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ABSTRACT 

This paper presents two adaptive Kalman filters (KFs) for nonlinear model updating where, in addition 
to nonlinear model parameters, the covariance matrix of measurement noise is estimated recursively in a 
near online manner. Two adaptive KF approaches are formulated based on the forgetting factor and the 
moving window covariance-matching techniques using residuals. Although the proposed adaptive 
methods are integrated with the unscented KF (UKF) for nonlinear model updating in this paper, they 
can be alternatively combined with other types of nonlinear KFs such as the extended KF (EKF) or the 
ensemble KF (EnKF). The performance of the proposed methods is investigated through two numerical 
applications and compared to that of a non-adaptive UKF and an existing dual adaptive filter. The first 
application considers a nonlinear steel pier where nonlinear material properties are selected as updating 
parameters. Significant improvements in parameter estimation results are observed when using adaptive 
filters compared to the non-adaptive approach. Furthermore, the covariance matrix of simulated 
measurement noise is estimated from the adaptive approaches with acceptable accuracy. Effects of 
different types of modeling errors are studied in the second numerical application of a nonlinear 3-story 
3-bay steel frame structure. Similarly, more accurate and robust parameter estimations and response 
predictions are obtained from the adaptive approaches compared to the non-adaptive approach. The 
results verify the effectiveness and robustness of the proposed adaptive filters. The forgetting factor and 
moving window methods are shown to have a simpler tuning process compared to the dual adaptive 
method while providing similar performance. 

Keywords: Adaptive Kalman filter; nonlinear model updating; system identification; unscented Kalman 
filter; modeling errors; covariance-matching technique 

1. Introduction 

Model updating is the process of tuning structural models using measured data in order to improve 
the model prediction accuracy. The updated models, especially mechanics-based models, have been 
shown to be effective for response prediction of dynamic structural systems, structural assessment, and 
damage identification. The updating process can be performed deterministically through an optimization 
process or probabilistically through Bayesian inference. Many numerical/laboratory studies and a few of 
real-world applications of FE model updating through optimization and/or Bayesian inference have been 
completed with satisfactory results1-13. Lam et al. implemented Bayesian model updating of a coupled 
slab system using modal parameters identified from fast Bayesian FFT method14, 15. Behmanesh et al. 
applied a hierarchical Bayesian framework to study the effect of environmental variability on the 
uncertainty of model parameters on a footbridge16 and performed model extrapolation to predict modal 
parameters at a different structural state for a 10-story building17. Song et al. performed damage 
identification of a two-story reinforced concrete (RC) building through a modeling updating strategy and 
compared the results with lidar data18. In another study, Song et al. implemented hierarchical Bayesian 



2 
 

model updating19 to account for the amplitude-stiffness nonlinear structural behavior of the same RC 
building using a linear FE model20. Ebrahimian et al. have used an output-only Bayesian finite element 
(FE) model updating techniques to estimate jointly the soil-structure model parameters and time 
histories of foundation input motions for the Millikan library building21. 

The response behavior of civil structures is nonlinear in nature due to material and geometric 
nonlinearities. The nonlinear effects become more significant under larger input loads. Linear dynamic 
models are only capable of representing civil structures at low amplitudes of vibration. For structures 
subjected to moderate to large excitations such as seismic loads, nonlinear models should be used for 
accurate response prediction and structural assessment. The literature includes only few real-world 
applications of nonlinear model updating. Asgarieh et al. performed nonlinear FE model updating of a 
large-scale three-story RC frame22 and a seven-story shear wall23 tested on shake-table using nonlinear 
response of the two structures subjected to different earthquake excitations.   

Kalman filters (KFs) have received increased attention from the civil engineering community 
recently for state estimation, parameter estimation, joint state-parameter estimation, and input estimation. 
KF methods, also referred to as recursive identification methods, can provide certain advantages 
compared to traditional batch Bayesian model updating method, in which the posterior probability 
distribution of parameters is updated through a one-step Bayesian inference using the batch of available 
measurement all at once. Such advantages include (1) the potential for near real-time or near online 
structural health monitoring through updating structural state/parameter recursively, and (2) the 
computational efficiency of KF methods compared to batch Bayesian model updating. Several 
extensions of KFs exist for applications to nonlinear structural systems, such as the extended KF (EKF), 
the unscented KF (UKF), and particle filters (PFs). Some numerical/laboratory applications of KF have 
been performed on linear and nonlinear civil structures24-32. Wu and Smyth investigated and compared 
the performance of EKF and UKF for model updating of linear and nonlinear systems33. Chatzi and 
Smyth applied UKF and PF for nonlinear model updating using non-collocated heterogeneous data34. 
Xie and Feng studied the performance of iterated UKF for model updating and compared it with UKF35. 
Ebrahimian et al. implemented EKF for parameter estimation of mechanics-based nonlinear FE model36 
and joint input-parameter estimation37. Eftekhar-Azam et al. proposed a dual KF approach for joint 
state-input estimation using output-only measurements and compared with other existing input 
estimation methods38, 39. Astroza et al. employed UKF for model updating of nonlinear civil structures40 
and seismic input estimation41, and investigated the effect of modeling errors on parameter estimation42. 
Erazo et al. applied KF for damage assessment of a numerical bridge model and decoupled the effects 
between structural damage and changing environmental conditions43. In another study, Erazo et al. used 
a UKF for nonlinear model updating and state estimation of a full-scale seven-story shear wall building 
structure tested on a shake table44.  

Nonlinear KF methods are generally sensitive to the filter parameters and a general approach is 
lacking for setting the filtering parameters. For example, covariance matrices of process and 
measurement noises have significant impacts on the filter performance and improper values for these 
may result in estimation inaccuracy or divergence. In real-world applications, these covariance matrices 
are usually unknown, and a trial-and-error tuning process is often adopted to determine suitable values 
for them45. Furthermore, modeling errors are unavoidable for large-scale and complex civil structures 
and have substantial effects on model updating and model predictions. In the presence of significant 
modeling errors, the measurement noise term, which originally represents the prediction error in KF, can 
incorporate the effects of modeling errors and its covariance matrix should be considered time-varying 
since modeling errors often changes with the amplitude of response and the level of response 
nonlinearity. Poor parameter estimations have been observed using the non-adaptive UKF by Astroza et 
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al.42 due to the effects of modeling errors. Several adaptive KF methods exist in the literature that can 
provide an estimate for the process noise and measurement noise covariance matrices. These methods 
can be categorized into Bayesian methods, maximum likelihood methods, correlation methods, and 
covariance-matching methods46. Covariance-matching technique is shown to be an effective and easy-
to-implement method and has been applied in a few applications in signal processing with reasonable 
success47. Yuen and Kuok proposed an adaptive EKF method using Bayesian method for online 
estimation of noise covariance48. Astroza et al. proposed a dual adaptive UKF to account for the effects 
of modeling errors for model updating and provided improved parameter estimation results49. Almagbile 
et al. proposed and compared the performance of innovation-based and residual-based covariance-
matching techniques for GPS/INS integration50. Akhlaghi et al. proposed a forgetting factor adaptive 
EKF based on residuals for dynamic state estimation51. 

This study proposes adaptive KF methods for nonlinear model updating based on two types of 
covariance-matching techniques: forgetting factor method and moving window method. Each of the 
methods is formulated based on innovation as well as residual terms in the KF formulation to estimate 
the covariance of measurement noise recursively. The forgetting factor and moving window adaptive 
filters are applied to two numerical applications and their results are compared to those from the non-
adaptive UKF and a dual adaptive filter. 

