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ABSTRACT

This paper presents two adaptive Kalman filters (KFs) for nonlinear model updating where, in addition
to nonlinear model parameters, the covariance matrix of measurement noise is estimated recursively in a
near online manner. Two adaptive KF approaches are formulated based on the forgetting factor and the
moving window covariance-matching techniques using residuals. Although the proposed adaptive
methods are integrated with the unscented KF (UKF) for nonlinear model updating in this paper, they
can be alternatively combined with other types of nonlinear KFs such as the extended KF (EKF) or the
ensemble KF (EnKF). The performance of the proposed methods is investigated through two numerical
applications and compared to that of a non-adaptive UKF and an existing dual adaptive filter. The first
application considers a nonlinear steel pier where nonlinear material properties are selected as updating
parameters. Significant improvements in parameter estimation results are observed when using adaptive
filters compared to the non-adaptive approach. Furthermore, the covariance matrix of simulated
measurement noise is estimated from the adaptive approaches with acceptable accuracy. Effects of
different types of modeling errors are studied in the second numerical application of a nonlinear 3-story
3-bay steel frame structure. Similarly, more accurate and robust parameter estimations and response
predictions are obtained from the adaptive approaches compared to the non-adaptive approach. The
results verify the effectiveness and robustness of the proposed adaptive filters. The forgetting factor and
moving window methods are shown to have a simpler tuning process compared to the dual adaptive
method while providing similar performance.

Keywords: Adaptive Kalman filter; nonlinear model updating; system identification; unscented Kalman
filter; modeling errors; covariance-matching technique

1. Introduction

Model updating is the process of tuning structural models using measured data in order to improve
the model prediction accuracy. The updated models, especially mechanics-based models, have been
shown to be effective for response prediction of dynamic structural systems, structural assessment, and
damage identification. The updating process can be performed deterministically through an optimization
process or probabilistically through Bayesian inference. Many numerical/laboratory studies and a few of
real-world applications of FE model updating through optimization and/or Bayesian inference have been
completed with satisfactory results!!>. Lam et al. implemented Bayesian model updating of a coupled
slab system using modal parameters identified from fast Bayesian FFT method'* '>. Behmanesh et al.
applied a hierarchical Bayesian framework to study the effect of environmental variability on the
uncertainty of model parameters on a footbridge'¢ and performed model extrapolation to predict modal
parameters at a different structural state for a 10-story building!”. Song et al. performed damage
identification of a two-story reinforced concrete (RC) building through a modeling updating strategy and
compared the results with lidar data'®. In another study, Song et al. implemented hierarchical Bayesian
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model updating'® to account for the amplitude-stiffness nonlinear structural behavior of the same RC
building using a linear FE model?’. Ebrahimian et al. have used an output-only Bayesian finite element
(FE) model updating techniques to estimate jointly the soil-structure model parameters and time
histories of foundation input motions for the Millikan library building?!.

The response behavior of civil structures is nonlinear in nature due to material and geometric
nonlinearities. The nonlinear effects become more significant under larger input loads. Linear dynamic
models are only capable of representing civil structures at low amplitudes of vibration. For structures
subjected to moderate to large excitations such as seismic loads, nonlinear models should be used for
accurate response prediction and structural assessment. The literature includes only few real-world
applications of nonlinear model updating. Asgarieh et al. performed nonlinear FE model updating of a
large-scale three-story RC frame?? and a seven-story shear wall? tested on shake-table using nonlinear
response of the two structures subjected to different earthquake excitations.

Kalman filters (KFs) have received increased attention from the civil engineering community
recently for state estimation, parameter estimation, joint state-parameter estimation, and input estimation.
KF methods, also referred to as recursive identification methods, can provide certain advantages
compared to traditional batch Bayesian model updating method, in which the posterior probability
distribution of parameters is updated through a one-step Bayesian inference using the batch of available
measurement all at once. Such advantages include (1) the potential for near real-time or near online
structural health monitoring through updating structural state/parameter recursively, and (2) the
computational efficiency of KF methods compared to batch Bayesian model updating. Several
extensions of KFs exist for applications to nonlinear structural systems, such as the extended KF (EKF),
the unscented KF (UKF), and particle filters (PFs). Some numerical/laboratory applications of KF have
been performed on linear and nonlinear civil structures®*32. Wu and Smyth investigated and compared
the performance of EKF and UKF for model updating of linear and nonlinear systems*’. Chatzi and
Smyth applied UKF and PF for nonlinear model updating using non-collocated heterogeneous data®*,
Xie and Feng studied the performance of iterated UKF for model updating and compared it with UKF>>.
Ebrahimian et al. implemented EKF for parameter estimation of mechanics-based nonlinear FE model*
and joint input-parameter estimation’’. Eftekhar-Azam et al. proposed a dual KF approach for joint
state-input estimation using output-only measurements and compared with other existing input
estimation methods®® 3°. Astroza et al. employed UKF for model updating of nonlinear civil structures*’
and seismic input estimation*!, and investigated the effect of modeling errors on parameter estimation®?.
Erazo et al. applied KF for damage assessment of a numerical bridge model and decoupled the effects
between structural damage and changing environmental conditions*’. In another study, Erazo et al. used
a UKF for nonlinear model updating and state estimation of a full-scale seven-story shear wall building
structure tested on a shake table**,

Nonlinear KF methods are generally sensitive to the filter parameters and a general approach is
lacking for setting the filtering parameters. For example, covariance matrices of process and
measurement noises have significant impacts on the filter performance and improper values for these
may result in estimation inaccuracy or divergence. In real-world applications, these covariance matrices
are usually unknown, and a trial-and-error tuning process is often adopted to determine suitable values
for them*®. Furthermore, modeling errors are unavoidable for large-scale and complex civil structures
and have substantial effects on model updating and model predictions. In the presence of significant
modeling errors, the measurement noise term, which originally represents the prediction error in KF, can
incorporate the effects of modeling errors and its covariance matrix should be considered time-varying
since modeling errors often changes with the amplitude of response and the level of response
nonlinearity. Poor parameter estimations have been observed using the non-adaptive UKF by Astroza et



al.*? due to the effects of modeling errors. Several adaptive KF methods exist in the literature that can
provide an estimate for the process noise and measurement noise covariance matrices. These methods
can be categorized into Bayesian methods, maximum likelithood methods, correlation methods, and
covariance-matching methods*. Covariance-matching technique is shown to be an effective and easy-
to-implement method and has been applied in a few applications in signal processing with reasonable
success*’. Yuen and Kuok proposed an adaptive EKF method using Bayesian method for online
estimation of noise covariance*®. Astroza et al. proposed a dual adaptive UKF to account for the effects
of modeling errors for model updating and provided improved parameter estimation results*’. Almagbile
et al. proposed and compared the performance of innovation-based and residual-based covariance-
matching techniques for GPS/INS integration®®. Akhlaghi et al. proposed a forgetting factor adaptive
EKF based on residuals for dynamic state estimation’'.

This study proposes adaptive KF methods for nonlinear model updating based on two types of
covariance-matching techniques: forgetting factor method and moving window method. Each of the
methods is formulated based on innovation as well as residual terms in the KF formulation to estimate
the covariance of measurement noise recursively. The forgetting factor and moving window adaptive
filters are applied to two numerical applications and their results are compared to those from the non-
adaptive UKF and a dual adaptive filter.

