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Measuring the Hydrodynamic Linear Response of a Unitary Fermi Gas
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We directly observe the hydrodynamic linear response of a unitary Fermi gas confined in a box potential
and subject to a spatially periodic optical potential that is translated into the cloud at speeds ranging from
subsonic to supersonic. We show that the time-dependent change of the density profile is sensitive to the
thermal conductivity, which controls the relaxation rate of the temperature gradients and hence the
responses arising from adiabatic and isothermal compression.
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A unitary Fermi gas is a scale-invariant, strongly interact-
ing quantum many-body system, created by tuning a trapped,
two-component cloud near a collisional (Feshbach) reso-
nance [1]. Unitary gases are of great interest [2], as the
thermodynamic properties and transport coefficients are
universal functions of the density and temperature, enabling
parameter-free comparisons with predictions. Equilibrium
thermodynamic properties of trapped unitary gases have
been well characterized [3,4]. In contrast, hydrodynamic
transport measurements require dynamical experiments that
have been obscured by the low density near the cloud edges,
which leads to free streaming. For expanding clouds [5,6],
this problem has been circumvented by employing second
order hydrodynamics methods to extract the local shear
viscosity [7,8], and is obviated for trapped samples with
uniform density. A normal unitary gas, at temperatures above
the superfluid transition, is a single component fluid that
affords the simplest universal system for hydrodynamic
transport measurements, as the transport properties comprise
only the shear viscosity # and the thermal conductivity k7,
since the bulk viscosity vanishes in scale-invariant systems
[9-11]. Further, measurements in the normal fluid at high
temperature T can be compared with benchmark variational
calculations for a unitary gas in the two-body Boltzmann
limit [12,13],
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with kp the Boltzmann constant and m the atom mass.

In this Letter, we demonstrate a new probe of hydro-
dynamic transport, which is applied to a normal unitary
Fermi gas of °Li. The gas is confined in a repulsive box
potential, creating a sample of nearly uniform density, and
driven by a moving, spatially periodic optical potential of
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chosen wavelength A along one axis z, which moves into
the box at a selected speed v. We measure the density
response on(z, t), which is analyzed using a linear hydro-
dynamics model. The model shows that the response
profiles are sensitive to the effective sound speed, which
is controlled by the ratio of the tunable wave frequency
® = 2nv/A to the decay rate of the temperature gradients,
Yo x kr/A>. When 7, < o, temperature gradients relax
slowly and sound waves propagate at the adiabatic sound
speed cq. In the opposite limit, y, > w, temperature gra-
dients relax quickly and sound waves propagate at the
isothermal sound speed c; < c.

The experiments, Fig. 1, employ ultracold °Li atoms, in a
balanced mixture of the two lowest hyperfine states, which
are loaded into a box potential U, comprising six sheets of
blue-detuned light, created by two digital micromirror
devices (DMDs). This produces a rectangular density profile
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FIG. 1. A unitary Fermi gas, confined in a box, is driven by a
moving spatially periodic potential. (a) The box potential is
created by two 669 nm sheet beams (top and bottom) and four
vertically propagating 532 nm sheet beams. (b) Column density.
(c) Integrated column density in the box potential showing 1D
profile.
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with dimensions (129 x 84 x 58) um, which slowly varies
due to the curvature of the bias magnetic field, Fig. 1. The
average total central density is 1y ~ 2.6 x 10'" atoms/cm?,
for which the Fermi energy epy = kgTr = kg x 0.16 uK
and the Fermi speed vy = 2.1 cm/s. As suggested by Zhang
and Yu [14], we probe the linear response 6n(z,t) by
employing one of the DMDs to generate a small spatially
periodic optical potential that moves through the cloud at
speed v,