2. Adaptive KF for Nonlinear Model Updating 

2.1 Non-adaptive KF 

The parameter estimation formulation for nonlinear model updating using Kalman-based filters can 
be written as36: 

1

1 1 1 1: 1 1 1 1

                            ( , )

( , )        ( , )
k k k k k

k k k k k k k

N

N


      

 
  

θ θ w w 0 Q

y h θ u v v 0 R




 (1) 

in which kθ  is the vector of updating model parameters, e.g., unknown stiffness, mass, or material 

constitutive model parameters; 1ky  is the measurement vector at time step k+1, 1 1 1: 1( , )k k k  h θ u  refers 

to the response function of the nonlinear numerical model, e.g., FE model; 1: 1ku  is the history of input 

vector to the system, e.g., earthquake excitation; kw  and 1kv  are the process and measurement noise 

vectors with covariance matrices kQ  and 1kR , respectively. In most applications, kQ  and 1kR  are 

taken as constant time-invariable terms. Note that kQ  and 1kR  are unknown in real-world applications; 

the selection of these filtering parameters can affect the performance of the filter and may even result in 
its divergence. For systems with time-invariant parameters, although the covariance of process noise kQ  

can ideally be set as zero, but a small nonzero value of kQ  is suggested to facilitate faster parameter 

convergence. Note that the filter may never converge or even diverge if kQ  is set to zero in applications 

where the initial state is far from the true value or the initial parameter covariance 0
P  is not large 

enough. Therefore, a small nonzero kQ  is used to improve filter convergence as it is added to the 

parameter covariance and let the filter better explore the design space.  

Modeling errors are inherent part of any numerical model, which should be accounted for to reduce 
the bias in the estimation results. Here, we assume that the measurement noise term 1kv  can account for 
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the effects of modeling errors, and, therefore, its covariance 1kR  should be regarded as a time variant 

variable even when sensor/cable noise is constant. Note that modeling errors can be manifested in the 
measurement noise term and therefore result in a non-stationary, non-Gaussian, and non-white random 
process. In this study, we simplify the problem and assume that the modeling errors will result in a non-
stationary zero-mean Gaussian measurement noise. This is still a limiting assumption and potentially far 
from the reality, but a step forward with respect to the state-of-the-art. In this study, adaptive approaches 
are proposed to estimate the effective values of matrix 1kR  to partially account for the effects of 

modeling errors. It will be shown later in the paper that by incorporating this assumption, the 
performance of the Kalman filter will be improved in the presence of modeling errors. 

2.2 Covariance-matching technique 

The key idea of the covariance-matching method46 is to update the covariance of 1kv  consistent 

with the theoretical covariance. Some applications of covariance-matching method have demonstrated 
its effectiveness in electrical engineering50, 51 and in civil engineering through a dual filter approach49. 
The concept of covariance matching technique and its derivation are introduced in this section. Note that 
the following formulation is based on a general state space model, and the parameter estimation 
formulation in Eq. (1) is just a special nonlinear case/application of it. 

Consider the state space model of a linear dynamic system as: 

1 1 1 1 1 1 1           ( , )

                       ( , )
k k k k k k k k

k k k k k k k k

N

N
        

   

x A x B u w w 0 Q

y H x D u v v 0 R




 (2) 

where 𝐱௞  is the state vector, 𝐀௞ିଵ is the state transition matrix, 𝐁௞ିଵ is the input matrix, 𝐮௞ିଵ is the 
input vector, 𝐰௞ିଵ is the process noise vector, 𝐯௞ is the measurement noise vector, 𝐲௞ is the observation 
or measurement vector, 𝐇௞  is the observation matrix, and 𝐃௞  is the feedthrough matrix. Two 
covariance-matching formulations are derived (refer to Appendix A and B for derivation details) based 
on innovation and residual, respectively: 

T T
k k k k k kER d d H P H-é ù= -ê úë û       

 (innovation-based) (3) 
T T

k k k k k kER ε ε H P H+é ù= +ê úë û         
(residual-based) (4) 

in which ˆ( )k k k k k kd y H x D u-= - +  is the difference between the measurement and its predicted prior 

response, and is referred as “innovation”, and ˆ( )k k k k k kε y H x D u+= - +  is the difference between 

measurement and the posterior response, and is referred as “residual” in this study. T
k kE d dé ùê úë û  denotes the 

covariance of innovation with E referring to mathematical expectation. kP-  and kP+  are prior and 

posterior covariance matrices of response estimation, respectively. In standard KF framework such as 
linear KF, EKF, and UKF, the term T

k k kH P H+  (or equivalent term in nonlinear KFs) is not calculated in 

the standard procedure and requires additional calculations, e.g., for UKF, the term T
k k kH P H+  can be 

approximated using response predictions of all sigma points similar to the calculation of T
k k kH P H- 52, 53. 

For EKF and UKF, these additional computations sometimes are computationally demanding and, 
therefore, a simplified version of residual-based covariance-matching function is proposed below by 
replacing the term T

k k kH P H+  with T
k k kH P H- : 
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T T
k k k k k kER ε ε H P H-é ù= +ê úë û         

(residual-based) (5) 

Since the estimation uncertainty kP+  is usually reduced gradually along the updating time steps (i.e., 

with increasing k), the difference between kP+  and kP-  is often small and negligible. The accuracy and 

efficiency of this simplification have been verified by the authors through a numerical study, and the 
computational effort is reduced up to 50% when the UKF is applied for model updating. 

Based on Eq. (3) and (5), the measurement noise covariance kR  can be estimated at each updating 

step using either innovation kd  or residual kε . The only estimation uncertainty comes from evaluating 

the covariance of innovation T
k kE d dé ùê úë û  and residual T

k kE ε εé ùê úë û . Two adaptive methods are proposed in this 

study using the residual-based formulation, namely the forgetting factor method and the moving window 
method as outlined in the following sections. Note that the forgetting factor and moving window 
methods can also be applied using innovation-based formulation in a similar manner as shown in Table 
1. For the sake of brevity, only residual-based methods are implemented and investigated in the 
numerical applications of this study. Some numerical studies have been performed by the authors to 
compare the performance of residual-based and innovation-based formulations. From these studies, the 
residual-based formulation was found advantageous since (1) the kR  estimation is guaranteed to be 

positive (a lower positive bound is needed for kR  estimation using innovation-based formulation as it 

can be estimated as negative in certain cases), and (2) the full covariance matrix is obtained (only 
diagonal entries are estimated using innovation-based methods), whose off-diagonal entries contain 
information about the noise correlation and modeling errors correlation. 

2.2.1 Forgetting factor method 

Forgetting factor method is first proposed by Akhlaghi et al. for dynamic state estimation in 
electrical system51. The basic idea of this method is to update kR  gradually according to current residual 

values by applying a forgetting factor α to balance the weight between previous covariance 1kR -  and the 

current residual estimation term, i.e., 

( )1 (1 ) T T
k k k k k k kR R ε ε H P Ha a -

-= + - +
             

(0 1)a£ £ (6) 

In Eq. (6), if α = 1, the forgetting factor method would become the traditional non-adaptive filtering 
method, in which kR  is not updated and treated as a constant. If α = 0, then kR  is fully determined by 

current residual term, which usually should be avoided as this causes too much variation in the 
estimation of kR . Generally larger values of α would assign larger weights to previous 1kR -  and, 

therefore, estimated kR  will change slower and smoother.  

2.2.2 Moving window method 

The covariance of residual T
k kE ε εé ùê úë û  in Eq. (5) can be approximated within a moving window as 

proposed by Mehra46 and employed by Almagbile et al50. In this way, the moving window method is 
formulated as 

1

0

1 m
T T

k k i k i k k k
im

R ε ε H P H
-

-
- -

=

= +å (7) 
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In Eq. (7), m  refers to the size of the moving window. A larger window size would provide 
statistical smoothing so that updated kR  changes smoother and slower. For model updating at the 

beginning of time history (i.e., when k m ), two strategies can be employed: (1) keep kR  fixed as the 

initial 0R  and start updating kR  once k reaches window size m; (2) start updating kR  from a specific 

time step L ( L m  ) and for L k m  , the sample mean term in Eq. (7) is estimated over available 
residual values 1 kε ε . In this study, the second strategy is adopted with 5L  . 