2. Adaptive KF for Nonlinear Model Updating

2.1 Non-adaptive KF

The parameter estimation formulation for nonlinear model updating using Kalman-based filters can
be written as’¢:

{Bkﬂ =0, +w, w, ~N(0,Q,)
Yia =000, ) +v,, Via ~NOR,})

in which 0, is the vector of updating model parameters, e.g., unknown stiffness, mass, or material

(1)

constitutive model parameters; y,,, is the measurement vector at time step £+1, h, ,(0,,,,u,,,,) refers
to the response function of the nonlinear numerical model, e.g., FE model; u,,,, is the history of input
vector to the system, e.g., earthquake excitation; w, and v,,, are the process and measurement noise
vectors with covariance matrices Q, and R, ,, respectively. In most applications, Q, and R, are
taken as constant time-invariable terms. Note that Q, and R,,, are unknown in real-world applications;

the selection of these filtering parameters can affect the performance of the filter and may even result in
its divergence. For systems with time-invariant parameters, although the covariance of process noise Q,

can ideally be set as zero, but a small nonzero value of Q, is suggested to facilitate faster parameter
convergence. Note that the filter may never converge or even diverge if Q, is set to zero in applications
where the initial state is far from the true value or the initial parameter covariance P, is not large
enough. Therefore, a small nonzero Q, is used to improve filter convergence as it is added to the
parameter covariance and let the filter better explore the design space.

Modeling errors are inherent part of any numerical model, which should be accounted for to reduce
the bias in the estimation results. Here, we assume that the measurement noise term v,,, can account for



the effects of modeling errors, and, therefore, its covariance R,,, should be regarded as a time variant

variable even when sensor/cable noise is constant. Note that modeling errors can be manifested in the
measurement noise term and therefore result in a non-stationary, non-Gaussian, and non-white random
process. In this study, we simplify the problem and assume that the modeling errors will result in a non-
stationary zero-mean Gaussian measurement noise. This is still a limiting assumption and potentially far
from the reality, but a step forward with respect to the state-of-the-art. In this study, adaptive approaches

are proposed to estimate the effective values of matrix R,,, to partially account for the effects of

modeling errors. It will be shown later in the paper that by incorporating this assumption, the
performance of the Kalman filter will be improved in the presence of modeling errors.

2.2 Covariance-matching technique

The key idea of the covariance-matching method*® is to update the covariance of v,,, consistent

with the theoretical covariance. Some applications of covariance-matching method have demonstrated
its effectiveness in electrical engineering®®>!' and in civil engineering through a dual filter approach®.
The concept of covariance matching technique and its derivation are introduced in this section. Note that
the following formulation is based on a general state space model, and the parameter estimation
formulation in Eq. (1) is just a special nonlinear case/application of it.
Consider the state space model of a linear dynamic system as:
X, =A X, +Bu W, W, ~N(0,Q,) 2
Y =Hx, +Du; +v, v, ~N(O,R))

where X, is the state vector, A,_; is the state transition matrix, B,_; is the input matrix, uj,_, is the
input vector, wy_; is the process noise vector, v, is the measurement noise vector, y;, is the observation
or measurement vector, Hj is the observation matrix, and D, is the feedthrough matrix. Two
covariance-matching formulations are derived (refer to Appendix A and B for derivation details) based
on innovation and residual, respectively:

R, =E[d,d]|-HP H] (innovation-based) 3)
R, =F [sksﬂ +H,P/H] (residual-based) 4)
in which d, =y, —(H,X, +D,u,) is the difference between the measurement and its predicted prior
response, and is referred as “innovation”, and g, =y, —(H,X, +D,u,) is the difference between
measurement and the posterior response, and is referred as “residual” in this study. £ [dkdﬂ denotes the

covariance of innovation with E referring to mathematical expectation. P, and P, are prior and
posterior covariance matrices of response estimation, respectively. In standard KF framework such as
linear KF, EKF, and UKF, the term H,P, H; (or equivalent term in nonlinear KFs) is not calculated in

the standard procedure and requires additional calculations, e.g., for UKF, the term H,P,H; can be

approximated using response predictions of all sigma points similar to the calculation of H,P, H] >33,

For EKF and UKF, these additional computations sometimes are computationally demanding and,
therefore, a simplified version of residual-based covariance-matching function is proposed below by

replacing the term H, P, H, with H P, H; :



R, =E[gz | +HP H]  (residual-based) (5)
Since the estimation uncertainty P, is usually reduced gradually along the updating time steps (i.e.,
with increasing k), the difference between P, and P, is often small and negligible. The accuracy and
efficiency of this simplification have been verified by the authors through a numerical study, and the
computational effort is reduced up to 50% when the UKF is applied for model updating.

Based on Eq. (3) and (5), the measurement noise covariance R, can be estimated at each updating

step using either innovation d, or residual €,. The only estimation uncertainty comes from evaluating

the covariance of innovation £ [dkd,f] and residual £ [sksz]. Two adaptive methods are proposed in this

study using the residual-based formulation, namely the forgetting factor method and the moving window
method as outlined in the following sections. Note that the forgetting factor and moving window
methods can also be applied using innovation-based formulation in a similar manner as shown in Table
1. For the sake of brevity, only residual-based methods are implemented and investigated in the
numerical applications of this study. Some numerical studies have been performed by the authors to
compare the performance of residual-based and innovation-based formulations. From these studies, the

residual-based formulation was found advantageous since (1) the R, estimation is guaranteed to be
positive (a lower positive bound is needed for R, estimation using innovation-based formulation as it

can be estimated as negative in certain cases), and (2) the full covariance matrix is obtained (only
diagonal entries are estimated using innovation-based methods), whose off-diagonal entries contain
information about the noise correlation and modeling errors correlation.

2.2.1 Forgetting factor method

Forgetting factor method is first proposed by Akhlaghi et al. for dynamic state estimation in
electrical system®'. The basic idea of this method is to update R, gradually according to current residual

values by applying a forgetting factor a to balance the weight between previous covariance R, | and the

current residual estimation term, i.e.,

R, =oR,  +(1- 04)(5/(8/? +HkP/;H/Z) 0<a<l (0)
In Eq. (6), if a = 1, the forgetting factor method would become the traditional non-adaptive filtering
method, in which R, is not updated and treated as a constant. If a = 0, then R, is fully determined by

current residual term, which usually should be avoided as this causes too much variation in the
estimation of R, . Generally larger values of a would assign larger weights to previous R, | and,

therefore, estimated R, will change slower and smoother.
2.2.2 Moving window method

The covariance of residual £ [8,{8:] in Eq. (5) can be approximated within a moving window as

proposed by Mehra*® and employed by Almagbile et al’®. In this way, the moving window method is
formulated as

1 &4 N
R, = _Zskquii +H,P, Hzf (7)

i=0



In Eq. (7), m refers to the size of the moving window. A larger window size would provide
statistical smoothing so that updated R, changes smoother and slower. For model updating at the

beginning of time history (i.e., whenk <m ), two strategies can be employed: (1) keep R, fixed as the
initial R and start updating R, once k reaches window size m; (2) start updating R, from a specific

time step L (L<m ) and for L <k <m, the sample mean term in Eq. (7) is estimated over available
residual values €, ~ g, . In this study, the second strategy is adopted with L =5.

