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Spinor Bose-Einstein condensate interferometer within the undepleted pump approximation:
Role of the initial state
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Most interferometers operate with photons or dilute, noncondensed cold atom clouds in which collisions are
strongly suppressed. Spinor Bose-Einstein condensates (BECs) provide an alternative route toward realizing
three-mode interferometers; in this realization, spin-changing collisions provide a resource that generates mode
entanglement. Working in the regime where the pump mode, i.e., the m = 0 hyperfine state, has a much larger
population than the side or probe modes (m = %1 hyperfine states), f = 1 spinor BECs approximate SU(1,1)
interferometers. We derive analytical expressions within the undepleted pump approximation for the phase
sensitivity of such an SU(1,1) interferometer for two classes of initial states: pure Fock states and coherent
spin states. The interferometer performance is analyzed for initial states without seeding, with single-sided
seeding, and with double-sided seeding. The validity regime of the undepleted pump approximation is assessed
by performing quantum calculations for the full spin Hamiltonian. Our analytical results and the associated
dynamics are expected to guide experiments as well as numerical studies that explore regimes where the
undepleted pump approximation makes quantitatively or qualitatively incorrect predictions.
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I. INTRODUCTION

Quantum enhanced measurement protocols or quantum
metrology refer to improving the precision measurement of
a physical parameter or physical parameters using quantum
protocols [1,2]. Nowadays, quantum metrology is a powerful
workhorse across physics, including areas as diverse as grav-
itational wave detection [3-5], sensing applications [6] such
as magnetometry [7,8], gravitometry [9], and electric-field
determinations [10], optical communication [11], and image
reconstruction [12,13].

A classical approach for improving the estimation would
repeat the measurement on N identical but independent sys-
tems or uncorrelated particles. For single parameter estima-
tions, such an approach leads to a 1/+/N scaling, which is
typically referred to as standard quantum limit [4] or shot-
noise limit [14,15]. Beyond (i.e., better than) the standard
quantum limit performance can be achieved by taking advan-
tage of quantum resources. Caves pointed out in 1981 [4] that
squeezed states can improve the performance to a 1 /N scaling.
Motivated by the heuristic phase-particle number Heisenberg
uncertainty relation AO@AN > 1, Holland and Burnett [16]
referred to the 1 /N performance as “Heisenberg limit.” Unfor-
tunately, unique definitions of the standard quantum limit and
the Heisenberg limit are not available [2]. Quite generally, to
specify these limits, the classical resources need to be defined
and the improvement of the parameter estimation due to the
additional quantum resources needs to be quantified.
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Assuming a generic setup that consists of three
components—(i) input, (ii) “actual device,” and (iii)
measurement and parameter estimation—one can attempt
to improve the performance by optimizing either of the
three components listed above. The present work focuses
on quantifying the performance of a paradigmatic device,
namely an interferometer, using established formulations
for the parameter estimation: the phase sensitivities Afgcr
and A6, that are, respectively, derived from the quantum
Cramer-Rao bound [17-19] and error propagation [1].

The interferometer considered is an SU(1,1) interferom-
eter based on an f =1 spinor Bose-Einstein condensate
(BEC) [20,21] with three internal hyperfine components,
namely the hyperfine states with projection quantum num-
bers m = +1, m =0, and m = —1 (f denotes the total spin
angular momentum of the atom). An SU(1,1) interferometer
can be constructed by replacing the passive beam splitters in
a Mach-Zehnder interferometer by active nonlinear paramet-
ric amplifiers, which can generate quantum correlations and
entanglement [14].

Our study is motivated by the quest to get a handle on the
role played by correlations and entanglement of the initial
state and of the state during the amplification step. Given
a device and parameter estimation scheme, how does the
absolute performance depend on the initial state? Given a
certain class of initial states, what are the device parameters
that yield the best absolute phase sensitivity? Besides pro-
viding general insight and being important for studies in the
regime where the undepleted pump approximation holds, our
results are expected to provide guidance for spinor BEC based
interferometer studies that operate outside the SU(1,1) regime.

Treating the spinor BEC in the single-mode approxi-
mation [22] and further working in the undepleted pump
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approximation [23], we report explicit analytic expressions
for the phase sensitivity and a number of auxiliary observables
for two classes of initial states: pure Fock states and coherent
spin states. We consider the situations where all atoms are
in the m = O state and the side modes are empty (“vacuum
state” [24]), the majority of atoms is in the m = 0 state
and either the m = +1 mode or m = —1 mode has a small
population (single-sided seeding), and the majority of atoms
isin the m = O state and the m = 41 and m = —1 modes both
have small populations (double-sided seeding). For selected
observables, we present analytic expressions for an arbitrary
pure initial state. Physical interpretations of the analytical ex-
pressions are presented. The validity regime of the undepleted
pump approximation is assessed by simulating the entire inter-
ferometer sequence for the full spin Hamiltonian numerically.

The remainder of this paper is organized as follows.
Sections II A and IIB introduce the spin Hamiltonian that
underlies this work and the basic operating principle of a
spinor BEC based interferometer, respectively. The parameter
estimation procedures considered in this work are introduced
in Sec. IIC and the undepleted pump approximation is in-
troduced in Sec. IID. The equations of motion within this
approximation and their solutions are introduced in Secs. II A
and IIIB and explicit analytical results for the side mode
population and the corresponding fluctuation are presented
in Sec. III C. Section IV analyzes our analytical results. Two
classes of initial states are considered: pure Fock states (see
Sec. IV A) and coherent spin states (see Sec. IV B). Finally,
Sec. V presents a conclusion.

II. PROBLEM DEFINITION AND
THEORETICAL BACKGROUND

A. Full spin Hamiltonian

Our description accounts for the three hyperfine states
of an f = 1 spinor BEC consisting of N atoms within the
single-mode approximation, which assumes that the spatial
degrees of freedom are integrated out [22,25]. As a result,
the dynamics is governed by the spin Hamiltonian ﬂspins
which treats each atom as a structureless spin-1 “object” that
undergoes two-body s-wave collisions [25],

5 C oot af A A

Hspin(cv q) = N(a+1a71aoao + H.c.)
c
N
+qN gy +N_)). (1)

The first term on the right-hand side of Eq. (1) describes spin-
changing collisions, also referred to as spin-mixing dynamics;
this term is identical to the four-wave mixing term in nonlinear
quantum optics [14]. The second term on the right-hand side
of Eq. (1) corresponds to the collisional shift and the third
term is a single-particle shift. For reasons that will become
clear in Sec. II B, we refer to this term of the Hamiltonian as
linear phase shifter (LPS) Hamiltonian Hips,

Hips(q) = q(Ny1 + N_y). ()

The operators &', and &, satisfy the bosonic commutation

relation [a,,, &fn] =1 (&j" creates and 4, destroys an atom

N 1 N N
+ <N0 - 5)(N+1 +N_))

in hyperfine state |f = 1, m)) and the atom number operator
N, is defined through N,, = & a,,. The coefficient g contains
a “Zeeman contribution” gg from an external magnetic field
and a contribution gyw from a microwave field, ¢ = g +

gmw [26,27]. The strength c,
c=cn, 3)

of the collision terms is determined by the mean spatial
density 7 and the coefficient ¢, which is proportional to the
difference between the scattering lengths ap for two atoms
with total spin angular momentum F = 0 and F = 2,

2w hz a — ap

I 30
Here, y is the reduced two-body mass. In typical >*Na and
8Rb BEC experiments, |c/h| is of the order of 20 Hz (¢
and ¢ are both positive for >’Na and both negative for 8’Rb)

and g/h can be tuned from negative values to zero to values
much larger than |c/h| [26,27].

Cc =

“4)

B. Spinor BEC interferometer

The three-mode spinor BEC interferometer takes an initial
state |W(0)), time evolves it under the spin Hamiltonian ﬁspm,
and then performs a measurement or measurements that form
the basis for determining the phase sensitivity [see Fig. 1(a)].
In our work, |W(0)) is a pure state; more generally, one could
consider a mixed initial state p(0). The time evolution is, as
shown in Fig. 1(b), divided into three time intervals of lengths
t1, t, and f3.

(1) The first time sequence (r =0 to t = t;), which is
referred to as “state preparation,” applies I:Ispin(cl, q1) to the
initial state |W(0)),

|W(t) = e hancrmn M g(0)). )

(2) The second, “phase encoding” time sequence (t =t
tot = t; + t,) imprints the relative phase 6 = 2qt, /i by ap-
plying the linear phase shifter Hamiltonian Hips (gps), which
is characterized by the generator (NH +N_, )/2 [19],

(W(t) + 1)) = e Pes@n /i gy ), (6)

If an appropriate Fano-Feshbach resonance [28] exists, the
linear phase shifter Hamiltonian can be realized by tuning c to
zero. In the absence of Fano-Feshbach resonances, the linear
phase shifter Hamiltonian can be realized approximately by
operating in the regime where |g| > |c|.

