

type changes of one cell are controlled by complex genetic regulatory networks and stepwise

activation of multiple feedback loops, as demonstrated by Ref. [5, 6].

Due to the cell-cell variability, the cells do not synchronize the transition through these

states but make the transitions in a stochastic manner. However, the fraction of cells in each
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state shows deterministic dynamics, as seen in the quantified experimental data (Fig 1C) from

Ref. [6]. To better understand EMT at the population level, we first build a simple model by

assuming that cells are initially held in the epithelial state and will be driven by a high dose of

TGF-β, as used in the experiments, to the partial EMT state before ending in the mesenchymal

Fig 1. EMT is a non-Markov process. (A) Cell phenotype transitions among epithelial, partial EMT, and mesenchymal states during EMT. (B)

Metaphorical three-well landscape in one dimension along the mesenchymal marker (M-Marker) axis shows the cell phenotype transition during EMT.

Full arrows show the order of EMT while dashed arrows show reverse process, mesenchymal-to-epithelial transition (MET). (C) Three-state Markov

model for EMT (top). Best fit of the three-state model to previous experimental data from Ref. [6] on temporal changes of the percentage of cells in

three states during EMT with k1 = 0.6657, k2 = 0.4908, and RMSE = 13.9 (bottom). (D) An extended model with NE epithelial microstates (blue circles)

and NP partial EMT microstates (green circles). (E) The fitting score, root mean squared error (RMSE), with the extended model in the space of NE and

NP. The best fit is at NE = 5 and NP = 5 (white square, RMSE = 2.55, k = 3.4261). (F) The dynamics of cells in three macrostates during EMT with the

best-fitted extended model overlaid with experimental data. (G) Stochastic simulation shows the state transition of 100 simulated cells over time. (H)

Probability of cells in each microstate at several time points. 10,000 simulated cells with a stochastic model (see Materials and methods for details) are

sampled to calculate the probability.

https://doi.org/10.1371/journal.pcbi.1007682.g001
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state, all with constant average rates (k1 and k2) (Fig 1C, top). We fit this simple model with the

experimental data and find that the model does not describe the data with strong accuracy (Fig

1C, bottom). An inaccurate fitting was also found using a two-state model without any partial

EMT states (S1 Fig, panel A). With three-state or two-state models, the transition from the par-

tial EMT state to the mesenchymal state shows a quicker dynamic than the observed data.

Thus, three-state or two-state models are not a good representation of the EMT process at the

population level, and the cells still pass through other intermediate states temporarily before

reaching the final mesenchymal state, which is the only attractor at high concentration of

TGF-β.

To find out the underlying mechanism for the observed dynamics, we extend the simple

model by adding several microstates for each cell macrostate (Fig 1D) by assuming that some

unmeasured variables can further distinguish the epithelial state and partial EMT state into

several microstates, with the epithelial and partial EMT states being the macrostates used in

describing the overall EMT process. While we do not know the actual number of the epithelial

and partial EMT microstates (NE and NP, respectively), a fitting of the extended model is done

with all the combinations of NE and NP (Fig 1E) by assuming an equal transition rate from one

state to the following state (k). According to the fitting score (root mean squared error), the

best fit is located when NE = 5 and NP = 5 (white square in Fig 1E). The best fitting displayed

in Fig 1F shows the optimal conditions in which our model reproduces the EMT dynamics at

the population level with better accuracy than that of the assumption of only one microstate in

both the epithelial and partial EMT states. It is noted that the three macrostates used in our

description are defined by E-Cadherin and Vimentin singe-cell data in Ref. [6], not including

other makers. In general, the macrostates are defined by the corresponding steady states

observed in the experiment with the defined markers. This implies that the number of macro-

states observed may differ depending on the markers used. Four macrostates were defined

based on additional makers such as Ovol2 [9]. Here, we limited the fitting of the Markov

model to the temporal dynamics of the three macrostates as defined in Ref. [6]. Currently,

there is no experimental evidence for the existence of nine intermediate states in this cell line,

suggesting the existence of microstates during EMT. These results suggest that EMT is a non-

Markov process with many hidden epithelial microstates and partial EMT microstates, which

could further be distinguished by measuring other variables in the system.

