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Abstract Let p € Z be an odd prime. We prove a spectral version of Tate—
Poitou duality for the algebraic K-theory spectra of number rings with p
inverted. This identifies the homotopy type of the fiber of the cyclotomic
trace K (O F)?, — TC(O F)?j after taking a suitably connective cover. As an
application, we identify the homotopy type at odd primes of the homotopy
fiber of the cyclotomic trace for the sphere spectrum in terms of the algebraic
K -theory of Z.
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Introduction

Tate—Poitou duality describes the relationship between the étale cohomology
of S-integers in number fields and their completions in terms of a long exact
sequence where the third term is a Pontryagin dual related to the first term. In
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the most basic case, for p > 2 a prime in Z and a number field F, we get a
long exact sequence

0 — HY(OF[31; Zy (k) — IED HY(F); Zy (k) — (HZ(OF[31, Z/ p™ (1 = k)* )

Q HA(OF[31; Zy (k) — IEJ H(F); Zy (k) = (H(OF[ 51, Z/p® (1 = k))* )

Q HZ(OF[31; Zy (k) — 1‘1 HZ(F); Zy (k) = (HY(OF[ 51, Z/p® (1 = k))* — 0
vlp

where OF denotes the ring of integers, F, denotes completion at the valuation
v, and (—)* denotes Pontryagin dual. The purpose of this paper is to describe
a spectrum-level “K -theoretic” version of Tate—Poitou duality encoding the
behavior of the completion map in the algebraic K -theory of rings of integers
in number fields and use it to study the algebraic K-theory of the sphere
spectrum.

Thomason’s work [21] on the Quillen-Lichtenbaum conjecture identifies
the étale cohomology groups in the above sequence as the homotopy groups of
the K (1)-localization of algebraic K -theory spectra. Specifically, Thomason
[21, Theorem 4.1, App. A] shows

HY(R: Z,(5)) & HA(R: Zyp(5 + 1)) neven

(L) K (R) = {Hélt(R; 7, (25L)) n odd

for R = OF[1/p] or F}. Letting Mz, oo denote the Moore spectrum for
7./ p>°, we also have

HY(R: Z/p™® (%)) ® HL(R: Z/p™(5 + 1)) neven

77, (L K(R) ANMyp),0o) =
n( K(1) (R) Z/p ) {Hélt(R§Z/POO(nJ2rl)) n odd

for R = Opf[1/p]. Algebraically, we can then use these isomorphisms to
rewrite the Tate—Poitou sequence as the long exact sequence

s = (o1 (L )y K (OF[1/p]) A Mz pe))* D

Q T LgyK(Of[1/p]) = [[maLxk ) K (F) — - -

with the first term (on the left) the homotopy groups of the K (1)-localization
of K(OF[1/p]) and the second term the homotopy groups of the product
of the K (1)-localizations of the K-theory of the completed fields. We can
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interpret the third term as the homotopy groups of a spectrum as well, using
Brown—Comenetz duality or Anderson duality:

T 1-n(Lky K (OF[1/pl) A Mz pee))* = m0,(S gz (L 1)K (Z) A Mz p))
= ”n(zil]ZIA,LK(l)K(Z))s

where Ig,7 denotes the Brown—Comenetz dual and / z denotes the Anderson
dual of p-complete spectra. Our main result lifts this exact sequence to a cofiber
sequence on the spectrum level.

Theorem (K -Theoretic Tate—Poitou Duality) Let p > 2 be a prime number.
Let F be a number field, OF its ring of integers, and S the set of primes of O
above p. Forv € S, write F," for the v-completion of F. The homotopy fiber
Fib(k) of the completion map in K (1)-local algebraic K -theory

i LgyK (Ofp[3]) — []Lxayk(F))

ves

is weakly equivalent to
= gLk ) K(OFl5) A Mg, z,) = £ 1z, Lk K (OF[5)).

The weak equivalence Fib(k) — E_IIZPLKU)K((’)F[%]) is adjoint to the
map

LxyK (Or[31) A Fib(k) — £7'1z,S

induced by the LK(l)K(OF[%])—module structure map LK(l)K((’)F[%]) A
Fib(k) — Fib(k) and a map

uo,: Fib(k) — E_IIZPS
constructed as (1.7).

The map up, above is “canonical” in that given the standard conventions
for the Hasse invariant (see [20, XIII§3,p. 193]), the construction involves no
further choices.

The previous theorem establishes a global arithmetic duality for algebraic
K -theory. Clausen’s MIT thesis [3] contains work in this direction; in partic-
ular, Clausen produces a duality map of a similar type to the one in the main
theorem (with different details), presumably related through Gross-Hopkins
duality. Work in progress of Schlank and Stojanoska [19] establishes arithmetic
duality results for a much wider range of theories.
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For us, the main interest is in the case ' = Q, § = {p}, where the main
theorem (and some fiddling in low dimensions) identifies the homotopy fiber
of the cyclotomic trace on the sphere spectrum.