(3) The third time sequence (t =t +# tot =t +1t +
13), which is referred to as “read out,” applies the spin-mixing
Hamiltonian ﬁspm (c3, q3),

Wty + 1 + 13)) = e B aB/M G 4 1y)). (7

The mean number N(¢) of atoms in the m = 41 and
—1 side modes and the corresponding quantum fluctuation
AN;(t) play an important role in analyzing the interferometer
performance, which is quantified by the phase sensitivity (see
Sec. I C for details). We define

Ny =Ny +N_y, ®)
N,(t) = (Ny) = (@) IN, | ¥(1)), )]
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(a)
time evolution
|¥(0)> unger n orfl | W(t,+t,+t,)>
(b) t, t, t,

l‘:Ispin(cslqs)

F'spin(cllq 1)

HAypalcy,a,) Fypalcs,as)

FIG. 1. Schematic of interferometer. (a) Basic layout. The initial
state |W(0)) gets fed into the interferometer at time ¢+ = 0. At time
t =t +1t, + 13, measurements are made on |\W(t; + 1, +#3)). The
present paper investigates how the phase sensitivity Af,, obtained
from |W(#; + f, + 13)), depends on the initial state |\W(0)) and how the
phase sensitivity can be minimized for a given |W(0)) by tweaking
the parameters of the Hamiltonian that governs the time evolution.
(b) Breakdown of the three-step interferometer sequence. During
step (1), the dynamics is governed by ﬂspin(cl, q1), ﬁUpA(cl, q1), or
HUPAI(CI). During step (2), the dynamics is governed by the linear
phase shifter Hamiltonian ﬂLps(qu). During step (3), the dynamics
is governed by ﬁspin(c3sq3), HUPA(CSsq3)7 or ﬁUPA,r(C3)- (c) The
horizontal lines represent, from left to right, the hyperfine states
m = +1, m =0, and m = —1. The population of the m = 0 mode
is much larger than that of the m = %1 side modes. Spin-changing
collisions play an important role during steps (1) and (3) of the
interferometer sequence but are turned off during step (2).

and

AN (1) =/ ((N)2) — (N;)2. (10)
The quantities N, (¢) and their quantum fluctuations are de-
fined analogously.

C. Quantifying the interferometer performance

To quantify the interferometer performance, we consider
two different quantities, namely A6, and Afgcr. We em-
phasize that the discussion in this section is specific to the
situation where the phase imprinting is based on the linear
phase shifter Hamiltonian. Nonlinear phase imprinting proto-
cols modify how the various limits scale with the number of
(active) atoms [19,29,30].

The phase sensitivity A6, is obtained through error prop-
agation,

Ao — AN;(t + 1 + 13) an
PNt + 1+ 13)]

Since it is evaluated at t = #; + f, + #3, it depends on all three
steps of the interferometer sequence as well as the initial state.
The fact that A6, is fully determined by the characteristics of
the side mode population makes it readily accessible to cold
atom experiments.

A stringent limit on the parameter estimation is set by the
phase sensitivity Afgcr, which is derived from the quantum
Cramer-Rao bound [1,17],

- 1
Abqer[|W(11)), Ns/2] = - 312

FollW¥(t)), Ny/2]

Here, Fp denotes the quantum Fischer information. For the
interferometer with linear phase shifter, the quantum Fischer
information depends on |W(#;)) and the generator N, /2 that
is associated with the linear phase shifter Hamiltonian. Im-
portantly, the phase sensitivity Afgcr is independent of the
readout step. In general, one finds

Abep = NboerlIW(11)), Ny/2], 13)

i.e., the quantum Cramer-Rao bound provides a lower bound
for the error propagation based sensitivity estimator. For pure
states |W(t;)) and linear phase imprinting generated by N, /2,
one finds [1]

. 1
Abqcrl[|W (1)), Ns/2] = AN (14)
Ideally, one would like to operate in the regime where the
quantity Af,/Abqcr is close to one, i.e., in the regime where
the error propagation based sensitivity Af, is as close as
possible to the best achievable phase sensitivity.
For comparison, we also report the Heisenberg limit Afyy; ,
which we take to be defined in terms of the number N,(¢;) of
atoms in the side modes at time ¢,

1
Ns(tl) '

N,(t;) can be thought of as the number of “active atoms”
during the phase imprinting stage. In this context, it is worth-
while mentioning that there exist a variety of definitions and
interpretations of the Heisenberg limit [1,17-19,24,29-32].
Section IV shows that the SU(1,1) interferometer with linear
phase imprinting allows for situations where the quantum
Cramer-Rao bound based phase sensitivity, which provides a
strict lower bound, is larger than the Heisenberg limit defined
in Eq. (15), thereby underpinning the notion that the Heisen-
berg limit, as defined in Eq. (15), should not be interpreted as
defining the ultimate or best achievable performance.

Aby, = (15)

D. Undepleted pump approximation

The interferometer sequence introduced in Sec. II B has,
in general, to be modeled numerically. Analytical results can,
however, be obtained within the undepleted pump approxima-
tion (UPA) [23,24,33,34], which replaces the operators [18 and
ap by the square root of the mean number N of particles in
the m = 0 mode at time t = 0,

Ny = (W(0)|N,, [ W(0)). (16)

The approximation is consistent with considering a large
reservoir of atoms in the m = 0 pump mode. Physically, the
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undepleted pump approximation assumes that the majority of
atoms occupies the m = 0 pump mode. This places restric-
tions on the initial state and on the operating time #; + #, + #3
of the interferometer, since only a small fraction of the atoms
should get pumped (i.e., scattered) into the m = +1 and
m = —1 side modes during the time evolution.

Dropping the constant energy shift —c(Ny — 1/2)/N — q,
the spin Hamiltonian I-Alspin in the undepleted pump approxi-

mation reads
ZN()C A N()C 1 A
K. +2—|(1—-—=)+¢g]|K,,
N [ N ( 2N0> qj| )

Hupa(c, q) =

A7)

where the operators K, Iey, and K, are elements of the SU(1,1)
group [14],

N Lo s o
K, = §(a+1a,1 +a+1a—1)7 (13)
A l At AT ~ ~
Ry = 5-@},a", —ana). (19)
and
K. = 1N, + D). (20)

Since the Hamiltonian Hyps can be written in terms of the
elements of the SU(1,1) group, the resulting interferometer
is an SU(1,1) interferometer. It is important to realize that
Huypa does not conserve the particle number. In the context
of photons, this is very natural. In the context of spinor BECs
as considered in this paper, this is not natural since the number
of atoms is, neglecting one-, two-, and higher-body losses,
conserved. We elaborate on this discussion in Sec. IV B and
Appendix C.

Looking ahead, we also define the simpler “resonant”
Hamiltonian ﬂUpA,r, which assumes that the collisional and
Zeeman shifts cancel each other, as a special case. Setting g
in Hypa to g,

N()C 1
go=—""\1-—), (21)
N 2Ny
we obtain
N 2NoC A
Aueas(e) = == K.. (22)

Since Ny is assumed to be close to N and N is much greater
than 1, we have g. >~ —c.

Our analytical results presented in Secs. III and IV are
obtained for the standard three-step sequence of the SU(1,1)
interferometer, which is identical to the sequence introduced
in the previous section with ﬁspin replaced by Hupa.

III. SOLUTIONS FOR SU(1,1) INTERFEROMETER
A. Equations of motion

To simulate the SU(1,1) interferometer sequence discussed
in the previous section, we work in the Heisenberg picture.
The equations of motion for the time-dependent operators a. |
and a_; then read [14,34]

11id, 041 (t) = [ (1), Hupa(t)]. (23)

Solving the coupled linear equations implied by Eq. (23), one
obtains [14]

api+n+m)) _ (A B\ (aa©) o
al\m+n+n))” \B A J\al,0)
where the “transfer matrix” is constructed by applying three

consecutive operations (one for each of the three interferome-
ter steps),

A B Az Bj 1012 0 Al B
Boa)=\e oag)l o er)\mroap) @

Performing the matrix multiplication, one finds

A=A Aze™? 4 BiB3e'?? (26)
and

B = BiAse™"? + AiBse'2. (27)

Note that A and B depend on #;, 6, and #; (recall that @
depends on 1,); for notational simplicity, these dependencies
are not explicitly indicated. The quantities A; and B; depend
on t;. The next section reports explicit expressions for A;,
Bj, |A|?, and |B|? that are applicable to arbitrary parameter
combinations.

