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Abstract Let p ∈ Z be an odd prime. We prove a spectral version of Tate–
Poitou duality for the algebraic K -theory spectra of number rings with p
inverted. This identifies the homotopy type of the fiber of the cyclotomic
trace K (OF )∧

p → TC(OF )∧
p after taking a suitably connective cover. As an

application, we identify the homotopy type at odd primes of the homotopy
fiber of the cyclotomic trace for the sphere spectrum in terms of the algebraic
K -theory of Z.
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Introduction

Tate–Poitou duality describes the relationship between the étale cohomology
of S-integers in number fields and their completions in terms of a long exact
sequence where the third term is a Pontryagin dual related to the first term. In

Andrew J. Blumberg was supported in part by NSF Grants DMS-1151577, DMS-1812064.
Michael A. Mandell was supported in part by NSF Grants DMS-1505579, DMS-1811820.

B Michael A. Mandell
mmandell@indiana.edu

Andrew J. Blumberg
blumberg@math.utexas.edu

1 Department of Mathematics, The University of Texas, Austin, TX 78712, USA

2 Department of Mathematics, Indiana University, Bloomington, IN 47405, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00222-020-00952-z&domain=pdf


A. J. Blumberg, M. A. Mandell

the most basic case, for p > 2 a prime in Z and a number field F , we get a
long exact sequence

0 H0
ét(OF [ 1p ];Z∧

p(k))
∏

ν|p
H0
ét(F

∧
ν ;Z∧

p(k)) (H2
ét(OF [ 1p ],Z/p∞(1 − k)))∗

H1
ét(OF [ 1p ];Z∧

p(k))
∏

ν|p
H1
ét(F

∧
ν ;Z∧

p(k)) (H1
ét(OF [ 1p ],Z/p∞(1 − k)))∗

H2
ét(OF [ 1p ];Z∧

p(k))
∏

ν|p
H2
ét(F

∧
ν ;Z∧

p(k)) (H0
ét(OF [ 1p ],Z/p∞(1 − k)))∗ 0

whereOF denotes the ring of integers, F∧
ν denotes completion at the valuation

ν, and (−)∗ denotes Pontryagin dual. The purpose of this paper is to describe
a spectrum-level “K -theoretic” version of Tate–Poitou duality encoding the
behavior of the completion map in the algebraic K -theory of rings of integers
in number fields and use it to study the algebraic K -theory of the sphere
spectrum.

Thomason’s work [21] on the Quillen–Lichtenbaum conjecture identifies
the étale cohomology groups in the above sequence as the homotopy groups of
the K (1)-localization of algebraic K -theory spectra. Specifically, Thomason
[21, Theorem 4.1, App. A] shows

πn(LK (1)K (R)) ∼=
{
H0
ét(R;Zp(

n
2 )) ⊕ H2

ét(R;Zp(
n
2 + 1)) n even

H1
ét(R;Zp(

n+1
2 )) n odd

for R = OF [1/p] or F∧
ν . Letting MZ/p∞ denote the Moore spectrum for

Z/p∞, we also have

πn(LK (1)K (R) ∧ MZ/p∞) ∼=
{
H0
ét(R;Z/p∞( n2 )) ⊕ H2

ét(R;Z/p∞( n2 + 1)) n even

H1
ét(R;Z/p∞( n+1

2 )) n odd

for R = OF [1/p]. Algebraically, we can then use these isomorphisms to
rewrite the Tate–Poitou sequence as the long exact sequence

· · · → (π−1−n(LK (1)K (OF [1/p]) ∧ MZ/p∞))∗

πn LK (1)K (OF [1/p]) ∏
πn LK (1)K (F∧

ν ) → · · ·

with the first term (on the left) the homotopy groups of the K (1)-localization
of K (OF [1/p]) and the second term the homotopy groups of the product
of the K (1)-localizations of the K -theory of the completed fields. We can

123



K -theoretic Tate–Poitou duality

interpret the third term as the homotopy groups of a spectrum as well, using
Brown–Comenetz duality or Anderson duality:

π−1−n(LK (1)K (OF [1/p]) ∧ MZ/p∞))∗ ∼= πn(�
−1 IQ/Z(LK (1)K (Z) ∧ MZ/p∞))

∼= πn(�
−1 IZ∧

p
LK (1)K (Z)),

where IQ/Z denotes the Brown–Comenetz dual and IZ∧
p
denotes the Anderson

dual of p-complete spectra.Ourmain result lifts this exact sequence to a cofiber
sequence on the spectrum level.

Theorem (K -Theoretic Tate–Poitou Duality) Let p > 2 be a prime number.
Let F be a number field,OF its ring of integers, and S the set of primes ofOF
above p. For ν ∈ S, write F∧

ν for the ν-completion of F. The homotopy fiber
Fib(κ) of the completion map in K (1)-local algebraic K -theory

κ : LK (1)K (OF [ 1p ]) −→
∏

ν∈S
LK (1)K (F∧

ν )

is weakly equivalent to

�−1 IQ/Z(LK (1)K (OF [ 1p ]) ∧ MQp/Zp) 	 �−1 IZp LK (1)K (OF [ 1p ]).

The weak equivalence Fib(κ) → �−1 IZp LK (1)K (OF [ 1p ]) is adjoint to the
map

LK (1)K (OF [ 1p ]) ∧ Fib(κ) −→ �−1 IZpS

induced by the LK (1)K (OF [ 1p ])-module structure map LK (1)K (OF [ 1p ]) ∧
Fib(κ) → Fib(κ) and a map

uOF : Fib(κ) −→ �−1 IZpS

constructed as (1.7).

The map uOF above is “canonical” in that given the standard conventions
for the Hasse invariant (see [20, XIII§3,p. 193]), the construction involves no
further choices.

The previous theorem establishes a global arithmetic duality for algebraic
K -theory. Clausen’s MIT thesis [3] contains work in this direction; in partic-
ular, Clausen produces a duality map of a similar type to the one in the main
theorem (with different details), presumably related through Gross-Hopkins
duality.Work in progress of Schlank andStojanoska [19] establishes arithmetic
duality results for a much wider range of theories.
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For us, the main interest is in the case F = Q, S = {p}, where the main
theorem (and some fiddling in low dimensions) identifies the homotopy fiber
of the cyclotomic trace on the sphere spectrum.