SU(z,t) = 8Uy[1 — ecos(qz — qut)|H(vt — z), (3)

where ¢ = 27/ . The Heaviside envelope function H (vt —z)
vanishes inside the box at t = 0. Positive light intensity
requires 1 — ecos(gz — qvt) > 0, so that ¢ < 1. For each
speed v, 8U(z, t) is turned on for a fixed number of periods,
after which an absorption image is recorded to obtain the
column density. For the longest wavelength employed in
the experiments, 4 = 30 ym, the image is taken after three
periods (leading edge at 90 ym), while for the shortest
wavelength 4 = 19 ym, imaging occurs after four periods
(leading edge at 76 ym). Instead of measuring the energy
input, as proposed in Ref. [14], we directly obtain the
response 6n(z,t)/ny from the integrated column density,
which is measured 5 times for each A at several different
frequencies f = v/4 from 200 to 800 Hz.

Figs. 2-4 show the density response 6n(z, t) as the drive
speed v is varied from subsonic v < ¢, to supersonic
v > g, where ¢ is the adiabatic sound speed. At low drive
speeds, the leading edge of the response is nearly flat, as
sound waves propagate well past the front of the driving
potential. As v approaches ¢, the amplitude of the density
response increases and the leading peak narrows.

To understand the density profiles arising from the
perturbation 6U, we construct the coupled equations for
the change in the density on and for the change in the
entropy per particle ds;. The analysis is simplified for
experiments in the linear response regime, where [15]
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with m the atom mass. Here, 65, = nofT(6s,/cp, with f
the thermal expansivity and 7 the initial sample temper-
ature [15]. We find
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where cy and cp are the heat capacities per particle at
constant volume and at constant pressure, determined
from the measured equation of state [4,15]. On the left
side of Eq. (4), the ¢ terms arise from the pressure change
op [15]. The n term produces a viscous damping rate
Yy = 4ng*/(3ngm) for the response of the density to the
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FIG. 2. Response to subsonic perturbations. Density change,
on/ny, for a sinusoidal spatial perturbation with A = 30 um,
moving into the sample at a speed v = Af < ¢y for 3 periods
1/f. Data are shown as blue dots. Hydrodynamic model with
co =13 cm/s, Uy = 0.26¢,, and € = 0.29 (red curves) for
frequencies (a) f=200Hz, v/cy = 0.46, (b) f = 250 Hz, v/cy =
0.58,(c) f=300Hz, v/c(y=0.69,and (d) f =350Hz, v/c, = 0.81.

spatially periodic part of 6U(z,t), Eq. (3). On the right-
hand side of Eq. (4), the first term arises from the perturbing
potential, with ny(z) the background density, which varies
slowly due to the bias magnetic field curvature. Here,

160402-2



PHYSICAL REVIEW LETTERS 123, 160402 (2019)

@ 04}
0.2+
An 0

no y
-0.2+

-0.4 ¢

0 50 100

-0 50 100
()

0.6

0.4
An 0.2
ng 08

-0.2

-0.4

0 50 100
z(pm)

FIG. 3. Response to subsonic perturbations. Density change,
on/ny, for a sinusoidal spatial perturbation with 2 = 19 um,
moving into the sample at a subsonic speed v = Af < ¢y for
4 periods 1/f. Data are shown as blue dots. Hydrodynamic model
with ¢y = 1.3 cm/s, Uy = 0.22¢y, and € = 0.23 (red curves)
for frequencies (a) f = 300 Hz, v/cy = 0.44, (b) f = 400 Hz,
v/co = 0.58, (c) f =500 Hz, v/cy = 0.73, and (d)f = 600 Hz,
v/cy = 0.88.

we retain the full spatial variation of the force per unit
volume [15], which vanishes at the box edges. In the
second term, 0,U,(z) is the force from the box potential.
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FIG. 4. Response to a supersonic perturbation. Density change,
on/ny, for a sinusoidal spatial perturbation with 1 = 19 um,
moving into the sample at a supersonic speed v = Af = 1.17¢,
for 4 periods 1/f and f = 800 Hz. Data are shown as blue dots.
Hydrodynamic model with ¢y = 1.3 cm/s, 6U, = 0.22¢, and
€ = 0.23 (red curve). The thermal conductivity x; cannot be
extracted from the fit of the model to the supersonic data.