B. General solution

Even though steps (1) and (3) of the interferometer se-
quence depend on six independent, experimentally control-
lable parameters (namely cy, c3, g1, g3, t1, and f3), the solu-
tions for A; and B; (j = 1 and 3) within the undepleted pump
approximation can be expressed in terms of four dimension-
less parameters &, &3, x1, and 3, which are defined through

. N()le‘j
- Nh

\/ a; \’ 1y
= 1=(1=-=L l-—). 2
ae-(-2) (o) @

Here, g, ; is given by Eq. (21) with ¢ replaced by c¢;. In
what follows, we refer to &;, &3, x1, and x3 as interferometer
parameters. As an example, Figs. 2(a) and 2(b) show the
dependence of &; on the time ¢; and the dependence of the
real and imaginary parts of x; on the dimensionless parameter
qi/qc,; for a 2Na condensate with Ny = N = 10000 (see
Appendix A for details).

Using the parameters defined in Egs. (28) and (29), A; and
Bj can be written as

§j (28)

and

1. /1 — x5
Aj =cosh(&x;) — —] sinh(&; x;) (30
j

and

B; = —— sinh(&; x;). 31)
Xj
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(2)

Re(y,): Im(y,)

FIG. 2. Dimensionless parameters &; and x; that govern steps (1)
and (3) of the interferometer sequence. (a) The solid line shows &; as
a function of ¢;. (b) The solid and dashed lines show the real and
imaginary parts of x; as a function of the dimensionless parameter
q;/qc,;- The plots are made assuming a 2Na condensate with N =
No = 10000, ¢;/h = 15.9956 Hz, and g, ;/h = —15.9948 Hz (see
Appendix A for details).

ANg(ti + 1 +13)

Note that the interferometer performance may depend on
additional parameters that characterize the initial state such
as the initial seeding fraction; A; and B; are, however, inde-
pendent of these additional parameters. One finds

|AI* = (|A1A3] — |B1B3|)* + 2|A1A3B, B3|
x [14cos (0 —ya, — va, — v8, +v8,)] (32)

and
|BI*> = (|A1B3| — |A3B;])* + 2|A1A3B B3|

X [1 + cos (9 — YA — Yas — VB T VBz)]’ (33)

where the phases ya, and yp, are given by ya, = arg(4;)
and yp, = arg(B;), respectively. It can be checked that both
|Aj|2 — |Bj|2 and |Aj|2 — |]§j|2 are equal to 1. Appendix B
summarizes selected properties implied by Eqgs. (28)—(31).

C. Side mode population and associated
quantum fluctuation
Armed with explicit expressions for @ (¢), &L ), a_(t),
and a',(¢) for all # between zero and #; + 1, + t3, the expecta-

tion value of the operator N and the corresponding quantum
fluctuation at any time ¢ can be calculated for any initial
state |W(0)), assuming the undepleted pump approximation
is valid. We find

Ny(ti + 1 + 1) = |A]* +|BI* — 1 + (IA1* + |BI*)N,
+2(AB*P +c.c.) (34)

and

= 2|A1§|\/ 1 + N, 4 2Cov(PT, P) + [e20i—ve) (AP)? + c.c.] + 2[et Vi) (P 4+ Cov(Ny, P)) + c.c.]Z + (AN,)2Z%,  (35)

where y; = arg(A) and y; = arg(B). The quantity Z is inde-

pendent of the properties of the initial state,
Al> + |B)?

_ AEEIBE (36)

2|AB|

In Egs. (34) and (35), N_A is the number of atoms in the side
modes at time zero and P,

P = (¥(0)|P|w(0)), (37
is defined in terms of the “pair annihilation operator,”

P=ana,. (38)

The quantities AN and . AP denote the quantum fluctuations
associated with N, and P, respectively,

AO = AO(0) (39)

(here, O denotes an arbitrary observable). Last, the quantity
Cov(Ol, 02) denotes the covariance of the operators O, and

(

0, at time zero,

Cov(0y, 0y) = (¥(0)|0,0,|%(0))
— (W(0)] 01 ¥(0))(W(0)|02|W(0)).  (40)

As written, Eqgs. (34) and (35) apply to an arbitrary pure ini-
tial state | (0)). These equations also apply to an initial mixed

state p(0), provided O, A0, and Cov(0,, O) are generalized.
For example, O would be defined as Tr[[)(O)O] and analogous
generalizations would apply for the other expectation values.

As already discussed earlier, |dy9N,(t; + 1, +13)| and
AN (t; + 1, + t3) govern the phase sensitivity Afp. It follows
from Eqgs. (34) and (35) that the interferometer performance
depends on two aspects: (i) the initial state through the quanti-
ties Ny, AN, P, AP, Cov(N;, P), and Cov(P', P) and (ii) the
interferometer device through A and B. Recall, A and B are,
within the undepleted pump approximation, fully determined
by the five dimensionless parameters &;, &3, xi, x3, and 6.
Importantly, the first term on the right-hand side of Eq. (34)
and the first term inside the square root sign of Eq. (35) depend
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TABLE I. Summary of the solutions within the undepleted pump approximation to the equations of motion for three special cases: resonant
symmetric interferometer, resonant asymmetric interferometer, and nonresonant symmetric interferometer.

Resonant symmetric
== x1=x=1

Resonant asymmetric
any &5 1 =3 =1

Nonresonant symmetric
i =&=&x1=x=X

Aj =A =cosh& Aj =cosh§;
Bj =B = —1sinh& Bj = —1 sinh§;
Ya, =va=0 Ya;, =va=0

ve; = v = —sgn(§)m /2
|B|? = sinh?(2&) cos?(6/2)

v, = —sgn(§;)m /2
|B|? = cosh? & sinh® & + cosh? &; sinh® &,

A; =A=cosh(&x) — @sinh(éx)
B; =B = —1 sinh(§x)
Ya; = Va
VB, = VB
[BI> = 2|ABJ*[1 + cos(0 — 2y4)]

+2| cosh & cosh &3 sinh &; sinh &3] cos(0 — ys, + v5,)

only on the interferometer device, while all other terms “mix”
the interferometer device and the initial state.

We can also look at the quantum Cramer-Rao bound
1/AN;(t)). Equations (34) and (35) yield N,(f;) and AN,(t))
if A, B, y;, and y; are replaced by Ay, By, ya,, and yg, , respec-
tively. It follows that N;(#;) depends, within the undepleted
pump approximation, on the initial state only through N and
P, i.e., the initial seeding and the initial “pair correlation.” If
N, and P are zero, N(t) grows exponentially with increasing
|&1 x1| if x; is real. Maximal growth is obtained for g; = g, ;
(corresponding to x; = 1), with a growth rate of Noci /(Nh).
The regime where N;(t;) grows exponentially is referred to as
dynamical instability [35]. Since the fluctuation AN(¢;) de-
pends on the initial state, the quantum Cramer-Rao bound as
well as A6, can be controlled, at least partially, by adjusting
the initial state.

D. Special cases

The solutions presented in Secs. IIIB and III C simplify
significantly for the resonant case, i.e., when g; is set to g, ;
and ﬂUpA reduces to ﬂUpA,r. Columns 1 and 2 of Table I
summarize selected expressions for two resonant cases (x| =
x3 = 1), namely the resonant symmetric interferometer for
which £ = & = &; and the resonant asymmetric interferom-
eter for which &; # &;. In the former case, the interferometer
is fully characterized by the dimensionless parameter & and
the phase 6; this case has been considered in Ref. [24] for
the vacuum state. In the latter case, the interferometer is fully
characterized by the two dimensionless parameters & and &;
and the phase 6; this case has been considered in Ref. [23] for
a class of density matrices.

The solutions also simplify notably for the nonresonant
symmetric interferometer for whiché = & = &; # land x =
X1 = x3. In this case, the interferometer is fully characterized
by the two dimensionless parameters & and x as well as
the phase 6. This case has been considered in Ref. [36] and
selected expressions are summarized in column 3 of Table 1.

The SU(1,1) interferometer has a “time reversal symmetry”
when N;(¢) and AN,(t) return att = t; + t, + t3 to their initial
values N, and AN,. For the symmetric interferometer (i.e.,
YA, = Ya, = Ya and yp, = yp, = yp), B goes to zero at t =
t1 + tp + t3 for 6 = m + 2y,. For this phase, we have (the time
dependence of A is indicated explicitly for clarity)

Ny(t1 + 12 + B)lg=r 12y, = |A(t; + 12 + 13)* Ny

(41)
and
ANy(t1 + 1 + B)lo=rt2y, = lA(t1 + 12 + 13)*AN,. (42)

Thus the symmetric SU(1,1) interferometer with 0 = 7w + 2y,
has a time reversal symmetry if the initial state has no seeding,
i.e., if N, and AN, are equal to zero. If the interferometer is
not only symmetric but also resonant (in this case, y4 = 0) and
if we consider 8 = 7, then A(t] + 1, + t3) goes to 1. Thus the
interferometer has time reversal symmetry even when the ini-
tial state has nonzero seeding. An SU(1,1) interferometer that
utilizes time reversal symmetry was realized experimentally
in a spinor 87Rb BEC [24].