2.2.3 Dual adaptive UKF

A dual adaptive UKF is proposed by Astroza et al.*’ to update R, and account for the effects of

modeling errors for nonlinear FE model updating. The basic idea of this method is to build a slave linear
KF to update R, recursively embedded in a master UKF for model updating. For the slave KF, the

diagonal terms of R, are treated as unknown parameters and the innovation-based covariance-matching

function Eq. (3) is used as measurement function. More details about this method can be found in Table

1 and in*.

2.3 Adaptive UKF for nonlinear model updating

A step-by-step flowchart for the proposed adaptive UKF approaches including the forgetting factor,
moving window, and dual adaptive methods is provided in Table 1. Innovation-based forgetting factor
and moving window methods are also included (although not implemented in the application studies of
this paper) to provide a complete demonstration of covariance-matching-based adaptive approaches. The
framework for non-adaptive UKF can be obtained from Table 1 by not implementing the adaptive
sections. Note that only one of the two adaptive options is needed for adaptive UKF. As previously
mentioned, the proposed innovation-based and residual-based methods can alternatively be combined
with other nonlinear KFs such as EKF and EnKF.

The residual-based adaptive methods have the following two advantages over the innovation-based
methods: (1) full matrix R, can be estimated and the off-diagonal terms contain information about

noise/modeling error correlation, while for innovation-based approaches only diagonal terms of R, are
updated to simplify the problem and avoid ill-conditioning, and (2) R, is guaranteed to be positive

definite since it is estimated to be the summation of two positive definite terms, but the positive
definiteness of R, in innovation-based methods is not guaranteed and a small positive lower bound has
to be assigned to avoid computational errors. Furthermore, there is only one tuning parameter for the
forgetting factor method (forgetting factor a) and moving window method (window size m ) compared
to at least two tuning matrices T and U for the dual adaptive method, in which T is the covariance
matrix of process noise and U is the covariance matrix of measurement noise for the slave linear KF. It
is worth noting that T and U are symmetric covariance matrices of size n,, X n,, (n,, is the measurement

size) and, therefore, can have up to n,(n,+1)/2 independent variables each. In practice, both T and U
are assumed to be diagonal matrices with a single independent diagonal element each, namely o, for T

2 . .
and o, for U. However, since parameters a and m are scalars and their effects on the filter performance

are better understood, the selection of these parameters in forgetting factor and moving window methods
is easier and more straightforward than the tuning procedure of slave KF for dual adaptive method.



The estimated R, from the adaptive approaches reflects the “effective noise covariance matrix” that

also accounts for modeling errors. Larger values for innovation or residual means larger discrepancy
between measurement and model prediction, which would increase R, and, therefore, reduce the

Kalman gain (step (2.3) in Table 1). Lower Kalman gain assigns smaller weight on the measurements
(step (2.4) in Table 1) in the KF correction step and, therefore, the correction in (A)L1 becomes smaller
and the reduction in P, (step (2.5) in Table 1) also becomes smaller. This means that the filter
becomes less sensitive to the discrepancies between the measurement and model prediction and assumes
that the discrepancies stem from potential modeling errors rather than model parameter uncertainties.

The parameters used in Table 1 are defined as follows®> 3. At step (1.2), y = \/ng + 1 in which ng
is the dimension of @ and A = az(ng +K)—n, is a scaling parameter, k is a secondary scaling parameter
which is usually set to 0 or 3 — ny, and a determines the spread of sigma points (SP) and is usually set
to a small positive value 1e — 4 < a < 1. At steps (1.4), (a.2), (2.1), (2.2) and (b.3), the weights Wn(l”
and W are determined as

W, =al(ng+2), W' =al(n,+2)+(1-a"+p) @)

wO=w"=05/(n,+2) i=2,..,2n,+1 )
In this study, the parameter values are selected as: k = 0, a = 1, and § = 2.

Table 1. Framework of adaptive UKF approaches

Initialize: 0, P;
Loops for k=0, 1,2,3...N-1

UKEF Step 1: Prediction Step
(1.1) 0, =0, P, =P +Q,

(1.2) Generate sigma points (SP): @, ,, = [G;H é;H + 74P, é,;l -y P,;l}

(1.3) Evaluate predictions at SP: )., =h,, (@kﬂlk,iil:kﬂ)

2ng+1

(1.4) Mean of prediction: y;,, = Z [/ VA

Adaptive Option a: Innovation-based Covariance-matching Methods
(a.1) Evaluate innovation: d,,, =y,,, —¥,.,
(a.2) Based on covariance-matching equation R, ., = £ [dk N ] —H,, P, H,,,, three adaptive
methods can be applied:
Forgetting factor method: r, ,, = ar, +(1— a)diag(dk N R B +1>

m—1

Moving window method: r,_, :diag[ de o k = by

r,=r+o, o, ~N(0,T)

Dual adaptive UKF:
dlag(dk+1dk+1) N+l +0, v, ~ N0, U)




2ny+1

where 1, = diag(RkH) and I, = diag[ Z w [yc(«lk)ﬂk - 5';+1Hyk(+i)1\k —¥in ]T

i=1

UKF Step 2: Correction Step
2np+1 ; ; .
Qne = Z wo [Mﬁﬂk _ y;ﬂ}[)%(ﬁ‘k - y;H]T +R,,, (For innovation-based methods, estimated
i=1

R, ., from step (a.2) will be directly used here; for residual-based methods, R, ,, estimated from

k+

step (b.3) in previous loop 4 is used here)
2ng+1

(22) P9k+1yk+l = Z I/Vc(i) |:®k+l\k _61:4—1]:%(4{1)% a 5‘,;+1}T
i=1

-1
P9k+1yk+l (PYk+1Yk+1 )

(2.4) Parameter update: 07, =0, +K,_, (y il — )A';H)

(2.3) Kalman gain: K, , =

(2.5) Parameter uncertainty update: P, =P, -K, P, = K[

Adaptive Option b: Residual-based Covariance-matching Methods
(b.1) Evaluate updated prediction: y,,, =h, (ﬁzﬂ,iiml)
(b.2) Evaluate residual: €,,, =Yy,,, —¥,.
(b.3) Update R,,, which is used for next loop £+2 in step (2.1):
Forgetting factor method: R, = aR, +(1—«) (sk &L, +1)

) ) 1 m—1 r
Moving window method: R, = - Zs A JI
i=0

2np+1

. . . T
- (i) (i) ~— () A=
where Lk+1 = g VVL [M_H\k - yk+1”%+l\k - yk+1]
i=1

End loop for k&

3. Application 1: Cantilever Steel Pier

3.1 FE model and numerical simulation

In the first application study, the proposed adaptive KF approaches are applied to a nonlinear
cantilever steel pier with a concentrated mass at the top. The FE model of the cantilever pier is created in
open-source FE analysis platform OpenSees®* as shown in Figure 1(a). The pier column is modeled
using displacement-based beam-column elements considering P-Delta effect. The column is discretized
into 17 elements where the 10 bottom elements are 250 mm long and the 7 top elements are 500 mm
long. The steel box section of the column is modeled using fiber elements with the Giuffre-Menegotto-
Pinto (GMP)* constitutive model characterizing the uniaxial behavior of the steel fibers as shown in
Figure 1(b). The model includes stiffness proportional Rayleigh damping with 2% damping at the first
mode. Three parameters of the GMP model are selected as updating parameters, namely the initial
Young’s modulus E, yielding stress fy, and strain-hardening ratio . The nominal values of these

parameters, referred to as the true values in this paper, are taken as: E™ =200 GPa, f;“‘e =250 MPa ,



b™ =0.08. In the estimation process, the updating parameters are normalized by their true values, i.e.,
O=[E/E™ f/f™ bib™].