2.2.3 Dual adaptive UKF 

A dual adaptive UKF is proposed by Astroza et al.49 to update kR  and account for the effects of 

modeling errors for nonlinear FE model updating. The basic idea of this method is to build a slave linear 
KF to update kR  recursively embedded in a master UKF for model updating. For the slave KF, the 

diagonal terms of kR  are treated as unknown parameters and the innovation-based covariance-matching 

function Eq. (3) is used as measurement function. More details about this method can be found in Table 
1 and in49.  

2.3 Adaptive UKF for nonlinear model updating 

A step-by-step flowchart for the proposed adaptive UKF approaches including the forgetting factor, 
moving window, and dual adaptive methods is provided in Table 1. Innovation-based forgetting factor 
and moving window methods are also included (although not implemented in the application studies of 
this paper) to provide a complete demonstration of covariance-matching-based adaptive approaches. The 
framework for non-adaptive UKF can be obtained from Table 1 by not implementing the adaptive 
sections. Note that only one of the two adaptive options is needed for adaptive UKF. As previously 
mentioned, the proposed innovation-based and residual-based methods can alternatively be combined 
with other nonlinear KFs such as EKF and EnKF.  

The residual-based adaptive methods have the following two advantages over the innovation-based 
methods: (1) full matrix kR  can be estimated and the off-diagonal terms contain information about 

noise/modeling error correlation, while for innovation-based approaches only diagonal terms of kR  are 

updated to simplify the problem and avoid ill-conditioning, and (2) kR  is guaranteed to be positive 

definite since it is estimated to be the summation of two positive definite terms, but the positive 
definiteness of kR  in innovation-based methods is not guaranteed and a small positive lower bound has 

to be assigned to avoid computational errors. Furthermore, there is only one tuning parameter for the 
forgetting factor method (forgetting factor α) and moving window method (window size m ) compared 
to at least two tuning matrices T and U for the dual adaptive method, in which T is the covariance 
matrix of process noise and U is the covariance matrix of measurement noise for the slave linear KF. It 
is worth noting that T and U are symmetric covariance matrices of size 𝑛௬ ൈ 𝑛௬ (𝑛௬ is the measurement 
size) and, therefore, can have up to ( 1) / 2y yn n   independent variables each. In practice, both T and U 

are assumed to be diagonal matrices with a single independent diagonal element each, namely 2
T  for T 

and 2
U  for U. However, since parameters α and m are scalars and their effects on the filter performance 

are better understood, the selection of these parameters in forgetting factor and moving window methods 
is easier and more straightforward than the tuning procedure of slave KF for dual adaptive method. 
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The estimated kR  from the adaptive approaches reflects the “effective noise covariance matrix” that 

also accounts for modeling errors. Larger values for innovation or residual means larger discrepancy 
between measurement and model prediction, which would increase kR  and, therefore, reduce the 

Kalman gain (step (2.3) in Table 1). Lower Kalman gain assigns smaller weight on the measurements 

(step (2.4) in Table 1) in the KF correction step and, therefore, the correction in 1
ˆ

k

θ  becomes smaller 

and the reduction in 1k

P  (step (2.5) in Table 1) also becomes smaller. This means that the filter 

becomes less sensitive to the discrepancies between the measurement and model prediction and assumes 
that the discrepancies stem from potential modeling errors rather than model parameter uncertainties.  

The parameters used in Table 1 are defined as follows52, 53. At step (1.2), 𝛾 ൌ ඥ𝑛ఏ ൅ 𝜆 in which 𝑛ఏ 

is the dimension of 𝛉 and 𝜆 ൌ 2( )n n     is a scaling parameter, 𝜅 is a secondary scaling parameter 

which is usually set to 0 or 3െ 𝑛ఏ, and 𝛼 determines the spread of sigma points (SP) and is usually set 
to a small positive value 1𝑒 െ 4 ൑ 𝛼 ൑ 1. At steps (1.4), (a.2), (2.1), (2.2) and (b.3), the weights ( )i

mW  

and ( )i
cW  are determined as 

(1) (1) 2/ ( ),     / ( ) (1 )m cW n W n             (8) 
( ) ( ) 0.5 / ( )       2,...,2 1   i i

m cW W n i n      (9) 

In this study, the parameter values are selected as: 𝜅 ൌ 0, 𝛼 ൌ 1, and 𝛽 ൌ 2. 
 

Table 1. Framework of adaptive UKF approaches 

Initialize: 0 0
ˆ ,   θ P   

Loops for k = 0, 1, 2, 3…N-1 
UKF Step 1: Prediction Step 

(1.1) 1 1
ˆ ˆ ,  k k k k k
   
   θ θ P P Q   

(1.2) Generate sigma points (SP): 1| 1 1 1 1 1
ˆ ˆ ˆ

k k k k k k k     
     

   
 

Θ θ θ P θ P  

(1.3) Evaluate predictions at SP:  1| 1 1| 1: 1,k k k k k k    h Θ u   

(1.4) Mean of prediction: 
2 1

( ) ( )
1 1|

1

ˆ
n

i i
k m k k

i

W
 


 



 y   

Adaptive Option a: Innovation-based Covariance-matching Methods 
(a.1) Evaluate innovation: 1 1 1ˆk k k


   d y y  

(a.2) Based on covariance-matching equation 1 1 1 1 1 1
T T

k k k k k kER d d H P H-
+ + + + + +

é ù= -ê úë û , three adaptive 

methods can be applied:  

Forgetting factor method: ( )1 1 1 1(1 ) T
k k k k kdiagr r d d la a+ + + += + - -   

Moving window method: 
1

1 1 1 1
0

1 m
T

k k i k i k
i

diag
m

r d d l
-

+ + - + - +
=

æ ö÷ç= - ÷ç ÷÷çè øå   

Dual adaptive UKF:  
1

1 1 1 1 1 1

                                    ( , )

      ( , )

k k k k

T
k k k k k k

N

diag N



     

 
   

r r ω ω 0 T

d d r l υ υ 0 U




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where ( )1 1k kdiagr R+ +=  and 
2 1

( ) ( ) ( )
1 1| 1 1| 1

1

ˆ ˆ
n

Ti i i
k c k k k k k k

i

diag Wl y y
q+

- -
+ + + + +

=

æ ö÷ç é ù é ù ÷= - -ç ê ú ê ú ÷ë û ë ûç ÷çè ø
å    

UKF Step 2: Correction Step 

(2.1) 
1 1

2 1
( ) ( ) ( )

1| 1 1| 1 1
1

ˆ ˆ
k k

n
Ti i i

c k k k k k k k
i

W


 


 

    


         y yP y y R   (For innovation-based methods, estimated 

1kR +  from step (a.2) will be directly used here; for residual-based methods, 1kR +  estimated from 

step (b.3) in previous loop k is used here) 

(2.2) 
1 1

2 1
( ) ( )

1| 1 1| 1
1

ˆ ˆ
k k

n
Ti i

c k k k k k k
i

W


 


 

   


       θ yP Θ θ y  

(2.3) Kalman gain:  
1 1 1 1

1

1 k k k kk    



  θ y y yK P P   

(2.4) Parameter update:  1 1 1 1 1
ˆ ˆ ˆk k k k k
  
      θ θ K y y  

(2.5) Parameter uncertainty update: 
1 11 1 1 1k k

T
k k k k 

 
     y yP P K P K  

Adaptive Option b: Residual-based Covariance-matching Methods 

(b.1) Evaluate updated prediction:  1 1 1 1: 1
ˆˆ ,k k k k

 
   y h θ u  

(b.2) Evaluate residual: 1 1 1ˆk k k


   ε y y  

(b.3) Update 1kR  which is used for next loop k+2 in step (2.1): 

