J Nanopart Res (2020) 22:92
https://doi.org/10.1007/s11051-020-04815-9

RESEARCH PAPER

Buckling response of functionally graded nanoplates

®

Check for
updates

under combined thermal and mechanical loadings

Ma’en S. Sari - S. Ghaffari - S. Ceballes - A. Abdelkefi

Received: 17 September 2019 / Accepted: 12 March 2020
© Springer Nature B.V. 2020

Abstract This effort focuses on a buckling analysis ofa
functionally graded (FG), thin, rectangular nanoplate
subjected to biaxial linearly varying mechanical loads
and various temperature distributions through the thick-
ness of the nanoplate. On the basis of the Eringen’s
nonlocal elasticity theory and Kirchhoff’s classical plate
theory, the governing equations are obtained for func-
tionally graded rectangular nanoplates using the mini-
mum total potential energy principle. In the proposed
model, it is assumed that the mechanical and thermal
properties of nanoplates are position-dependent and that
they vary through the thickness via a power rule of the
volume fraction of the constituents. The governing
equation and boundary conditions are discretized for
the rectangular nanoplate by adopting the Chebyshev
spectral collocation method, and the resulting eigenval-
ue problem is solved to obtain the critical buckling
loads. Finally, numerical results are presented to show
the impact of various thermal loadings and boundary
conditions on the buckling behaviors of size-dependent
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functionally graded nanoplates. Moreover, the influ-
ences of varying different parameters, such as the non-
local parameter, power law index, temperature rise,
aspect ratio, and slopes of the linearly varying axial
mechanical forces, are investigated and discussed in
detail. The study of each of these parameters highlights
phenomena present at the nanoscale from a theoretical
point of view.

Keywords Nanoplate - Thermal/mechanical loadings -
Buckling - Nonlocal elasticity - Functionally graded -
Biaxial loads

Introduction

Nanoelectromechanical systems (NEMS) have superior
mechanical, physical, electrical, and thermal properties
that distinguish them from other structures. NEMS are
used in numerous systems applicable to the medical
industries, generators, spintronics, resonators, sensors,
energy harvesters, and transducers. Recently, due to the
rapid development of the nanotechnology along with
the need of equipment miniaturization, nanotubes, nano-
wires, and thin-films composed of specific materials
have been introduced as the cornerstone for the
manufacturing and fabrication of different nanostruc-
tures (Ansari and Gholami 2016). In order to analyze,
model, fabricate, and design such nanosystems, it is
crucial to increase the level of the understanding and
insight about the different characteristics of small-scale
structures. Furthermore, the main thermomechanical
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challenge with thin nanoplates is to ensure structural
stability in the presence of large and fluctuating stress
states during fabrication and operation at elevated tem-
peratures and pressures that in turn may lead to buck-
ling, cracks, and fracture. Inaccurate modeling of nano-
structures under mechanical and thermal loads may
result in devices with low performance and efficiency.

It is known that nanotechnology techniques have
been continuously applied to enhance the properties of
such structures. For instance, Chen et al. introduced a
method to increase the thermal conductivity of polymer
matrix composites using hybrid filler that consists of
carbon nanotubes and graphene nano-platelets. It was
shown that a great increase has been achieved in the
thermal conductivity for these materials (Chen et al.
2019). Additionally, for structures at the nanoscale,
molecular dynamics has been utilized to analyze some
observations. For example, the molecular dynamics has
been used in modeling the nano-manipulation process
based on atomic force microscope. Several factors were
included as initial impact of nanoparticles, contact me-
chanics, and roughness (Korayem and Khaksar 2020).

As the nanoplates are extremely small, the experi-
ments to investigate the behaviors of these structures are
quite challenging. It is known that there are two main
approaches for simulating the characteristics of the
nanostructures: molecular dynamics (MD) simulation
and continuum mechanics. The MD approach has been
widely applied for simulating the different properties of
nanostructures; however, this method is time-
consuming and computationally expensive. On the oth-
er hand, elastic continuum model has been considered as
an efficient method for examining the behavior of nano-
structures. The classical continuum theories are scale
free; therefore, they cannot handle the small-scale effect
on the different properties for these nanostructures.
Thus, these theories are insufficient in describing the
behaviors of nanostructures. For the sake of applying
the continuum model in the analysis of the nanostruc-
tures, realistic amendments that incorporate the small-
scale effect should be introduced. Hence, few theories
have been proposed as the modified coupled stress
theory, the strain gradient theory, and the nonlocal elas-
ticity theory that will be used in this study to investigate
the buckling behavior of nonlocal Kirchhoff plates sub-
jected to both biaxial and thermal loads.

Functionally graded materials (FGMs) are a novel
generation of composite materials composed of two or
more different materials in which the properties vary
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smoothly between the interfaces of the materials. FGMs
were initiated by a group of Japanese scientists in 1984
during a space plane project (Koizumi 1997). Due to
their superior properties and excellent performance un-
der mechanical loadings in high temperature environ-
ments, beams and plates composed of FGMs have been
widely applied in modern industries including
aeronautic/astronautic manufacturing industry, defense
industry, biomedical sectors, engine combustion cham-
bers, vehicle industry, ship engineering, nuclear engi-
neering, and reactors in the last few decades (Akbas
2017; Kolahchi et al. 2015). Various fabrication tech-
niques are used for FGMs, such as eliminating the
interface, inducing non-uniform distributions of disper-
soids in a homogeneous particle composite, and sequen-
tial buildup of layers.

Nanoscale structures, which are often made of
FGMs, have recently attracted great attention for engi-
neering and technology fields (Rahmani and Jandaghian
2015; Ghadiri et al. 2016; Norouzzadeh et al. 2017;
Akbarzadeh Khorshidi et al. 2017; Hosseini et al.
2016). Thus, FGM nanoplates have been investigated
by many researchers to understand their mechanical
behaviors in the most recent years (Yuan et al. 2020;
Lori Dehsaraji et al. 2020; Zur et al. 2020; Ruocco and
Reddy 2020; Guo et al. 2020). Reviewing predictions
for the static and dynamic behaviors of plates and
nanoplates, there have been several studies investigating
static and dynamic behaviors of these structures
(Karami et al. 2018; Sahmani et al. 2014; Liu et al.
2019; Arefi et al. 2018; Farajpour et al. 2018;
Mabhinzare et al. 2018; Gao et al. 2019). Many other
works on the dynamics of nanobeams can be referred to
the comprehensive review (Ebrahimi and Salari 2015;
Ebrahimi and Barati 2018; Bouiadjra et al. 2013).