Corollary Let p be an odd prime. The connective cover of the homotopy
fiber of the cyclotomic trace K (S)?7 — TC (S)?, is weakly equivalent to the

connective cover of > IZ; (Lx 1)K (Z)).

Rognes [17,18] had previously identified the homotopy type of the homo-
topy fiber of the cyclotomic trace at regular primes, although not in these
terms.

To deduce the corollary from the main theorem, we apply the work of
Dundas [7] and Hesselholt—-Madsen [9] together with the (affirmed) Quillen—
Lichtenbaum conjecture. The linearization map S — Z and the cyclotomic
trace K — T C fit together in a commutative square

K(©S)) —— K(2))

|

TC(S)Q — TC(2)),

that Dundas [7] shows is homotopy cartesian, and it follows that the homotopy
fiber of the cyclotomic trace for S is weakly equivalent to the homotopy fiber of
the cyclotomic trace for Z. Hesselholt-Madsen [9] shows that the completion
map TC (Z)?7 - TC (Z??)?7 is a weak equivalence and the cyclotomic trace
K (Z?,)?, - TC (Z;)?, is a connective cover. It follows that the connective
cover of the homotopy fiber of the cyclotomic trace is weakly equivalent to
the homotopy fiber of the completion map K (Z); - K (Z;);. Quillen’s

localization sequence for Z — Z[%] and Z; — Q2,

K(Z/p) —— K(Z) —— K(Z[1/p]) —— = - --

| ] ]

K(Z/p) — K(Z)) —— K(Q)) —— X -+

then shows that the homotopy fiber of the completion map K (Z) — K (Z?,) is

weakly equivalent to the homotopy fiber of the completion map K (Z[%])?7 —
K (Q?,)?,. The (affirmed) Quillen—Lichtenbaum conjecture [22, VI.8.2] implies
that the maps

K@), — LenK(ZI5D, K@), — Lxk)K(@)),
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are weak equivalences after taking 1-connected covers. Looking in low dimen-
sions, K (Z[%])Q — LxnhK (Z[%]) is actually a connective cover, while
K (Q;)?) — LyxnK (Q;) induces an isomorphism on homotopy groups in
degrees > 0 and an injection in degree 0. It then follows that the (connec-
tive) homotopy fiber of K (Z[%])?7 — K (Q;); is weakly equivalent to the

connective cover of the homotopy fiber of L g 1)K (Z[%]) — LgmK (Q;).
Applying the main theorem, the corollary now follows.

Returning to the case of a number field F, the part of the discussion above
that is general still obtains. Writing R/ for the completion of O at the prime
v, we have Quillen’s localization sequence for O — O F[%] and [[ R) —

[TF

[l K(OF/v) —— K(Op) —— K(Op) ——— % - -

s | |

[T K(QR)/v) — K([]R) —— K(J] F)) —— -,

ves vesS ves

which identifies the homotopy fiber of the completion map K(Of) —
K ([ R}) as weakly equivalent to the homotopy fiber of the completion map
K((’)F[%]) — K([[F}'). When S is the set of divisors of p, each Of /v
is a finite field of characteristic p, and so K(OF/ v)), is an Eilenberg-Mac
Lane spectrum. The Quillen localization sequence then implies that the map
LxK(Of) — LK(DK(OF[%]) is a weak equivalence. Since

[[R) = ©mn)z0rez),

Hesselholt-Madsen [9, Add. 6.2] shows that the map TC(OF)?, — TC([]
RUA)?7 is a weak equivalence. Hesselholt-Madsen [9, Theorem D] shows that
the map K ([T R})), — TC([] R}) is a connective cover. Applying the main
theorem above and the (affirmed) Quillen—Lichtenbaum conjecture, we obtain
the following corollary.

Corollary Let F be a number and let p € 7 be an odd prime. Then there is
a canonical map in the stable category from the homotopy fiber of the cyclo-
tomic trace K(C’)F); — TC(C’)F)?7 to Z_IIZQ (Lxk 1)K (OF)) that induces an
isomorphism on homotopy groups in dimensions > 2.

Finally, we note that the main theorem implies in the affirmative a con-
jecture of Calegari [2, 1.5] regarding the homotopy groups of the homotopy
fiber on algebraic K -theory of the completion map. Calegari was interested in
the completed cohomology of SL, and our result yields the construction of a
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spectrum with homotopy groups K (O r) and continuous spectrum homology
given by ﬁ* (SL, Zp) [2, 1.19]. Moreover, the affirmed conjecture sharpens [2,
0.2] (an explicit calculation of completed homology) by making the conclusion
unconditional.