This conclusion is further confirmed with a stochastic model to demonstrate the evolution

of cell transitions in these microstates (see Materials and methods for more details). Fig 1G

shows 100 typical simulated stochastic trajectories of cells to complete the EMT process. With

all cells beginning in the epithelial state, prominent cell-to-cell variation is shown in the time it

takes a cell to convert to different microstates, indicating unsynchronized transition at the sin-

gle cell level. At the population level, the statistic results with 10,000 simulated cells show the

dynamics of the distribution of cells in the microstates (Fig 1H). Few reach the mesenchymal

state (red bar) by day two. However, most cells will reach the final EMT state by day four. This

is also consistent with the experimental data [6] (S1 Fig, panel B). Furthermore, fitting the

experimental data with a model by considering the reversible state transitions suggests more

microstates (S2 Fig, panel A). Taken together, our analysis based on fitting a general Markov

model with the experimental data suggests that EMT is a non-Markov process, where several

microstates exist within the epithelial and partial EMT states.

Increasing the number of intermediate states can accelerate EMT

Our analysis with a Markov model for EMT at the population level based on the experimental

data of MCF10A cells suggests that multiple microstates exist in each macrostate during the
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EMT process. However, the number of microstates and macrostates can be cell-type specific.

Different numbers of observable steady states have been found during EMT and cancer metas-

tasis [9, 15–23], which leads us to wonder how the number of micro- and macro-states affects

the EMT dynamics and cancer metastasis. For this reason, we now consider all states between

the initial epithelial and final mesenchymal as “intermediate” states in order to generalize our

results and allow for application into cancer cell lines. To compare the systems with different

numbers of intermediate states, we made one assumption: the total energy barrier for the full

transition from epithelial (E) to mesenchymal (M) is the same despite the total number of

states needed to complete EMT. As shown in Fig 2A (left), if the energy barrier from E to M is

ΔE without any intermediate states (blue curve), adding one additional state makes the transi-

tion two steps and the barrier becomes ΔE/2 (red curve) for each step. Similarly, the barrier is

ΔE/3 for each step if two intermediate states are considered (Fig 2A, right, red curve). This

assumption comes from the hypothesized monotonical energy gradient based on epigenetic

changes between different EMT states [43] and existence of ‘checkpoints’ in the EMT contin-

uum [44]. This assumption is also consistent with the cascading bistable switches mechanism

in which EMT proceeds through step-wise activation of multiple feedback loops [5, 6, 9, 45].

The cells need to change the profiles of gene expression to make the full EMT transition.

Under this assumption with one intermediate state, the cells can make changes on the expres-

sion of some genes as the first step for a partial transition, and then make changes on the rest

of the genes for the second step to complete the transition. The profiles of the genes that con-

trol the eukaryotic cell phenotypes are usually sophisticated by positive feedback loops to

avoid undesired random phenotype switching from noises or short pulse stimulus. These feed-

back loops can be mutual inhibitions between two groups, one of them controls cell phenotype

I while the other group controls cell phenotype II. Thus, the cell fate transitions through EMT

intermediate states are analogous to crossing a series of energy barriers controlled by these

positive feedback loops.

First, we systematically study how the EMT process changes with fixed ΔE and the number

of intermediate states, Nint. The distributions of the first-arrival time (FAT), defined as the

time that cells take to arrive to the mesenchymal state, is used to measure how fast the EMT

process is completed. As shown in Fig 2B, with increase of Nint, the FAT distribution first shifts

to the left and then to the right, becoming increasingly more narrow. To see this affect more

clearly, we further calculate the mean first arrival time (MFAT) and find a non-monotonic

dependence of MFAT on Nint (Fig 2C). As Nint increases, the MFAT first shows a rapid

decrease. However, after a certain Nint, the MFAT begins to slowly increase again. These data

suggest that the partial intermediate states have a potential function of accelerating the EMT

process. Furthermore, we analyze how ΔE affects the EMT process. As shown in Fig 2C, the

MFAT displays the same non-monotonic pattern for three different ΔE values, although the

position of the minimum varies. At these minimum points, the EMT process is completed the

fastest. This interesting phenomena is further confirmed by the analysis of the MFAT in the

space of ΔE and Nint (Fig 2D). The same trend of MFAT can be observed for all ΔE> 2

(threshold shown by the dash line). This result suggests that the EMT process is not a continu-

ous process but proceeds with a finite number of discrete microstates.