The measurement data consists of the absolute acceleration response at the top of the pier subjected
to the 1989 Loma Prieta earthquake (0° component at Los Gatos station®®) as shown in Figure 2. The
simulated acceleration response is then polluted with additive white noise of 10% root-mean-square
(RMS) noise-signal-ratio (NSR), i.e., RMS(noise) =0.1x RMS(y"™*) in which y™ refers to simulated
acceleration response at the top of pier without noise. Therefore, the true covariance of measurement
noise R™ =0.01xRMS(y™)* . Note that 10% RMS NSR noise level is significantly higher than
common expected measurement noise level in real-world applications, and the purpose of this numerical
study is to demonstrate the effectiveness of adaptive approaches to estimate R when the initial value is
far from the true value which is clearly known. Furthermore, 10% NSR noise can represent the effects of
small modeling errors. It has been shown that, if the top mass is 5% larger than the original value (100 t),
the top acceleration discrepancy is 11% of the true response when evaluated as RMS, i.e.,
RMS(y™ — y™™)/RMS(y™) =11% where y*™ refers to the response of model with 5% larger top
mass than the true model. Therefore, the case study in Application 1 can also be seen as model updating
with the existence of modeling errors.

M =100t
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Figure 1. (a) FE model of cantilever steel pier; (b) Giuffre-Menegotto-Pinto material model
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Figure 2. 1989 Loma Prieta earthquake recorded in the 0° component at Los Gatos station
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3.2 Model updating results

The non-adaptive UKF and the three adaptive UKF approaches (forgetting factor, moving window
and dual adaptive methods) are applied to estimate the model parameter vector @ of the cantilever steel

pier. The initial parameter values of 63 = [0.7 0.7 1.5]Tand the initial parameter covariance matrix

A \2 A \2
P/ = diag(0.2ﬂg ) are considered. The process noise covariance is taken as Q = diag(10403) . Figure

3 shows the estimated parameters from the non-adaptive approach. Two cases of model updating are
investigated when using the non-adaptive method, with R =R™ and R=R" /100 (i.e., 1% RMS

NSR). It can be observed that accurate parameter estimations are obtained when R™ is used, while the
estimated parameters do not converge to the true values when R is underestimated, especially for strain-
hardening ratio b which is the least sensitive parameter to the measured data. It is worth noting that

different assumptions for initial R could be used, for example R = R"™ /N, with N= 2, or 10. However,
N =100 is selected to clearly show the performance of adaptive approaches under an extreme condition.
Note that for N =2 or 10, model updating results of adaptive approaches will be improved.

The three adaptive approaches are applied with initial R = R™° /100 for fair comparison. The time
histories of parameter estimation and the estimation uncertainties (shown as standard deviations, which
are obtained from the diagonal entries of the covariance matrix P) using the forgetting factor method are
shown in Figure 4 with four factor values of a = 0.5, 0.7, 0.9 and 0.95. It can be seen that the forgetting
factor method with all four different factor values improves the model updating results remarkably, and

the estimated parameters and their uncertainties are similar to the non-adaptive approach with R™°,
which can be regarded as the reference results. The estimated R from the forgetting factor method is
plotted in Figure 5. It can be observed that the estimated R changes drastically starting from initial R and

reach R™ quickly, and then fluctuates around it. As expected, larger « values reduce the estimation
uncertainty and provide smoother results. Overall, R estimations are acceptable and better
approximations are obtained when average of R over a window is used.

Moving window method is applied with four different window sizes of m = 5, 10, 20 and 40.
Estimated parameters and their standard deviations are shown in Figure 6. Similar observations can be
made to those of the forgetting factor method: parameters are estimated accurately with standard
deviations comparable with reference results. Larger window sizes provide statistical smoothing in the R
estimation as shown in Figure 7, similar to the effect of factor a. Model updating results using dual
adaptive method with four different settings (U = 1e-20, le-19, le-18 and le-17 where 1e-20 was used
in the original study of dual adaptive filer*’) are shown in Figure 8. Note that there are two tuning
parameters for dual adaptive method: 7" and U; however, as there is compensation effect between them,
it is suggested to tune only one of them. In this study, 7 is fixed as le-20 and the effect of U is studied.
Overall, the estimated parameters and standard deviations are improved, and the results are comparable
with forgetting factor and moving window approaches. It is worth noting that for U = 1e-20, small
estimation errors are observed which is due to the large variability of R estimation as shown in Figure 9.
The effect of U is similar to that of factor o and window size m, with larger U providing statistical
smoothing in R estimation as shown in Figure 9.

The comparison between the non-adaptive and three adaptive methods is shown in Figure 10. It can
be seen that the three adaptive methods (forgetting factor method with a = 0.9, moving window method
with m = 20, and dual adaptive method with U = le-18) provide similar parameter estimation and
standard deviations which have been significantly improved compared to non-adaptive method when the

same initial R=R"™ /100 is used. The parameter uncertainty from non-adaptive method with
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R"™ /100 used is drastically smaller than that of the reference filter and adaptive methods, which would
provide un-conservative parameter confidence interval. The comparison of R estimation across different
methods is shown in Figure 11. It is interesting to observe that three adaptive methods provide almost
the same R estimation along the time history, especially between forgetting factor and dual adaptive
method which almost overlay each other. This shows that three adaptive methods, although formulated
differently based on different philosophy and covariance-matching functions, provide similar
performance on parameter and R estimation. Overall, this case study demonstrates the robustness of
adaptive methods for parameter estimation and the effectiveness of R estimation.
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Figure 3. Parameter and standard deviation estimation histories using non-adaptive approach with R™°
and R™ /100 used
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Figure 4. Parameter and standard deviation estimation histories using forgetting factor approach with a =
0.5,0.7,0.9, and 0.95
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Figure 7. Covariance R estimation histories using moving window approach with m =5, 10, 20, and 40
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Figure 11. Comparison of R estimation among three adaptive methods

4. Application 2: 3-story 3-bay Steel Frame

4.1 FE model and simulations

The second numerical application considers the effect of modeling errors on model updating of a 3-
story 3-bay steel moment resisting frame known as SAC-LA3°7, which is shown in Figure 12. The FE
model of this structure is created in OpenSees®*. The measurement data is simulated using the same
1989 Loma Prieta earthquake records used in previous example (Figure 2). Horizontal absolute
acceleration responses are measured at three floors at locations denoted by black boxes in Figure 12.
The simulated acceleration responses are then polluted with additive 1% RMS NSR Gaussian white
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noise, i.e., RMS(noise) = 0.01x RMS(»™°) independently for each of the three channels. Therefore, the

. 2
true covariance of measurement noise R™* =107" xa’iag(RMS(ym‘e)) in which y™ consists of three

true true

channels y™, y;*. and y;*°. Force-based beam-column elements are used to model columns and

beams with 6 and 7 integration points, respectively. The columns and beams consist of different wide
flange sections as shown in Figure 12. Structural damping is assumed to be Rayleigh damping with 2%
damping coefficients for the first two modes. Finite element masses are assumed to be concentrated at
nodes and each story is subjected to the uniformly distributed gravity loads displayed in Figure 12. The
constitutive model of steel material is the GMP model and the true (nominal values used in simulation)
material properties for columns and beams are reported in Table 2.