1 K-theoretic local duality and the construction of the map
Fib(k) — £7'1z,S

The Tate—Poitou duality theorem in global arithmetic derives from a much
easier local duality theorem. We have a corresponding K -theoretic local duality
theorem. We state and prove the K-theoretic local duality theorem in this
section, deducing it from the local duality theorem in arithmetic. The argument
is parallel to the argument used in Sect. 3 to prove the K -theoretic Tate—Poitou
duality theorem and explains the construction of the canonical map Fib(kx) —
Pty ,S, which is characterized by its relationship to a corresponding map
Lgx1)K(Qp) — IZpS in the K -theoretic local duality of Q.
In arithmetic, local duality is an isomorphism

~

H (ks M) = (HZ ™' (k; M*(1)))*

where k is the field of fractions of a complete discrete valuation ring whose
residue field is finite (e.g., a finite extension of Q,), M is a finite Galois module,
and (—)* denotes the Pontryagin dual. The map is induced by the cup product
pairing

HY (ks M) ® HZ ' (k; M*(1)) — HZ(ki M ® M*(1)) — HZ(k, Q/Z(1))

and the canonical isomorphism

HZ(k, Q/Z(1)) = Hz(k,G,) — Q/Z. (1.1)
Letting M = 7Z/p"(j) and taking the limit n — oo, we get an isomorphism
HS(k; Zpy(j)) = (HZ ' (k; Qp/Zp(1 — )N

(where the group on the left is Jannsen’s continuous étale cohomology, which
in the case of a field as above is equivalent to Galois cohomology).
For K -theory, the E, multiplication induces a map

LK(l)K(k) VAN LK(l)K(k) AN MQP/ZP —> LK(l)K(k) 7AN M@p/zp
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and we have a map
LK(l)K(k) AN MQP/Z’P —> IQ/ZS (1.2)

essentially induced by the Hasse invariant as follows. Such a map is uniquely
determined by specifying a homomorphism

no(LxkyK (k) A Mg, /z,) — Q/Z.

Thomason’s descent spectral sequence puts o (L g (1)K (k) A Mg N/ p) into a
short exact sequence

0 — Hi(k; Qp/Zp(1)) —> 7oLk K (k) A Mg, z,)

t
— H)(k; Qp/Zp) — O

which is split by the map Q,/Z, = Hg(k; Qp/Zp) — mo(Lxn)K (k) A
Mo, /Z,,) induced by the unit S — K (k). This gives us a retraction

mo(LxkyK (k) A Mg, z,) —> HZ(ki Qp/Z,(1))
that we compose with (1.1) to obtain a map
JT()(L]((])K(k) A\ M@P/ZP) — Q/Z (1.3)

The map (1.2) represents the map (1.3).

Theorem 1.4 (K-Theoretic Local Duality) Let k be the field of fractions of a
complete discrete valuation ring whose residue field is finite. The map

LxaK (k) — Ig/z(Lx 1)K (k) A Mg, /z,) = Iz7,(Lk 1)K (k)
adjoint to the composite map
LgmyK (k) N LgayK (k) A MQI’/ZP — IQ/ZS

described above is a weak equivalence.

Proof Because L 1)K (k) and Iz ,(LknK (k)) are both p-complete, it suf-
fices to check that the map is a weak equivalence after taking the derived
smash product with the mod p Moore spectrum M,, or equivalently tak-
ing the homotopy cofiber of multiplication by p. Using the canonical weak
equivalence
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lo/z(Lxk )y K (k) A Mg, /z,)/p = lg/z(Lk 1)K (k)/p),

the induced map

LK(1)K(k)/p — IQ/Z(LK(I)K(k)/p)

is adjoint to the composite map

LgnyKk)/p AN LgyK(k)/p — Lxgq)K(k)/p
— LK(l)K(k) A MQP/ZP — IQ/ZS

induced by the E pairing on Lk (1)K (k) and the usual pairing M, A M, —
M, for the first map and by the usual inclusion of M, in Mg, z,, for the second
map. Thus, it suffices to check that the pairing above induces a perfect pairing

mq(LxkyKK)/p) @ m—q(Lxk 1)K (k)/p) — Q/Z.

Thomason’s descent spectral sequence [21, 4.1] is multiplicative with the mul-
tiplication on the E>-term induced by the cup product in étale cohomology.
We therefore have a perfect pairing on the E; = Eo-term by local dual-
ity in arithmetic, and it follows that we have a perfect pairing on homotopy
groups. O

The proof of the global K -theoretic Tate—Poitou duality theorem in Sect. 3
follows the same general outline as the proof of the local duality theorem
above. However, instead of using the multiplication on a single K (1)-localized
K -theory spectrum, we study the pairing of Lk 1)K (Or[1/p]) with Fib(k),
where « denotes the map LK(I)K((’)F[%]) — [T Lk@)K(F}) as in the main
theorem on page 2. Inlocal duality, the map 7o (L (1)K (k) AMq, /Z,,) — Q/z
comes from the Hasse invariant isomorphism Hézt(k; Q/z(1)) = Q/Z, or in
terms of p-torsion, the isomorphism H ézt(k; Qp/Zy(1)) = Qp/Zp. For global
duality, the map is related to the Albert—-Brauer—Hasse—Noether sequence for
OF[1/p]: the p-torsion version of this sequence takes the form of an exact
sequence