Forgetting factor method: ( )1 1 1 1(1 ) T
k k k k kR R ε ε La a+ + + += + - +  

Moving window method: 
1

1 1 1 1
0

1 m
T

k k i k i k
im

R ε ε L
-

+ + - + - +
=

= +å  

where 
2 1

( ) ( ) ( )
1 1| 1 1| 1

1

ˆ ˆ
n

Ti i i
k c k k k k k k

i

WL y y
q+

- -
+ + + + +

=

é ù é ù= - -ê ú ê úë û ë ûå    

End loop for k 
 

3. Application 1: Cantilever Steel Pier 

3.1 FE model and numerical simulation 

In the first application study, the proposed adaptive KF approaches are applied to a nonlinear 
cantilever steel pier with a concentrated mass at the top. The FE model of the cantilever pier is created in 
open-source FE analysis platform OpenSees54 as shown in Figure 1(a). The pier column is modeled 
using displacement-based beam-column elements considering P-Delta effect. The column is discretized 
into 17 elements where the 10 bottom elements are 250 mm long and the 7 top elements are 500 mm 
long. The steel box section of the column is modeled using fiber elements with the Giuffre-Menegotto-
Pinto (GMP)55 constitutive model characterizing the uniaxial behavior of the steel fibers as shown in 
Figure 1(b). The model includes stiffness proportional Rayleigh damping with 2% damping at the first 
mode. Three parameters of the GMP model are selected as updating parameters, namely the initial 
Young’s modulus E, yielding stress fy, and strain-hardening ratio b. The nominal values of these 
parameters, referred to as the true values in this paper, are taken as: true 200 GPaE  , true 250 MPayf  ,
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true 0.08b  . In the estimation process, the updating parameters are normalized by their true values, i.e., 
true true true/ / /

T

y yE E f f b b   θ .  

The measurement data consists of the absolute acceleration response at the top of the pier subjected 
to the 1989 Loma Prieta earthquake (0° component at Los Gatos station56) as shown in Figure 2. The 
simulated acceleration response is then polluted with additive white noise of 10% root-mean-square 
(RMS) noise-signal-ratio (NSR), i.e., trueRMS(noise) 0.1 RMS( )y   in which truey  refers to simulated 
acceleration response at the top of pier without noise. Therefore, the true covariance of measurement 
noise true true 20.01 RMS( )R y  . Note that 10% RMS NSR noise level is significantly higher than 
common expected measurement noise level in real-world applications, and the purpose of this numerical 
study is to demonstrate the effectiveness of adaptive approaches to estimate R when the initial value is 
far from the true value which is clearly known. Furthermore, 10% NSR noise can represent the effects of 
small modeling errors. It has been shown that, if the top mass is 5% larger than the original value (100 t), 
the top acceleration discrepancy is 11% of the true response when evaluated as RMS, i.e., 

true error trueRMS( ) / RMS( ) 11%y y y   where errory  refers to the response of model with 5% larger top 
mass than the true model. Therefore, the case study in Application 1 can also be seen as model updating 
with the existence of modeling errors. 

 

 

(a) (b) 
Figure 1. (a) FE model of cantilever steel pier; (b) Giuffre-Menegotto-Pinto material model 

 

Figure 2. 1989 Loma Prieta earthquake recorded in the 0° component at Los Gatos station 
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3.2 Model updating results 

The non-adaptive UKF and the three adaptive UKF approaches (forgetting factor, moving window 
and dual adaptive methods) are applied to estimate the model parameter vector θ  of the cantilever steel 

pier. The initial parameter values of  0
ˆ 0.7 0.7 1.5

T θ and the initial parameter covariance matrix 

 2

0 0
ˆ0.2diag P θ  are considered. The process noise covariance is taken as  2

4
0

ˆ10diag  Q θ . Figure 

3 shows the estimated parameters from the non-adaptive approach. Two cases of model updating are 
investigated when using the non-adaptive method, with trueR R  and true /100R R  (i.e., 1% RMS 
NSR). It can be observed that accurate parameter estimations are obtained when trueR  is used, while the 
estimated parameters do not converge to the true values when R is underestimated, especially for strain-
hardening ratio b which is the least sensitive parameter to the measured data. It is worth noting that 
different assumptions for initial R could be used, for example true /R R N , with N = 2, or 10. However, 
N = 100 is selected to clearly show the performance of adaptive approaches under an extreme condition. 
Note that for N = 2 or 10, model updating results of adaptive approaches will be improved.  

The three adaptive approaches are applied with initial true / 100R R  for fair comparison. The time 
histories of parameter estimation and the estimation uncertainties (shown as standard deviations, which 
are obtained from the diagonal entries of the covariance matrix P) using the forgetting factor method are 
shown in Figure 4 with four factor values of α = 0.5, 0.7, 0.9 and 0.95. It can be seen that the forgetting 
factor method with all four different factor values improves the model updating results remarkably, and 
the estimated parameters and their uncertainties are similar to the non-adaptive approach with trueR , 
which can be regarded as the reference results. The estimated R from the forgetting factor method is 
plotted in Figure 5. It can be observed that the estimated R changes drastically starting from initial R and 
reach trueR  quickly, and then fluctuates around it. As expected, larger  values reduce the estimation 
uncertainty and provide smoother results. Overall, R estimations are acceptable and better 
approximations are obtained when average of R over a window is used. 

Moving window method is applied with four different window sizes of m = 5, 10, 20 and 40. 
Estimated parameters and their standard deviations are shown in Figure 6. Similar observations can be 
made to those of the forgetting factor method: parameters are estimated accurately with standard 
deviations comparable with reference results. Larger window sizes provide statistical smoothing in the R 
estimation as shown in Figure 7, similar to the effect of factor α. Model updating results using dual 
adaptive method with four different settings (U = 1e-20, 1e-19, 1e-18 and 1e-17 where 1e-20 was used 
in the original study of dual adaptive filer49) are shown in Figure 8. Note that there are two tuning 
parameters for dual adaptive method: T and U; however, as there is compensation effect between them, 
it is suggested to tune only one of them. In this study, T is fixed as 1e-20 and the effect of U is studied. 
Overall, the estimated parameters and standard deviations are improved, and the results are comparable 
with forgetting factor and moving window approaches. It is worth noting that for U = 1e-20, small 
estimation errors are observed which is due to the large variability of R estimation as shown in Figure 9. 
The effect of U is similar to that of factor α and window size m, with larger U providing statistical 
smoothing in R estimation as shown in Figure 9. 

The comparison between the non-adaptive and three adaptive methods is shown in Figure 10. It can 
be seen that the three adaptive methods (forgetting factor method with α = 0.9, moving window method 
with m = 20, and dual adaptive method with U = 1e-18) provide similar parameter estimation and 
standard deviations which have been significantly improved compared to non-adaptive method when the 
same initial  true / 100R R  is used. The parameter uncertainty from non-adaptive method with 
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true /100R  used is drastically smaller than that of the reference filter and adaptive methods, which would 
provide un-conservative parameter confidence interval. The comparison of R estimation across different 
methods is shown in Figure 11. It is interesting to observe that three adaptive methods provide almost 
the same R estimation along the time history, especially between forgetting factor and dual adaptive 
method which almost overlay each other. This shows that three adaptive methods, although formulated 
differently based on different philosophy and covariance-matching functions, provide similar 
performance on parameter and R estimation. Overall, this case study demonstrates the robustness of 
adaptive methods for parameter estimation and the effectiveness of R estimation. 