The buckling and post-buckling of graphene-
reinforced laminated composite plates acted upon by
uniaxial and biaxial forces were reported. The first order
shear deformation theory was considered, and von
Karman nonlinearity was employed to account for large
deformation. Poly-methyl-methacrylate were used in
the layers of the composite plate, and Halpin—Tsai and
rule of mixtures were calibrated for the graphene com-
posite, and graphene sheets were considered in perfect
and defective forms. The incremental-iterative type of
Ritz method was applied to solve the resulted stability
equations. It was shown that the X-pattern has higher
buckling loads for all types of boundary conditions
(Karimi Zeverdejani et al. 2020). The forced vibration
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and dynamic stability of thin rectangular microplates
were investigated. The modified couple stress theory
along with von Karman nonlinearity was utilized to
obtain the kinematic relations, and Hamilton’s principle
was applied to obtain the governing partial differential
equation of motion which was converted to a nonlinear
ordinary differential equation using the Galerkin ap-
proach. The electrostatic pull-in voltages were deter-
mined, and the method of multiple scales was adopted
to obtain the frequency curves for the primary,
superharmonic, and subharmonic resonances
(Karimipour et al. 2019). The buckling behavior of thin
functionally graded Euler-Bernoulli beam in the frame
work of the modified strain gradient theory was carried
out. The differential equation for buckling with all pos-
sible boundary conditions is obtained using a variational
statement. The influence of the power exponent param-
eter, the boundary conditions, scale parameter, beam
thickness, and the slenderness ratio on the buckling
behavior of the microbeams was discussed (Akgoz and
Civalek 2013). Moreover, the bending, buckling, and
vibration analysis of sinusoidal micro plates with simply
supported boundary conditions were presented. The
modified strain gradient theory was utilized, and the
shear deformation was taken into consideration.
Hamilton’s principle was applied to derive the
governing equations. Analytical solutions were obtain-
ed, and the effect of the scale parameter, the length-to-
thickness ratio, and the shear deformation on the deflec-
tion, critical buckling loads, and the fundamental fre-
quencies of the microplates (Akgdéz and Civalek
2015).The bending response of porous functionally
graded thick rectangular single-layer and sandwich
plates according to a quasi 3D-shear deformation theory
was studied. The governing equations were derived, and
Navier’s technique was presented to find the deflections
and stresses for the FG simply supported plates
(Zenkour 2011).

It is clear that mechanical behaviors of nanoplates are
remarkably affected by temperature changes. As a re-
sult, the influence of thermal environments on the prop-
erties of buckling, transverse vibration, and bending of
FG plates is one of the practical interesting subjects
which has been investigated by many researchers
(Barati and Shahverdi 2016; Ashoori et al. 2016;
Ebrahimi and Barati 2016; Nami et al. 2015; Hong
2014; Shahsavari et al. 2018; Bouderba et al. 2013;
Ebrahimi et al. 2016a; Goodarzi et al. 2016). Most
recently, some researchers have studied mechanical

behaviors of FG plates and nanoscale plates with con-
sidering thermal effects (Goodarzi et al. 2016; Hosseini
etal. 2017; Kiani et al. 2018; Bakhsheshy and Khorshidi
2015; Bouderba et al. 2016; Bousahla et al. 2016;
Karami et al. 2019; El-Haina et al. 2017; Barati and
Shahverdi 2017; Khetir et al. 2017; Ashoori and
Sadough Vanini 2016). Additionally, the buckling and
vibration behaviors of FG nanoplates exposed to ther-
mal environments have been a hot topic of research and
interest in recent years (Sobhy 2015; Ghadiri et al. 2016;
Sobhy and Radwan 2017) Furthermore, the static and
vibrational characteristics of FG plates and nanoplates
subjected to thermo-mechanical loads have been ex-
plored in the past years (Barati et al. 2016; Ebrahimi
et al. 2016b; Saidi et al. 2013; Hosseini and Jamalpoor
2015).

To the authors’ knowledge, studying the buck-
ling behavior of FG nanoplates subjected to both
biaxial mechanical forces and thermal effects has
not been investigated. Therefore, the objective of
this study is to fill the gap in developing a size-
dependent model of a thin FG rectangular nanoplate
subjected to biaxial linearly varying mechanical
loads with various boundary conditions under three
types of thermal loadings, namely uniform temper-
ature rise, linear temperature change, and nonlinear
temperature gradient thorough the thickness of the
nanoplate. A brief overview of FG material,
Eringen’s nonlocal elasticity, and Kirchhoff’s plate
theory is given in the “Theoretical formulations of
the FGM nanoplate under mechanical and thermal
loads” section to derive the governing equation for
the nanoplate. The “Chebyshev spectral collocation
method for solving the governing equations of mo-
tion” section presents the Chebyshev spectral col-
location method to obtain the numerical solutions.
In the “Buckling characteristics of FG nanoplate
under mechanical and thermal loadings” section,
numerical results and parametric studies are given
to report the critical thermal-mechanical buckling
loads for a FG rectangular nonlocal nanoplate with
different boundary conditions. The influence of the
slope of the linearly varying forces, the aspect ratio,
the nonlocal parameter, the different temperature
rises, and the gradient index of the functionally
graded material on the critical buckling loads are
investigated and illustrated. In studying the effects
of each of the mentioned parameters, the resulting
nanoscale phenomena for the proposed system are
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shown. Finally, concluding remarks are made in the
“Conclusions” section.

Theoretical formulations of the FGM nanoplate
under mechanical and thermal loads

Modeling of functionally graded nanoplates

A functionally graded rectangular nanoplate that is com-
posed of ceramic and metal of length /, width b, and total
thickness / is considered in this research, as shown in
Fig. 1. The material properties of the FG nanoplate are
assumed to vary continuously through the thickness of
the nanoplate in accordance with a power law distribu-
tion as follows:

1 z\"
p(z) = Pm + Pem (_+Z) 5 Pem = PcPms n=0

2
(1)

where p(z) denotes the effective material property through the
thickness of the nanoplate, such as Young’s modulus £, thermal
expansion coefficient v, and mass density p. The subscripts m and
c represent the metallic and ceramic constituents, respectively. The
thickness coordinate is represented by z and varies from —4/2 to
h/2, and n refers to the volume fraction exponent. Since the effects
of the variation of Poisson’s ratio v on the response of FG
nanoplates are very small, it is assumed to be constant and is taken
to be 0.3 through the analysis.