0 — HZ(Orl31: Qp/Zp() — [ | HA(F:Qp/Z,p (1)
ves
— QP/ZP — 0

where § is the set of primes lying above p and p > 2. Looking at the map of
short exact sequences from Thomason’s descent spectral sequence
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! !
H(Orl3); Qp/Zp(1) —————— [T HL(F; Qp/Zp(1))
1 !

mo(Lxk 1K (Or[31) A Mq,/z,) — [17o(Lxk ) K (F))) A Mg,/z,)

! |
HY(OFl51; Qp/Zp) [THY(F): Qp/Zy)
1 {

0 0

we get an induced map from Q,/Z,, to the cokernel

C= COker(”O(LK(l)K(OF[%]) A Mg, z,) = 770(1_[ LxkmK(F)) A Mg, z,)).

This and the long exact sequence on homotopy groups gives us a canonical
map from Q) /Z, to w_; (Fib(k) A Mg, ;z,)-

Theorem 1.5 The canonical map Qp, /7, — w_(Fib(k) A Mq,/z,)isa split
injection and has a unique retraction that commutes with the K -theory transfer
associated to inclusions of number fields.

Proof First we note that the K-theory transfer associated to the inclusion of
number fields extends to a well-defined map in the stable category on Fib(x):
For F' C E aninclusion of number fields, Og[1/p] is a finitely generated pro-
jective Ofp[1/p]-module and we have an associated K -theory transfer map
K(Og[1/p]) = K(OFp[1/p]) induced by regarding a finitely generated pro-
jective Og[1/p]-module as a finitely generated projective Or[1/p]-module.
For the p-completions

0r®Q,= [[ E). 0reQ, =[] F).
veSg veSr

we have an associated K -theory transfer map and in the standard models for
K -theory, the diagram

K (O[5 — K (O ® Qp)

! |

K(Orl5) — K(OF ® Q))

commutes up to canonical homotopy since for a finitely generated projective
Og[1/p]-module P, the underlying (Of ® Q))-module of P ® Q, is canon-
ically isomorphic to the underlying Or[1/p]-module of P tensored with Q,,.
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This is enough structure to specify a canonical map in the stable category on
the homotopy fibers.

Uniqueness is clear because in the case F' = Q, the inclusion of Q,/Z,, in
m_1(Fib(k) A Mg o/Z,) is an isomorphism. To see this note that the map from
Qp/Z), to the cokernel C is an isomorphism (because the map

HYZ[1/p); Qy/Z,) — HY(Qp; Q,/Z))

is an isomorphism) and the inclusion of the cokernel C in m_;(Fib(x) A
Mgq,/z,) from the long exact sequence of homotopy groups is surjective
because the map

n_1(LxkyK(Z[1/p) A Mg, /z,) — 7-1(Lk1)K(Qp) A Mg, /z,)

is injective (because the map H'(Z[1/p]; Qp/Zp) — HI(QP; Qp/Zp) is
injective by abelianized Galois group considerations).

For existence of the splitting, since ( is initial among number fields, we
just need to know that for an inclusion of number fields F C E, the diagram

Qp/Zy, — CEg
o

Qp/Zy — CFr

commutes where Cg and C are the cokernels C associated to £ and F above
and the map is induced by the K -theory transfer. Because H ézt(FvA; Qp/Zp(1))

is the p-torsion in H ézt(F s Gm), the basic properties of a class formation (q.v.
Proposition 1(ii) in [20, XI§2]) imply that it is enough to see that the diagram

Hézt(OE ® Qp; Qp/Zp(1)) —— wo(Lk1)(O @ Qp) A Mg, z,)

| |

HZ(OF ® Qp; Qp/Zp(1)) —— 70(Lx (1y(OF ® Qp) A Mg, z,,)

commutes where the left vertical map is the transfer in étale cohomology. This
follows from the well-known result that the K -theory transfer for Galois exten-
sions induces the étale cohomology transfer on the E>-page of Thomason’s
descent spectral sequence. |

The composite of the map 7w_ (Fib(x) A Mo, /Z,,) — Q,/Z, inthe previous
theorem with the inclusion of p-torsion Q,/Z, — Q/Z now specifies a map

Fib(k) A Mg, /z, — =~ ' Ig/zS. (1.6)
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Adjoint to this map is the map

uo,: Fib(k) — F(Mq,z,, £~ 'Ig/zS) ~ £ '1z,S (1.7)

o
in the statement of the K -theoretic Tate—Poitou duality theorem on page 2. In
particular, we have constructed u o, to be compatible with the corresponding
map

Vpp: LK(l)K(FUA) — IZ,,S (1.8)

for local duality adjoint to the map (1.2) (for k = F"). They are compatible
in the sense that v, is the composite

A . Equ _ -
LK(])K(FV ) — EFlb(K) — XY IZ[,S = IZ,,S’
where the first map is a component of the map

[[ Lk K (F)) — TFibx)

ves

in the cofiber sequence (associated to the fiber sequence) defining Fib(«).