 

 

 
Figure 3. Parameter and standard deviation estimation histories using non-adaptive approach with trueR  

and true / 100R  used 
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Figure 4. Parameter and standard deviation estimation histories using forgetting factor approach with α = 

0.5, 0.7, 0.9, and 0.95 

 

 
Figure 5. Covariance R estimation histories using forgetting factor approach with α = 0.5, 0.7, 0.9, and 

0.95 ( trueR  and true / 100R  are denoted by horizontal solid and dash lines respectively) 
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Figure 6. Parameter and standard deviation estimation histories using moving window approach with m 
= 5, 10, 20, and 40 

 

 

Figure 7. Covariance R estimation histories using moving window approach with m = 5, 10, 20, and 40 
( trueR  and true / 100R  are denoted by horizontal solid and dash lines respectively) 
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Figure 8. Parameter and standard deviation estimation histories using dual adaptive approach with U = 
1e-20, 1e-19, 1e-18 and 1e-17 

 

Figure 9. Covariance R estimation histories using dual adaptive approach with U = 1e-20, 1e-19, 1e-18 
and 1e-17 ( trueR  and true / 100R  are denoted by horizontal solid and dash lines respectively) 
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Figure 10. Comparison of parameter estimation and standard deviation between non-adaptive and 
adaptive methods 

 

Figure 11. Comparison of R estimation among three adaptive methods 

4. Application 2: 3-story 3-bay Steel Frame 

4.1 FE model and simulations 

The second numerical application considers the effect of modeling errors on model updating of a 3-
story 3-bay steel moment resisting frame known as SAC-LA357, which is shown in Figure 12. The FE 
model of this structure is created in OpenSees54. The measurement data is simulated using the same 
1989 Loma Prieta earthquake records used in previous example (Figure 2). Horizontal absolute 
acceleration responses are measured at three floors at locations denoted by black boxes in Figure 12. 
The simulated acceleration responses are then polluted with additive 1% RMS NSR Gaussian white 
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noise, i.e., trueRMS(noise) 0.01 RMS( )y   independently for each of the three channels. Therefore, the 

true covariance of measurement noise  2noise 4 true10 RMS( )diag R y  in which truey  consists of three 

channels true
1y , true

2y , and true
3y . Force-based beam-column elements are used to model columns and 

beams with 6 and 7 integration points, respectively. The columns and beams consist of different wide 
flange sections as shown in Figure 12. Structural damping is assumed to be Rayleigh damping with 2% 
damping coefficients for the first two modes. Finite element masses are assumed to be concentrated at 
nodes and each story is subjected to the uniformly distributed gravity loads displayed in Figure 12. The 
constitutive model of steel material is the GMP model and the true (nominal values used in simulation) 
material properties for columns and beams are reported in Table 2. 

 

Figure 12. 3-story 3-bay steel frame model 

Table 2. True material properties for columns and beams used for response simulation 

 E (GPa) fy (MPa) b 
Columns 200 345 0.08 
Beams 200 250 0.05 

 

4.2 Modeling errors 

The effects of modeling errors are included in this application by considering realistic inaccuracies 
in model geometry, mass properties, dead loads, damping properties, number of integration points (NIP) 
of beam-column elements, boundary conditions (BCs), and constitutive model for steel material as 
summarized in Table 3. Geometry errors are defined by varying the location of columns (H1, H2 and H3) 
and beams (V1, V2 and V3) relative to the bay-width (for Hi) or story-height (for Vi), e.g., an error 
coefficient of 1.03 for H1 considers the new coordinate of column H1 equals to H1 + 0.03×bay-width. 
Only ±3% error is considered for geometry in this study since structural geometry can usually be 
measured with high accuracy. For errors in nodal masses, dead loads, and Rayleigh damping, the error 
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coefficients denote the scale factor of their true values, e.g., an error coefficient 0.8 for NM1 indicates 
that all nodal masses on floor 1 are reduced 20% evenly. Note that nodal masses and dead loads on the 
same floor are modified evenly based on error coefficients. Parameters 𝛼ெ and 𝛽௄ refer to mass and 
stiffness proportional damping factors of Rayleigh damping, respectively. NIP for force-based beam-
column element is an important parameter in nonlinear analysis and inappropriate NIP may introduce 
modeling errors in plastic hinge length. For boundary conditions errors, a combination of pins and 
rotational springs are considered instead of the perfectly fixed base, as shown in Figure 13(a). The 
rotational springs have a stiffness of 53 10  kN-m/rad . To account for modeling errors due to material 
constitutive model, a bilinear model is assumed to replace the original GMP model as shown in Figure 
13(b). 

A total of 21 updating models are created with different combinations of modeling errors as detailed 
in Table 4. The first 3 models have only geometric errors. Models 4 and 5 only have modeling errors in 
damping properties. Models 6 to 14 include combinations of errors in geometry, mass, dead load, 
damping, and NIP. Updating models 15 to 17 have pins and rotational springs as the boundary 
conditions, and models 18 to 21 use bilinear constitutive model for steel. The acceleration response 
comparisons between true model and updating Models 1–21 are shown in Figure 14. It can be seen that 
the modeling errors considered in the updating models have significant effects on the measured 
acceleration response which are much larger than the added noise level of 1% NSR. These modeling 
errors have the largest effects on the response of the first floor while have smaller effects on the third 
floor acceleration response.  

Table 3. Modeling errors types and details 

Modeling error types Parameters Modeling Error details 

Geometry H1, H2, H3, V1, V2, V3 
±3% of bay-width (for Hi) or  

story-height (for Vi) 
Nodal mass NM1, NM2, NM3 Nodal masses at the indexed story are scaled  
Dead load DL1, DL2, DL3 Dead loads at the indexed story are scaled  

Rayleigh damping ,  M K    Mass and stiffness matrix factors are scaled 

NIP for force-based beam-
column element 

NIPc, NIPb 
Different NIPs are assigned for all column (NIPc) and 

beam elements (NIPb) 

BCs 
Fixed boundary or pin + 

rotational spring 
Pin BCs with rotational springs are used at column 

bases instead of perfectly fixed 
Constitutive model  GMP model or bilinear model Bilinear steel model is used instead of GMP model 

 

  
(a) (b) 

Figure 13. (a) Modeling errors in boundary conditions, and (b) material model (bilinear model instead of 
GMP) 
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Table 4. Summary of modeling errors in the 21 updating models. Reported parameters are scaled to the 
true (or nominal) values, i.e., 1.0 refer to no modeling error except for NIP 

Model 
ID 

H1 H2 H3 V1 V2 V3 NM1 NM2 NM3 DL1 DL2 DL3 M  K  NIPc
 NIPb

 

1 1.03 0.97 1.03 1.03 0.97 1.03 1 1 1 1 1 1 1 1 6 7 
2 0.97 1.03 0.97 0.97 1.03 0.97 1 1 1 1 1 1 1 1 6 7 
3 0.97 1.03 1.03 0.97 1.03 1.03 1 1 1 1 1 1 1 1 6 7 
4 1 1 1 1 1 1 1 1 1 1 1 1 2 2 6 7 
5 1 1 1 1 1 1 1 1 1 1 1 1 0.5 0.5 6 7 
6 1.03 0.97 1.03 1.03 0.97 1.03 1.1 0.9 0.9 1.1 1.1 1.1 1 1 6 7 
7 1.03 0.97 1.03 1.03 0.97 1.03 1.1 1 1 1.1 1.1 1.1 1.5 1.5 6 7 
8 0.97 1.03 0.97 0.97 1 1 1 0.9 1.1 1.3 1.3 1.3 2 2 3 4 
9 0.97 1 1 1.03 1 1 1 1.3 1 1 1.3 1 1.5 1.5 6 7 