Corollary Let p be an odd prime. The connective cover of the homotopy
fiber of the cyclotomic trace K (S)∧

p → TC(S)∧
p is weakly equivalent to the

connective cover of �−1 IZ∧
p
(LK (1)K (Z)).

Rognes [17,18] had previously identified the homotopy type of the homo-
topy fiber of the cyclotomic trace at regular primes, although not in these
terms.

To deduce the corollary from the main theorem, we apply the work of
Dundas [7] and Hesselholt–Madsen [9] together with the (affirmed) Quillen–
Lichtenbaum conjecture. The linearization map S → Z and the cyclotomic
trace K → TC fit together in a commutative square

K (S)∧
p K (Z)∧

p

TC(S)∧
p TC(Z)∧

p

that Dundas [7] shows is homotopy cartesian, and it follows that the homotopy
fiber of the cyclotomic trace for S is weakly equivalent to the homotopy fiber of
the cyclotomic trace for Z. Hesselholt-Madsen [9] shows that the completion
map TC(Z)∧

p → TC(Z∧
p)

∧
p is a weak equivalence and the cyclotomic trace

K (Z∧
p)

∧
p → TC(Z∧

p)
∧
p is a connective cover. It follows that the connective

cover of the homotopy fiber of the cyclotomic trace is weakly equivalent to
the homotopy fiber of the completion map K (Z)∧

p → K (Z∧
p)

∧
p. Quillen’s

localization sequence for Z → Z[ 1p ] and Z∧
p → Q

∧
p,

K (Z/p)

id

K (Z) K (Z[1/p]) � · · ·

K (Z/p) K (Z∧
p) K (Q∧

p) � · · ·

then shows that the homotopy fiber of the completion map K (Z) → K (Z∧
p) is

weakly equivalent to the homotopy fiber of the completion map K (Z[ 1p ])∧
p →

K (Q∧
p)

∧
p. The (affirmed)Quillen–Lichtenbaumconjecture [22,VI.8.2] implies

that the maps

K (Z[ 1p ])∧
p −→ LK (1)K (Z[ 1p ]), K (Q∧

p)
∧
p −→ LK (1)K (Q∧

p),
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are weak equivalences after taking 1-connected covers. Looking in low dimen-
sions, K (Z[ 1p ])∧

p → LK (1)K (Z[ 1p ]) is actually a connective cover, while
K (Q∧

p)
∧
p → LK (1)K (Q∧

p) induces an isomorphism on homotopy groups in
degrees > 0 and an injection in degree 0. It then follows that the (connec-
tive) homotopy fiber of K (Z[ 1p ])∧

p → K (Q∧
p)

∧
p is weakly equivalent to the

connective cover of the homotopy fiber of LK (1)K (Z[ 1p ]) → LK (1)K (Q∧
p).

Applying the main theorem, the corollary now follows.
Returning to the case of a number field F , the part of the discussion above

that is general still obtains. Writing R∧
ν for the completion ofOF at the prime

ν, we have Quillen’s localization sequence for OF → OF [ 1p ] and ∏
R∧

ν →
∏

F∧
ν ,

∏

ν∈S
K (OF/ν)

∼=

K (OF ) K (OF ) � · · ·

∏

ν∈S
K (R∧

ν /ν) K (
∏

ν∈S
R∧

ν ) K (
∏

ν∈S
F∧

ν ) � · · · ,

which identifies the homotopy fiber of the completion map K (OF ) →
K (

∏
R∧

ν ) as weakly equivalent to the homotopy fiber of the completion map
K (OF [ 1p ]) → K (

∏
F∧

ν ). When S is the set of divisors of p, each OF/ν

is a finite field of characteristic p, and so K (OF/ν)∧
p is an Eilenberg–Mac

Lane spectrum. The Quillen localization sequence then implies that the map
LK (1)K (OF ) → LK (1)K (OF [ 1p ]) is a weak equivalence. Since

∏
R∧

ν
∼= (OF )∧p ∼= OF ⊗ Z

∧
p,

Hesselholt-Madsen [9, Add. 6.2] shows that the map TC(OF )∧
p → TC(

∏

R∧
ν )∧

p is a weak equivalence. Hesselholt-Madsen [9, Theorem D] shows that
the map K (

∏
R∧

ν )∧
p → TC(

∏
R∧

ν ) is a connective cover. Applying the main
theorem above and the (affirmed) Quillen–Lichtenbaum conjecture, we obtain
the following corollary.

Corollary Let F be a number and let p ∈ Z be an odd prime. Then there is
a canonical map in the stable category from the homotopy fiber of the cyclo-
tomic trace K (OF )∧

p → TC(OF )∧
p to�−1 IZ∧

p
(LK (1)K (OF )) that induces an

isomorphism on homotopy groups in dimensions ≥ 2.

Finally, we note that the main theorem implies in the affirmative a con-
jecture of Calegari [2, 1.5] regarding the homotopy groups of the homotopy
fiber on algebraic K -theory of the completion map. Calegari was interested in
the completed cohomology of SL, and our result yields the construction of a
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spectrum with homotopy groups K̃∗(OF ) and continuous spectrum homology
given by H̃∗(SL,Zp) [2, 1.19]. Moreover, the affirmed conjecture sharpens [2,
0.2] (an explicit calculation of completed homology) bymaking the conclusion
unconditional.