For a ΔE value lower than the threshold, MFAT constantly increases with Nint (Fig 2D).

The distribution of the first-arrival time for one case with small ΔE is shown in S3 Fig. One

can see that the transition time is already very small in this case and that increasing interme-

diate states barely increases the transition rate for each step, thus causing more time to com-

plete full EMT. This is generally not the case for the EMT process in a real system, as the

minimal MFAT is less than one day, but it demonstrates the underlying mechanism of the

non-monotonic dependence of MFAT on Nint. That is, increasing Nint after the minimum
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does not help to increase the transition rate for each step, it just simply increases the number

of steps. Thus, there is a trade-off to accelerate EMT through increasing the number of inter-

mediate states. The dependence of the minimum MFAT alongside the intermediate state in

which it occurs (Nmin
int ) is shown in Fig 2E. With increase of ΔE, both the minimal MFAT and

Fig 2. Increasing the number of intermediate states can accelerate the EMT process. (A) The assumptions that the total energy

barrier (ΔE) for the full transition from epithelial to mesenchymal is fixed to compare the effects of the number of intermediate states

(Nint) on the dynamics of EMT. The energy barrier is ΔE/(Nint + 1) for each step for the system with Nint intermediate states. (B) The

distribution of the first arrival time to the mesenchymal state with different Nint and fixed ΔE = 10. (C) The dependence of the mean first

arrival time (MFAT) on Nint for three different energy barrier values as indicated. (D) MFAT in the space of ΔE and Nint. A dashed white

line represents the threshold above which MFAT shows a non-monotonic dependence on Nint. (E) The dependence of the minimum

MFAT (blue) on ΔE alongside the intermediate state that this minimum occurs (red).

https://doi.org/10.1371/journal.pcbi.1007682.g002
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Nmin
int increase, although a small decline of minimal MFAT is observed for large ΔE. Taken

together, a potential function of multiple partial EMT states is to accelerate EMT, and the

number of intermediate states necessary to achieve fastest EMT increases with the total

energy barrier.

Adding parallel paths or transition layers further accelerates the EMT

process

We have discussed the scenario with only one path in which epithelial cells proceed through a

step-wise transition of intermediate states to become mesenchymal cells. Recently, parallel

EMT paths were reported [46, 47]. Here, we consider multiple paths in parallel (Fig 3A) and

study how the number of paths (Npth) affects EMT. For Nint intermediate states, there are Nint

possible cases (Npth = 1 * Nint) based on the one simplification that each path contains close

to the same number of intermediate states. For example, if there are nine intermediate states

and two paths, four states would belong to one path and five to the other (Fig 3A).

To demonstrate the effect of multiple paths, we first study the system with nine intermedi-

ate states (Nint = 9, the best fit from Fig 1E). The FAT distribution to the mesenchymal state is

shown in Fig 3B under various Npth and three levels of energy barrier, ΔE. For small ΔE (left

panel), the FAT distribution shifts to the left as Npth increases, implying that more paths create

a faster transition. However, for large ΔE (right panel), the FAT distribution reflects the oppo-

site, implying that more paths create a slower transition. These also suggests a non-monotonic

dependence of FAT on Npth for moderate ΔE. As shown in Fig 3B (middle panel), the FAT dis-

tribution peak shifts to the left but the distribution width becomes larger with increase of Npth.

This suggests that the monotonic/non-monotonic relationship between the FAT and Npth is

dependent on the energy barrier.