10 0.97 1.03 0.97 0.97 1.03 0.97 1 1.3 1 1.3 1.3 1.3 1 1 6 7 
11 1.03 0.97 1.03 1.03 0.97 1.03 1.3 0.7 1.3 1.3 0.7 1.3 2 2 3 4 
12 1.03 0.97 1.03 1.03 0.97 1.03 0.7 1 1.3 0.7 1 1.3 2 2 10 4 
13 1.03 0.97 1.03 1.03 0.97 1.03 1.3 1 0.7 1.3 1 0.7 2 2 6 7 
14 1.03 0.97 1 1.03 0.97 1 1.2 1 1.2 1.2 1 1.2 1.5 1.5 3 4 
15b 1 1 1 1 1 1 1 1 1 1 1 1 1 1 6 7 
16b 1.03 0.97 1.03 1.03 0.97 1.03 1 1.2 1 1 1.2 1 2 2 6 7 
17b 1.03 0.97 1.03 1.03 0.97 1.03 1 1 1.2 1.2 1.2 1.2 1.5 1.5 10 4 
18c 1 1 1 1 1 1 1 1 1 1 1 1 1 1 6 7 
19c 1 1 1 1 1 1 1.3 1 1 1.3 1.3 1.3 1.5 1.5 6 7 
20c 1 1 1 1 1 1 1 1.3 1 1.3 1.3 1.3 2 2 3 4 
21c 1.03 0.97 1.03 1.03 0.97 1.03 1 1 1 1 1 1 1.5 1.5 3 4 

Note: subscript ‘b’ refers to modeling errors in BCs (pin BCs and rotational springs instead of perfectly fixed boundary); 
subscript ‘c’ refers to modeling errors in constitutive model for steel material (bilinear model instead of GMP model). 

 

 

Figure 14. Acceleration response comparison for different updating models and true model using true 
parameter values 
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4.3 Model updating results 

Model updating is performed using the non-adaptive and three adaptive UKF methods for all 21 
updating models with different modeling errors. The updating parameters are selected as the material 
properties of columns and beams θ  = [E(col)  fy(col)  b(col)  E(beam)  fy(beam)  b(beam)]T which are 
normalized to their true values shown in Table 2. Initial values are 

 0
ˆ 0.8 1.2 1.4 0.8 1.2 1.4

T θ  with initial covariance matrix  2

0 0
ˆ0.2diag P θ . The covariance 

of process noise is  2
4

0
ˆ10diag  Q θ .  The true covariance matrix of added white noise noiseR  is used 

for the non-adaptive UKF and as the initial value of R for adaptive UKFs. Note that due to the effects of 
modeling errors, the effective noise covariance matrix R is a time-variant variable and will be larger 
than noiseR  to account for modeling errors. In the application of adaptive methods, factor α = 0.9 is 
selected for forgetting factor method, window size of 20 is chosen for moving window method, and 

18
310 U I  for dual adaptive method where 3I  denotes identity matrix of size 3 by 3. These choices 

are selected to provide enough statistical smoothing of R estimation based on the previous observation 
in Application 1. 

Model updating results using 21 updating models are shown in Figure 15. It can be seen that non-
adaptive and adaptive methods provide similar results for Young’s modulus E(col) and E(beam) due to 
their high sensitivities to measurement. Significant improvements are made by adaptive methods for fy 
and b for both columns and beams, especially for b(col) and b(beam). Their estimation accuracies are 
improved, and estimation variabilities are reduced. This is due to the fact that fy and b have lower 
sensitivity to the measurement, and therefore are most affected by the value of R. These effects are 
mitigated by adopting adaptive UKFs through updating R recursively. The mean and standard deviation 
of parameter estimation errors over 21 cases are reported in Table 5. Parameter estimation error is 

defined as updated true trueerror /i i i      in which true 1i  ,  since the updating parameters are normalized 

to their true values. Similar observations can be made from Table 5, showing that significant error 
reductions have been achieved for fy(col), b(col), fy(beam) and b(beam) when using adaptive methods. 
Overall, the estimation errors across all parameters and cases (last two rows in Table 5) show a 
significant reduction of 66% in the mean values and 80% in the standard deviations. Generally, the three 
adaptive methods provide very similar estimation results, with forgetting factor method performing 
slightly better (smaller errors) in the present case study. The detailed parameter estimation results are 
reported in Appendix C. 

The comparisons of parameter estimation and parameter uncertainty histories between non-adaptive 
and adaptive UKFs using Model 14 (Table 4) are shown in Figure 16 and Figure 17. It can be seen that 
parameters fy(col), b(col), fy(beam) and b(beam) converge to inaccurate values using the non-adaptive 
method. This can be justified by the fact that fixed R assigns uniform weight/trust on measurements 
along the response time history. Such uniform trust/weight should be avoided in the presence of 
substantial modeling errors and has been mitigated by using adaptive methods through updating R 
recursively. Young’s modulus of columns E(col) is overestimated by both the non-adaptive and adaptive 
methods in order to compensate the over-assigned mass property in Model 14. Parameter uncertainty 
using non-adaptive method is drastically underestimated (Figure 17) due to the use of fixed R. This 
uncertainty is not accurate and is unrealistic for uncertainty quantification or response prediction. Larger 
and more realistic parameter uncertainty is obtained by adaptive methods. 
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The comparisons of acceleration response predictions are shown in Figure 18 when using Model 14. 
The response predictions are obtained from the corresponding updated model and the Loma Prieta 
earthquake input motion. It can be seen that considerable discrepancies exist between predictions and 
measurement for non-adaptive method due to the poor estimated parameter values. However, 
acceleration predictions using adaptive methods match the measurements well. To further investigate the 
prediction capabilities of the updated model in presence of modeling errors, un-measured response 
predictions including base shear (V) vs. roof drift ratio and section moment vs. curvature at sections 1-1 
and 2-2 (𝑀ଵିଵ vs. 𝜅ଵିଵ, 𝑀ଶିଶ vs. 𝜅ଶିଶ), flange stress-strain response at sections 3-3 and 4-4 (𝜎ଷିଷ vs. 
𝜀ଷିଷ and 𝜎ସିସ vs. 𝜀ସିସ), are shown in Figure 19 (refer to Figure 12 for the specified locations). It can be 
seen that local response predictions are substantially improved by adaptive methods. The predictions 
from adaptive methods for base shear vs. roof drift ratio, 𝑀ଶିଶ vs. 𝜅ଶିଶ, and 𝜎ସିସ vs. 𝜀ସିସ agree with 
their true counterparts. These local responses are important quantities for structural health assessment 
and their prediction accuracy is critical for damage identification. Statistics of the relative root-mean-
square errors (RRMSE) of response predictions for all 21 updating models are shown in Figure 20 as 
box plots and reported in Table 6. The RRMSE for a response signal a is defined as: 

true

true

RMS( )
RRMSE( ) 100%

RMS( )

a a
a

a

-
= ´

 
(10) 

It can be observed that adaptive methods significantly reduce the RRMSE for all of the response 
predictions by an average of almost 50%. 

The modeling errors considered in this study add significant bias to structural response as observed 
in Figure 14. Figure 21 provides a comparison between estimated noise covariance and the nominal 
values at three measurement channels for Model 14. The nominal covariance is defined as 

 nominal true error true error noise( ) ( ) ( ) ( )
T

k kdiag k k k k         R y y y y R , where truey  and errory  represent the 

acceleration response of the true model and updating model (with modeling errors) using the true 
parameter values, and noise

kR  is the covariance of polluted noise of 1% NSR. From Figure 21, it can be 

seen that the nominal covariance fluctuates drastically while the estimated values change smoothly 
following the trend of nominal covariance. The estimated covariance values can be significantly smaller 
than the nominal values at certain time steps. It is worth noting that there is no true noise covariance 
available in this case and the nominal value as defined above, compensates the effects of response bias 
caused by modeling errors. However, the parameter estimation results have been improved significantly 
by updating the noise covariance adaptively to account for the effects of modeling errors. 
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Figure 15. Boxplot of model updating results using 21 updating models (circles refer to mean values and 
stars are outliers) 

 

Table 5. Summary of parameter estimation errors 

 Non-adaptive Forgetting factor Window Dual 
E (col) 0.25 / 0.23 0.23 / 0.19 0.24 / 0.19 0.23 / 0.19 
𝑓௬ (col) 0.60 / 0.74 0.09 / 0.08 0.09 / 0.08 0.07 / 0.07 
b (col) 0.91 / 0.77 0.24 / 0.21 0.28 / 0.36 0.29 / 0.31 