IV. EXPLICIT RESULTS FOR VARIOUS INITIAL STATES

This section considers two typical classes of initial states
|W(0)): pure Fock states are discussed in Sec. IVA and
coherent spin states in Sec. IV B. Selected properties of these
two initial states are summarized in Table II. Even though our

TABLE II. Properties of the initial states |¥(0)) considered in Sec. IV: vacuum state (VS), pure Fock state with single- and double-sided
seeding (PFS,S and PFS,D), and coherent spin state with single- and double-sided seeding (CSS,S and CSS,D). The results are obtained within

the undepleted pump approximation.

|W(0)) N, AN, P AP Cov(N,, P) Cov(Pt, P)
VS 0 0 0 0 0 0
PFS,S N, 0 0 0 0 0
PFS,D N, 0 0 0 0 N,N_
CSS.S N, VN, 0 0 0 0
CSS,D N, N, (N4 1N_)'? exp(—10) 0 0 0
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analytical results within the undepleted pump approximation
are derived in the Heisenberg picture, this section takes the
viewpoint that the initial state is propagated in time and that
the operators are time independent.

A. Pure Fock state

Let the initial state be a pure Fock state (PFS) with N
atoms in mode m,

[W(0)) = [N41, No, N_y).

This initial state describes a system with N atoms, where
N =N_; +No+N,. We refer to |0, Ny, 0) as “vacuum
state” (VS) [24]. The naming originates from the fact that
the side modes, sometimes also referred to as probe modes,
are initially empty. The vacuum state can be interpreted as
a special case of a pure Fock state or a special case of a
coherent spin state (see Sec. IV B). The spin mixing dynamics
during step (1) of the interferometer sequence can evolve the
vacuum state to a state with significant entanglement [24]. If
one or both of the side modes contain nonzero occupation at
time ¢t = 0, we refer to the initial state as seeded Fock state.
Single-sided seeding is realized if N, or N_; is nonzero
and double-sided seeding if N, and N_; are nonzero. We
refer to the resulting states as pure Fock state with single-
sided seeding (“PFS,S”) and double-sided seeding (“PFS,D”),
respectively.

To calculate the phase sensitivity Afp, we need to deter-
mine the expectation value of N and its quantum fluctuation
at time #; + #, + t3. Using the results for the pure Fock state
with double-sided seeding from Table II, we find

Ny(ti + 1 +13) = |A* +|B]* — 1 + (JA]* + |BI*)N,  (43)

and

ANs(t; +t + 13) = 2|AB|\/1 +N,+2N  N_;. (44)

Equations (43) and (44) show that initial seeding leads to an
enhancement of the number of atoms in the side modes at the
end of the interferometer sequence (i.e., speeds up the dynam-
ics) and also enhances the quantum fluctuations. Physically,
this can be interpreted as being due to Bose enhancement as a
consequence of the nonzero initial seeding N. The quantum
fluctuation AN;(t; 4, + t3) does not only depend on N, but,
for double-sided seeding, also on the actual distribution of the
atoms among the two side modes, i.e., the value of Ny N _;.
As shown in Eq. (47), a nonzero N N _ leads to a degradation
of the phase sensitivity of the SU(1,1) interferometer.

As an example, Fig. 3 compares our analytical results ob-
tained within the undepleted pump approximation (solid lines)
with the results obtained by evolving the initial state under
the full spin Hamiltonian ﬁspm, Eq. (1), through exact diag-
onalization (dashed lines) for a *Na condensate with Ny =
10000. It can be seen that the undepleted pump approximation
captures the time dependence of Ny [see Fig. 3(a)] and AN;
[see Fig. 3(b)] well for & < 4 (for the parameters employed,
this corresponds to #; < 40 ms). For & 2 4, the undepleted
pump approximation results deviate not only quantitatively
but, rather quickly, also qualitatively from the exact numerical
results. From a practical point of view, 40 ms are sufficient for
an interferometer experiment. For an initial state with N, # 0,

=1

Ll A 1l 1

=
LLLLL B L 1 L) R
TR RTITT AR RTTIT . |||||||I/| [RRTIT R RTT

(e}
[\S}
N
(o)}
[ee}
[
(e}

FIG. 3. Benchmarking the undepleted pump approximation for
the initial vacuum state |0, N, 0). The solid lines show the unde-
pleted pump approximation results for (a) N; [Eq. (43)] and (b) AN;
[Eq. (44)] as a function of & for x; = 1. For comparison, the dashed
lines show our exact numerical results for the full spin Hamilto-
nian Hyin(c1, ¢1) with N = Ny = 10000, ¢;/h = 15.9956 Hz, and
q1/h = —15.9948 Hz (these are the same parameters as used in
Fig. 2). The agreement is good for & < 4.

the validity regime of the undepleted pump approximation
tends to be somewhat more restricted.
From Eq. (43) one obtains

dNs(t + 1 + 1) = —4|A1A3B B3|(1 + Ny)
X sin (9 — YA — YAs — VB + )/33)' (45)

Combining Egs. (44) and (45), the phase sensitivity [see
Eq. (11)] for the pure Fock state takes the form

Aeep,PFS = Aeep,VSfPFSa (46)

where fprs and A6, vs are defined through

V1+N,+2N,N_,

= — 47
SpEs N (47)
and
Ad |AB|
Vs = - ,
° 2|A1A3BBssin (6 — ya, — va, — v8, + v8,)|
(48)
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respectively. The quantity A6, vs depends on 6 through the sin term in the denominator and through the cos terms in |AB|,

- u 2
|AB| = \/s +e[1+cos (0= ya, = yas = v, + vm) ]+ 5[1+c0s (0 = ya, = vas = v + )], (49)
[
where around 6 = 7 + ya, + ¥4, + ¥B, — ¥B,- Minimizing A6, vs
5 5 with respect to 6 yields the best possible interferometer per-
s = (|A1A3| — |B1B3])"(|1B14s| — |A1Bs])7, (50)  formance for the SU(1,1) interferometer with pure Fock state
input. We find
t = 2|A1A3B B3|
x [(|A1A3] — |B1B3|)? + (IB1A3| — |A1B3])*], (51 t+ ./ 2t +2
[(|A143] — |B1B3|)” + (|B143] — |A1B3])°], (S1) min(Afyvs) = s+t 4+ /s(s + 2t 4+ 2u) (54)
and u

u = 8|A1A3B,Bs|*. (52)

Since fprs reduces to 1 for the vacuum state |0, No, 0), the
phase sensitivity for the vacuum state is given by A&, vs. In
this case, Afpvs can be interpreted as a phase sensitivity;
for other initial pure Fock states, in contrast, Afe,vs is not
by itself a phase sensitivity but a function that, together
with fprs, determines the phase sensitivity Afe,prs. Since
Abep,vs is determined by the “actual device” or interferometer
parameters (i.e., it is independent of the initial state) and fpgg
is determined by the initial state (i.e., it is independent of
the interferometer parameters), the minimum of A8, prs is
determined by independently minimizing A6, vs and fprs. In
what follows, we first analyze fpps and then Afp vs.

Since fpps reduces to 1 in the absence of initial seeding,
i.e., for Ny = 0, we refer to it as “seeding factor.” We find

1 1 1
— < < J=l1+—— < 1. 53
N1 S \/2[ (Nx+1)2} &3

For nonzero Nj, fprs is always smaller than one. Equa-
tions (47) and (53), which apply to arbitrary initial pure
Fock states (assuming the undepleted pump approximation is
applicable), show the following.

(i) Initial seeding decreases the absolute phase sensitivity
and hence improves the absolute interferometer performance.

(ii) For a fixed finite N, and fixed interferometer pa-
rameters, initial single-sided seeding leads to the best inter-
ferometer performance (smallest fpps) and initial balanced
double-sided seeding to the worst interferometer performance
(largest fpps) due to the presence of the “pair term” N N_;
in Eq. (47). Importantly though, even initial balanced double-
sided seeding improves the interferometer performance com-
pared to that for the vacuum state.