To further confirm this conclusion, we systematically study how the MFAT of the mesen-

chymal state changes in the space of ΔE and Npth (Fig 3C). The MFAT dependence on Npth

indeed shows three trends according to the value of ΔE. For small (below the bottom white

dashed line) or large (above the top white dashed line) values of ΔE, the dependence is mono-

tonic, either decreasing or increasing respectively as exemplified in Fig 3D (blue and yellow

curves). On the other hand, for a bounded range of ΔE values between the two white dashed

lines (Fig 3C), it is non-monotonic as exemplified in Fig 3D (red curve). The non-monotonic

dependence of MFAT on Nint can change depending on Npth (S4 Fig). For Npth = 1, MFAT

shows a non-monotonic dependence on Nint, the same as Fig 2C. However, the position of the

minimum shifts to the right as Npth is increased to 2*3. The non-monotonicity is then lost

with a continuous increase of Npth. The minimum of MFAT decreases monotonically with the

increase of Nint. In order to maintain this dynamics, the number of parallel paths must also

increase with Nint (Fig 3E). That is, increasing Npth makes the dependence of MFAT on Nint

more monotonically decreasing. These data suggest that increasing both Nint and Npth together

accelerates the EMT process.

We have now discussed the scenario in which there is only one path and the scenario of

multiple paths in parallel and found that increasing the number of the intermediate states or

parallel paths could accelerate the EMT process. Here, another scenario is considered by

assuming that the epithelial cell has to pass a fixed number of intermediate states to become

mesenchymal. In other words, the epithelial cell must pass Nly of layers to become mesenchy-

mal (Fig 4A). This is similar to the parallel paths scenario but has one difference; it is possible

that two paths converge at one intermediate state in the layered scenario. The difference

between two topologies is exemplified in S5 Fig, panel A. One can see that a single extra transi-

tion step exists in the layered case compared with the parallel case. In the layered topology, the
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transition rates in all steps are the same, which depends on the number of layers Nly. The

MFAT to the mesenchymal state as a function of ΔE is not equivalent for the two cases (S5 Fig,

panel B). Interestingly, the two curves cross at one specific ΔE. For ΔE values below this cross-

point, EMT is completed faster in the parallel topology. However, for higher ΔE values, the

parallel topology completes EMT at a slower rate than the layered topology.

Similar to the parallel path scenario, the first-arrival time distribution depends on ΔE (Fig

4B). If ΔE is small, the FAT distribution shifts to the right with increase of Nly (Fig 4B, left

panel), while it shifts to the left as ΔE becomes large (Fig 4B, right panel). The FAT shows a

Fig 3. Adding parallel paths can further accelerate the EMT process. (A) Diagram of cell phenotype transition through nine intermediate states with

multiple parallel paths. (B) Dependence of FAT distribution on Npth with three different ΔE values and Nint = 9. (C) Phase diagrams showing MFAT

subjected to Npth and ΔE with Nint = 9. Dashed lines represent two thresholds for monotonic and non-monotonic dependence of MFAT on Npth. (D)

Three typical examples show the monotonic and non-monotonic dependence of MFAT on Npth according to ΔE value. (E) The dependence of minimal

MFAT (blue curve) with a comparison to one parallel path (grey dashed line), and the Npth the minimum occurs on (red) for ΔE = 6.

https://doi.org/10.1371/journal.pcbi.1007682.g003
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non-monotonic dependence on Nly with the moderate ΔE (Fig 4B, middle panel). Fig 4C

shows the MFAT in the space of Nly and ΔE for the system with nine intermediate states. In

general, a higher energy barrier gives a slower mean time arrival regardless of the number of

layers. However, the trend of the MFAT versus Nly depends on ΔE. MFAT increases with Nly

for small ΔE (below the bottom white dashed line), but decreases for large ΔE (above the top

Fig 4. Adding transition layers can further accelerate the EMT process. (A) Diagram of cell state transition through nine intermediate states with

multiple transition layers. (B) Dependence of FAT distribution on the number of layer Nly with three different ΔE and Nint = 9. (C) Phase diagrams

showing MFAT subjected to Nly and ΔE with Nint = 9. Dashed lines represent two thresholds for monotonic and non-monotonic dependence of MFAT

on Nly. (D) Three typical examples show monotonic and non-monotonic dependence of MFAT on Nly according to ΔE value. (E) The dependence of

minimum MFAT (blue curve) and the Nly the minimum occurs on (red) for ΔE = 5.