E (beam) 0.16 / 0.16 0.15 / 0.17 0.17 / 0.17 0.15 / 0.17 
𝑓௬ (beam) 0.21 / 0.15 0.11 / 0.10 0.10 / 0.10 0.12 / 0.10 
b (beam) 1.12 / 1.59 0.22 / 0.13 0.22 / 0.18 0.26 / 0.16 

Mean 0.54 0.17 0.18 0.19 
Std 0.86 0.16 0.21 0.19 

Note: Cell value format is mean/standard deviation (std) over all cases; Last two rows represent mean and std 
over all cases and parameters.  
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Figure 16. Parameter estimation histories using non-adaptive and adaptive KFs for Model 14 

 

Figure 17. Parameter uncertainty estimation histories using non-adaptive and adaptive KFs for Model 14 
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Figure 18. Comparison of predicted acceleration response using non-adaptive and adaptive KFs for 
Model 14 
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Figure 19. Comparison of un-measured response predictions using non-adaptive and adaptive KFs for 
Model 14 
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Figure 20. RRMSE of response predictions using non-adaptive and adaptive KFs over 21 updating 
models 

 

Table 6. RRMSE (%) of measured and un-measured response predictions 

 Non-adaptive Forgetting factor Window Dual 
𝑦ଵ 44 / 17 30 / 12 30 / 12 30 / 12 
𝑦ଶ 24 / 12 16 / 9 16 / 9 15 / 8 
𝑦ଷ 18 / 11 11 / 9 11 / 8 10 / 8 
V 30 / 24 20 / 16 20 / 14 18 / 14 

Drift 32 / 19 16 / 11 16 / 12 15 / 11 
𝑀ଵିଵ 33 / 28 20 / 14 20 / 13 18 / 13 
𝜅ଵିଵ 67 / 46 32 / 19 35 / 29 32 / 19 
𝑀ଶିଶ 31 / 25 22 / 16 21 / 14 20 / 14 
𝜅ଶିଶ 56 / 65 24 / 19 26 / 24 22 / 19 
𝜎ଷିଷ 36 / 28 22 / 16 21 / 14 19 / 14 
𝜖ଷିଷ 70 / 55 30 / 18 33 / 32 30 / 18 
𝜎ସିସ 30 / 21 20 / 14 19 / 13 19 / 13 
𝜖ସିସ 66 / 82 29 / 21 31 / 31 26 / 16 
Mean 41 23 23 21 
Std 33 15 17 14 

Note: Cell value format is mean/standard deviation (std) over all cases; Last two rows represent mean and 
std over all cases and parameters. 
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Figure 21. Comparison of estimated noise covariance with nominal values for Model 14 

 

5. Summary and Conclusions 

Two adaptive KF methods, namely the forgetting factor method and the moving window method, 
which were previously used in electrical engineering applications, are employed in this study for model 
updating of nonlinear dynamic systems where the covariance of measurement noise is estimated 
recursively. The adaptive methods are formulated using covariance-matching technique based on either 
innovation or residual. In this study the residual-based approaches are implemented to two numerical 
applications and compared with non-adaptive UKF and an existing dual adaptive UKF method. The 
proposed adaptive algorithm can be integrated with any nonlinear KF for state estimation, parameter 
estimation or joint state-parameter estimation, e.g., EKF, UKF and EnKF. Performance of the non-
adaptive and adaptive KFs are first evaluated for model updating of a cantilever steel pier with no 
consideration of modeling errors. It is found that the non-adaptive UKF provides poor estimation for 
selected updating parameters when the noise covariance is unknown and a wrong R is used. In contrast, 
accurate results are achieved by all three adaptive filters (forgetting factor, moving window and dual 
adaptive). The performance of the proposed adaptive filters is further investigated when applied to 3-
story 3-bay steel moment resisting frame with substantial modeling errors. A total of 21 updating models 
are created with modeling errors in geometry, mass properties, dead loads, damping properties, NIP for 
force-based beam-column element, BCs and constitutive model for steel material. Based on the 
numerical applications, the following observations are made. 
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(1) Although formulated differently using different covariance-matching techniques, the three 
adaptive methods (forgetting factor, moving window and dual adaptive) generally provide 
similar performance. 

(2) In the considered case studies, the results did not show sensitivity to the values of  and m, 
parameters of the forgetting factor and moving windows methods, respectively. In general, 
values of 𝛼 in the range of 0.7 to 0.9, and value of m in the range of 10 to 30 are recommended 
for structural systems with similar dynamic properties as the ones considered here. 

(3) Larger values in factor α (forgetting factor method), window size m (moving window method) 
and parameter U (dual adaptive method) would provide more statistical smoothing in R 
estimation. 

(4) Residual-based adaptive methods (forgetting factor and moving window) are capable of 
estimating the full matrix of R (with off-diagonal entries containing information about 
noise/modeling errors correlation) and ensuring its positive definiteness. On the contrary, only 
diagonal terms of R can be estimated and a lower bound has to be assigned to assure its positive 
definiteness using innovation-based dual adaptive filter. 

(5) Compared to non-adaptive KF, the proposed adaptive methods generally improve the accuracy 
of parameter estimation and uncertainty quantification when wrong R is used (Application 1) or 
at the existence of substantial modeling errors (Application 2). In addition, the adaptive filters 
can estimate the true R with acceptable accuracy.  
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Appendix A: Derivation of innovation-based covariance matching function 

The derivation of innovation-based covariance-matching function is provided in this section. The state 
space model for a linear KF is shown below: 

1 1 1 1 1k k k k k k

k k k k k k

      
   

x A x B u w

y H x D u v
 (A1) 

Two types of estimation errors (prior error k
e  and posterior error k

e ) are defined below: 

ˆk k k
  e x x (A2) 

ˆk k k
  e x x (A3) 

The innovation can be derived as 

ˆ ˆ ˆ( ) ( ) ( )k k k k k k k k k k k k k k k k k k k k k k
               d y H x D u H x D u v H x D u H x x v H e v (A4) 

The covariance of innovation is derived as 
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(A5) 

This is based on the fact that k
e  and kv  are uncorrelated, i.e., T T

k k k kE Ee v v e 0- -é ù é ù= =ê ú ê úë û ë û . Therefore, the 

innovation-based covariance-matching function is obtained: 

T T
k k k k k kER d d H P H-é ù= -ê úë û (A6) 

 

Appendix B: Derivation of residual-based covariance matching function 

The derivation of residual-based covariance-matching function is provided in this section. The residual 
can be expressed in terms of the posterior error k

e as  

ˆ ˆ ˆ( ) ( ) ( )k k k k k k k k k k k k k k k k k k k k k k
               ε y H x D u H x D u v H x D u H x x v H e v (B1) 

The covariance of residual can be formulated below: 
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(B2) 

The term T
k k kE H e v+é ùê úë û  in Eq. (B2) can be expanded as 

( )
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(B3) 

in which the following facts are applied: kx , prior estimate ˆ kx- , and prior error ke-  are all uncorrelated 

with kv . 

The term T T
k k kE v e H+é ùê úë û  in Eq. (B2) is derived below by using result from Eq. (B3): 
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( ) ( )
T T TT T T T T T

k k k k k k k k k k k k k k kE E Ev e H H e v H e v H K R R K H+ + +é ùé ù é ù= = = - =-ê úê ú ê úë û ë ûë û
(B4) 

Therefore, the covariance of residual is formulated below by substituting results from Eq. (B3) and Eq. 
(B4): 

T T T T
k k k k k k k k k k k kE ε ε H P H H K R R K H R+é ù = - - +ê úë û (B5) 

It can be proved that T
k k kH P H+  and k k kH K R  are equal as shown below: 
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(B6) 

in which ( )k k k kP I K H P+ -= -  and Kalman gain ( ) 1T T
k k k k k k kK P H H P H R

-- -= +  have been substituted. 