I—y—9_14m ’ 9.14m | 9.14m ‘
3
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£
[(e]
&
\ ™
Floor2 | | DL2=26.0 kN/m DL2=26.0 kN/m DL2=26.0 kN/m
2 ' S _1
5| \m=sa0t | Nom=1209t  WBXT16 M=129.9t M=1948t —
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S Y1 = = N o
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e WT Seismic Input W/lm + 4
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Figure 12. 3-story 3-bay steel frame model

Table 2. True material properties for columns and beams used for response simulation

E (GPa) fy (MPa) b
Columns 200 345 0.08
Beams 200 250 0.05

4.2 Modeling errors

The effects of modeling errors are included in this application by considering realistic inaccuracies
in model geometry, mass properties, dead loads, damping properties, number of integration points (NIP)
of beam-column elements, boundary conditions (BCs), and constitutive model for steel material as
summarized in Table 3. Geometry errors are defined by varying the location of columns (41, H2 and H3)
and beams (V1, V2 and V3) relative to the bay-width (for Hi) or story-height (for Vi), e.g., an error
coefficient of 1.03 for Hi considers the new coordinate of column Hi equals to H1+ 0.03xbay-width.
Only +3% error is considered for geometry in this study since structural geometry can usually be
measured with high accuracy. For errors in nodal masses, dead loads, and Rayleigh damping, the error
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coefficients denote the scale factor of their true values, e.g., an error coefficient 0.8 for NM: indicates
that all nodal masses on floor 1 are reduced 20% evenly. Note that nodal masses and dead loads on the
same floor are modified evenly based on error coefficients. Parameters a,, and [k refer to mass and
stiffness proportional damping factors of Rayleigh damping, respectively. NIP for force-based beam-
column element is an important parameter in nonlinear analysis and inappropriate NIP may introduce
modeling errors in plastic hinge length. For boundary conditions errors, a combination of pins and
rotational springs are considered instead of the perfectly fixed base, as shown in Figure 13(a). The

rotational springs have a stiffness of 3x10°> kN-m/rad . To account for modeling errors due to material

constitutive model, a bilinear model is assumed to replace the original GMP model as shown in Figure
13(b).

A total of 21 updating models are created with different combinations of modeling errors as detailed
in Table 4. The first 3 models have only geometric errors. Models 4 and 5 only have modeling errors in
damping properties. Models 6 to 14 include combinations of errors in geometry, mass, dead load,
damping, and NIP. Updating models 15 to 17 have pins and rotational springs as the boundary
conditions, and models 18 to 21 use bilinear constitutive model for steel. The acceleration response
comparisons between true model and updating Models 1-21 are shown in Figure 14. It can be seen that
the modeling errors considered in the updating models have significant effects on the measured
acceleration response which are much larger than the added noise level of 1% NSR. These modeling
errors have the largest effects on the response of the first floor while have smaller effects on the third
floor acceleration response.

Table 3. Modeling errors types and details

Modeling error types Parameters Modeling Error details
+3% of bay-width (for H;) or
Geometry H, Hy, Hy, V1, V2, Vs story-height (for V5)
Nodal mass NM,, NM,, NM; Nodal masses at the indexed story are scaled
Dead load DLy, DLy, DL Dead loads at the indexed story are scaled
Rayleigh damping ay, Py Mass and stiffness matrix factors are scaled
NIP for force-based beam- Different NIPs are assigned for all column (NIP.) and
NIP., NIP,
column element beam elements (NIPy)
Fixed boundary or pin + Pin BCs with rotational springs are used at column
BCs . . .
rotational spring bases instead of perfectly fixed
Constitutive model GMP model or bilinear model Bilinear steel model is used instead of GMP model
Stress
ﬁm\ ) bE
E .
i Strain
TR, 4 A 4
| | (@) N | _® |
Figure 13. (a) Modeling errors in boundary conditions, and (b) material model (bilinear model instead of
GMP)
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Table 4. Summary of modeling errors in the 21 updating models. Reported parameters are scaled to the

true (or nominal) values, i.e., 1.0 refer to no modeling error except for NIP

Mf’l‘)iel H H. Hy | Vi Vo V3 |NM{ NM, NMs|DL DL, DL;| @, f¢ | NIP. NIP,
1 [1.03 097 1.03[1.03 097 1.03] 1 1 1 11 1|1 1] 6 7
2 1097 103 097|097 1.03 097 1 1 1 11 1|1 1] 6 7
31097 103 1.03]097 1.03 1.03] 1 1 1 11 1|1 1] 6 7
4 1 1 1 1 1 1 1 1 1 11 1|2 216 7
5 1 1 1 1 1 1 1 1 1 1 1 1]05 05| 6 7
6 |1.03 097 1.03[103 097 103 1.1 09 09 |11 11 11| 1 1| 6 7
7 1103 097 1.03]1.03 097 1.03| 1.1 1 1 1 11 11|15 15| 6 7
8 1097 1.03 097]097 1 1 1 09 11|13 13 132 2| 3 4
9 1097 1 1] 1.03 1 1 113 1 1 13 1 |15 15] 6 7
10 [097 103 097|097 103 097 1 13 1 |13 13 13| 1 1| 6 7
11 [1.03 097 103|103 097 103| 13 07 13|13 07 13| 2 2| 3 4
12 [1.03 097 103|103 097 103|07 1 13]07 1 13| 2 2|10 4
13 [1.03 097 1.03/1.03 097 10313 1 07|13 1 07| 2 21| 6 7
14 (103 097 1 [1.03 097 1 |12 1 12]12 1 12]15 15| 3 4
15 1 1 1 1 1 1 1 1 1 1 1 1|1 116 7
16, |1.03 097 1.03]103 097 103| 1 12 1 1 12 1|2 216 7
17, | 1.03 097 1.03]103 097 1.03]| 1 1 1212 12 12|15 15| 10 4
18, 1 1 1 1 1 1 1 1 1 1 1 1|1 116 7
19, 1 1 1 1 1 1|13 1 1 |13 13 13|15 15| 6 7
20, 1 1 1 1 1 1 1 13 1 |13 13 13| 2 2] 3 4
21, | 1.03 097 1.03]1.03 097 1.03| 1 1 1 11 1 |15 15] 3 4

Note: subscript ‘b’ refers to modeling errors in BCs (pin BCs and rotational springs instead of perfectly fixed boundary);

subscript ‘c’ refers to modeling errors in constitutive model for steel material (bilinear model instead of GMP model).
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Figure 14. Acceleration response comparison for different updating models and true model using true
parameter values
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4.3 Model updating results

Model updating is performed using the non-adaptive and three adaptive UKF methods for all 21
updating models with different modeling errors. The updating parameters are selected as the material
properties of columns and beams 0 = [E(col) fi(col) b(col) E(beam) fy(beam) b(beam)]” which are
normalized to  their true values shown in  Table 2. Initial values are

A AL \2
0, =[08 12 14 08 1.2 1.4]T with initial covariance matrix Py =diag(0.20§) . The covariance

A \2 .
of process noise is Q = diag(lOAOS) . The true covariance matrix of added white noise R™ is used

for the non-adaptive UKF and as the initial value of R for adaptive UKFs. Note that due to the effects of
modeling errors, the effective noise covariance matrix R is a time-variant variable and will be larger

than R™* to account for modeling errors. In the application of adaptive methods, factor a = 0.9 is
selected for forgetting factor method, window size of 20 is chosen for moving window method, and

Uu=10" x I for dual adaptive method where I, denotes identity matrix of size 3 by 3. These choices

are selected to provide enough statistical smoothing of R estimation based on the previous observation
in Application 1.