2 Fib(k) as hypercohomology and j,

The proof of the K-theoretic Tate—Poitou duality theorem relies on an étale
hypercohomological interpretation of Fib(x ). Arithmetic Tate—Poitou duality
arises from a duality pairing plus a long exact sequence arising from recolle-
ment. The purpose of this section is to give a spectral lifting of this setup. We
begin with a terse review.

For a fixed number field F" and S the set of primes lying over p,let Y =
specOpF,let U be the open subscheme Y\ S = spec(Or[1/pl), and let Z be the
reduced closed subscheme Y\U = [ [ spec(OF /v). Writing i for the inclusion
of Z in Y and j for the inclusion of U in Y, we have various adjoint functors
on sheaves of abelian groups on the étale sites:

it — —i—
Sh(Zg, Ab) —i— Sh(Yg, Ab) —j* Sh(Ug, Ab), 2.1)
i i

where each functor is the left adjoint of the functor below it. One consequence
of recollement is that for any sheaf or complex of sheaves F on Y, the unit
of the i,, i* adjunction and the counit of the jj, j* adjunction fit into a short
exact sequence

0 —> jij*F — F —> i,i*F —> 0. 2.2)
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Now we take F to be a complex modeling Rj,(Z/p" (t)), the total right derived
functor of j, applied to the locally constant sheaf Z/p" () on Ug. We can
identify the terms in the resulting long exact sequence on hypercohomology
as

o H (Yo J2/p" (1) —> H* (Ues 2/ p" (1))
- HHéSt(anl; 7Z/p" () —> -

ves

(2.3)

(cf.[15,11.2.3(a)]), where F‘f‘ denotes the field of fractions of the henselization
R of the discrete valuation ring (OF) ). F!* consists of the elements in the
completion F* that are algebraic over F. Because the inclusion of F" — F)
induces an isomorphism of absolute Galois groups, it induces an isomorphism
HS(FI 2/ p" () — HE(F)3 2 p" (1),

Tate—Poitou duality is a consequence of the long exact sequence (2.3) and
the perfect pairing [15, 11.3.2-3]

HS(Ug; Z/p" (1)) @ H> ™ (Yai; JZ/p" (1 — 1)) —> H>(Ye; hZ/p" (1))
— H3(Yg, jGp) = Q/Z. (2.4)

Here the isomorphism H3 (Y, iG,,) = Q/Z is induced by the map from
C' = coker(H*(Ug; Gp) — l_[ Hézt(F,f'; Gn))

to H3(Yg, yiG,,) (in the corresponding long exact sequence for F =
Rj.(Gy,)), which is an isomorphism, together with the canonical isomorphism
from C’ to

C = coker(H*(Ug; Gp) — 1—[ Hézt(F,,A; Gn))

and the Albert—Brauer—Hasse—Noether isomorphism from C to Q/Z.

In light of the above, the first step for K -theoretic Tate—Poitou duality is to
identify Fib(k) in terms of a spectral version of j, applied to the K (1)-local
algebraic K-theory hypersheaf on Uy. For a Grothendieck site 7', we write
Hyp(7, Sp) for the co-category of hypersheaves of spectra on T ; we under-
stand this as the full subcategory of the co-category Pre(7, Sp) of presheaves
of spectra that satisfy hypercover descent. This also admits a description in
terms of localization: For a presheaf of spectra F, let 7, F denote the sheafi-
fication of the presheaf of abelian groups m,F (homotopy groups applied
objectwise). Work of Jardine [10,11] and Dugger—Hollander—Isaksen [6, 1.1]
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identifies Hyp(7, Sp) as the localization of Pre(7, Sp) obtained by formally
inverting the maps that are isomorphisms on 77, for all n; cf. [14, 6.5.3.13]. The
localization functor Pre(7, Sp) — Hyp(7, Sp) is called hypersheafification.

Asanexample, Thomason [21,2.45 or 2.50] shows that under the hypotheses
that hold there and in particular in our current setting, K (1)-local K -theory is a
hypersheaf on the small étale site. We write KC for the K (1)-localized K -theory
functor and Ky, for the hypersheaf on Uy. It will also be convenient to write
K{thn for Ky, /p" =~ Ky, N Mpn and K/P" for KK/ p™.