Therefore, it is easy to show that T T
k k kR K H  is also equal to T

k k kH P H+ : 

( ) ( )TTT T T T
k k k k k k k k k k k kR K H H K R H P H H P H+ += = = (B7) 

Finally, the residual-based covariance-matching function is obtained from Eq. (B5) by applying the 
results of Eq. (B6) and Eq. (B7): 

T T
k k k k k kE ε ε R H P H+é ù = -ê úë û (B8) 

 

Appendix C: Summary of model updating results 

Case  E (col) yf  (col) b (col) E (beam) yf  (beam) b (beam) 

1 

Non-adaptive 1.21 2.97 1.28 0.94 0.95 1.22 
Forgetting factor 1.22 1.00 0.92 0.95 0.92 1.37 

Window 1.24 1.01 0.86 0.92 0.96 1.23 
Dual 1.22 0.99 0.95 0.93 0.92 1.33 

2 

Non-adaptive 0.93 0.82 0.31 1.04 0.92 0.73 
Forgetting factor 0.83 0.96 1.40 1.00 1.00 0.95 

Window 0.83 0.94 1.54 1.01 0.99 0.97 
Dual 0.84 1.02 0.77 1.04 1.05 0.85 

3 

Non-adaptive 0.98 0.90 0.41 1.06 1.03 0.80 
Forgetting factor 0.92 0.99 0.88 1.11 1.03 0.98 

Window 0.92 0.98 0.88 1.11 1.03 0.99 
Dual 0.95 0.99 0.88 1.07 1.03 0.95 

4 

Non-adaptive 1.01 2.99 1.42 0.94 1.10 1.32 
Forgetting factor 1.01 0.93 1.09 0.94 0.93 1.48 

Window 1.01 0.92 1.02 0.93 0.94 1.46 
Dual 1.01 0.96 1.00 0.94 0.97 1.39 

5 
Non-adaptive 1.00 0.89 0.83 1.05 0.95 0.78 

Forgetting factor 1.00 1.03 0.93 1.03 1.00 0.83 
Window 1.00 1.03 0.92 1.03 0.99 0.81 
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Dual 0.99 1.02 1.00 1.04 1.01 0.85 

6 

Non-adaptive 1.27 0.87 2.09 0.76 0.88 1.16 
Forgetting factor 1.25 0.99 0.93 0.85 0.82 1.26 

Window 1.31 1.01 0.88 0.76 0.86 1.10 
Dual 1.32 1.02 0.89 0.75 0.87 0.95 

7 

Non-adaptive 1.33 3.00 1.14 0.84 1.09 0.93 
Forgetting factor 1.39 1.06 0.89 0.81 0.95 1.29 

Window 1.39 1.04 0.88 0.80 0.95 1.37 
Dual 1.36 1.05 0.99 0.83 0.95 1.25 

8 

Non-adaptive 0.91 1.04 1.32 1.04 1.31 0.75 
Forgetting factor 0.93 1.00 0.97 1.03 1.12 1.15 

Window 0.92 1.01 1.07 1.04 1.11 1.21 
Dual 0.90 1.01 1.07 1.07 1.13 1.21 

9 

Non-adaptive 1.20 1.16 1.56 0.95 1.14 0.51 
Forgetting factor 1.15 1.09 1.32 1.01 1.06 1.11 

Window 1.15 1.08 1.34 1.01 1.07 1.10 
Dual 1.16 1.09 1.45 1.00 1.03 1.13 

10 

Non-adaptive 1.08 0.75 2.23 0.97 0.84 0.01 
Forgetting factor 1.09 1.05 1.71 0.82 1.06 0.56 

Window 1.09 1.08 1.12 0.82 1.08 0.39 
Dual 0.97 1.07 1.34 1.02 1.11 0.71 

11 

Non-adaptive 1.52 0.57 3.13 0.92 1.46 0.63 
Forgetting factor 1.26 1.17 1.11 1.03 1.27 1.18 

Window 1.32 1.17 0.94 0.83 1.09 0.62 
Dual 1.27 1.15 1.13 1.05 1.26 1.33 

12 

Non-adaptive 0.82 0.83 3.89 1.62 1.24 1.82 
Forgetting factor 0.80 0.94 0.54 1.68 1.31 1.20 

Window 0.81 0.98 0.26 1.65 1.35 1.24 
Dual 0.80 0.97 0.54 1.67 1.33 1.23 

13 

Non-adaptive 1.59 2.35 0.01 0.50 0.85 0.28 
Forgetting factor 1.67 1.10 1.17 0.50 0.69 0.74 

Window 1.67 1.16 0.78 0.49 0.70 0.70 
Dual 1.65 1.09 0.97 0.50 0.74 0.65 

14 

Non-adaptive 1.37 3.00 0.01 0.94 0.59 5.63 
Forgetting factor 1.33 1.26 1.12 1.00 1.19 1.15 

Window 1.34 1.27 1.03 0.98 1.21 1.11 
Dual 1.30 1.23 1.33 1.02 1.15 1.24 

15 

Non-adaptive 1.18 0.68 1.35 1.25 0.90 1.50 
Forgetting factor 1.15 0.77 1.12 1.21 0.93 1.21 

Window 1.13 0.79 0.97 1.24 1.00 1.11 
Dual 1.15 0.79 1.15 1.22 1.01 0.98 

16 

Non-adaptive 1.75 0.85 1.34 1.05 0.80 5.83 
Forgetting factor 1.61 0.75 0.80 1.13 1.05 1.38 

Window 1.62 0.75 0.70 1.13 1.08 1.31 
Dual 1.63 0.84 0.43 1.12 1.14 1.34 

17 

Non-adaptive 1.78 0.48 1.89 1.19 0.85 5.76 
Forgetting factor 1.47 0.85 0.44 1.35 1.31 1.05 

Window 1.45 0.83 0.62 1.38 1.31 1.09 
Dual 1.45 0.88 0.48 1.36 1.33 1.03 

18 

Non-adaptive 1.04 0.71 1.12 0.80 0.58 1.03 
Forgetting factor 0.99 0.95 1.08 0.99 0.96 1.36 

Window 0.98 0.92 1.11 0.99 0.99 1.08 
Dual 1.00 0.95 1.20 0.99 0.96 1.37 

19 

Non-adaptive 1.30 1.23 0.25 0.69 0.60 0.39 
Forgetting factor 1.31 1.02 1.12 0.84 0.93 1.10 

Window 1.33 0.99 1.09 0.82 0.94 0.99 
Dual 1.32 1.02 1.16 0.83 0.89 1.46 
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20 

Non-adaptive 1.11 1.08 2.87 0.84 0.70 1.72 
Forgetting factor 1.10 1.08 1.68 0.96 1.09 1.25 

Window 1.08 1.02 2.61 0.95 0.93 1.58 
Dual 1.15 1.09 1.98 0.91 1.04 1.44 

21 

Non-adaptive 1.15 0.86 3.24 0.78 0.56 3.25 
Forgetting factor 1.31 1.05 1.43 0.83 1.02 0.81 

Window 1.32 1.02 1.58 0.80 0.95 1.16 
Dual 1.24 1.00 2.09 0.87 0.80 1.64 

 

Appendix D: Effects of different categories of modeling errors on the structural response 

 

Figure D1. First floor acceleration response comparison between updating models (grey lines) and true 
model (black line) for different categories of modeling errors. Models 1-3 for geometric errors, Models 
4-5 for errors in damping, Models 6-7, 9-10 and 13 for error combinations except NIP, Models 8, 11-12 

and 14 for error combination including NIP errors, Models 15-17 for boundary condition errors, and 
Models 18-21 for material nonlinearity errors.  
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