Overview of Eringen’s nonlocal elasticity to account
for size-dependent phenomena

The nonlocal elasticity theory, first introduced by Eringen (Eringen
2002), has been widely used to analyze nanoscale structures. As for

Fig. 1 Schematic configuration
and the coordinate system of
FGM rectangular nanoplate
exposed to linearly varying
biaxial mechanical loading and
thermal environment

Ceramic-rich
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physical interpretation, the nonlocal elasticity theory incorporates long
range interactions between points in an elastic medium. According to
this theory, the stress at a point is dependent on the strains of an
extended region around that point in the body, as opposed to only the
strain at the considered point. Thus, the stress tensor o at a point x is
defined as follows:

oyj(x) = Q]j 80(|X/—x|, /t) tij (x/)dV<x,> 2)

where oy and #; are the nonlocal and classical stress
tensors, respectively; V'is the volume of a region of the
body that integral is taken on it, and (|x'—x| ) denotes
the nonlocal modulus, also referred to as the attenuation
or kernel function which includes the nonlocal effects at
areference point x produced by the strains at x and x". As
itis seen from the above equation, the nonlocal modulus
is dependent on two parameters, namely |x'—x| and p. |x’
—x| refers to the distance between points x and x', and j
represents the nonlocal parameter which is given by:

eli
p= (; (3)

where /; and / denote the internal and external charac-
teristic lengths, respectively, and e, is a constant that
should be determined from the acoustic dispersions of
the considered material.

As the integral form given in Eq. (2) is difficult to
apply, Eringen (Eringen 1983) proposed an equivalent
differential form of the nonlocal stress at any point x as
follows:

(1—(eoli)2V2)Gij = tjj (4)

where el denotes the nonlocal parameter, and V2 = (6%/
ox*) + (6%*/0y”) is the two-dimensional Laplacian

A
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operator. It is obvious that the classical relationship
between the stress and strain tensors can be obtained
by setting the nonlocal parameter equal to zero in Eq.

4).

Displacement field for a FG nanoplate using Kirchhoff
classical plate theory

The displacements of an arbitrary point of the FG
nanoplate can be defined in Cartesian coordinates as
follows:

u(x,y,z) =z 6w((3);,y) s v(x»,2)
:—Z%);y), w(x,y,z) :W(xvy) (5)

where u, v, and w are the displacements in the x, y, and z

directions, respectively. Using the displacements intro-

duced in Eq. (5), the strain-displacement relations are

given as functions of the transverse deflection w as:
&w &w &w

XX — <A =135 x:_2 6
5 Zaxz Eyy Zay2 Exy Zaxay ( )

Considered forms of thermal loads on the FG nanoplate
Uniform temperature distribution

In the case of uniform temperature distribution (UTD)
across the thickness of the nanoplate, the temperature
field can be expressed as:

T(z) = To + ATy (7)

where T is an arbitrary reference temperature at which
no thermal strain is observed in the nanoplate, and AT,
is the uniform temperature rise. It should be noted that
for this case, 7{(z) is a constant and does not vary through
the thickness of the plate, as in the case of the linear and
nonlinear temperature distributions.

Linear temperature distribution
For a thin enough nanoplate, the temperature distribu-

tion is assumed to vary linearly along the thickness as
follows (Kiani et al. 2011):

T(Z):Tm+(Tc_Tm)(%+%) (8)

here, T, and T, represent the temperature of the ceramic-
rich surface and metal-rich surface, respectively.

Nonlinear temperature distribution

In the case that the FG nanoplate is subjected to one-
dimensional heat conduction in the z direction, the
steady-state heat conduction equation absence of heat
generation, and the boundary conditions are given as:

% <k(z) %) =0, T(h/2)=T,, T(-h/2)=Tn
9)

where k(z) denotes the effective thermal conductivity of
the FG nanoplate and is given as:

1 n
k(z) = km + kem (5 + —) , kewm =k kn  (10)

The above differential equation can be solved via the
polynomial series. After applying the boundary condi-
tions, the temperature field through the thickness of the
nanoplate is expressed as (Javaheri and Eslami 2002):

T(Z) =Tm+ (Tc_Tm)n(Z) (11)

where

o = L[ (Y ke (2 "*‘+ 2, (2z+h\"
=i\ T2n ) i+ Dikn\ 2 @n+1)i3 \ 2k

m

K (2z+h>3""+ K (2z+h)""“7 o (27+h)5"“
(Bn+ 1)k, \ 2k (4n+ Dkt \ 2 (Sn+ 1)k, \ 2h

(12)
and
C — 1_ kcm k%m _ k?:m
(n4Dkm 20+ Dk, (3n+ Dk,
Kt K
cm _ cm (13)

(4n+ DK (Sn+ 1)k,
It should be mentioned that, in the case of linear and
nonlinear temperature gradients, the temperature differ-

ence can be expressed as:

AT = To=Tm (14)
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Fundamental relations between mechanical and thermal
strain: the thermos-elastic equations

For an elastic plate exposed to both mechanical and
thermal stresses, the two-dimensional strain-stress rela-
tions at a point are expressed as (Jones 2006):

1
Ex =& (oxx—voyy) + AT, (15)
1
Eyy = z (O'yy_l/()'xx) + aATy (16)
Exy = O——(X;y (17)

where £, and £, denote the total normal strains, and e,
represent the shear strain, while «AT'is representative of
the thermal strain resulting from the temperature change
at any point in the plate volume.

Governing equations of motion based on Kirchhoff’s
plate theory and Eringen’s nonlocal theory

Considering Eringen’s differential operator, Hooke’s
law, and thermal effects on the nanoplate, the constitu-
tive relations between stresses and strains can be given
by:

2
Jxx_(QOa)z( axz +

= 5 [en + v 0T To)(1 4] (19)
Gzayy azoyy
Uyy_(eOa)z( o2 + 02 >

= 20 Loy 4 veuma@TE-To)(1 +1)] (19)
20n 0Py

rota? (T ) =6y 0)

where o and oy, denote the axial mechanical stress-
es in the x and y directions, respectively, and o, refers to
the shear stress. As previously mentioned, 7(z) is the
temperature distribution along the thickness direction of
the nanoplate, and 7} is an arbitrary reference tempera-
ture; v and a(z) are the Poisson’s ratio and the thermal

@ Springer

expansion coefficient of the nanoplate, respectively,
E(z) refers to the effective Young’s modulus of the FG
nanoplate, and G(z) denotes the shear modulus which
can be expressed in terms of the Young’s modulus by
the following equation:

E(z)

=310

(21

The resultant forces and moments are defined as:

h/2
{Nx, Ny, Ny } = —};[/2 {ox, 03y, 0} dz (22)
and
B2
{My, My, My} :—h'[/z {oxx; Oyy, 0%y } Z dz (23)

Substituting Egs. (18-20) into Egs. (22) and (23), the
resultant forces and moments are derived as follows:

?N, N
_ 2 X X
Nx(eoa) <6x2 * 6y2>

(v, Bt
- a2 vayz 1-v

x | E@)a(z)(T(z)~To)dz (24)