We now analyze A6, vs. Due to the sin and cos depen-
dence of Afg,yvs, this quantity has a reflection symmetry

for

s+t 4+u—/s(s+ 2t +2u)
t+u

+va +Va, + VB — VB (55)

(Omin)vs = arCCOS<—

Table III summarizes explicit expressions for min(A6&e, vs)
and (Bin)vs for the resonant symmetric, resonant asymmet-
ric, and nonresonant symmetric SU(1,1) interferometers. For
symmetric interferometers, the best performance (minimum
of Afpvs) is reached for 8 = 7 + 2y,, i.e., the angle about
which Af,vs has a reflection symmetry. The solid line in
Fig. 4 illustrates this for the resonant symmetric interferom-
eter with §1 = x1 =& =x3=1 ()a=0 and yp = yp, =
—m/2), implying that the best performance is reached for
6 = . In this case, the minimum of the error propagation
based phase sensitivity coincides with the quantum Cramer-
Rao bound (horizontal green solid line in Fig. 4), which lies
below the standard quantum limit and below the Heisenberg
limit (horizontal green dashed and dotted lines in Fig. 4).
This implies that the Heisenberg limit does, in this case,
not provide a stringent lower bound. The quantum Cramer-
Rao bound is also reached for the nonresonant asymmetric
interferometer with & = x; = 1, & = 3/2, and x3 = 0 (blue
dash-dotted line); in this case, however, the minimum of the
error propagation based sensitivity is reached at a differ-
ent angle, namely at & = 0.6247 and 0.757. Returning to
the asymmetric interferometer but considering the resonant
case with & = y; = x3 = 1 and &3 = 7/10 (red dashed line),
we see that the minimum of the error propagation based
phase sensitivity lies above that of the resonant symmetric
interferometer with & = 1. In fact, for pure Fock states the
minimum of the error propagation based phase sensitivity
for the resonant interferometer decreases monotonically with
increasing &; for &3 < &, and then takes a constant value for
& > & [see the black solid and blue dashed lines in Fig. 6(a)].

TABLE III. Explicit expressions for min(Afe,vs) [Eq. (54)] and the associated (6pmin)vs [Eq. (55)] for the resonant symmetric interfer-
ometer, resonant asymmetric interferometer, and nonresonant symmetric interferometer. The results are obtained within the undepleted pump

approximation.
Resonant symmetric Resonant asymmetric Nonresonant symmetric
(Omin Ivs big arccos [— tanh (2 min(§y, &3)) coth (2 max (&1, £&3)1 + v, — vs, 7T+ 2ya
. . 2_ 12
min(Abep,vs) csch(2§) csch[2 min(§, &) ||
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FIG. 4. Al yvs as a function of 6 for three interferometers that
are characterized by the same &, and x; (namely, & = x; = 1) but
different &; and x; for the case where the initial state is the vacuum
state |0, Ny, 0). The black solid curve is for a resonant symmetric
interferometer with & = x3 = 1, the blue dash-dotted line is for a
nonresonant asymmetric interferometer with & = 3/2 and x; =0,
and the red dashed line is for a resonant asymmetric interferometer
with & = 7/10 and x3 = 1. The minimum of the phase sensitivity of
the two former interferometers is the same but the minimal value
is reached at different angles. The quantum Cramer-Rao bound
Abgcr (horizontal green solid line), the standard quantum limit
[Ny(t;)]7"/? (horizontal green dashed line), and the Heisenberg limit
[Ny(t;)]~" (horizontal green dotted line) are the same for all three
interferometers.

With the properties of the quantities fprs and Afe,vs
mapped out, we compare the minimum of the phase sensitivity
A6, prs and the corresponding quantum Cramer-Rao bound,
i.e., we calculate the ratio

min(AGep,PFS) _ min(Aeep,VS)<

2N N_
1+ “_1). (56)
ABQCR pFS

Abfqcr.vs 1+ N

We do not have a general result for when this equation is
equal to one and when it is greater than one. In the parameter
range 0 < g;/q.,; < 2, however, a sufficient condition for the
prefactor min(A6e,vs)/ Afqcr,vs being equal to one is &3 >
& and x3 = xi. Thus, in this parameter regime (which in-
cludes a variety of nonresonant asymmetric interferometers),
a pure Fock state without seeding or with single-sided seeding
does reach the quantum Cramer-Rao bound, while a pure Fock
state with double-sided seeding does not reach the quantum
Cramer-Rao bound.

B. Coherent spin state

Let the initial state be a coherent spin state (CSS) [20].
Generally speaking, coherent spin states with single- and
double-sided seeding are much easier to prepare experimen-
tally than pure Fock states with seeding. Coherent spin states
may be characterized as the most classical of all quantum
states [37]. Thus, intuitively, one might expect that coherent
spin states perform less well than pure Fock states for the
same interferometer parameters during steps (1) and (3) of
the interferometer sequence. This section shows that coherent
spin states with double-sided seeding yield, in some cases, a

smaller error propagation based phase sensitivity than pure
Fock states.

Our analytical results within the undepleted pump approx-
imation are derived for the coherent spin state

9 00 ) s
Ber By =3 3 exp GM)

n+1=0n,1=0
o (B (B-D)™!
g ln_y!

where the complex numbers §,, are written in terms of the
initial atoms N,, in the side modes and the initial phases 9,, of
the m = +1 and m = —1 modes, B, = N,n)"/> exp(16,,). A
derivation of this state is given in Appendix C. Consistent with
the fact that Hypa does not conserve the number of particles,
this “two-mode” state (|ny;,n_;) denotes a Fock state) is
characterized by a distribution of the number of atoms. The
relative phase 6,

[n41, not), (57

0=—O4 +0-1), (58)

of the state given in Eq. (57) is well defined in the case of
double-sided seeding but not in the case of single-sided seed-
ing or without seeding; the latter is equal to the vacuum state.
In the case of initial double-sided seeding, the interferometer
performance depends on the relative phase, thereby providing
another tuning knob.

For the initial coherent spin state given in Eq. (57),
Egs. (34) and (35) reduce to

Ny(t; + 12 + 1) = |A]* + |B* — 1 + 2|AB|

x [IN,+2g@, vz, —vpyN+1N_1]

(59
and

ANy(t) + 1, + 13)

= 2|AB|\/1+(1+I2W.Y+4Ig(5, Vi —VBW NN,
(60)

respectively, where the function g(6, y;, —y;) is equal to
zero when @ is not well defined (coherent spin state without
seeding or with single-sided seeding) and g(@, y;, —y3) =
cos(8 — y; + y) when 6 is well defined (coherent spin state
with double-sided seeding). In the case of an initial state with
double-sided seeding, the function g(@, vi, —vp) “mixes” the
properties of the initial state (through 6) and the actual device
(through y; and y3).

The next two sections separately discuss the interferometer
performance within the undepleted pump approximation for
coherent spin states with single- and double-sided seeding.
We have checked that our analytical results presented in the
next two sections agree, up to terms of order 1/N, with the
numerical results for the full spin Hamiltonian ﬁspin. To make
the comparisons, we used an initial coherent spin state with
fixed particle number [Eq. (C1)] in our exact diagonalization.
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1. Coherent spin state with single-sided seeding

For an initial coherent spin state with single-sided seeding,
N;(t) is, for the same interferometer parameters, identical to
that for a pure Fock state with single-sided seeding [compare
Eq. (59) with Eq. (43)]. The quantum fluctuation AN;(¢) for
the coherent spin state with single-sided seeding, in contrast,
differs from that for a pure Fock state with single-sided
seeding since Z is, in general, nonzero [compare Eq. (60)
with Eq. (44)]. Correspondingly, the phase sensitivity for the
coherent spin state with single-sided seeding also differs from
that for the pure Fock state with single-sided seeding. We find

Abepcss,s = Abepvs fess,s (61)

where

V14 (1 +TZ?)N;

— 62
1+ Ny ©2

Jesss =
For N, = 0, Eq. (61) reduces to A6 vs; this is in agreement
with the fact that the coherent spin state without seeding
reduces to the vacuum state. The factor fcsss depends on
the initial state through N, and the actual device through
T. The Z? term in round brackets under the square root in
Eq. (62) leads, for the same interferometer parameters, to
a degradation of the best interferometer performance for an
initial coherent spin state with single-sided seeding compared
to that of a pure Fock state with single-sided seeding [compare
Eq. (62) with Eq. (47)]. Importantly, the factor fcsss can take
values smaller than 1. This implies that a coherent spin state
with single-sided seeding can—for the same interferometer
parameters—perform better than an initial vacuum state.

Since A6 vs and fcsss both depend explicitly on 6,
determining the best interferometer performance requires that
one minimizes the product A6, vs fcss.s, i.€., the two terms
cannot be treated separately. This differs from the pure Fock
state case considered in Sec. IV A, where Af,vs and fprs
could be minimized separately. While the minimization of
A vs fess,s can, in principle, be done analytically, the result-
ing expression for the minimum of the error propagation based
phase sensitivity is rather lengthy and not overly illuminating.
The following examples illustrate selected characteristics of
the interferometer performance for coherent spin states with
single-sided seeding.