1 K -theoretic local duality and the construction of the map
Fib(κ) → �−1 IZ pS

The Tate–Poitou duality theorem in global arithmetic derives from a much
easier local duality theorem.Wehave a corresponding K -theoretic local duality
theorem. We state and prove the K -theoretic local duality theorem in this
section, deducing it from the local duality theorem in arithmetic. The argument
is parallel to the argument used in Sect. 3 to prove the K -theoretic Tate–Poitou
duality theorem and explains the construction of the canonical map Fib(κ) →
�−1 IZpS, which is characterized by its relationship to a corresponding map
LK (1)K (Qp) → IZpS in the K -theoretic local duality of Qp.
In arithmetic, local duality is an isomorphism

Hi
ét(k; M)

∼=−→ (H2−i
ét (k; M∗(1)))∗

where k is the field of fractions of a complete discrete valuation ring whose
residue field is finite (e.g., a finite extension ofQp),M is a finiteGaloismodule,
and (−)∗ denotes the Pontryagin dual. The map is induced by the cup product
pairing

Hi
ét(k; M) ⊗ H2−i

ét (k; M∗(1)) −→ H2
ét(k; M ⊗ M∗(1)) −→ H2

ét(k,Q/Z(1))

and the canonical isomorphism

H2
ét(k,Q/Z(1))

∼=−→ H2
ét(k,Gm)

∼=−→ Q/Z. (1.1)

Letting M = Z/pn( j) and taking the limit n → ∞, we get an isomorphism

Hi
ét(k;Zp( j)) ∼= (H2−i

ét (k;Qp/Zp(1 − j)))∗

(where the group on the left is Jannsen’s continuous étale cohomology, which
in the case of a field as above is equivalent to Galois cohomology).

For K -theory, the E∞ multiplication induces a map

LK (1)K (k) ∧ LK (1)K (k) ∧ MQp/Zp −→ LK (1)K (k) ∧ MQp/Zp

123



K -theoretic Tate–Poitou duality

and we have a map

LK (1)K (k) ∧ MQp/Zp −→ IQ/ZS (1.2)

essentially induced by the Hasse invariant as follows. Such a map is uniquely
determined by specifying a homomorphism

π0(LK (1)K (k) ∧ MQp/Zp) −→ Q/Z.

Thomason’s descent spectral sequence puts π0(LK (1)K (k) ∧ MQp/Zp) into a
short exact sequence

0 −→ H2
ét(k;Qp/Zp(1)) −→ π0(LK (1)K (k) ∧ MQp/Zp)

−→ H0
ét(k;Qp/Zp) −→ 0

which is split by the map Qp/Zp = H0
ét(k;Qp/Zp) → π0(LK (1)K (k) ∧

MQp/Zp) induced by the unit S → K (k). This gives us a retraction

π0(LK (1)K (k) ∧ MQp/Zp) −→ H2
ét(k;Qp/Zp(1))

that we compose with (1.1) to obtain a map

π0(LK (1)K (k) ∧ MQp/Zp) −→ Q/Z. (1.3)

The map (1.2) represents the map (1.3).

Theorem 1.4 (K -Theoretic Local Duality) Let k be the field of fractions of a
complete discrete valuation ring whose residue field is finite. The map

LK (1)K (k) −→ IQ/Z(LK (1)K (k) ∧ MQp/Zp) 	 IZp(LK (1)K (k))

adjoint to the composite map

LK (1)K (k) ∧ LK (1)K (k) ∧ MQp/Zp −→ IQ/ZS

described above is a weak equivalence.

Proof Because LK (1)K (k) and IZp(LK (1)K (k)) are both p-complete, it suf-
fices to check that the map is a weak equivalence after taking the derived
smash product with the mod p Moore spectrum Mp, or equivalently tak-
ing the homotopy cofiber of multiplication by p. Using the canonical weak
equivalence
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IQ/Z(LK (1)K (k) ∧ MQp/Zp)/p 	 IQ/Z(LK (1)K (k)/p),

the induced map

LK (1)K (k)/p −→ IQ/Z(LK (1)K (k)/p)

is adjoint to the composite map

LK (1)K (k)/p ∧ LK (1)K (k)/p −→ LK (1)K (k)/p

−→ LK (1)K (k) ∧ MQp/Zp −→ IQ/ZS

induced by the E∞ pairing on LK (1)K (k) and the usual pairing Mp ∧ Mp →
Mp for the first map and by the usual inclusion ofMp inMQp/Zp for the second
map. Thus, it suffices to check that the pairing above induces a perfect pairing

πq(LK (1)K (k)/p) ⊗ π−q(LK (1)K (k)/p) −→ Q/Z.

Thomason’s descent spectral sequence [21, 4.1] is multiplicative with the mul-
tiplication on the E2-term induced by the cup product in étale cohomology.
We therefore have a perfect pairing on the E2 = E∞-term by local dual-
ity in arithmetic, and it follows that we have a perfect pairing on homotopy
groups. �


The proof of the global K -theoretic Tate–Poitou duality theorem in Sect. 3
follows the same general outline as the proof of the local duality theorem
above. However, instead of using themultiplication on a single K (1)-localized
K -theory spectrum, we study the pairing of LK (1)K (OF [1/p]) with Fib(κ),
where κ denotes the map LK (1)K (OF [ 1p ]) → ∏

LK (1)K (F∧
ν ) as in the main

theoremonpage 2. In local duality, themapπ0(LK (1)K (k)∧MQp/Zp) → Q/Z

comes from the Hasse invariant isomorphism H2
ét(k;Q/Z(1)) ∼= Q/Z, or in

terms of p-torsion, the isomorphism H2
ét(k;Qp/Zp(1)) ∼= Qp/Zp. For global

duality, the map is related to the Albert–Brauer–Hasse–Noether sequence for
OF [1/p]: the p-torsion version of this sequence takes the form of an exact
sequence

0 −→ H2
ét(OF [ 1p ];Qp/Zp(1)) −→

∏

ν∈S
H2
ét(F

∧
ν ;Qp/Zp(1))

−→ Qp/Zp −→ 0

where S is the set of primes lying above p and p > 2. Looking at the map of
short exact sequences from Thomason’s descent spectral sequence
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0 0

H2
ét(OF [ 1p ];Qp/Zp(1))

∏
H2
ét(F

∧
ν ;Qp/Zp(1))

π0(LK (1)K (OF [ 1p ]) ∧ MQp/Zp)
∏

π0(LK (1)K (F∧
ν ) ∧ MQp/Zp)

H0
ét(OF [ 1p ];Qp/Zp)

∏
H0
ét(F

∧
ν ;Qp/Zp)

0 0

we get an induced map from Qp/Zp to the cokernel

C = coker(π0(LK (1)K (OF [ 1p ]) ∧ MQp/Zp ) → π0(
∏

LK (1)K (F∧
ν ) ∧ MQp/Zp )).