&#N, &*N
N _ 2 y y
y~(e0a) <6x2 + 6y2>

2 2
g, <6_W+ 6W)_L

oy? o) 1w

h/2
x | E@)az)(T(z)-To)dz (25)
—h/2

&Ny PN Fw
2 X X
ny*(eoa) <—6x2 Y 4 52 y) =-B (—6x6y> (26)
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M, M,
Mx—(ew)z( 02 + o2 >

IR ) B

h/2
[ E(z)a(z)(T(z)-To)zdz
~h/2
L (*My M,
o’ (Gt + 5
o*w o*w 1
= _Dl(a =+ aﬁ)‘(ﬁ) (28)
h/2
[ E(2)a(z)(T(2)-To)zdz
~h/2

FM,, & Pw
M ? X =—Dy-—=) (2
y~(e0a) ( Ox? oy ) 2(6x6y) (29)
where
h/2 E 2\
(BI,DI) J‘ (Z)(Z7§ ) < (30)
—h/2 1-v
and
h/2 2
(By,D;) = J' M (31)

/2 2(14v)
The axial forces in the x and y directions are given by:

Ny =NM 4 NT (32)

Ny =Ny +NT (33)

In this study, N}'and N}' are linearly varying me-
chanical loads exerted on the FG nanoplate in the x and
y directions, respectively, and N" is the thermal resultant
which can be defined as:

W= (i),

h/2
NT:—<L) [ E2)az)(T(z)-T) dz (35)

1=v ) -2

=GP(1ny) (9

where P denotes the axial load at the origin of the
Cartesian coordinate system defined on the rectangular
nanoplate. The slopes of the linear mechanical loads are
denoted by factors ~y; and .. (; and (, represent the load
parameters, such that in the case of the biaxial compres-
sion in the x and y directions, ; = (=~ 1.

Using the minimum total potential energy principle,
the equilibrium equation of an initially preloaded rect-
angular plate subjected to thermal loads is obtained as
follow:

My My My *w
- 2 NM 4+ NT
ox? + 02 * Ox0y (AN 5 ox?
w Pw
NM 4 NT) —— + 2N, ——
+ ( + ) 0?2 2Ny Ox0y
=0 (36)

The second derivatives of Eq. (36) with respect to x
and y are derived as:
M, My, M,y M oT 0w
— | Ny +N
o T aver S adey | o <( N3 2)
2

b 5w o &w
— [ (NM £ NT —(2Ny——) =0
Ox? (( * ) 82)+8x2( yaxay)

(37)

+

oMy M, oMy, & ow
X 2 v o O [(yM Ty W
ox20)? + ot + oxoy? + 02 << LN ox?

& M o) 0w az O*w
o2 <(Ny ) ay2) T ( NY@x@y)

(38)

(=]

The second derivative of Eq. (27) with respect to x,
the second derivative of Eq. (28) with respect to y, and
the partial derivative of Eq. (29) with respect to x then
with respect to y can be given by:

My , (M M, otw otw
= OV ) p(ev,, 9"
a2~ (@) ( o +6x26y2> <6x4 +V6x26y2) (39)

M, L @M, M, o*w o*w
ayz = (600) (—aXZayz + —ay4 ) D(W + l/—aXZayz) (40)

M,y 2 (' Myy My o'w

oxdy (e0) (6x38y2 * 8x8y3> b(1-v) <6x26y2> (41)
here, D is the flexural rigidity of the functionally graded
nanoplate and it can be introduced as:
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B
D = D, A—l (42)
and
M2 B, 7,7
(AlthDl): j Mdz (43)

~h/2 1-12
Summing Egs. (37) and (38), we obtain:

My M, My My
-2 + 2 =
oxt  oxtoy? 0x30y o‘czay ot 6xoy
&w &*w
(o ) (v N LY M VY Loy,
<6x2+6y2)<( * )62+<N +N)62+ Ny6x8y>

(44)

Summing Egs. (39), (40), and twice of Eq. (41),
inserting them into Eq. (36) and using the Eq. (44), yield
the following equation as:

ow  otw o*w Pw Pw
Dl—+—-—F4+2—— | N'|—5+—
(6x4 tor T 6x26y2> (sz + 6y2>

otw otw 64W
NT(eoa) | == + 25—
N (e0a) <ax4 t ey 6y4>

* & M&W o Fw & w
= (]—(an) (,\ 2 +6y )) (NX W-’!‘Ny a w3l 2NXy_6x6y>

(45)

Substituting Eq. (34) into Eq. (45) and setting Ny, =0
yield:

dw tw otw Pw  Pw

D<6x4 6y4+28x26y2)_N (ﬁ+§>+1\ﬂ(eoa)
04 a4 64 62 82

(Frame ) - (o Grz) 49

(ar( N e op(i w;)g%v)

Expanding the derivatives in Eq. (46) gives the
governing equation in terms of the transverse deflection
of the nanoplate as follows:

@ Springer

ow otw otw Fw  Pw T
D(W—‘FW—"_Z—QXZ@))Z) -NT (axz + P ) +N (e()a>

AP
ot T ox2oy?

P 2w
+§V4V> :QP( TN b) 2 +2¢,P(eoa)’

O)l) a0y ~\P(eoa)’ ( M z) 02 —GP (eoa)z(l—“/l %147)

otw 72) Ow

x\ &*w 2 2
=+ 42p<1_72 7) > +2¢,P(ea) (T R —(,No(eoa)

x\ dtw

(1*72 ;) %*CzNO(W)Z (1*72 7) X

The dimensionless parameters are defined below to
derive the normalized governing equation.

O\ L A G
n — D b _17 _l’
y / epa . PP
5 5 M= D (48)

Substituting the dimensionless parameters given in
Eq. (48) into Eq. (47), the normalized governing equa-
tion for a rectangular nanoplate subjected to biaxial
mechanical loads in high temperature environments
with considering thermal loads can be derived as:

~A W 2W
<0W+2)\2 o'w )\48 )T<a AZaw>

ax? axior: T oy ax* = oor?
(S 2]
= (N (1-7,Y) Z}j" F2GN @y N ")(326Y GNTEX 7‘”%
N Y) S N R (1) avzv+zfz 0 g
o'w

NN ’YzX)

oyt

ow
—GN #2 X ( 1772)() X012 G

(49)

Chebysheyv spectral collocation method for solving
the governing equations of motion

The Chebyshev spectral collocation method, which has
high accuracy and a fast rate of convergence (compared
with other powerful numerical techniques), is used for
the spatial discretization of the governing equation of
motion and boundary conditions. Chebyshev nodes are
the roots of the Chebyshev polynomials of the first kind
and are the projections of equally spaced segments of a
unit circle on the interval [— 1, — 1] and are defined as:
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xj=cos(jm/N), j=0,1,....N (50)