The recollement above extends to the context of hypersheaves of spectra;
see [13, A.8.20,A.8.19]). We have a diagram of adjoint pairs of functors of
hypersheaves of spectra

—it— —h—
Hyp(Zs, Sp) —is— Hyp(Yg, Sp) —j*— Hyp(Uy, Sp)
Fi!f F‘]**

mostly analogous to the diagram of adjoint pairs of functors of sheaves of
abelian groups pictured in (2.1), or more precisely analogous to the derived
category extension. (The functors i' and j, are the analogs of the right derived
functors Ri' and Rj, on the derived categories of sheaves of abelian groups.)
The analogue of (2.2) also holds:

Jij*F ~ Fib(F — isi*F)

(see the proof of (b) in [13, A.8.20], where the equivalent adjoint formula is
proved). In particular, taking F to be j Ky, , we have

j!ICUét >~ Fib(j*]CUét — i*i*j*]CUét).

The following theorem relates jiKy, to Fib(x), the homotopy fiber of the
completion map.

Theorem 2.5 The spectrum jiKy,(Yg) of global sections of jiKy,, is p-
equivalent to Fib(x).

Proof We construct a commutative diagram
JsKuy (Ye) —— 5™ j Ky, (Yey)

™

K(Us) ——— [ [ KFD

ves

with the left vertical map the tautological equivalence and the right vertical
map a p-equivalence constructed below. This will then complete the argument
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since the completion map « factors as the bottom horizontal map followed by
the map

[[xFEH — []EED

ves ves

induced by the inclusions F/ Uh — F)', whichis a p-equivalence by Thomason’s
theorem [21, 4.1] proving the K (1)-local Quillen—Lichtenbaum conjecture.

Construction of the righthand map essentially amounts to understanding the
hypersheaf i,i* j. Ky, . Write i ;‘re for the inverse image functor Pre(Yy, Sp) —
Pre(Zg, Sp). Then for v € S, let RI’} denote the henselization of (OF)(,), and
for any finite separable extension k of O /v, let Rf)’ (k) denote the correspond-
ing étale Ri’—algebra (under the usual equivalence of categories [16, 1.4.4]).
Then we have

i% e k|l (speck) = K/P" ((specRli (k) xy U) = K/7" (F)' (k)

(cf. [21, 1.44]) where Ff’ (k) = Rfj (k)[1/ p]is the quotient field. It follows that
Ipre j*IC{/’Z ) satisfies hypercover descent and so computes i * j*IC{fZ . In particu-
lar i,i* j*IC{J’; (Yoo >~ [1 IC{/Z (F). Similarly, (* j Ky, )5 = (e jsKug) s
and this induces the p—equivaience in the diagram. Since the map

K(OF[1/p]) = jiKu, (Ye) —> isithe juku, (Ye) — K(F!

is induced by the map Of[1/p] — Flf‘, the diagram commutes. O

In order to apply the previous theorem, we also need to know how the
pairing JC(OF[1/p]) AFib(k) — Fib(x) relates to the interpretation of Fib(x)
as j!ICUé[(Yét);. Recent work of Clausen—Mathew [4, 2.17] proves that the
hypersheafication functor on any Grothendieck site is lax symmetric monoidal;
it follows that the oco-categories of hypersheaves of spectra on Grothendieck
sites are symmetric monoidal co-categories. The direct image functor is then
a symmetric monoidal functor; in particular, the natural multiplication on K-
theory induces pairings of hypersheaves (natural in n)

j*ICUét N j*ICUét e j*’CUét
Kl 3K, — 1K
compatible with the usual pairings

K(OF[1/p]) AK(OF[1/p]) — K(OF[1/p])
K/ (Or[1/p]) A K/ (OF[1/pl) — K/P"(OF[1/p])
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when passing to global sections. The usual (equivalence on stalks) argument
shows that for any hypersheaves of spectra F and G,

J«F NG = j(FAG),
and in our context, this and the pairings above give pairings (natural in n)

j*’CUé[ A j!’CUé[ — j!(ICUét N ICUé[) - j!ICUél

. n . n . n n . n (26)
‘]*K:{]l; A J!K{][; — ]!(IC{][; A K:{]l; ) — J!K{]it ’

Theorem 2.7 Under the equivalence of Theorem 2.5, the pairing KK(Ofg[1/p])
A Fib(k) — Fib(x) is the induced pairing on global sections from the pairing
of hypersheaves of (2.6).