This and the long exact sequence on homotopy groups gives us a canonical
map from Qp/Zp to π−1(Fib(κ) ∧ MQp/Zp).

Theorem 1.5 The canonical mapQp/Zp → π−1(Fib(κ)∧MQp/Zp) is a split
injection and has a unique retraction that commutes with the K -theory transfer
associated to inclusions of number fields.

Proof First we note that the K -theory transfer associated to the inclusion of
number fields extends to a well-defined map in the stable category on Fib(κ):
For F ⊂ E an inclusion of number fields,OE [1/p] is a finitely generated pro-
jective OF [1/p]-module and we have an associated K -theory transfer map
K (OE [1/p]) → K (OF [1/p]) induced by regarding a finitely generated pro-
jective OE [1/p]-module as a finitely generated projective OF [1/p]-module.
For the p-completions

OE ⊗ Qp
∼=

∏

ν∈SE
E∧

ν , OF ⊗ Qp
∼=

∏

ν∈SF
F∧

ν ,

we have an associated K -theory transfer map and in the standard models for
K -theory, the diagram

K (OE [ 1p ]) K (OE ⊗ Qp)

K (OF [ 1p ]) K (OF ⊗ Qp)

commutes up to canonical homotopy since for a finitely generated projective
OE [1/p]-module P , the underlying (OF ⊗Qp)-module of P ⊗Qp is canon-
ically isomorphic to the underlyingOF [1/p]-module of P tensored withQp.
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This is enough structure to specify a canonical map in the stable category on
the homotopy fibers.

Uniqueness is clear because in the case F = Q, the inclusion of Qp/Zp in
π−1(Fib(κ) ∧ MQp/Zp) is an isomorphism. To see this note that the map from
Qp/Zp to the cokernel C is an isomorphism (because the map

H0(Z[1/p];Qp/Zp) −→ H0(Qp;Qp/Zp)

is an isomorphism) and the inclusion of the cokernel C in π−1(Fib(κ) ∧
MQp/Zp) from the long exact sequence of homotopy groups is surjective
because the map

π−1(LK (1)K (Z[1/p]) ∧ MQp/Zp) −→ π−1(LK (1)K (Qp) ∧ MQp/Zp)

is injective (because the map H1(Z[1/p];Qp/Zp) → H1(Qp;Qp/Zp) is
injective by abelianized Galois group considerations).

For existence of the splitting, since Q is initial among number fields, we
just need to know that for an inclusion of number fields F ⊂ E , the diagram

Qp/Zp

id

CE

Qp/Zp CF

commutes where CE and CF are the cokernels C associated to E and F above
and themap is induced by the K -theory transfer. Because H2

ét(F
∧
ν ;Qp/Zp(1))

is the p-torsion in H2
ét(F

∧
ν ;Gm), the basic properties of a class formation (q.v.

Proposition 1(ii) in [20, XI§2]) imply that it is enough to see that the diagram

H2
ét(OE ⊗ Qp;Qp/Zp(1)) π0(LK (1)(OE ⊗ Qp) ∧ MQp/Zp)

H2
ét(OF ⊗ Qp;Qp/Zp(1)) π0(LK (1)(OF ⊗ Qp) ∧ MQp/Zp)

commutes where the left vertical map is the transfer in étale cohomology. This
follows from thewell-known result that the K -theory transfer for Galois exten-
sions induces the étale cohomology transfer on the E2-page of Thomason’s
descent spectral sequence. �


The composite of themapπ−1(Fib(κ)∧MQp/Zp) → Qp/Zp in the previous
theorem with the inclusion of p-torsion Qp/Zp → Q/Z now specifies a map

Fib(κ) ∧ MQp/Zp −→ �−1 IQ/ZS. (1.6)
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Adjoint to this map is the map

uOF : Fib(κ) −→ F(MQp/Zp , �
−1 IQ/ZS) 	 �−1 IZpS (1.7)

in the statement of the K -theoretic Tate–Poitou duality theorem on page 2. In
particular, we have constructed uOF to be compatible with the corresponding
map

vF∧
ν

: LK (1)K (F∧
ν ) −→ IZpS (1.8)

for local duality adjoint to the map (1.2) (for k = F∧
ν ). They are compatible

in the sense that vF∧
ν
is the composite

LK (1)K (F∧
ν ) −→ �Fib(κ)

�uOF−−−−→ ��−1 IZpS
∼= IZpS,

where the first map is a component of the map

∏

ν∈S
LK (1)K (F∧

ν ) −→ �Fib(κ)

in the cofiber sequence (associated to the fiber sequence) defining Fib(κ).

2 Fib(κ) as hypercohomology and j!

The proof of the K -theoretic Tate–Poitou duality theorem relies on an étale
hypercohomological interpretation of Fib(κ). Arithmetic Tate–Poitou duality
arises from a duality pairing plus a long exact sequence arising from recolle-
ment. The purpose of this section is to give a spectral lifting of this setup. We
begin with a terse review.

For a fixed number field F and S the set of primes lying over p, let Y =
specOF , letU be the open subscheme Y\S = spec(OF [1/p]), and let Z be the
reduced closed subscheme Y\U = ∐

spec(OF/ν). Writing i for the inclusion
of Z in Y and j for the inclusion of U in Y , we have various adjoint functors
on sheaves of abelian groups on the étale sites:

Sh(Z ét,Ab)
i∗
i∗
i !