The Chebyshev differentiation matrix, [D]y, is ex-
tracted by interpolating a Lagrange polynomial of de-
gree N at each Chebyshev point, differentiating the
polynomial, and finding its derivative at each point. This
matrix has a size of (N + 1) X (N + 1), and its elements
are given as:

2N? 41 2N? 41
(DN)OO = Tv (DN)OO = 7T
2 .
(DN)_U:7J7 lea"'vN_l
2(1—;@)
/. 51
Dx), =SV 0N .
N)iji — ) ) yJ =Yy
I C‘j (xi—xj)
2, i=0or N
“a= 1, otherwise

Based on the Chebyshev spectral collocation method,
the n'™ derivative of a general function can be expressed
as:

Dn = (Dy)" (52)

Making use of the Chebyshev method and the
Kronecker product, the governing equations and bound-
ary conditions are discretized in the space domain. Sub-
sequently, the displacement vector of the nanoplate can
be given by:

(U] = Wty Waays oo W ) M
=N+1 (53)
here, M refers to the number of points in the x and y

directions. Employing the spatial discretization proce-
dure, the left-hand side of Eq. (49) can be rewritten as:

LH = (1 + Top?) [(D4RI) +2X2(D2@D2) + N (18D4)] (54)
~T,[(D2®1) + N*(I®D2)]

in which 7 represents an M x M identity matrix. Simi-
larly, the right-hand side of Eq. (49) is discretized as
follows:

N™ x (RH) = N"[(,(D2®H (Y)) + 2,7 12 (D2®D1)~(, N 11 (D2®H (Y) *D2)
~C 2 (DA®H(Y)) + (N (G(X)®D2) + 26,7, X1 (D1@D2)
~(N A (D2@G(X)*¥D2)~(, N 1 (G(X)@D4) |

(55)

and

GUX) = 11X, H(Y) =1y (56)

Consequently, the discretized form of the governing
equation of the nanoplate can be expressed as:

[LH|{W} = N"[RH|{W} (57)

In the equations above, the normalized X and Y axes
are in the range of [0, 1].

In the present article, two boundary conditions are
considered: simply supported and clamped. Mathemat-
ically, they are expressed as:

(1) Clamped (C):

W(0,Y)=0, oW(0,Y)/0X =0

W(1,Y)=0, oW(1,Y)/oX =0 (58)
W(X,0) =0, 0W(X,0)/0Y =0

W(X,1)=0, oW(X,1)/dY =0

(i) Simply supported (S):

W(0,Y) =0, &*W(0,Y)/oX* =0

wW(l,Y)=0, &*W(1,Y)/axX* =0 (59)
W(X,0) =0, &W(X,0)/0Y>=0

W(X,1)=0, &W(X,1)/0Y>=0

These boundary conditions at the four edges of the
FG nanoplate are discretized by adopting the
Chebyshev’s approach and the Kronecker product, as
mentioned below:

Clamped (C) at X = 0:

([1,0,....0/00){W"}
=0, (DU1L,)){W'}=0 (60)
where the vector D1(1, :)is defined as:

DI(1,:) = [Dl(l,1),D1(1,2>7...,Dl(l,M*l),Dl(l,M”

(61)
Clamped (C) at X = 1:
([0,0,....1]@){W"}
=0, (DI(M,)RN{W'} =0 (62)
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and

DI(M,:) = [Dl(M, 1),D1(M,Z),...,Dl(M,M—l),Dl (M7M>]

(63)
Simply supported (S) at X = 0:
([1,0,...,.0/@0){W"}
=0, (D2(1,:)®N{W'} =0 (64)
in which

D2(1,:) = [02(1,1),02(1,2),...,

D2<1,M71>,D2<1,Mﬂ

(65)
Simply supported (S) at X = 1:
(0,0,.... 1] {w"}
=0, (D2(M,)RN{W'} =0 (66)

here, the vector D2(M, :) can be written as:

D2(M,:) = [Dz(M, 1),1)2(M,2),...,Dz<M,M—1),Dz(M,M)]

(67)
Clamped (C) at Y = 0:
(IQ[1,0,..,0D{W"'} =0, (I@D1(1,:)){W'} =0 (68)
Clamped (C) at Y = 1:
(I®[0,0,...1){W'} =0, (I®DI(M,:)){W'} =0 (69)

Simply supported (S) at ¥ = 0:

(I®[1,0,...0D){W'} =0, (®D2(1,:)){W'} =0 (70)
Simply supported (S) at V' = 1:
(I®]0,0,...1){W'} =0, (I@D2(M,:)){W'} =0 (71)

Consequently, the discretized governing equations of
the nanostructure can be given by:

See] [Smr Wz «| [0 0 Wy

|:[[SIB}] [[SH” { ELWI; } =N HO% [[QH { {{WI; } (72)
where Wy and W, denote the displacement vectors at the
boundaries and the interior points, respectively. In Eq.
(72), Sgg, Se1, SiB, and Sy are matrices with sizes of (8N
—16) x (8N — 16), (8N — 16) x (N* — 8N + 16), (N> — 8N
+16) x (8N —16), and (N* — 8N + 16) x (N* — 8N + 16),
respectively.

@ Springer

Manipulating Eq. (72) yields the following formula-
tions:

[Se{Wg} + [Sei][{W1} = [0] (73)

[Se{Ws} + [Sul{Wi} = N [O{ W1} (74)

Solving Eq. (73) for {Wg/} gives the following equa-
tion:

{We} = —[Sss] " [Sml{W1} (75)

By substituting Eq. (75) into Eq. (74), the equation
used for eigenvalue problem analysis can be obtained as
follows:

(—[Su;} [Sea] " [Sei] + [SU]) {Wi} = N"[Q{W1} (76)

The previous equation can be rewritten as:

(1" (~ISus)lSms] " [Sui) + [Su]) (W1}
= N'{w1} (77)

and

A= (01" (~1Sw][Sws]"' 1St -+ [Su]) (78)

Performing an eigenvalue problem analysis and cal-
culating the lowest eigenvalue of matrix A introduced in
Eq. (78), we obtain the first critical buckling load of the
rectangular FG nanoplate.