We determine 0,U,(z) from ny(z), which is measured in
equilibrium [15].

In addition to the shear viscosity, dn(z, t) carries infor-
mation about the thermal conductivity k7, which sets
the relaxation rate, y, = xrq>/(ngcy) in Eq. (5), of the
spatially periodic temperature profile that is imprinted by
6U(z,t), Eq. (3). For a high speed v, the wave frequency
qv > y,. Then 0,65, dominates in Eq. (5) and 65, ~0,
yielding (97 — c30%)6n on the left side of Eq. (4). In this
case, the compression is adiabatic, and sound waves
propagate at the speed c,. In the opposite limit of a low
speed v, the wave frequency gv < y,. Equation (5) shows
that 9255, ~ —(cp — cy)/cpd?dn, yielding (8?2 — c2.02)dn
in Eq. (4), with ¢; = ¢g+/cy/cp. Then, the compression is
isothermal and sound waves propagate at the isothermal
sound speed cy [15].

To model the normal fluid data, ¢y is used as a fit
parameter. The fitted c,, then serves as a thermometer, as the
reduced temperature 0y = T,)/T of the gas is monoton-
ically related to ¢/ vy in the normal fluid regime [15]. With
0, determined, ¢y and cp are then fixed by the measured
equation of state [4,15]. Further, 6, determines the shear
viscosity 7 as discussed below.

Our analysis benefits from recent progress in determin-
ing the local shear viscosity of the normal fluid from
hydrodynamic expansion experiments [6,8]. Extraction of
is simplified in expansion measurements, because the
temperature gradient is negligible [19] so that the thermal
conductivity k7 can be neglected. The most complete data
for the shear viscosity have been obtained from the aspect
ratio of expanding cigar-shaped clouds, measured at a fixed
time ¢ after release from an optical trap as a function of the
cloud energy [6]. The latest hydrodynamic analysis utilizes
an anisotropic pressure model, which properly interpolates
between the hydrodynamic behavior in the dense regions
of the cloud and the free streaming ballistic expansion near
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the cloud edges [8]. The new analysis yields an expansion
of the local shear viscosity in powers of the diluteness 13,

(mkgT)*?
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where Ay = h/\/2zmkyT is the thermal wavelength and n
is the total density for a balanced two-component mixture.
Fits to the expansion data yield 7y = 0.265(20), in excel-
lent agreement with the variational result obtained from
the two-body Boltzmann equation for a unitary gas, Eq. (1),
o = 15/(32y/x) = 0.26446 [8]. This confirms that the
data and the analysis properly reproduce the high temper-
ature limit, which is independent of the density. The next
order term is independent of the temperature, with
n, = 0.060(20), while the 53(n43)* term is negligible.
Remarkably, the first two terms fit the expansion data
down to temperatures just above the superfluid transition.
We therefore use Eq. (6) as in input for Eq. (4), where
n/(ngm) = a(6y)h/m and a(6y) = aoﬁé/z + a,, with qy =
(372/v/8)ng = 2.77 and @, = (27)*/*nyn, = 0.25.

The data are modeled by numerically integrating
Egs. (4) and (5) using four fit parameters, c¢,, 6U,, and
€, given in the figure captions, and k7, which is discussed
below. These parameters are extracted by minimizing y?
in the central region of the data away from the less dense
edges. The fits are done one parameter at a time across
all frequencies for a global best fit, with cp, ¢y, and 5
determined by 6y(cy). This process is repeated until
variation in the parameters no longer results in improve-
ment. The sensitivity to € is greatest where the density
response shows periodic modulation, while ¢ is dominant
in the shape of the leading edges, Figs. 2 and 3. The fitted
oU, values are consistent with the value 0.2¢, estimated
from the expected modulation depth and the maximum
box potential 4.5¢p, [15]. Blurring arising from the
imaging resolution ~3.5 um, causes the fitted e for the
19 pum data to be smaller than for the 30 ym data. We find
that the model captures both the amplitudes and shapes of
the density response én(z, t)/ny for all of the frequencies,
Figs. 2 and 3.