https://doi.org/10.1371/journal.pcbi.1007682.g004
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white dashed line) and shows a non-monotonic dependence for moderate ΔE (between the

two white dashed lines), as exemplified by the three cases in Fig 4D. Similar to the parallel path

scenario, the minimum of MFAT decreases monotonically with Nint as long as more layers are

provided for the system with large number of Nint (Fig 4E). This is also confirmed with various

values of ΔE (Fig 4E and S6 Fig).

Taken together, adding more parallel paths or transition layers can further accelerate the

EMT process. In both scenarios, a non-monotonic dependence of the mean first arrival time

on the number of paths or layers is found. The MFAT increases with the number of interme-

diate states after the minimal if the system only has one path, but can further decrease with

multiple paths or transition layers. Thus, a combination of increasing the number of inter-

mediate states and parallel paths (or transition layers) can always accelerate the EMT

process.

Stabilized intermediate state traps a cell within its current phenotype

We have discussed the scenarios in which the same energy barrier is considered for each step

during the EMT process. However, it is very possible that one of the intermediate states is sta-

bilized by specific regulators for some cancer cells [48], making the transition from this step

more difficult. While mesenchymal cells contribute to cancer metastasis in many cases, the

partial EMT states were found to be more aggressive [30, 49]. Here, we consider this scenario

where one of the intermediate states is more stable than the others; we call this state the “stabi-

lized” state, which is related to certain states within the more aggressive forms of cancer cells.

As shown in Fig 5A, our metaphoric landscape now has one well that is deeper than the others.

In this stabilized state, more energy is needed for the transition to the next state. That is, the

energy barrier for the transition at this step (ΔE2) is larger than the energy barrier for other

steps (ΔE1). Two cases are considered here: 1) ΔE2 increases and ΔE1 decreases in order to

maintain the overall energy barrier ΔE (Fig 5A, “constant ΔE case”), and 2) ΔE2 increases as

ΔE1 remains the same to change the overall energy barrier (Fig 5A, “varying ΔE case”). Fig 5B

represents the diagram of the EMT process with one stabilized state, which includes two tran-

sition rates, k1 as the transition rate from the non-stabilized states, and k2 as the transition

from the stabilized state.

Similar to the mechanism for the accelerated transition to the mesenchymal state in Figs

2–4, increasing the number of intermediate states before the stabilized state and adding layers

or paths should also accelerate the transition to the stabilized state, given that the formula of

the MFAT to the stabilized state is similar to the one to the mesenchymal state (see Materials

and methods). To further understand the impact of a stabilized state on EMT, the distribu-

tion of cells at the stabilized state and the mesenchymal state is analyzed with different ΔE2:

ΔE1 ratios. As the ratio increases, the dwelling time inside the stabilized state grows and it

takes more time to arrive to the mesenchymal state for both the constant and varying ΔE
cases (Fig 5C). That is, the greater the ratio, the more time the cancer cells can stay in the

aggressive stabilized state for cancer metastasis. It also implies that cells stay longer in the

macrostate where the stabilized intermediate state belongs (Fig 5D, top panel) and that the

placement of the stabilized intermediate state within this macrostate does not affect the

macrostate behavior (Fig 5D, bottom panel). The dependence of the mean dwelling time

within the stabilized state and the MFAT is further analyzed. As shown in Fig 5E and 5F,

with increase of either the ratio ΔE2: ΔE1 or the overall energy barrier, the mean dwelling

time within the stabilized state and the MFAT increase. The same dependence is found for

the varying ΔE case (S7 Fig, panels A-B) but the scale of changes significantly increases.