Buckling characteristics of FG nanoplate
under mechanical and thermal loadings

In this section, the role and impact of different temper-
ature gradients on the buckling characteristics of FG
rectangular nanoplate based on the nonlocal elasticity
theory and Kirchhoff’s plate theory are demonstrated. A
thin rectangular nanoplate with gradually varying com-
position, subjected to various thermal and bi-axial me-
chanical loads, is considered for the analyses. Numerical
results are provided to indicate the influences of several
parameters including temperature rise, nonlocality, gra-
dient index, slopes of linearly varying mechanical
forces, ratio of length to width, and various boundary
conditions on the buckling response of a rectangular FG
nanoplate with various temperature distributions.
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Table 1 Mechanical and thermal properties of the materials of th

e FG nanoplate (Kiani et al. 2011)

Material Young’s modulus (E) Poisson’s ratio (v) Thermal expansion coefficient () Thermal conductivity coefficient (K)
Metal 70 GPa 0.3 23 % 10°%¢° 204 WmC®
Ceramic 380 GPa 0.3 7.4 % 107%C° 10.4 W/mC°

Moreover, the mechanical buckling load and the critical
temperature are calculated for different types of temper-
ature gradients including uniform, linear, and nonlinear
temperature distributions through the thickness of the
FG nanoplate. To illustrate the proposed model, a com-
bination of a metal and a ceramic is considered, and their
properties are tabulated in Table 1.

For the sake of brevity, a four-letter symbol is used to
represent the various boundary conditions for the fol-
lowing four edges of the rectangular nanoplate, as
shown in Fig. 2.

To show the accuracy of the proposed approach,
comparative studies on the critical buckling temperature
of the FG nanoplate are carried out in Tables 2 and 3
between the present results and those reported by
Javaheri and Eslami (Javaheri and Eslami 2002). It can
be noted that the results are in excellent agreement.

Fig. 2 Boundary conditions. S,

The treated two verification examples reveal that
present approach can accurately predict the critical ther-
mal buckling load for FG nanoplates under thermal
loadings.

Impacts of temperature rise on the buckling
characteristics of the FG nanoplate subjected to uniform
temperature distribution

The effects of the temperature rise and the nonlocal
parameter on the critical mechanical buckling load of
the FG SSSS nanoplate (4 =0.34nm,n=1, A=1,(;=—
1, =—1,v = 0.1, 7o = 0.1) subjected to biaxial
compressive mechanical forces are examined in Fig. 3.
It is observed that by increasing the temperature, the
critical mechanical load needed to buckle the FG
nanoplate would decrease seriously. This behavior is
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Table2 Comparison of the critical buckling temperature difference for linear temperature distribution through the thickness of the SSSS FG

nanoplate (/b = 0.01)

n Reference IIb=1 IIb=2 IIb=3 IIb=4 Ib=15

1 Present study 5.5209 27.8683 65.1139 117.2580 184.3000
Javaheri and Eslami 2002 5.5209 27.8683 65.1140 117.2580 184.3003

5 Present study 3.8999 22.6597 53.9259 97.6985 153.9780
Javaheri and Eslami 2002 3.8999 22.6595 53.9256 97.6981 153.9770

attributed to the softening effect of the temperature rise.
Before buckling occurs, increasing the temperature of
the nanoplate decreases its overall rigidity, and thus, the
critical mechanical buckling load decreases drastically.
It is also found that an increase in the value of the
nonlocal parameter leads to the reduction of the critical
mechanical buckling force, as predicted by Eringen’s
nonlocal elasticity theory for the prescribed boundary
conditions. This is due to the fact that augmenting the
nonlocality nature reduces the stiffness of the FG
nanoplate.

In Fig. 4, the critical mechanical buckling load of
the simply supported FG nanoplate exposed to line-
arly varying biaxial mechanical forces and uniform
temperature gradient versus the temperature elevation
for three different values of the aspect ratio, and the
power law index is determined. As expected, it is
clear that the buckling load generally decreases by
the increase of the temperature due to the softening
effect of temperature rise. Also, it can be seen from
Fig. 4 that the critical buckling loads improve when
the aspect ratio increases. While this may seem coun-
terintuitive, it should be mentioned that in varying the
aspect ratio of //b, the ratio of /// is kept constant. Due
to the second ratio remaining constant for the analyses
in Fig. 4, if the parameter / is increased through
increasing the aspect ratio, the value of % also in-
creases. Also, it should be noted that in Fig. 4, the
dimensional results are presented. Referring to Eq.

(49), which was used to nondimensionalize the equa-
tions of motion, the axial load was presented in the
form N* = PP%/D. Thus, for the same N and increas-
ing /, P increases, as shown in the figure.

The influence of the power law index on the critical
mechanical force to buckle the FG nanoplate is opposite
to that of the aspect ratio. This is predictable because an
increase of the power law index makes the FG nanoplate
less stiff, i.e., contains a greater amount of the metal than
the ceramic, and hence, lower critical buckling loads
result. Here, it is inferred that for all values of the aspect
ratio, the lower values of the power law index have more
significant influence on the reduction of the mechanical
buckling load, while increasing the power law index has
no sensible effect on the buckling behavior of the FG
nanoplate.

To determine the impacts of the nonlocal parameter,
the aspect ratio, and the power law index on the critical
temperature rise of the FG nanoplate, the critical buck-
ling temperature elevations against the nonlocality index
are plotted in Fig. 5 for three different values of aspect
ratio and power law index, under uniform temperature
distribution across the thickness of the SSSS FG
nanoplate. As predicted, it is observable that the nonlo-
cal parameter and the power law index exhibit reducing
effects on the critical temperature rise by possessing
softening influence on the FG nanoplate structure. As
can be seen, for all cases, when the nonlocal parameter
of the FG nanoplate increases up to 0.2, a swift decrease

Table3 Comparison of the critical buckling temperature difference for nonlinear temperature distribution through the thickness of the SSSS

FG nanoplate (h/b = 0.01)

n Reference Ib=1 b= 2 b= 3 IIb=4 IIb=5

1 Present study 7.6636 38.6840 90.3847 162.7656 255.8268
Javaheri and Eslami 2002 7.6635 38.6838 90.3842 162.7649 255.8257

5 Present study 4.8775 28.3391 67.4418 122.1854 192.5703
Javaheri and Eslami 2002 4.8774 28.3389 67.4414 122.1849 192.5694
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Fig. 3 Variation of the critical
mechanical buckling load versus
the temperature and nonlocal
parameter for a thin SSSS
functionally graded nanoplate
subjected to bi-axial compressive
loads and uniform temperature
distribution (UTD), /4 = 0.34 nm,
nzl’A:LCI :71’C2:71’71
=0.1,and 7, = 0.1

in the critical temperature rise occurs, and the rest of the
curve is purely downward. In addition, as the FG
nanoplate becomes softer, the effects of the power law
index would diminish more. Furthermore, it can be
concluded that an increase in the aspect ratio is accom-
panied by improving the critical temperature rise to
buckle the system. Also, it is understood that by advanc-
ing the softening property of the nonlocality nature, the
impact of the aspect ratio could manifest itself less.