Model updating results using 21 updating models are shown in Figure 15. It can be seen that non-
adaptive and adaptive methods provide similar results for Young’s modulus E(col) and E(beam) due to
their high sensitivities to measurement. Significant improvements are made by adaptive methods for £,
and b for both columns and beams, especially for b(col) and h(beam). Their estimation accuracies are
improved, and estimation variabilities are reduced. This is due to the fact that f;, and b have lower
sensitivity to the measurement, and therefore are most affected by the value of R. These effects are
mitigated by adopting adaptive UKFs through updating R recursively. The mean and standard deviation
of parameter estimation errors over 21 cases are reported in Table 5. Parameter estimation error is

defined as error = @™ — g™

to their true values. Similar observations can be made from Table 5, showing that significant error
reductions have been achieved for f)(col), b(col), fy(beam) and b(beam) when using adaptive methods.
Overall, the estimation errors across all parameters and cases (last two rows in Table 5) show a
significant reduction of 66% in the mean values and 80% in the standard deviations. Generally, the three
adaptive methods provide very similar estimation results, with forgetting factor method performing
slightly better (smaller errors) in the present case study. The detailed parameter estimation results are
reported in Appendix C.

/6™ in which 6 =1, since the updating parameters are normalized

The comparisons of parameter estimation and parameter uncertainty histories between non-adaptive
and adaptive UKFs using Model 14 (Table 4) are shown in Figure 16 and Figure 17. It can be seen that
parameters fy(col), b(col), fy(beam) and b(beam) converge to inaccurate values using the non-adaptive
method. This can be justified by the fact that fixed R assigns uniform weight/trust on measurements
along the response time history. Such uniform trust/weight should be avoided in the presence of
substantial modeling errors and has been mitigated by using adaptive methods through updating R
recursively. Young’s modulus of columns E(col) is overestimated by both the non-adaptive and adaptive
methods in order to compensate the over-assigned mass property in Model 14. Parameter uncertainty
using non-adaptive method is drastically underestimated (Figure 17) due to the use of fixed R. This
uncertainty is not accurate and is unrealistic for uncertainty quantification or response prediction. Larger
and more realistic parameter uncertainty is obtained by adaptive methods.
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The comparisons of acceleration response predictions are shown in Figure 18 when using Model 14.
The response predictions are obtained from the corresponding updated model and the Loma Prieta
earthquake input motion. It can be seen that considerable discrepancies exist between predictions and
measurement for non-adaptive method due to the poor estimated parameter values. However,
acceleration predictions using adaptive methods match the measurements well. To further investigate the
prediction capabilities of the updated model in presence of modeling errors, un-measured response
predictions including base shear (V) vs. roof drift ratio and section moment vs. curvature at sections 1-1
and 2-2 (M;_; vs. ki_1, My_, Vs. k,_5), flange stress-strain response at sections 3-3 and 4-4 (o3_3 Vvs.
&3_z and g,_,4 Vs. £,4_4), are shown in Figure 19 (refer to Figure 12 for the specified locations). It can be
seen that local response predictions are substantially improved by adaptive methods. The predictions
from adaptive methods for base shear vs. roof drift ratio, M,_, vs. k,_,, and g,_4 vs. £,_, agree with
their true counterparts. These local responses are important quantities for structural health assessment
and their prediction accuracy is critical for damage identification. Statistics of the relative root-mean-
square errors (RRMSE) of response predictions for all 21 updating models are shown in Figure 20 as
box plots and reported in Table 6. The RRMSE for a response signal a is defined as:

RMS(a—a"™)
RMS(a™)

RRMSE(a) = x100% (10)
It can be observed that adaptive methods significantly reduce the RRMSE for all of the response
predictions by an average of almost 50%.

The modeling errors considered in this study add significant bias to structural response as observed
in Figure 14. Figure 21 provides a comparison between estimated noise covariance and the nominal
values at three measurement channels for Model 14. The nominal covariance is defined as

Rzominal — dzag ([ytme (k) _ yerror (k)i| I:ytrue (k) _ yerror (k)]T ) + Rzoise , Where ytrue and yerror represent the

acceleration response of the true model and updating model (with modeling errors) using the true
parameter values, and R}*™ is the covariance of polluted noise of 1% NSR. From Figure 21, it can be

seen that the nominal covariance fluctuates drastically while the estimated values change smoothly
following the trend of nominal covariance. The estimated covariance values can be significantly smaller
than the nominal values at certain time steps. It is worth noting that there is no true noise covariance
available in this case and the nominal value as defined above, compensates the effects of response bias
caused by modeling errors. However, the parameter estimation results have been improved significantly
by updating the noise covariance adaptively to account for the effects of modeling errors.
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Figure 15. Boxplot of model updating results using 21 updating models (circles refer to mean values and
stars are outliers)

Table 5. Summary of parameter estimation errors

Non-adaptive  Forgetting factor Window Dual
E (col) 0.25/0.23 0.23/0.19 0.24/0.19 0.23/0.19
fy (col) 0.60/0.74 0.09/0.08 0.09/0.08 0.07 /0.07
b (col) 0.91/0.77 0.24/0.21 0.28/0.36 0.29 /031
E (beam) 0.16/0.16 0.15/0.17 0.17/0.17 0.15/0.17
f, (beam) 0.21/0.15 0.11/0.10 0.10/0.10 0.12/0.10
b (beam) 1.12/1.59 0.22/0.13 0.22/0.18 0.26/0.16

Mean 0.54 0.17 0.18 0.19

Std 0.86 0.16 0.21 0.19

Note: Cell value format is mean/standard deviation (std) over all cases; Last two rows represent mean and std

over all cases and parameters.
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Figure 16. Parameter estimation histories using non-adaptive and adaptive KFs for Model 14
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Figure 17. Parameter uncertainty estimation histories using non-adaptive and adaptive KFs for Model 14
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Figure 20. RRMSE of response predictions using non-adaptive and adaptive KFs over 21 updating
models