Another difference between two cases is the reverse dependence of MFAT on ΔE2: ΔE1 as
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Fig 5. A stabilized intermediate state traps a cell within its current phenotype. (A) The metaphorical landscape of

EMT with one stabilized state, which has a deeper well (ΔE2) than the others (ΔE1). Two cases were considered here:

(1) the constant ΔE case in which ΔE2 increases and ΔE1 decreases but overall energy barrier ΔE remains the same, and

(2) the varying ΔE case in which only ΔE2 increases and ΔE1 remains the same. (B) Example of a stablized state

occurring within the EMT process. Orange represents the stabilized intermediate state and the gray dashed arrow

represents the transition from this stabilized state (k2). (C) The distribution of cells at the stabilized state and the

mesenchymal state under different energy barrier ratio, m (= ΔE2: ΔE1). (D) Top: The distribution of the cell at the

stabilized microstate (solid lines, the 6th microstate) or at the corresponding macrostate (dash lines, including the 6-

10th microstates) with m = 1 (green, non-stabilized) or m = 6 (purple, stabilized). Bottom: The distribution of the cell

at the stabilized microstate (solid lines) or at the corresponding macrostate (red dashed line) with the stabilized state in

6th intermediate state (blue) or the 8th intermediate state (purple). (E-F) Phase diagrams showing mean dwelling time

at the stabilized state (E) and MFAT to mesenchymal (F) subjected energy barrier ratio and the total energy barrier ΔE,

in the constant ΔE case.

https://doi.org/10.1371/journal.pcbi.1007682.g005
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shown in S7 Fig panels C-D when ΔE is small. Taken together, a greater overall energy barrier

or greater intermediate state energy barrier ratio will cause for a longer stay in the aggressive

stabilized state as well as a slower transition into the mesenchymal state; this may contribute

to cancer metastasis.

Discussion

Multiple partial EMT states have been proposed and verified to exist in the EMT process, and

the number of states involved depends on the cell line. Here, we focused on the dynamics and

functions of EMT plasticity and provided microstate and macrostate concepts for EMT. Based

on the parameter fitting of a Markov model of EMT with the experimental data, we proposed a

statistical mechanism for EMT in which many unobservable microstates exist within the

observable macrostates. That is, EMT is a process with many microstates, which can be

mapped into different observable macrostates. The microstates may encompass other dimen-

sions of the cell that are coupled to the EMT process, such as the cell cycle, stemness, and

metabolism. How the number of microstates is determined is not clear but is believed to

largely depend on the cell line, which may be revealed with analysis of single-cell time-course

data [50].

Here, we performed a systematical analysis on how the number of intermediate states

changes cell transformation. We considered several scenarios including a single transition

path, parallel transition paths, and layered transitions. We found that in the single transition

path scenario, increasing the number of intermediate states can accelerate EMT, but too many

intermediate states can also potentially decelerate EMT, thus showing non-monotonic behav-

ior. However, adding parallel paths or transition layers can further accelerate the EMT process,

especially for a system with a large number of intermediate states.

Our results suggest that the number of intermediate EMT states may function as an indica-

tor for the malignancy of the cancer. That is, the more intermediate EMT states in one cancer

type, the better the chance it will metastasize. A complementary feature of multiple intermedi-

ate phenotypes was reported to stabilize the cancer stem cell population [51]. Thus, the

malignancy level can be quantified by the number of potential intermediate EMT states. It is

estimated that metastasis causes 90% of deaths related to cancer [49]. If we can stop or slow

down the transition, we have a great chance of treating cancer. Our results suggest one poten-

tial strategy targeting on the EMT spectrum, i.e., reducing the number of the potential partial

EMT states.

Lastly, the existence of a stabilized state within the EMT process causes a slower transition.

It is reported that cells in the partial EMT state contribute more to cancer metastasis than the

mesenchymal state [52]. Further more, some partial EMT states can be stabilized by the cancer

cells [53]. Our simulation shows that stabilizing one intermediate state will trap the cells there

for a much longer time period, slowing down full EMT. Multiple intermediate states emerge

due to various interlinked positive feedback loops formed in the regulatory network of EMT,

which has been demonstrated in many previous works that combine mathematical modeling

and quantitative experiments [5–11, 45, 54, 60]. It also has been shown that removal of coun-

teracting determinants traps cells in the rare myeloid transition state [55]. Similarly, if we can

tune the strength of the feedback loops that are responsible for the generation of these partial

EMT states, the partial EMT states will destabilize and even disband. This will make the first

step of metastasis mediated by EMT or partial EMT more difficult and thus give us more time

to treat the cancer.