Sh(Yét,Ab)
j!
j∗
j∗

Sh(Uét,Ab), (2.1)

where each functor is the left adjoint of the functor below it. One consequence
of recollement is that for any sheaf or complex of sheaves F on Yét, the unit
of the i∗, i∗ adjunction and the counit of the j!, j∗ adjunction fit into a short
exact sequence

0 −→ j! j∗F −→ F −→ i∗i∗F −→ 0. (2.2)
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Nowwe takeF to be a complexmodeling Rj∗(Z/pn(t)), the total right derived
functor of j∗ applied to the locally constant sheaf Z/pn(t) on Uét. We can
identify the terms in the resulting long exact sequence on hypercohomology
as

· · · −→ Hs(Yét; j!Z/pn(t)) −→ Hs(Uét;Z/pn(t))

−→
∏

ν∈S
Hs
ét(F

h
ν ;Z/pn(t)) −→ · · ·

(2.3)

(cf. [15, II.2.3(a)]), where Fh
ν denotes the field of fractions of the henselization

Rh
ν of the discrete valuation ring (OF )(ν). Fh

ν consists of the elements in the
completion F∧

ν that are algebraic over F . Because the inclusion of Fh
ν → F∧

ν

induces an isomorphism of absolute Galois groups, it induces an isomorphism
Hs
ét(F

h
ν ;Z/pn(t)) → Hs

ét(F
∧
ν ;Z/pn(t)).

Tate–Poitou duality is a consequence of the long exact sequence (2.3) and
the perfect pairing [15, II.3.2–3]

Hs(Uét;Z/pn(t)) ⊗ H3−s(Yét; j!Z/pn(1 − t)) −→ H3(Yét; j!Z/pn(1))

−→ H3(Yét, j!Gm) ∼= Q/Z. (2.4)

Here the isomorphism H3(Yét, j!Gm) ∼= Q/Z is induced by the map from

C ′ = coker(H2(Uét;Gm) →
∏

H2
ét(F

h
ν ;Gm))

to H3(Yét, j!Gm) (in the corresponding long exact sequence for F =
Rj∗(Gm)), which is an isomorphism, together with the canonical isomorphism
from C ′ to

C = coker(H2(Uét;Gm) →
∏

H2
ét(F

∧
ν ;Gm))

and the Albert–Brauer–Hasse–Noether isomorphism from C to Q/Z.
In light of the above, the first step for K -theoretic Tate–Poitou duality is to

identify Fib(κ) in terms of a spectral version of j! applied to the K (1)-local
algebraic K -theory hypersheaf on Uét. For a Grothendieck site T , we write
Hyp(T ,Sp) for the ∞-category of hypersheaves of spectra on T ; we under-
stand this as the full subcategory of the ∞-category Pre(T ,Sp) of presheaves
of spectra that satisfy hypercover descent. This also admits a description in
terms of localization: For a presheaf of spectra F , let π̃nF denote the sheafi-
fication of the presheaf of abelian groups πnF (homotopy groups applied
objectwise). Work of Jardine [10,11] and Dugger–Hollander–Isaksen [6, 1.1]
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identifies Hyp(T ,Sp) as the localization of Pre(T ,Sp) obtained by formally
inverting themaps that are isomorphisms on π̃n for all n; cf. [14, 6.5.3.13]. The
localization functor Pre(T ,Sp) → Hyp(T ,Sp) is called hypersheafification.

As an example,Thomason [21, 2.45or 2.50] shows that under the hypotheses
that hold there and in particular in our current setting, K (1)-local K -theory is a
hypersheaf on the small étale site.WewriteK for the K (1)-localized K -theory
functor and KUét for the hypersheaf on Uét. It will also be convenient to write

K/pn

Uét
for KUét/p

n 	 KUét ∧ Mpn and K/pn for K/pn .
The recollement above extends to the context of hypersheaves of spectra;

see [13, A.8.20,A.8.19]). We have a diagram of adjoint pairs of functors of
hypersheaves of spectra

Hyp(Z ét,Sp)
i∗
i∗
i !

Hyp(Yét,Sp)
j!
j∗
j∗

Hyp(Uét,Sp)

mostly analogous to the diagram of adjoint pairs of functors of sheaves of
abelian groups pictured in (2.1), or more precisely analogous to the derived
category extension. (The functors i ! and j∗ are the analogs of the right derived
functors Ri ! and Rj∗ on the derived categories of sheaves of abelian groups.)
The analogue of (2.2) also holds:

j! j∗F 	 Fib(F → i∗i∗F)

(see the proof of (b) in [13, A.8.20], where the equivalent adjoint formula is
proved). In particular, taking F to be j∗KUét , we have

j!KUét 	 Fib( j∗KUét → i∗i∗ j∗KUét).

The following theorem relates j!KUét to Fib(κ), the homotopy fiber of the
completion map.

Theorem 2.5 The spectrum j!KUét(Yét) of global sections of j!KUét is p-
equivalent to Fib(κ).

Proof We construct a commutative diagram

j∗KUét(Yét)

	

i∗i∗ j∗KUét(Yét)

K(Uét)
∏

ν∈S
K(Fh

ν )

with the left vertical map the tautological equivalence and the right vertical
map a p-equivalence constructed below. This will then complete the argument
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since the completion map κ factors as the bottom horizontal map followed by
the map

∏

ν∈S
K(Fh

ν ) −→
∏

ν∈S
K(F∧

ν )

induced by the inclusions Fh
ν → F∧

ν , which is a p-equivalence by Thomason’s
theorem [21, 4.1] proving the K (1)-local Quillen–Lichtenbaum conjecture.