Proof The equivalence j.F A jiG =~ ji(F AG) is the inverse of the map adjoint
to the equivalence

J GeF AN JG) = j jsF NG =~ F AG; (2.8)

we need to see that it is the map

J«F AFib(juG — i4i* jG) ~ Fib((jsF A jxG) = (juF A ixi*jxG)) —>
Fib((j*f/\ J«G) — (i*i*j*f/\ l*l*J*g)) = Fib(j*(]:/\ g) — i*i*j*(f/\ g)) (29)

under the usual identification of ji with the fiber. Now it is easy to see that (2.9)
is inverse to the adjoint of (2.8) by applying j*. |

3 Proof of the K-theoretic Tate-Poitou duality theorem
In this section we prove the K-theoretic Tate—Poitou duality theorem. We
deduce the result from the classical Tate—Poitou duality theorem; more pre-

cisely, we use the formulation in terms of Artin—Verdier duality (2.4). We argue
in terms of a pairing of étale descent spectral sequences.

Theorem 3.1 The descent spectral sequences

Ey' (U K'Y = H e Z/p"(1/2)) = 73K} (Us) and
Ey' (Yes jK[L) = H (Ve JZ/p"(1/2) == 7 iKY (Ye)
admit a pairing of the form

EYIH, W) ® B} K (Ye) — EFF iy (Ve
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which converges to the pairing

7t Kl WUe) ® g iKY (Ye) —> T svsnvain Kyl (Yer)
induced from the weak equivalences

K Us) = K/ (specOFILD),  and  jK{J (Ye) ~ Fib(x)/?"

and the pairing K/r" (spec(’)p[%]) A Fib(/c)/f’n — Fib(/c)/pn.
We prove this theorem in the next section. In order to apply it, we need to

related the pairing on the E2-term with the pairing in Artin—Verdier duality.
We also prove the following theorem in the next section.

Theorem 3.2 Under the canonical isomorphism

H* (et 2/ " (12)) = Extyy (2 p"(t'12). 2/ p" (12 +1'/2)
= Ext}, (WZ/p"(('/2). JZ/p" /2 +1']2)),

the multiplication on the E>-term in Theorem 3.1
H*(Ug;; Z/p"(1/2)) ® H* (Yer; N2/ p"(t'/2)) —> H*(Yei; JZ/p" (/2 +1'/2))

coincides with the Yoneda pairing

Exty, (JZ/p"(t'/2), )Z/p"(t/2+1'/2)) ® H* (Yer; 2/ p"(1'/2))
— H*(Ye; JZ/p"(t/2+1'/2))

The previous two theorems give all the ingredients we need to prove the
K -theoretic Tate—Poitou duality theorem.

Proof of the K -theoretic Tate—Poitou duality theorem The pairing
lC(speCOF[%]) A Fib(x) —> Fib(k)
and the map
uo,: Fib(k) — Z_IIZPS
of (1.7) give a pairing

K(specOr[5]) AFib(k) — 71,8,
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which induces a map

Fib(k) — =71z, (K(specOr[31) = £~ g z(K(specOr[31) A Mg, z,)-
(3.3)
We need to see that it is a weak equivalence. Since both sides are p-complete,
it suffices to check that (3.3) becomes a weak equivalence after smashing with
the mod p Moore spectrum M, on both sides. Then we are looking at the map

Fib(k)/p — £~ 'Igz(K(specOFl51) A Mg, z,)/p
~ 57 gz (K(specOr[51)/p), (3.4)
which is adjoint to a map
lC(spec(’)F[%])/p AFib(k)/p —> £ gzS. (3.5)
Naturality and the fact that for an odd prime the map
My AMp =~ F(Mp, Mg, /z,) N Mp — Mq,z,
induced by evaluation is the same as the composite of the multiplication on M,
and the inclusion of M), in Mg, 7, imply that the map (3.5) is the composite
of the multiplication
K (specOFrl51)/p A Fib(k)/p —> Fib(k)/p
and the map
Fib(k)/p —> Fib(k) A Mg, /z, — =~ 'Ig/zS
(where Fib(k) A Mg,;z, — £ 'lg,zS is the map (1.6) adjoint to ue;).
Because (2.4) is a perfect pairing, Theorem 3.1 and Theorem 3.2 imply that

(3.5) induces a perfect pairing on homotopy groups

774 (K (specOF[51)/p) ® m—1—4(Fib(k)/ p) —> Q/Z.

This implies that (3.4) is a weak equivalence, and we conclude that (3.3) is a
weak equivalence. |

4 Construction and analysis of the spectral sequence

This section proves Theorems 3.1 and 3.2. For the proof of 3.1, we use a
modern take on the descent spectral sequence of Jardine [12, §6.1] based
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on Postnikov towers rather than the original approach of Thomason based
on the Godement construction; these are well-known to be isomorphic from
E? onwards. As explained by Dugger [5, §4], using Whitehead towers in
place of Postnikov towers leads to the same spectral sequence but with better
multiplicative properties, and we take this approach.