From the y? fits for both 1 = 19 and for 1 = 30 um, we
obtain ¢y = 1.30 cm/s, consistent with sound speed mea-
surements in the uniform cloud, which gives 1.40 cm/s.
The measured ¢, determines 6, = 0.50 [15]. The temper-
ature was not further increased, because the box potential
was not strong enough to confine the gas at significantly
higher temperature.

We see that the quality of fits decreases as the speed
approaches the adiabatic sound speed, v/cy= 0.88,
Fig. 3(d). In the supersonic regime, Fig. 4, we find that
the fit of the linear hydrodynamic model to the density
response is poor, and the thermal conductivity cannot be
reliably extracted from the model for any perturbation
moving faster than the adiabatic sound speed. We estimate
that the hydrodynamic relaxation time is 7 = 0.13 ms

[15], which is fast compared to the period of 1.25 ms at the
frequency f = 800 Hz used to observe the supersonic
response. However, in the supersonic regime, it is possible
that the increasing density gradients produce weak shock
waves, which are not included in our model.

Sensitivity to k7 is enabled by measurement at subsonic
speeds, as the frequency v/A can be less than the relaxation
rate y, = k7q*/(ngcy). Using Eq. (2), with 8, = 0.50, we
find y.,=27xx760Hz for A=19um and y, =
27 x 305 Hz at A = 30 ym. The fits to the trailing edge
of the leading peak rise more sharply for larger k7, because
the density response propagates closer to the isothermal
sound speed ¢y < c¢q for large y, and lags behind the
leading peak to cause a larger disturbance. From the fits to the
subsonic data, we find k; = 1.14(17) x (15/4)(kg/m)hng
at 6, = 0.50.

The fitted thermal conductivity at 6, = 0.50 for the
unitary Fermi gas can be compared with the variational
calculations [13]. As noted above, the high temperature
shear viscosity Eq. (6) fits the expansion data down to
temperatures just above the superfluid transition. For this
reason, we compare the fit value of x;/#5 to the predicted
high temperature ratio, Eq. (2), «p/n = (15/4)(kg/m).
This ratio holds for the unitary gas and for an energy-
independent s-wave scattering cross section [13], and is
identical to the predictions and measurements for rare gases
in the Boltzmann limit [20,21]. With the viscosity from the
expansion data, as used in the fits, = 1.23An, at 6, = 0.5,
we find x7/n =0.93(14) x (15/4)(kg/m), close to the
ratio predicted in the high temperature limit. Finally, we
determine the Prandtl number, Pr = (cp/m)n/xr [13,22].
For 0y = 0.5, we find c¢p = 1.68kp from the equation of
state [4,15], yielding Pr = 0.48(8), which can be compared
to the high temperature limit Pr =2/3, obtained from
Eq. (2) with ¢cp = 5/2kp.

In conclusion, we have directly measured the hydro-
dynamic response of a unitary Fermi gas subject to a moving
spatially periodic perturbation. The measured density per-
turbations validate a linear response model that incorporates
the measured box potential, enabling predictions beyond
the approximation of an infinite medium. From the low
frequency response, we obtain an estimate of the thermal
conductivity of the normal fluid that is consistent with recent
predictions. Future measurements in improved box poten-
tials will permit studies of the thermal conductivity at higher
temperatures, enabling more precise comparison with bench-
mark variational calculations. Further, this new method will
enable measurement of the thermal conductivity and shear
viscosity for imbalanced mixtures in nearly uniform gases,
where the transport properties are predicted to change [23].
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