In Fig. 6, the dependency of the critical mechanical
buckling load of the FG nanoplate to the nonlocal pa-
rameter and the slope of change in the mechanical force
exerted on the nanoplate in the x direction, when the
SSSS FG nanoplate is subjected to uniform temperature

0.04

035

0.015

0.01

0.005

distribution across the thickness, is shown. As explained
earlier, it is apparent that by increasing the nonlocal
parameter, the critical mechanical load would decrease
due to the softening behavior of the nonlocality nature.
From Fig. 6, it is clear that augmenting the slope of the
linearly varying mechanical load in the x direction
causes an increase in the mechanical force required to
buckle the nanoplate for a fixed value of the slope of
load variation in the y direction. This is predicted be-
cause increasing the slope of the load reduces the aver-
age value of the mechanical load applied on the FG
nanoplate axially, and hence, the value of the critical
mechanical load would increase. This can easily be seen
by referring to Eq. (35), in which it is shown that the

==u]/b=1.0 ==+1/b=1.0
-~ —1/b=1.5 —1/b=1.5
E ===1/b=2.0 ===1/b=2.0|]
Z
S’
g
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‘b"."'b T‘.‘".
40 50 15 20
(T-T ) (K)
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===1/b=2.0]]
\~‘~~
0 1 L -
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Fig. 4 Variation of the critical mechanical buckling load with
respect to the temperature rise for a thin SSSS functionally graded
nanoplate subjected to bi-axial compressive loads under uniform

(T-Tp) (K)

temperature distribution (UTD) for different values of aspect ratio
and power law index, #/[=0.01,(;=—1,G=—1,9=05,7% =
05,0u=0.an=0.bn=2.cn=>5
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Fig. 5 Effect of the nonlocal parameter on the critical buckling temperature of a thin SSSS functionally graded nanoplate subjected to
uniform temperature distribution (UTD) for different aspect ratios, #// = 0.01, foran=0,bn=1,andecn=>5

maximum loading is obtained for a slope of zero and
decreases linearly for positive values of ; and/or ~,.

Buckling behavior of the FG rectangular nanoplate
under various thermal loads for different nonlocal
parameters, volume fraction exponents, and aspect
ratios

The influence of different types of temperature distribu-
tion on the variations of the critical mechanical buckling
load of the SSSS FG nanoplate with respect to the
nonlocal parameter is shown in Fig. 7 for three power
law indices. In this case, the temperature difference of T
— Ty = — 10 (K) in both LTD and NLTD cases.

Fig. 6 Variation of the critical
mechanical buckling load in
terms of the nonlocal parameter
and the slope of the linear
mechanical load in the x direction
for a thin SSSS FG nanoplate
subjected to bi-axial compressive
loads and uniform temperature
distribution (UTD), 4 = 0.34 nm,
n=1,A=05¢=-1,4=—-1,
v =02,and T, — T,, = — 30 (K).
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According to the former discussions, the nonlocal pa-
rameter and the power law index induce softening effect
on the buckling behavior of the FG nanoplate under
various temperature gradients in the z direction. How-
ever, varying the nonlocal parameter does not greatly
change the critical buckling load for high values of the
power law indices. Furthermore, the obtained results
confirm that the buckling load is significantly affected
by the type of the temperature distribution along the
thickness of the FG nanoplate. Inspecting the plotted
curves in Fig. 7, it is noted that the assumption of
nonlinear temperature gradient across the nanoplate
thickness estimates the smallest values for the critical
mechanical buckling load, and the uniform temperature

0.075
0.07
0.065
0.06

0.055

0.05

0.045



J Nanopart Res (2020) 22:92

Page 15 0f21 92

distribution yields the highest critical mechanical buck-
ling loads of the FG nanoplate. This result can be
explained due to the fact that the average temperature
of the nanoplate has the highest value in the case of
nonlinear distribution of temperature. Indeed, an in-
crease in the mean value of the temperature is accom-
panied by a reduction in the rigidity, and hence, the
mechanical load required to buckle the FG nanoplate
decreases. Note that the differences between the critical
mechanical load of linear and nonlinear temperature
distributions for larger values of the power law index
are considerably higher than those for smaller gradient
indices.

In Fig. 8, the critical buckling load versus the nonlocal
parameter is depicted for the SSSS FG nanoplate subjected
to three types of temperature distributions with various
values of the slopes of the biaxial linearly varying mechan-
ical loads +; and ~,. As mentioned before, for all three
cases, when the nonlocal parameter of the FG nanoplate
increases, the critical buckling load decreases. Besides, in
all three cases of temperature gradient, it is noted that as the
slopes of the linearly distributed forces increase, the values
of the mechanical buckling load get larger. This is due to
the fact that augmenting the factors ~; and 7, reduces the
average value of the mechanical force, and hence, higher
values of the initial mechanical load are needed to buckle
the nanoplate. However, it is clear that by the continuous
rise of the nonlocal parameter, the effect of the slopes

and , on the critical mechanical force cannot show itself
for higher values of the nonlocal parameter. On the con-
trary, it is observed that by increasing the slopes for the
linearly varying mechanical loads, the impact of the non-
local parameter on the buckling behavior of the FG
nanoplate would advance for all three types of temperature
distribution. When the FG nanoplate experiences nonlinear
temperature rise in the z direction, the lowest values of the
mechanical buckling load are obtained due to the highest
average temperatures and hence the smallest values of the
FG nanoplate stiffhess for that case. Moreover, it should be
mentioned that the difference between the effect of uni-
form and linear temperature distributions is more notice-
able than that between the impact of linear and nonlinear
thermal gradients for all values of the nonlocal parameter
and the slope of mechanical forces.

A comparison between the influence of linear and
nonlinear temperature distributions on the variations of
the critical mechanical load as a function of the temper-
ature difference between the ceramic-rich and metal-rich
surfaces (AT = T, — T,,) of the FG nanoplate, with
various boundary conditions, is shown in Fig. 9. As
predicted, it can be found that the nonlinear temperature
difference across the thickness of the FG nanoplate
gives smaller values for mechanical buckling load com-
pared with the linear temperature distribution for all
values of AT, As explained earlier, this is because the
nonlinear temperature distribution along the thickness
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Fig.7 Critical mechanical buckling load as a function of nonlocal
parameter for a thin SSSS functionally graded nanoplate subjected
to bi-axial compressive loads under linear temperature gradient

0 01 02

0.3 0.4 0.5
i

with different power law indices, # = 0.34 nm, #//=0.01, (; =—1,
G==1,7=05%=05A=1,foraUTD T, - T,, =0 (K), b
LTD T, — T,y = — 10 (K), and ¢ NLID 7, — T, = — 10 (K)
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Fig. 8 Effect of the nonlocal parameter on the critical mechanical
buckling load of a thin functionally graded SSSS nanoplate sub-
jected to bi-axial compressive loads for different values of the

yields higher average temperatures, and subsequently,
the critical mechanical load diminishes due to the soft-
ening behavior of temperature. In addition, the temper-
ature difference across the thickness of the FG nanoplate
can increase the critical mechanical load required for the
nanoplate deflection. This is due to the fact that decreas-
ing the ceramic side temperature with respect to the
metallic surface temperature leads to stiffer the structure
for both cases of temperature gradient (LTD and NLTD).
Furthermore, in both cases (LTD and NLTD), it can be
inferred that with increasing the number of clamped
edges of the FG nanoplate, the resistance of the structure
increases against deviation, and consequently, the

(T-T, ) (K)

Fig. 9 Effect of the surface temperature difference on the critical
buckling load of a thin functionally graded nanoplate subjected to
bi-axial compressive loads and different boundary conditions, 4 =
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slope of mechanical loads. # = 0.34 nm, /[ =001, A\=2,n=2,
G=-1,6=-1,aUTD T, ~ Ty=0 (K), bLTD T, — Ty = —
30 (K), and ¢ NLTD T, — T, = — 30 (K)

critical mechanical load of the FG nanoplate improves
significantly.