The minimum and maximum of 7 are reached at0 = y,, +
1Z8 + VB, — VB; and 6 =7 + YA, + VA, + VB, — VB;, T€Spec-
tively,

t+2u

min |0:yAl +Va3+vB, —VB; 2u(s I Zt ¥ 21,{) (63)

and

t
max I|0=7T+VA1 = (64)

Va3 +vB, — VB m :
Correspondingly, for fixed N,, fcss.s takes its minimum and
maximum at these angles. It is easy to check that the 8 depen-
dencein fcss,s and Abep, vs enters only through cos(6 — y4, —
Ya; — VB, + V,). Correspondingly, fcsss and Afpvs have a
reflection symmetry around 6 = m + y4, + va, + V8, — V5s-
For this angle, the seeding factor fcss s diverges for symmetric
interferometers and the phase sensitivity Af, vs diverges for

frssss Apvst AOgpcsss

foss s Aecp‘VS; Aecp,css,s

0/

FIG. 5. Analysis of the phase sensitivity for a coherent spin state
with single-sided seeding (N, = 2) as a function of 6 for a resonant
interferometer with x; = x3 =1 (Y4, = ya, =0 and yp, =y, =
—m/2). (a) Results for the resonant symmetric interferometer with
& = & = 1. (b) Results for the resonant asymmetric interferometer
with §; = 1 and &3 = 3/2. The red dashed lines show A6, vs, while
the blue dash-dotted lines show fcsss. The product of these two
quantities yields the phase sensitivity Af,css;s (black solid lines).
The horizontal green solid lines show the quantum Cramer-Rao
bound.

asymmetric interferometers. Thus A6, csss diverges at this
angle for all interferometers. This is consistent with the fact
that AN; is finite and 9yN; is zero for 0 = + ya, + va, +
VB, — VB;-

As an example, the black solid lines in Figs. 5(a) and 5(b)
show Afe,css,s for, respectively, a resonant symmetric and
a resonant asymmetric interferometer for an initial coher-
ent spin state with single-sided seeding (N, = 2). Since y;,
and yy4, are equal to zero for resonant interferometers, the
reflection symmetry and divergence points of Afpcss,s are
located at & = m. For the resonant symmetric interferometer
in Fig. 5(a), the fact that Z is minimized at the angle at
which Af,vs is maximized and that 7 diverges at the angle
at which A6, vs is minimized highlights that the quantities
Abpvs and fesss “compete” when minimizing Afe, css s.
As a consequence, the smallest phase sensitivity is reached
when neither fcsss nor A6, vs are minimized, namely at
(Bmin)css,s = 0.9047r and 1.096z for the example shown
in Fig. 5(a). For the resonant asymmetric interferometer in
Fig. 5(b), Abpvs and fcsss take their maximum at 6 = 7.
The minimum of A6, css;s is lower than that of A6, vs but
located, roughly, at the same angle.

The examples in Fig. 5 show that an initial coherent spin
state with single-sided seeding can improve the interferometer
performance compared to an initial vacuum state. While the
minimum of the error propagation based phase sensitivity for
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FIG. 6. (a) Minimum of the phase sensitivity A8, for three dif-
ferent initial states with N, = 2 for the resonant interferometer with
& = x1 = x3 = 1 as a function of &;. Results are shown for the pure
Fock state with single-sided seeding (black solid line), pure Fock
state with double-sided seeding (blue dashed line), and coherent spin
state with single-sided seeding (red dash-dotted line). The three cases
share the same standard quantum limit (horizontal green dashed
line) and the same Heisenberg limit Afy (horizontal green dotted
line). The quantum Cramer-Rao bound Afgcr for the pure Fock
state with single-sided seeding (horizontal black solid line), the pure
Fock state with double-sided seeding (horizontal blue dashed line),
and the coherent spin state with single-sided seeding (horizontal red
dash-dotted line) all lie above the Heisenberg limit A6y, (note that
the horizontal blue dashed and red dash-dotted lines nearly coincide).
(b) The symbols show the minimum min(Af,csss) of the phase
sensitivity, obtained by numerically determining the time evolution
for the full spin Hamiltonian for a **Na condensate with N = 10000,
for the coherent spin state with single-sided seeding (N; = 2). The
red dash-dotted line from panel (a) is reproduced for comparison.
The deviations between the symbols and the dash-dotted line for
& 2 3 reflect the breakdown of the undepleted pump approximation
in the long-time regime.

J

the coherent spin state with single-sided seeding is, for the
examples shown in Fig. 5, larger than the quantum Cramer-
Rao bound (horizontal green solid line), it is smaller than the
quantum Cramer-Rao bound for the vacuum state (not shown
in Fig. 5).

To highlight the dependence of the minimum of the phase
sensitivity A6, on the initial state, Fig. 6(a) considers the
resonant interferometer with x; = x3 = & =1 as a function
of & for three different initial states: pure Fock state with
single-sided seeding (black solid line), pure Fock state with
double-sided seeding (blue dashed line), and coherent spin
state with single-sided seeding (red dash-dotted line). For
& < &, all three curves decrease monotonically with increas-
ing 53, with Aeep,CSS,S > Aeepy]:s,]) > AOep,PFS,S at each fixed
&;. The phase sensitivities for the two pure Fock states are
constant for &3 > &;. For the coherent spin state, in contrast,
the minimum of the phase sensitivity for £&; > & continues to
decrease and approaches a constant in the £&3 — oo limit. We
emphasize that the decrease of Af,, for &3 2 &) is reproduced
by our numerical calculations for the full spin Hamiltonian for
a**Na BEC with N = 10000 [symbols in Fig. 6(b)]. However,
for & > & the phase sensitivity obtained for the full spin
Hamiltonian deviates from the results obtained within the
undepleted pump approximation, underscoring the fact that
the long-time dynamics is not described faithfully by the
undepleted pump approximation.

Interestingly, the quantum Cramer-Rao bound for the three
states considered in Fig. 6(a) all lie above the Heisenberg
limit (horizontal green dotted line). This implies that the
Heisenberg limit lies, in this case, below the fundamental
bound, i.e., the Heisenberg limit can never be reached.

2. Coherent spin state with double-sided seeding

This section considers the interferometer performance for
an initial coherent spin state with double-sided seeding. Com-
pared to the coherent spin state with single-sided seeding, the
relative phase 6 and the distribution of the atoms among the
two probe modes (i.e., the product N, N_) provide additional
tuning knobs.

For an initial coherent spin state with double-sided seeding,
the error propagation based phase sensitivity can be written as

Abep css,p = Abepvs fessps (65)

where

\/1 + (1 +T2)Ns +47T cos(@ — y; + vs) VN IN_,

fCSS,D =

It can be readily checked that fcss p reduces to fess.s if Ny N _
is equal to zero. For nonzero N, N_ and fixed interferometer
parameters, the terms in the numerator and denominator of
Eq. (66) that contain N, N _ take, depending on the value of
6 — y; + vp. positive or negative values: the quantities Z and
Abep,vs are positive for all interferometer parameters; dg (v —
y;) and the sin and cos terms, in contrast, can take positive or
negative values.

11+ N, + 27 cos@ — vz + v5) + 2A0epvs sin@ — vz + v (v — vOIWNN_1|

(66)

(

To illustrate the interplay of the different terms that enter
into Afepcss,p, We consider the resonant asymmetric inter-
ferometer with x; = x3 = & = 1 and & = 3/2. The dashed,
dash-dotted, and solid lines in Fig. 7(a) show the quantities
Abepvs, L, and 99 (¥ — yz) as a function of 6. These quanti-
ties are fully determined by the interferometer parameters, i.e.,
they are independent of the initial state. As already discussed
in the context of Fig. 5, A0, vs exhibits minima for 6 just
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Aeep,CSSD

FIG. 7. Analysis of error propagation based phase sensitivity for
the resonant asymmetric interferometer with x; = x3 =& =1 and
& =3/2 for an initial coherent spin state with N, = 2. (a) The
dashed, dash-dotted, and solid lines show A6 vs, Z, and 9y(yp —
¥i), respectively, as a function of 8. (b) The solid, dashed, and
dash-dotted lines show the quantity fessp for = /2, 8 = 0.36m,
and 6 = 0, respectively, as a function of 0 for a balanced initial state
with N, = N_ = 1. Note the logarithmic scale of the vertical axis.
(c) The solid, dashed, and dash-dotted lines show the phase sensitiv-
ity Afepcssp for 0 = /2,6 = 0.367, and 6 = 0, respectively, as a
function of @ for a balanced initial state with N, = N_ = 1.