Here in this work, we did not consider the molecular mechanism of the intermediate states

but focused on the how the number of the intermediate states affect the EMT process. Further
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work is needed to verify the prediction derived here and the detailed molecular mechanism

needs to be determined for the potential therapeutic targets. Our results suggest that a small

perturbation of the signaling pathway could change the EMT process significantly and thus

EMT-related diseases, such as cancer metastasis and renal fibrosis. Our previous work on

renal fibrosis suggests that knockout of the EMT genes might not be the optimal treatment

design for acute kidney injury and long-term fibrosis [41]. Thus, future works can search con-

trol strategies to slow down or accelerate EMT with dynamic perturbation of the signaling

pathway toward optimal treatment of cancer or fibrosis.

The accelerating function of intermediate states on EMT is analogous to the phenomena in

protein folding [56]. It is becoming increasingly apparent that many other cellular processes

have multiple intermediate states instead of just one binary or continuous process. For exam-

ple, stem cell differentiation consists of many intermediate states [57–59]. Thus, it will be excit-

ing to analyze one biological process in different perspectives, including statistical mechanics,

mathematical modeling, and single-cell analysis.

Supporting information

S1 Fig. Effects from change in the number of states during EMT. (A) Best fit of the two-state

model to previous experimental data from Ref. [6] on temporal changes of the percentage of

cells in two states during EMT with k = 0.2855 and RMSE = 16.67. (B) The dynamics of the

EMT process with the stochastic model overlaid with experimental data from Ref. [6]. The

simulation data is sampled with 10,000 cells from the stochastic model.

(TIFF)

S2 Fig. Fitting the experimental data with a model that considers reversible cell state tran-

sitions suggests more microstates during EMT. (A) EMT progression through a continuum

of reversible intermediate states. (B) The fitting score, root mean squared error (RMSE), for

the model with reversibility at the space of NE and NP gives the best fit at NE = 9 and NP = 8

(white square, RMSE = 0.0064, k1 = 7.1258, and k−1 = 0.6694). (C) The dynamics of the EMT

process with the best-fitted model of reversible intermediate states overlaid with experimental

data from Ref. [6].

(TIFF)

S3 Fig. FAT distribution for different number of states during EMT. The FAT distribution

to the mesenchymal state with different numbers of intermediate states and ΔE = 0.1.

(TIFF)

S4 Fig. Adding parallel paths changes the dependence of MFAT to the mesenchymal state

on Nint. MFAT as a function of Nint under various Npth with ΔE = 6.

(TIFF)

S5 Fig. Comparison of the path-dependent and layer-dependent topologies. (A) Diagram

of cell phenotype transition through fifteen intermediate states with four parallel paths (left)

and four transition layers (right). (B) The dependence of MFAT on ΔE under three similar

path- and layer-dependent topologies.

(TIFF)

S6 Fig. Adding transition layers changes the dependence of MFAT to the mesenchymal

state on Nint. Minimum MFAT (A) and the corresponding number of layers (B) in the space

of number of Nint, and ΔE.

(TIFF)
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S7 Fig. Comparison of two mechanisms of stabilizing one intermediate state on EMT

dynamics. (A-B) Phase diagram of the mean dwelling time of the stabilized state (A) and the

MFAT to the mesenchymal state (B) on the energy barrier ratio, ΔE2: ΔE1, and total energy

barrier, ΔE, for the varying ΔE case. (C-D) Phase diagram of the MFAT to the mesenchymal

state on energy barrier ratio ΔE2: ΔE1 and total energy barrier ΔE (� 1) in the constant ΔE case

(C) and the varying ΔE case (D).

(TIFF)
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