Construction of the righthandmap essentially amounts to understanding the
hypersheaf i∗i∗ j∗KUét . Write i∗pre for the inverse image functor Pre(Yét,Sp) →
Pre(Z ét,Sp). Then for ν ∈ S, let Rh

ν denote the henselization of (OF )(ν), and
for any finite separable extension k ofOF/ν, let Rh

ν (k) denote the correspond-
ing étale Rh

ν -algebra (under the usual equivalence of categories [16, I.4.4]).
Then we have

i∗pre j∗K
/pn

Uét
(speck) 	 K/pn ((specRh

ν (k)) ×Y U ) 	 K/pn (Fh
ν (k))

(cf. [21, 1.44]) where Fh
ν (k) = Rh

ν (k)[1/p] is the quotient field. It follows that
i∗pre j∗K

/pn

Uét
satisfies hypercover descent and so computes i∗ j∗K/pn

Uét
. In particu-

lar i∗i∗ j∗K/pn

Uét
(Yét) 	 ∏

K/pn

Uét
(Fh

ν ). Similarly, (i∗ j∗KUét)
∧
p 	 (i∗pre j∗KUét)

∧
p,

and this induces the p-equivalence in the diagram. Since the map

K(OF [1/p]) 	 j∗KUét(Yét) −→ i∗i∗pre j∗KUét(Yét) −→ K(Fh
ν )

is induced by the map OF [1/p] → Fh
ν , the diagram commutes. �


In order to apply the previous theorem, we also need to know how the
pairingK(OF [1/p])∧Fib(κ) → Fib(κ) relates to the interpretation of Fib(κ)

as j!KUét(Yét)
∧
p. Recent work of Clausen–Mathew [4, 2.17] proves that the

hypersheafication functor on anyGrothendieck site is lax symmetricmonoidal;
it follows that the ∞-categories of hypersheaves of spectra on Grothendieck
sites are symmetric monoidal ∞-categories. The direct image functor is then
a symmetric monoidal functor; in particular, the natural multiplication on K -
theory induces pairings of hypersheaves (natural in n)

j∗KUét ∧ j∗KUét −→ j∗KUét

j∗K/pn

Uét
∧ j∗K/pn

Uét
−→ j∗K/pn

Uét

compatible with the usual pairings

K(OF [1/p]) ∧ K(OF [1/p]) −→ K(OF [1/p])
K/pn (OF [1/p]) ∧ K/pn (OF [1/p]) −→ K/pn (OF [1/p])
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when passing to global sections. The usual (equivalence on stalks) argument
shows that for any hypersheaves of spectra F and G,

j∗F ∧ j!G 	 j!(F ∧ G),

and in our context, this and the pairings above give pairings (natural in n)

j∗KUét ∧ j!KUét −→ j!(KUét ∧ KUét) −→ j!KUét

j∗K/pn

Uét
∧ j!K/pn

Uét
−→ j!(K/pn

Uét
∧ K/pn

Uét
) −→ j!K/pn

Uét
.

(2.6)

Theorem 2.7 Under the equivalence of Theorem 2.5, the pairingK(OF [1/p])
∧Fib(κ) → Fib(κ) is the induced pairing on global sections from the pairing
of hypersheaves of (2.6).

Proof The equivalence j∗F∧ j!G 	 j!(F∧G) is the inverse of themap adjoint
to the equivalence

j∗( j∗F ∧ j!G) 	 j∗ j∗F ∧ j∗ j!G 	 F ∧ G; (2.8)

we need to see that it is the map

j∗F ∧ Fib( j∗G → i∗i∗ j∗G) 	 Fib
(
( j∗F ∧ j∗G) → ( j∗F ∧ i∗i∗ j∗G)

) −→
Fib

(
( j∗F ∧ j∗G) → (i∗i∗ j∗F ∧ i∗i∗ j∗G)

) 	 Fib
(
j∗(F ∧ G) → i∗i∗ j∗(F ∧ G)

)
(2.9)

under the usual identification of j! with the fiber. Now it is easy to see that (2.9)
is inverse to the adjoint of (2.8) by applying j∗. �


3 Proof of the K -theoretic Tate–Poitou duality theorem

In this section we prove the K -theoretic Tate–Poitou duality theorem. We
deduce the result from the classical Tate–Poitou duality theorem; more pre-
cisely, we use the formulation in terms ofArtin–Verdier duality (2.4).We argue
in terms of a pairing of étale descent spectral sequences.

Theorem 3.1 The descent spectral sequences

Es,t
2 (Uét;K/pn

Uét
) = Hs(Uét;Z/pn(t/2)) �⇒ π−s+tK/pn

Uét
(Uét) and

Es,t
2 (Yét; j!K/pn

Uét
) = Hs(Yét; j!Z/pn(t/2)) �⇒ π−s+t j!K/pn

Uét
(Yét)

admit a pairing of the form

Es,t
r K/pn

Uét
(Uét) ⊗ Es′,t ′

r j!K/pn

Uét
(Yét) −→ Es+s′,t+t ′

r j!K/pn

Uét
(Yét)
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which converges to the pairing

π−s+tK/pn

Uét
(Uét) ⊗ π−s′+t ′ j!K/pn

Uét
(Yét) −→ π−(s+s′)+(t+t ′) j!K/pn

Uét
(Yét)

induced from the weak equivalences

K/pn

Uét
(Uét) 	 K/pn (specOF [ 1p ]), and j!K/pn

Uét
(Yét) 	 Fib(κ)/p

n

and the pairing K/pn (specOF [ 1p ]) ∧ Fib(κ)/p
n → Fib(κ)/p

n
.

We prove this theorem in the next section. In order to apply it, we need to
related the pairing on the E2-term with the pairing in Artin–Verdier duality.
We also prove the following theorem in the next section.

Theorem 3.2 Under the canonical isomorphism

H∗(Uét;Z/pn(t/2)) ∼= Ext∗Uét
(Z/pn(t ′/2),Z/pn(t/2 + t ′/2))

∼= Ext∗Yét( j!Z/pn(t ′/2), j!Z/pn(t/2 + t ′/2)),

the multiplication on the E2-term in Theorem 3.1

H∗(Uét;Z/pn(t/2)) ⊗ H∗(Yét; j!Z/pn(t ′/2)) −→ H∗(Yét; j!Z/pn(t/2 + t ′/2))

coincides with the Yoneda pairing

Ext∗Yét( j!Z/pn(t ′/2), j!Z/pn(t/2 + t ′/2)) ⊗ H∗(Yét; j!Z/pn(t ′/2))
−→ H∗(Yét; j!Z/pn(t/2 + t ′/2))

The previous two theorems give all the ingredients we need to prove the
K -theoretic Tate–Poitou duality theorem.