Table 6. RRMSE (%) of measured and un-measured response predictions

Non-adaptive  Forgetting factor Window Dual
Vi 44 /17 30/ 12 30/ 12 30/ 12
V2 24 /12 16/9 16/9 15/38
V3 18/ 11 11/9 11/38 10/38
\Y% 30/ 24 20/ 16 20/ 14 18/ 14
Drift 32/19 16/ 11 16/ 12 15/11
M;_4 33/28 20/ 14 20/13 18/13
Ki_q 67 / 46 32/19 35/29 32/19
M,_, 31/25 22/16 21/14 20/ 14
Ky 56 /65 24/19 26 /24 22/19
O3_3 36/28 22 /16 21/ 14 19/ 14
€33 70/ 55 30/18 33/32 30/18
Og_y 30/ 21 20/ 14 19/13 19/13
€4_y 66/ 82 29 /21 31/31 26/ 16
Mean 41 23 23 21
Std 33 15 17 14

Note: Cell value format is mean/standard deviation (std) over all cases; Last two rows represent mean and
std over all cases and parameters.
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Figure 21. Comparison of estimated noise covariance with nominal values for Model 14

5. Summary and Conclusions

Two adaptive KF methods, namely the forgetting factor method and the moving window method,
which were previously used in electrical engineering applications, are employed in this study for model
updating of nonlinear dynamic systems where the covariance of measurement noise is estimated
recursively. The adaptive methods are formulated using covariance-matching technique based on either
innovation or residual. In this study the residual-based approaches are implemented to two numerical
applications and compared with non-adaptive UKF and an existing dual adaptive UKF method. The
proposed adaptive algorithm can be integrated with any nonlinear KF for state estimation, parameter
estimation or joint state-parameter estimation, e.g., EKF, UKF and EnKF. Performance of the non-
adaptive and adaptive KFs are first evaluated for model updating of a cantilever steel pier with no
consideration of modeling errors. It is found that the non-adaptive UKF provides poor estimation for
selected updating parameters when the noise covariance is unknown and a wrong R is used. In contrast,
accurate results are achieved by all three adaptive filters (forgetting factor, moving window and dual
adaptive). The performance of the proposed adaptive filters is further investigated when applied to 3-
story 3-bay steel moment resisting frame with substantial modeling errors. A total of 21 updating models
are created with modeling errors in geometry, mass properties, dead loads, damping properties, NIP for
force-based beam-column element, BCs and constitutive model for steel material. Based on the
numerical applications, the following observations are made.
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(1) Although formulated differently using different covariance-matching techniques, the three
adaptive methods (forgetting factor, moving window and dual adaptive) generally provide
similar performance.

(2) In the considered case studies, the results did not show sensitivity to the values of & and m,
parameters of the forgetting factor and moving windows methods, respectively. In general,
values of a in the range of 0.7 to 0.9, and value of m in the range of 10 to 30 are recommended
for structural systems with similar dynamic properties as the ones considered here.

(3) Larger values in factor a (forgetting factor method), window size m (moving window method)
and parameter U (dual adaptive method) would provide more statistical smoothing in R
estimation.

(4) Residual-based adaptive methods (forgetting factor and moving window) are capable of
estimating the full matrix of R (with off-diagonal entries containing information about
noise/modeling errors correlation) and ensuring its positive definiteness. On the contrary, only
diagonal terms of R can be estimated and a lower bound has to be assigned to assure its positive
definiteness using innovation-based dual adaptive filter.

(5) Compared to non-adaptive KF, the proposed adaptive methods generally improve the accuracy
of parameter estimation and uncertainty quantification when wrong R is used (Application 1) or
at the existence of substantial modeling errors (Application 2). In addition, the adaptive filters
can estimate the true R with acceptable accuracy.
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Appendix A: Derivation of innovation-based covariance matching function

The derivation of innovation-based covariance-matching function is provided in this section. The state
space model for a linear KF is shown below:

X, =A, X, ,+B, u_ +w,_
{k k—1"k-1 k—1""k-1 k-1 (Al)
yi = Hx, +Deu, +v,
Two types of estimation errors (prior error e, and posterior error e, ) are defined below:
e, =X, — X, (A2)
e, =X, —X, (A3)
The innovation can be derived as
d=y,-(Hx,+Du,)=Hx, +Du +v,-(HXx, +D,u )=H,(x, -X,)+v, =H,e, +v, (A4)

The covariance of innovation is derived as
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Eld,d]|= E[(er; +v,)(Hee, +v,)

=E|H,e,e,"H] + H,e, v} +v,e,"H] +v,v]| A5)
=H,E[e,e,” |H] + E|v,v]|
=H,P H +R,
This is based on the fact that e, and v, are uncorrelated, i.e., £ [e;vﬂ =FE [vke;T ] = 0. Therefore, the
innovation-based covariance-matching function is obtained:

R, = E|d,d] |- H,P, H] (A6)

Appendix B: Derivation of residual-based covariance matching function
The derivation of residual-based covariance-matching function is provided in this section. The residual
can be expressed in terms of the posterior error e as

g, =y,—-(HXx, +Du)=Hx, +Du, +v, -(HX, +D,u,)=H, (x, -X;)+v, =H,e, +Vv, (B1)
The covariance of residual can be formulated below:

Ele,ef|=E|(He; +v,)(H.e, + Vk>T

= E|H,e/e, H| +H,e[v] +v,e;"H| +v,v[| (B2)
=H,P/H] + E[H,e[v[ |+ E[v,e;"H[ |+ R,
The term E [erZVZ ] in Eq. (B2) can be expanded as

E[Hye/v] = H,E|(x, — %/ )v}

o T s+ T
= HkE[xkvk —X, v,{]

=—H,E[%,v}|

:—HkE[(f(;—l—Kk(yk—ka(;—Dkuk))v,f (B3)

— —HkE[(f(; +K, (er; - Vk))v,f

=—H,E[%, v + KH,e, v +K,v,v]|
=-H,K,R,
in which the following facts are applied: x, , prior estimate X, , and prior error e, are all uncorrelated

with v, .

The term E [VkeZTH,f] in Eq. (B2) is derived below by using result from Eq. (B3):
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E|v,e;"H]|= E[(er;vg ) |= E[H,e;v!] =(-HKR,) =-R,K/H! (B4)

Therefore, the covariance of residual is formulated below by substituting results from Eq. (B3) and Eq.
(B4):

E|gel|=HP'H —~-HK,R, ~RK/H] +R, (B5)
It can be proved that H,P/H, and H,K,R, are equal as shown below:
H,P'H, -H KR, =H, (I-K,H, )P H —HK,R,

=H,P,H —HKHP H —HK,R,

=H,P H —-HK, (HPH] +R,) 56

—H,P H -H,P H (HP,H +R,) (HPH +R,)

—H,P H' —H,P H/

—0
in which P, =(I-K,H,)P; and Kalman gain K, =P, H] (H,P, H; +R, )_' have been substituted.
Therefore, it is easy to show that R, K;H] is also equal to H,P,'H] :

R, K H, = (HkKkRk >T = <HkPk+H1{ )T =H,P'H, (B7)

Finally, the residual-based covariance-matching function is obtained from Eq. (B5) by applying the
results of Eq. (B6) and Eq. (B7):

Elge]|=R, —H,P'H] (B8)