a bit larger and just a bit smaller than . For these angles,
T and 9y(y3 — y;) take “intermediate” values (not maxima
and not minima). Since A0, cssp is directly proportional to
Abp vs and since Ab,, vs also enters through the denominator
of fcssp, Abepcss,p possesses a nontrivial dependence on 6.
Choosing the balanced case with N, /N_ =1 as an ex-
ample, Fig. 7(b) shows fcssp as a function of the phase
shifter angle 6 for various initial phases 6 of the coherent
spin state. It can be seen that fcssp depends strongly on 6
and 6: fcss.p changes by roughly four orders of magnitude for
6 = 0.367 and 6 = 0 and by less than an order of magnitude
for & = /2. For the example shown, fcssp takes a minimum
at @ = 7 (for all f considered) and a local minimum at 6 = 0

I0.500
£0.400
0.300
0.212
0.159
0.130
0.120
0.115

0 0.5 1. 1.5 2.
i

FIG. 8. Minimum min(Af, cssp) of the error propagation based
phase sensitivity for the resonant asymmetric interferometer with
X1 = x3 = & = l and & = 3/2 for an initial coherent spin state with
N, = 2 as functions of N, /N _ and 6. The legend on the right defines
the color scheme of the contours. The contours shown in blue and red
have the values 0.1592 and 0.2120, respectively. The former is equal

to min(A6.p prs,s) and the latter to min(Afp prsp)-

and 27 (for all & considered except for & = 7 /2). These
are exactly the angles at which Af,vs diverges. Figure 7(c)
shows the error propagation based phase sensitivity A6y cssp
for the same initial phases 6 as considered in Fig. 7(b). It can
be seen that the minimum of A6, cssp is obtained for 6 close
to but not equal to 7.

Repeating the analysis for other N /N _, Fig. 8 shows the
minimum min(A#6e, css,p) of the phase sensitivity as functions
of # and N,/N_ for the same interferometer parameters
as considered in Fig. 7. For N4 /N_ = 0, min(Afgpcssp)
is independent of # and equal to 0.2120; this value agrees,
as it should, with the minimum of the error propagation
based phase sensitivity for the coherent spin state with single-
sided seeding (see the dash-dotted line in Fig. 6 for & =
3/2). Figure 8 shows that the minimum min(A0e, cssp) of
the error propagation based phase sensitivity can, depending
on the values of N, /N_ and 6, be larger or smaller than
min(Afep css,s)-

It is interesting to compare the performance of the initial
coherent spin state with double-sided seeding with that for
the initial pure Fock state with single-sided seeding (and
the same N,); recall, among the pure Fock states, the pure
Fock state with single-sided seeding yields the smallest phase
sensitivity Af, for fixed interferometer parameters. For the
interferometer parameters considered in Fig. 8, the smallest
phase sensitivity for the pure Fock state is equal to 0.1592.
Thus the minimum of the phase sensitivity for the initial
coherent spin state with double-sided seeding is, for a range
of & and N, /N_, smaller than that for the pure Fock state
with single-sided seeding. This result is very encouraging as it
points toward the possibility of achieving comparable or even
better phase or parameter estimates for initial coherent spin
states with double-sided seeding, which are experimentally
fairly straightforward to prepare, than for initial pure Fock
states with single-sided seeding, which are experimentally
rather challenging to prepare.

The solid line in Fig. 9 shows the minimum of the error
propagation based phase sensitivity for an initial coherent
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FIG. 9. Interferometer performance for the resonant interferome-
ter with x; = x3 = & = 1 for a coherent spin state with double-sided
seeding (N, = 2). The solid line shows the minimum min(Abe, css,p)
of the error propagation based phase sensitivity as a function of &;;
note, the minimization is done by varying 4, @, and N, /N_. For
comparison, the dashed line shows the quantum Cramer-Rao bound
Abqcr for the initial states at which A cssp takes its minimum.

spin state with Ny = 2 for the resonant interferometer with
X1 = x3 =& =1 as a function of &;. In this analysis, the
minimum of the phase sensitivity is obtained by minimizing
Afgp css,p With respect to 9 and N+N_ as well as the an-
gle 6. For comparison, the dashed line shows the quantum
Cramer-Rao bound, calculated for each &; using the 0 and
N +]V _ values that yield the smallest A8, cssp. It can be
seen that the error propagation based phase sensitivity is
closest to the quantum Cramer-Rao bound for the largest &3
considered, i.e., for £ = 2. By analyzing the dynamics for
the full spin Hamiltonian for a 2*Na BEC with N = 10000,
we checked that the undepleted pump approximation provides
an accurate description for all &3 values considered in Fig. 9.
It is also instructive to compare with the quantum Cramer-
Rao bounds for the double-sided and single-sided pure Fock
states, which are equal to 0.1233 and 0.1592, respectively,
for &5 > 1. We find that the error propagation based phase
sensitivity for the coherent spin state is lower than the quan-
tum Cramer-Rao bound for the pure Fock state for the same
interferometer parameters for & > 1.280 and &; > 1.054,
respectively. This is interesting, since it indicates that the
performance of the SU(1,1) interferometer, as quantified by
the error propagation based phase sensitivity, can “beat” the
quantum Cramer-Rao bound for the pure Fock state, assum-
ing the same initial seeding N, and the same interferometer
parameters.

V. CONCLUSIONS

This work analyzed the performance of a spin-1 Bose-
Einstein condensate based interferometer for parameter com-
binations that can be realized experimentally. Within the un-
depleted pump approximation, which is employed throughout
this paper, the spinor BEC realizes an SU(1,1) interferometer,
in which the m = 0 state of the f = 1 hyperfine manifold
serves as the pump and the m = 41 and m = —1 hyperfine
states serve as the probe. Although the interferometer itself,
which consists of the state preparation, phase imprinting, and

readout steps, has eight experimentally tunable parameters
(1, g1, c1, t2, gps, 13, g3, €3), it is characterized by five
parameters within the undepleted pump approximation: two
that describe the state preparation step, one that describes
the phase imprinting step, and two that describe the readout
step. The initial state adds additional degrees of freedom: For
pure Fock states the fraction of atoms in the three different
hyperfine states can be varied. For coherent spin states with
double-sided seeding, the initial relative phase provides an
additional tuning knob. The validity regime of the undepleted
pump approximation limited our analysis to cases where
the side mode population of the initial state and the time
propagated state are much smaller than the population of the
pump mode.

The dependence of the performance of the spinor-BEC
based SU(1,1) interferometer on the seeding fraction and
initial phase of coherent spin states was already investigated
in Ref. [36] within the truncated Wigner approximation. As
in our work, both phase insensitive amplifiers (single-sided
seeding) and phase sensitive amplifiers (double-sided seed-
ing) were considered. Our analytical results, obtained within
the undepleted pump approximation, confirm the results of
Ref. [36] with regards to the role played by the initial state.
(ai) Even a tiny seeding fraction has a non-negligible effect
on the interferometer performance; correspondingly, an anal-
ysis of experimental interferometer results needs to account
for possible imperfections of the initial state. (aii) The best
interferometer performance min(A#,;) of a coherent spin state
with single-sided seeding is obtained for a phase shifter angle
that differs (typically just slightly) from that of the vacuum
state; in fact, the angle at which the vacuum state performs
best yields the worst performance for the coherent spin
state with single-sided seeding. For the same interferometer
parameters, an initial coherent spin state with single-sided
seeding yields a lower min(Afp) than an initial vacuum state.
(aiii) The coherent spin state with double-sided seeding can
perform better than the vacuum state and pure Fock states with
single- and double-sided seeding for appropriately chosen
initial phases. This is a very encouraging result from the
experimental point of view since coherent spin states with
double-sided seeding can be realized fairly straightforwardly
by first preparing a condensate in the |f = 1, m = 0) state and
by then applying a short radio-frequency pulse that transfers
a fraction of the atoms into the m = =1 states. The initial
phases of the three hyperfine components can be controlled
by introducing a finite variable detuning. Alternatively, mi-
crowave transitions that couple to the f = 2 manifold can be
used [24,26,27].

Additional findings of our work are as follows. (bi) Within
the undepleted pump approximation, analytical expressions
that account for all three steps of the SU(1,1) interferometer
sequence were presented for an arbitrary pure initial state and
analyzed for a subset of Fock and coherent spin states. We
expect that these expressions, which can be straightforwardly
implemented in Mathematica or other software packages,
will aid the analysis of experimental results and serve as
a benchmark for solutions that go beyond the undepleted
pump approximation. (bii) Pure Fock states with single-sided
seeding perform, assuming the same interferometer parame-
ters, better than pure Fock states with double-sided seeding.
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Pure Fock states with double-sided seeding, in turn, perform
better than the vacuum state. From a practical point of view,
pure Fock states with nonzero seeding are rather fragile
and hence challenging to work with experimentally. (biii)
Parameter regimes where coherent spin states perform better
than pure Fock states with single-sided seeding, in addition
to performing better than the vacuum state [see point (aiii)
above], were identified (again, assuming the same interfer-
ometer parameters). This is encouraging since this finding
underscores that the spin mixing dynamics can generate,
starting from an initial coherent state that may be viewed as
the most classical of all quantum states, useful “quantumness”
or entanglement during the first stage of the interferometer
sequence.