Proof of the K -theoretic Tate–Poitou duality theorem The pairing

K(specOF [ 1p ]) ∧ Fib(κ) −→ Fib(κ)

and the map

uOF : Fib(κ) −→ �−1 IZpS

of (1.7) give a pairing

K(specOF [ 1p ]) ∧ Fib(κ) −→ �−1 IZpS,
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which induces a map

Fib(κ) −→ �−1 IZp (K(specOF [ 1p ])) 	 �−1 IQ/Z(K(specOF [ 1p ]) ∧ MQp/Zp ).

(3.3)
We need to see that it is a weak equivalence. Since both sides are p-complete,
it suffices to check that (3.3) becomes a weak equivalence after smashing with
the mod pMoore spectrum Mp on both sides. Then we are looking at the map

Fib(κ)/p −→ �−1 IQ/Z(K(specOF [ 1p ]) ∧ MQp/Zp)/p

	 �−1 IQ/Z(K(specOF [ 1p ])/p), (3.4)

which is adjoint to a map

K(specOF [ 1p ])/p ∧ Fib(κ)/p −→ �−1 IQ/ZS. (3.5)

Naturality and the fact that for an odd prime the map

Mp ∧ Mp 	 F(Mp, MQp/Zp) ∧ Mp −→ MQp/Zp

induced by evaluation is the same as the composite of themultiplication onMp
and the inclusion of Mp in MQp/Zp imply that the map (3.5) is the composite
of the multiplication

K(specOF [ 1p ])/p ∧ Fib(κ)/p −→ Fib(κ)/p

and the map

Fib(κ)/p −→ Fib(κ) ∧ MQp/Zp −→ �−1 IQ/ZS

(where Fib(κ) ∧ MQp/Zp → �−1 IQ/ZS is the map (1.6) adjoint to uOF ).
Because (2.4) is a perfect pairing, Theorem 3.1 and Theorem 3.2 imply that
(3.5) induces a perfect pairing on homotopy groups

πq(K(specOF [ 1p ])/p) ⊗ π−1−q(Fib(κ)/p) −→ Q/Z.

This implies that (3.4) is a weak equivalence, and we conclude that (3.3) is a
weak equivalence. �


4 Construction and analysis of the spectral sequence

This section proves Theorems 3.1 and 3.2. For the proof of 3.1, we use a
modern take on the descent spectral sequence of Jardine [12, §6.1] based
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on Postnikov towers rather than the original approach of Thomason based
on the Godement construction; these are well-known to be isomorphic from
E2 onwards. As explained by Dugger [5, §4], using Whitehead towers in
place of Postnikov towers leads to the same spectral sequence but with better
multiplicative properties, and we take this approach.

Work ofHedenlund et al. [8] expands onDugger’s observations on pairing of
spectral sequences and puts them in modern language. Although the category
of bigraded spectral sequences of abelian groups does not form a symmetric
monoidal category, it does form an ∞-operad under the usual notion of mul-
tilinear pairing. The main theorem of [8] is that the usual construction of a
spectral sequence from a tower of spectra assembles to a map of ∞-operads.
Here the ∞-category of towers is the ∞-category of spectral presheaves on
the ordered set Z (for the increasing order) and the ∞-operad structure is the
Day convolution symmetric monoidal structure for addition [13, 4.8.1.13]. A
pairing of towers A• ∧ B• → C• in this structure amounts to (homotopy
coherent) maps

At ∧ Bt ′ −→ Ct+t ′ .

A pairing of towers gives a pairing of spectral sequences in the classical sense.
The Whitehead tower is the name for the functor obtained by assembling

into a tower the truncations τ≥n in a t-structure. We will write this functor
as W •, i.e., Wn := τ≥n . In the present context, W • is a functor from the ∞-
category of spectra (with the standard t-structure) to the∞-category of towers
of spectra. Because the smash product of spectra adds connectivities, this
can be enhanced to a lax symmetric monoidal functor of symmetric monoidal
∞-categories. Because hypersheafication from presheaves of spectra onUét to
étale hypersheaves of spectra onUét is a symmetric monoidal functor [4, 2.17],
the Whitehead tower functor followed by global sections gives a symmetric
monoidal functor from the ∞-category of étale hypersheaves on Yét to the
∞-category of towers of spectra.

The descent spectral sequences of Theorem 3.1 apply the above composite
map of ∞-operads from étale hypersheaves of spectra to spectral sequences.
Concretely, the first spectral sequence in 3.1 is the homotopy group spectral
sequence of the tower of spectra

· · · −→ (Wt+1K/pn

Uét
)(Uét) −→ (WtK/pn

Uét
)(Uét) −→ · · · .

As an abbreviation in the work below, we write

CtK/pn

Uét
= (WtK/pn

Uét
,Wt+1K/pn

Uét
)
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for the pair Wt+1K/pn

Uét
→ WtK/pn

Uét
. In particular,

π∗(CtK/pn

Uét
(Uét))

∼= π∗Cof
(
(Wt+1K/pn

Uét
)(Uét) → (WtK/pn

Uét
)(Uét)

)
.

Since π̃tK/pn

Uét
∼= Z/pn(t/2), we get a canonical isomorphism

π−s+t (C
tK/pn

Uét
(Uét))

∼= Hs(Uét;Z/pn(t/2)).

The spectral sequence thenhas E2-term (with the standardWhitehead/Postnikov
Atiyah–Hirzebruch renumbering)

Es,t
2 := π−s+t (C

tK/pn

Uét
(Uét))

∼= Hs(Uét;Z/pn(t/2))

and abuts to the colimit

colim π−s+t
(
(W •K/pn

Uét
)(Uét)

) ∼= π−s+t
(
K/pn

Uét
(Uét)

)
.

Because holim(W •K/pn

Uét
)(Uét) 	 ∗, the spectral sequence converges condi-

tionally [1, 5.10]. Because Hs(Uét;Z/pn(t/2)) is only non-zero in a finite
range, the spectral sequence converges strongly [1, 6.1] to the abutment
π−s+tK/pn

Uét
(Uét).

For the spectral sequence on Fib(κ), we use the tower

· · · −→ ( j!Wt+1K/pn

Uét
)(Yét) −→ ( j!WtK/pn

Uét
)(Yét) −→ · · · .