Appendix C: Summary of model updating results

Case E (col) f, (col) b (col) E (beam) f, (beam) b (beam)
Non-adaptive 1.21 2.97 1.28 0.94 0.95 1.22
1 Forgetting factor 1.22 1.00 0.92 0.95 0.92 1.37
Window 1.24 1.01 0.86 0.92 0.96 1.23
Dual 1.22 0.99 0.95 0.93 0.92 1.33
Non-adaptive 0.93 0.82 0.31 1.04 0.92 0.73
) Forgetting factor 0.83 0.96 1.40 1.00 1.00 0.95
Window 0.83 0.94 1.54 1.01 0.99 0.97
Dual 0.84 1.02 0.77 1.04 1.05 0.85
Non-adaptive 0.98 0.90 0.41 1.06 1.03 0.80
3 Forgetting factor 0.92 0.99 0.88 1.11 1.03 0.98
Window 0.92 0.98 0.88 1.11 1.03 0.99
Dual 0.95 0.99 0.88 1.07 1.03 0.95
Non-adaptive 1.01 2.99 1.42 0.94 1.10 1.32
4 Forgetting factor 1.01 0.93 1.09 0.94 0.93 1.48
Window 1.01 0.92 1.02 0.93 0.94 1.46
Dual 1.01 0.96 1.00 0.94 0.97 1.39
Non-adaptive 1.00 0.89 0.83 1.05 0.95 0.78
5 Forgetting factor 1.00 1.03 0.93 1.03 1.00 0.83
Window 1.00 1.03 0.92 1.03 0.99 0.81
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Dual 0.99 1.02 1.00 1.04 1.01 0.85
Non-adaptive 1.27 0.87 2.09 0.76 0.88 1.16

6 Forgetting factor 1.25 0.99 0.93 0.85 0.82 1.26
Window 1.31 1.01 0.88 0.76 0.86 1.10

Dual 1.32 1.02 0.89 0.75 0.87 0.95
Non-adaptive 1.33 3.00 1.14 0.84 1.09 0.93

7 Forgetting factor 1.39 1.06 0.89 0.81 0.95 1.29
Window 1.39 1.04 0.88 0.80 0.95 1.37

Dual 1.36 1.05 0.99 0.83 0.95 1.25
Non-adaptive 0.91 1.04 1.32 1.04 1.31 0.75

3 Forgetting factor 0.93 1.00 0.97 1.03 1.12 1.15
Window 0.92 1.01 1.07 1.04 1.11 1.21

Dual 0.90 1.01 1.07 1.07 1.13 1.21
Non-adaptive 1.20 1.16 1.56 0.95 1.14 0.51

9 Forgetting factor 1.15 1.09 1.32 1.01 1.06 1.11
Window 1.15 1.08 1.34 1.01 1.07 1.10

Dual 1.16 1.09 1.45 1.00 1.03 1.13
Non-adaptive 1.08 0.75 2.23 0.97 0.84 0.01

10 Forgetting factor 1.09 1.05 1.71 0.82 1.06 0.56
Window 1.09 1.08 1.12 0.82 1.08 0.39

Dual 0.97 1.07 1.34 1.02 1.11 0.71
Non-adaptive 1.52 0.57 3.13 0.92 1.46 0.63

1 Forgetting factor 1.26 1.17 1.11 1.03 1.27 1.18
Window 1.32 1.17 0.94 0.83 1.09 0.62

Dual 1.27 1.15 1.13 1.05 1.26 1.33
Non-adaptive 0.82 0.83 3.89 1.62 1.24 1.82

12 Forgetting factor 0.80 0.94 0.54 1.68 1.31 1.20
Window 0.81 0.98 0.26 1.65 1.35 1.24

Dual 0.80 0.97 0.54 1.67 1.33 1.23
Non-adaptive 1.59 2.35 0.01 0.50 0.85 0.28

13 Forgetting factor 1.67 1.10 1.17 0.50 0.69 0.74
Window 1.67 1.16 0.78 0.49 0.70 0.70

Dual 1.65 1.09 0.97 0.50 0.74 0.65
Non-adaptive 1.37 3.00 0.01 0.94 0.59 5.63

14 Forgetting factor 1.33 1.26 1.12 1.00 1.19 1.15
Window 1.34 1.27 1.03 0.98 1.21 1.11

Dual 1.30 1.23 1.33 1.02 1.15 1.24
Non-adaptive 1.18 0.68 1.35 1.25 0.90 1.50

15 Forgetting factor 1.15 0.77 1.12 1.21 0.93 1.21
Window 1.13 0.79 0.97 1.24 1.00 1.11

Dual 1.15 0.79 1.15 1.22 1.01 0.98
Non-adaptive 1.75 0.85 1.34 1.05 0.80 5.83

16 Forgetting factor 1.61 0.75 0.80 1.13 1.05 1.38
Window 1.62 0.75 0.70 1.13 1.08 1.31

Dual 1.63 0.84 0.43 1.12 1.14 1.34
Non-adaptive 1.78 0.48 1.89 1.19 0.85 5.76

17 Forgetting factor 1.47 0.85 0.44 1.35 1.31 1.05
Window 1.45 0.83 0.62 1.38 1.31 1.09

Dual 1.45 0.88 0.48 1.36 1.33 1.03
Non-adaptive 1.04 0.71 1.12 0.80 0.58 1.03

18 Forgetting factor 0.99 0.95 1.08 0.99 0.96 1.36
Window 0.98 0.92 1.11 0.99 0.99 1.08

Dual 1.00 0.95 1.20 0.99 0.96 1.37
Non-adaptive 1.30 1.23 0.25 0.69 0.60 0.39

19 Forgetting factor 1.31 1.02 1.12 0.84 0.93 1.10
Window 1.33 0.99 1.09 0.82 0.94 0.99

Dual 1.32 1.02 1.16 0.83 0.89 1.46
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Non-adaptive 1.11 1.08 2.87 0.84 0.70 1.72

20 Forgetting factor 1.10 1.08 1.68 0.96 1.09 1.25
Window 1.08 1.02 2.61 0.95 0.93 1.58

Dual 1.15 1.09 1.98 0.91 1.04 1.44
Non-adaptive 1.15 0.86 3.24 0.78 0.56 3.25

21 Forgetting factor 1.31 1.05 1.43 0.83 1.02 0.81
Window 1.32 1.02 1.58 0.80 0.95 1.16

Dual 1.24 1.00 2.09 0.87 0.80 1.64

Appendix D: Effects of different categories of modeling errors on the structural response

Geometry errors Damping errors

Y, (m/s?)
Y, (m/s?)

0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
Combination with NIP errors

Combination without NIP error

Y, (m/s?)
y, (mis?)

0 2 4 6 8 10 12 14 ) 0 2 4 6 8 10 12 14
Material nonlinearity errors

Boundary condition errors

y, (mis?)
y, (mis?)

o 2 4 6 8 10 12 14 0 2 4 6 s 10 12 14
Time (s) Time (s)

Figure D1. First floor acceleration response comparison between updating models (grey lines) and true

model (black line) for different categories of modeling errors. Models 1-3 for geometric errors, Models

4-5 for errors in damping, Models 6-7, 9-10 and 13 for error combinations except NIP, Models 8, 11-12

and 14 for error combination including NIP errors, Models 15-17 for boundary condition errors, and
Models 18-21 for material nonlinearity errors.
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