The impacts of the aspect ratio and the temperature
distribution types on the variation of the critical mechan-
ical buckling load with the temperature difference be-
tween the surfaces are illustrated in Figs. 10 and 11. As
observed, by incrementing the temperature difference
between the surfaces of the FG nanoplate, the value of
the critical mechanical load required to buckle the plate
would decrease for both thermal distributions (LTD and
NLTD). This decrease results from decreasing the rigid-
ity of the FG nanoplate due to the softening effect of the
average temperature rise. It follows from the plotted

(b) —=S588
-—S8CSC
- CCCC

(TT, ) (K)

0.34nm, h/1=0.01, =01, A=15,n=1,(;=—1,G=—1,v =
0.5,and > = 0.5. a LTD. b NLTD
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Fig. 10 Variation of the critical mechanical buckling load with
respect to the temperature rise for a thin SSSS functionally graded
nanoplate subjected to bi-axial compressive loads under linear

curves in Figs. 10 and 11 that the nonlinear temperature
distribution reflects higher mechanical buckling loads
compared with the linear temperature variation along
the thickness of the FG nanoplate for A7 > 0. This
means that the average temperature of the FG nanoplate
for nonlinear temperature change is smaller than that of
linear temperature gradient when the temperature of the
ceramic-rich side is assumed to be higher than that of the
metal-rich surface. Additionally, it is worthwhile to
mention that as the aspect ratio increases, the critical
mechanical force tends to increase for all values of the
surface temperature difference under the two different
temperature distributions (LTD and NLTD).

Finally, the variations of the critical buckling temper-
ature of a SSSS FG nanoplate with the nonlocal param-
eter are shown in Fig. 12. Comparing Figs. 12a and b, it
can be seen that for positive values of 7, — T}, the
assumption of linear temperature distribution estimates
smaller values for the buckling surface temperature
difference compared with the nonlinear temperature
gradient across the thickness. Thus, for this case, the
average temperature of the FG nanostructure related to
the linear temperature distribution along the thickness is
higher than that of nonlinear temperature change. Note
that the difference between two cases increases for
smaller values of nonlocal parameter. Moreover, it is
shown that augmenting the nonlocal parameter reduces
the critical temperature change across the thickness of

16 1I5 20 25
(T T ) (K)

temperature distribution (LTD) for different values of aspect ratio
and power law index, #/[=0.01,(;=—1,G=—1,v=05,7%=
05 andp=0.an=0.bn=2.¢n=5

the FG nanoplate, irrespective of the temperature gradi-
ent type, as predicted in the formulation of Eringen’s
nonlocal theory. This is expected since advancing the
nonlocal parameter would decrease the interaction force
between the nanoplate atoms, and that leads to a softer
structure. The smaller the nonlocal parameter, the larger
is the influence, regardless of the aspect ratio. Further-
more, it can be concluded that as the aspect ratio in-
creases, the critical surface temperature difference of the
FG nanoplate rises dramatically, where the aspect ratio
was explained in Fig. 4. However, the gap between the
curves diminishes with an increase in the nonlocal pa-
rameter; in other words, the increasing effect of the
aspect ratio on the buckling temperature associated with
the temperature difference along the z direction of the
Cartesian coordinate system for the FG nanoplate van-
ishes after a certain value of the nonlocality nature
index.

Conclusions

The thermo-mechanical buckling behavior of thin rect-
angular FG nanoplates subjected to biaxial linearly
varying mechanical loads was investigated. Three dif-
ferent types of thermal loading were presented to inves-
tigate how different temperature distributions affect the
overall response of the system. The small-scale effect
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Fig. 11 Variation of the critical mechanical buckling load with
respect to the temperature rise for a thin SSSS functionally graded
nanoplate subjected to bi-axial compressive loads under nonlinear

was taken into account by employing Eringen’s nonlo-
cal elasticity theory in the frame work of Kirchhoft’s
plate theory. A power-law function was utilized to de-
scribe the material properties. Implementing the mini-
mum total potential energy principle, the governing
equations of nanoplate were derived. Then, the
Chebyshev spectral collocation method was applied to
obtain the mechanical buckling loads and critical tem-
peratures. Several numerical examples were provided to
illustrate the impacts of the gradient index, the aspect
ratio, the thermal distribution type, the nonlocal param-
eter, the slopes of the axial loads, and the boundary
conditions on thermo-mechanical buckling behavior of
thin FG nanoplates.
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According to the results and findings, it is concluded
that mechanical buckling load and critical temperature
of FG nanoplates generally decrease with the increase of
nonlocal parameter, while it improves with increasing
the aspect ratio of the plate. Also, it is found that a way
to increase the critical mechanical buckling load is to
also increase the slopes of linearly varying mechanical
forces. In addition, it was shown that the mechanical
buckling load and the critical temperature difference for
the FG nanoplate under linear temperature distribution
across the thickness are smaller than the plates under
nonlinear temperature distribution across the thickness
for AT > 0. On the contrary, as the temperature of
metallic side becomes larger than the temperature of

40

- o
-~
i (b)
pES
30
i ®
oy *
€ ‘\.
IR .
v, Tem, »
= b - “»
(=2 -, ~e.
e \‘-u.
10 e . - .
=,
“om, hl
."-..l:
0 ]
0.05 0.1 0.15 0.2
n

Fig. 12 Impact of the nonlocal parameter on the critical buckling temperature of a thin SSSS functionally graded nanoplate for two different
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ceramic surface, the buckling strength and the critical
temperature for FG plates under nonlinear temperature
gradient are smaller compared with the plates under
linear temperature distribution. The proposed model
was found to be appropriate and efficient method to
analyze the buckling characteristics of thin nanostruc-
tures with graded compositions under both linearly
varying mechanical loads and various types of temper-
ature distributions.
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