We abbreviate

X t := j!WtK/pn

Uét
	 Fib( j∗WtK/pn

Uét
→ i∗i∗ j∗WtK/pn

Uét
)

and write

CtX = (X t ,X t+1)

for the pair. We then have

π−s+tC
tX (Yét) ∼= Hs(Yét; j!π̃−tK/pn

Uét
)

and the tower of spectra X •(Yét) gives a spectral sequence with

Es,t
2 := π−s+t (X t (Yét),X t+1(Yét)) ∼= Hs(Yét; j!Z/pn(t/2))
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that abuts to the colimit

colim π−s+tX •(Yét) ∼= π−s+t
(
j!K/pn

Uét
(Yét)

)
.

Again because the homotopy limit of X • is trivial and Hs(Yét; j!Z/pn(t/2))
is only non-zero in a finite range, the spectral sequence converges strongly,
andπ−s+tcolimX •(Yét) is isomorphic toπ−s+tFib(κ) by the comparisonmap.
The pairing property of W • induces a pairing

WtK/pn

Uét
(Uét) ∧ X t ′(Yét) = j∗WtK/pn

Uét
(Yét) ∧ j!Wt ′K/pn

Uét
(Yét)

−→ j!Wt+t ′(K/pn

Uét
(Yét)∧K/pn

Uét
(Yét)) −→ j!Wt+t ′K/pn

Uét
(Yét) = X t+t ′(Yét),

inducing a pairing of spectral sequences. Theorem 2.7 identifies this with our
standard model

K/pn (specOF [ 1p ]) ∧ Fib(κ)/p
n −→ Fib(κ)/p

n

for the pairing of the K (1)-local mod pn algebraic K -theory and the fiber.
This completes the proof of Theorem 3.1. Next we need to identify the

multiplication on the E2-term, which takes the form

Hs(Uét;Z/pn(t/2)) ⊗ Hs′(Yét; j!Z/pn(t ′/2)) −→ Hs+s′(Yét; j!Z/pn(t/2 + t ′/2)).

In the notation above, the multiplication is induced by the map of pairs

j∗CtK/pn

Uét
(Yét) ∧ Ct ′X (Yét) −→ Ct+t ′X (Yét).

By construction the homotopy cofiber of the pair j∗CtK/pn

Uét
is a model for the

étale hypersheaf�t j∗HZ/pn(t/2) on Yét and the homotopy cofiber of the pair
Ct ′X is a model for the étale hypersheaf �t ′ j!HZ/pn(t ′/2) on Yét. Thus, we
can identify the induced map on homotopy groups of global sections as the
composite of the cup product

H∗(Uét;Z/pn(t ′/2)) ⊗ H∗(Yét; j!Z/pn(t/2))
∼= H∗(Yét; j∗HZ/pn(t ′/2)) ⊗ H∗(Yét; j!HZ/pn(t/2))

−→ H∗(Yét; j∗HZ/pn(t ′/2) ∧ j!HZ/pn(t/2))

and the map of étale hypersheaves

j∗HZ/pn(t ′/2) ∧ j!HZ/pn(t/2) −→ j!HZ/pn(t/2 + t ′/2)
	 H j!Z/pn(t/2 + t ′/2)
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induced by the pairing. Using the equivalence of étale hypersheaves of spectra

j∗HZ/pn(t/2) ∧ j!HZ/pn(t ′/2) 	 j!(HZ/pn(t/2) ∧ HZ/pn(t ′/2)),

since the target

j!HZ/pn(t/2 + t ′/2) 	 H j!Z/pn(t/2 + t ′/2)

is an Eilenberg–Mac Lane presheaf, the map is determined by the factorization
through the coconnective cover

j!(HZ/pn(t/2) ∧ HZ/pn(t ′/2))(−∞, 0] 	 j!(HZ/pn(t/2 + t ′/2)).

By looking at stalks, we see that the self-map of j!(HZ/pn(t/2+ t ′/2)) is the
identity. As a consequence, it follows that the map

H∗(Uét;Z/pn(t/2)) ⊗ H∗(Yét; j!Z/pn(t ′/2)) −→ H∗(Yét; j!Z/pn(t/2 + t ′/2))

on the E2-term in Theorem 3.1 factors through the corresponding cup product
map in the derived category of sheaves of abelian groups on Yét,

H∗(Uét;Z/pn(t/2)) ⊗ H∗(Yét; j!Z/pn(t ′/2))
= H

∗(Yét; Rj∗Z/pn(t/2)) ⊗ H∗(Yét; j!Z/pn(t ′/2))
−→ H∗(HAb(Yét; Rj∗Z/pn(t/2)) ⊗L

HAb(Yét; j!Z/pn(t ′/2)))
−→ H

∗(Yét; Rj∗Z/pn(t/2) ⊗L j!Z/pn(t ′/2))
∼= H

∗(Yét; j!(Z/pn(t/2) ⊗L
Z/pn(t ′/2)))

−→ H∗(Yét, j!(Z/pn(t/2) ⊗ Z/pn(t ′/2)))
∼= H∗(Yét, j!Z/pn(t/2 + t ′/2)).

Here for ease of comparison to algebraic conventions, we have switched to
derived category notation and written HAb(Yét; −) for the hypercohomology
object of a sheaf of abelian groups (i.e., the sections of the hypersheaf, viewed
as an object of the derived category of abelian groups) and H

∗(Yét; −) for its
hypercohomology groups H∗(HAb(Yét; −)).

This identifies the multiplication on the E2 term in terms of the cup product,
and Theorem 3.2 now follows from the basic relationship between the cup
product and the Yoneda product in the derived category of sheaves of abelian
groups on Yét, cf. [16, §5.1]: For sheaves of abelian groups F and G, the
following diagram in the derived category commutes
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HAb(Yét; RHom(F ,G)) ⊗L
HAb(Yét;F)

	

HAb(Yét; RHom(F ,G) ⊗L F)

RHom(F ,G) ⊗L
HAb(Yét;F) HAb(Yét;G)

where the top arrow is the cup product and the bottom arrow and righthand
arrows are the appropriate evaluation maps. This completes the proof of The-
orem 3.2.
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