Last, we highlight a number of key findings that relate
to the interferometer steps themselves. (ci) For a coherent
spin state with single- or double-sided seeding, the error
propagation based sensitivity continues, for a wide range
of parameters, to decrease for &; > &, i.e., when 13 > 1.
This asymmetric behavior might be enhanced if one goes
beyond the undepleted pump approximation. (cii) The quan-
tum Cramer-Rao bound, which is fully determined by the
state |\W(#;)) that enters the linear phase imprinting step of
the interferometer, provides the ultimate lower bound for the
phase sensitivity; unfortunately, however, no general proto-
cols for its direct experimental determination exist. The error
propagation based phase sensitivity A6y, in contrast, depends
on all three stages of the interferometer. Our calculations
suggest that it is, in general, not possible to predict min(A0;)
by simply maximizing N,(¢;) or AN,(¢;). While this is not
unexpected, it highlights the interconnectedness of the various
parameters. (ciii) The Heisenberg limit [taken to be given by
1/N(t1)] lies, for certain parameter combinations, below the
quantum Cramer-Rao bound, indicating that one should, in
general, work with the quantum Cramer-Rao bound and not
with the Heisenberg limit. Since the observed behavior was
verified by performing calculations for the full spin Hamilto-
nian, this conclusion is not an artifact of the undepleted pump
approximation but valid more generally.
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APPENDIX A: GROSS-PITAEVSKII EQUATION

According to Eq. (3), the strength ¢ of the collision term
in the spin Hamiltonian is determined by ¢ and 7. For >*Na,
e.g., ap and a are 48.91apon, and 54.54apon: [38] (abonr de-
notes the Bohr radius), respectively, leading to ¢/h = 1.54 x
107 Hzm?. To determine the mean spatial density 7, we
treat a single-component >*Na BEC within the mean-field
Gross-Pitaevskii framework. To this end, we solve the Gross-

Pitaevskii equation

)
|: — — Vi + p(wix’ + o)y’ + wl7’)

4p
27K (N — 1 2
4 2 3)(“” “2)|wgp<?>|2}wgp(?>
m
— eVor(P). (AD)

where € denotes the chemical potential and gp(7) the mean-
field orbital, which we take to be normalized to 1. Given
Ygp(7), the mean density 7 is given by

n=N / [Wge ()| dF. (A2)

For an external harmonic trap with angular frequencies
Wy = wy, =21 x 166.277 Hz and w, =27 x 216.498 Hz,
we find 7=1.04x 10" m=, ¢;/h =15.9956 Hz, and
qc.j/h = —15.9948 Hz for a **Na condensate with N = Ny =
10000. These are the values that are used to obtain the results
for hAfspm shown in Figs. 2, 3, and 6(b). We emphasize that
the results obtained within the undepleted pump approxima-
tion employ dimensionless parameters. This implies that the
undepleted pump approximation results shown in Figs. 3-9
are applicable to a wide range of atomic species. The main
limitation is that the sign of §; is linked to the sign of ¢;, which
can—in many cases—not be tuned. For example, ¢; is positive
for 2Na and negative for 8’Rb.

APPENDIX B: PROPERTIES OF EQS. (28)-(31)

Equations (28)—(31) imply the following.

(1) The parameters & and &; are real and their sign is
determined by the sign of the coupling strengths c¢; and c3,
respectively.

(2) The parameters x; and x3 are either purely real or
purely imaginary.

(i) For —(2No — 1)™" < ¢;/qe; < 4No — DN — 1)
(this corresponds t0 0 < q;/q..; S 2), x; is purely real.

(ii) For g;/q.; < —(2No— 17" and ¢;/q.; > (4Ny —
1)(2Ny — 1)~ (this corresponds t0 ¢;/q. ; < 0and q;/qc.; 2
2), x; is purely imaginary, with the imaginary part being
greater than zero. In this case, it is convenient to replace y; by
1] x;]. Correspondingly, it is convenient to replace cosh(§; x;)
in the expressions for A; and B; by cos(&;|x;|) and to replace
vsinh(&;x;)/ x; by ¢ sin(&;x; /1 x;1-

(3) It follows that A; and A3 are, in general, complex.

(4) From points (1) and (2), it also follows that B; and B;
are purely imaginary, implying that the phases yp, are equal
to 7w /2 when the imaginary part of B; is positive and — /2
when the imaginary part is negative.

APPENDIX C: COHERENT SPIN STATE

This Appendix derives the expression for the coherent
spin state, Eq. (57), used in Sec. IV B within the undepleted
pump approximation. The derivation starts with the coherent
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three-mode spin state oy, oo, 0¢—1), obtain the circles in Fig. 6(b). When using Eq. (C1), we define
0 = —(19+1 +9_1), ie., we set ¥g to zero. This does not

pose any restrictions on our formulation since the results are

N N N
loty1, otg, 0r—1) = Z Z Z — (o)™ independent of the overall phase factor of the initial state.
Y nyylngln_y! ; .
om0 no=0n =0 ¥ 10— The coherent three-mode spin state can alternatively be
written as
nyi+no+n_=N
1 A A AT AN
x (o) (0t—1 )™ |11, Mgy 1), (CD) loyr, g, 1) = W(aHaH + apdy +a_ra’l )" |vac),

. C2
where the sums over the occupation numbers n |, ng, and (€2)

n_; are restricted such that the number N of particles is where |vac) denotes the vacuum state. This is the “true”

fixed. In Eq. (C1), we have a,, = (N,,/N)"/?>exp(i¥,,) and
Do 101 |a,n|? = 1. This coherent three-mode spin state
yields, when employed as an initial state for the time prop-
agation under the full spin Hamiltonian ﬁspin, results that
agree up to order 1/N with the UPA results presented in

vacuum state that contains no particles. It is distinct from the
unseeded Fock state |0, NV, 0), which is referred to as vacuum
state throughout this paper in analogy with the photonic
system. Adding (N — NH —No— 1)exp(zz90) which is
equal to zero, to the terms in the round brackets in Eq. (C2),

Secs. IVB 1 and IV B2. For example, this state is used to we find
J
_ NYZexp(N©y)
loeyy, g, 00— 1) = T
VN1 exp(0.)at 4+ VN_jexp(0_pat, — Ny — N_i + (VNoal — No) N
« |:1+ +1€Xplittyy)a, 1 €Xp 1)a_, +1 1 0d 0 i| vac),  (C3)
N
where we defined §+1 = EH —VYpand6_, =_; — Do. Considering the large N limit and using the identity
AN
A}me (1 + ﬁ) = exp(A), (C4

we find
Neoo NN/ CXp(lNgo)
RN T
JN!

X exp(\/7 — Ny)|vac). (C5)

Importantly, the right-hand side of Eq. (C1) is, in the large N limit, identical to Eq. (C5), i.e., Eq. (C5) is the coherent three-mode
spin state for large N.
In the spirit of the undepleted pump approximation, we now replace the operator

lot1, g, 1)

exp(—]vﬂ —N,l)exp |:,/1v+1 exp(z§+1)&11 ++/N_; exp(z@l)&il]

a; in Eq. (C5) by (No)"/?. This replacement
has the following consequences. (i) The term exp (\/]VT)&S — Ny) goes to 1. (i) No atoms are created in the m = 0 hyperfine state,
i.e., the m = 0 mode of the three-mode state is effectively being eliminated. (iii) Expanding out the exponential that contains the
operators &L and &L, it can be seen that the state is a superposition of Fock states containing varying number of atoms; this
observation is closely related to point (ii) and also implies that N should now be interpreted as a parameter as opposed to the

actual atom number. (iv) The state is no longer normalized to 1. Restoring the normalization and using 8,, = (N,,)"/? exp(16,,)
(see Sec. IV B), the right-hand side of Eq. (C5) becomes

1B+11* + 18112

exp(zNﬁO)exp <— >

> exp(Bi1dl, + B’ ))Ivac). (C6)

Except for the overall phase exp(tN9), which does not have an effect on any of the observables, this is the coherent spin
state, Eq. (57), used in our undepleted pump approximation calculations in Sec. IV B. We emphasize that even though the m = 0
mode has begn effect_ively eliminated from the fgrmulatio_n, this mode still serves as a phase reference. This can be seen from
the fact that 6 .| and 6 _; are defined in terms of ¥ ;| and ¥} _;, measured relative to .
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