Work of Hedenlund et al. [8] expands on Dugger’s observations on pairing of
spectral sequences and puts them in modern language. Although the category
of bigraded spectral sequences of abelian groups does not form a symmetric
monoidal category, it does form an co-operad under the usual notion of mul-
tilinear pairing. The main theorem of [8] is that the usual construction of a
spectral sequence from a tower of spectra assembles to a map of co-operads.
Here the oco-category of towers is the co-category of spectral presheaves on
the ordered set Z (for the increasing order) and the oo-operad structure is the
Day convolution symmetric monoidal structure for addition [13, 4.8.1.13]. A
pairing of towers A®* A B®* — C* in this structure amounts to (homotopy
coherent) maps

/ ’
A" A B! — C!TT,

A pairing of towers gives a pairing of spectral sequences in the classical sense.

The Whitehead tower is the name for the functor obtained by assembling
into a tower the truncations 7=" in a z-structure. We will write this functor
as W*, ie., W" := t=". In the present context, W* is a functor from the oo-
category of spectra (with the standard z-structure) to the co-category of towers
of spectra. Because the smash product of spectra adds connectivities, this
can be enhanced to a lax symmetric monoidal functor of symmetric monoidal
oo-categories. Because hypersheafication from presheaves of spectra on Ug; to
étale hypersheaves of spectra on Uy, is a symmetric monoidal functor [4, 2.17],
the Whitehead tower functor followed by global sections gives a symmetric
monoidal functor from the co-category of étale hypersheaves on Yy to the
oo-category of towers of spectra.

The descent spectral sequences of Theorem 3.1 apply the above composite
map of oo-operads from étale hypersheaves of spectra to spectral sequences.
Concretely, the first spectral sequence in 3.1 is the homotopy group spectral
sequence of the tower of spectra

> WK (Ue) —> (WKL) (Ug) —> -
As an abbreviation in the work below, we write

/" _ /p" t+14-/P"
CtKUét - (WZICUét W ’CUét)
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for the pair W' HIC{]I? tn — W! K{]p :1 In particular,
T (CTKYY (Ug)) = o Cof (WKL) (Ug) = (WKL) (Ug).-
Since fr,lC{]’Z ln =7/p"(t/2), we get a canonical isomorphism

711 (C'KYY (Ug)) = HE (Ugis 2/ p"(2/2).

The spectral sequence then has E»-term (with the standard Whitehead/Postnikov
Atiyah—Hirzebruch renumbering)

Ey' = my(C'KYf, (Ue) = H* (Ui 2/ p" (/)
and abuts to the colimit

colim 74 (WKL) (Us) = 7514 (KLY (Ue0)).

Because holim(W‘IC{/‘Z :)(Uét) =~ x, the spectral sequence converges condi-
tionally [1, 5.10]. Because H*(Ug; Z/p"(¢/2)) is only non-zero in a finite
range, the spectral sequence converges strongly [1, 6.1] to the abutment

ms+K1f), (Ug).
For the spectral sequence on Fib(k), we use the tower

e G Ye) — GIWKLE ) (Ye) —> -+

We abbreviate
X' = WK > FibGu WK — i WKL)
and write
C'x = X', x'th
for the pair. We then have
71 C X (Yg) = H (Vg jiit K

and the tower of spectra X'®(Y,) gives a spectral sequence with

Ey' = oy (X (Ya), X' (Ye)) = H (Ve JZ/p"(1/2)
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that abuts to the colimit

colim 7y, X* (V) = 74, (WKL) (V).

Again because the homotopy limit of X’® is trivial and H* (Yg; hZ/p"(t/2))
is only non-zero in a finite range, the spectral sequence converges strongly,
and w_g,colimX’® (Yg,) is isomorphic to m_,Fib(k) by the comparison map.
The pairing property of W* induces a pairing
W (Us) A X" (Ye) = W' KL (Ya) A W KD (Ye)
— W (Ve AL (Ya)) —> AWK (Ve) = X1 (Y,

inducing a pairing of spectral sequences. Theorem 2.7 identifies this with our
standard model

K/P" (specOF[$]1) A Fib()/ " —> Fib(c)”"

for the pairing of the K (1)-local mod p" algebraic K -theory and the fiber.
This completes the proof of Theorem 3.1. Next we need to identify the
multiplication on the E>-term, which takes the form

H* (Ui Z/ p"(1/2)) ® HY (Yai: JZ/p"(¢'/2)) —> H*™ (Yer G2/ p"(1/2+1'/2)).
In the notation above, the multiplication is induced by the map of pairs
O (Ye) A CM X (Yg) — CH X (Y.

By construction the homotopy cofiber of the pair j,C’ K{]p :l is a model for the

étale hypersheaf X7 j, HZ/ p" (¢ /2) on Y¢ and the homotopy cofiber of the pair
C" X is a model for the étale hypersheaf =7 jiHZ/ p"(1'/2) on Y. Thus, we
can identify the induced map on homotopy groups of global sections as the
composite of the cup product

H*(Ug; Z/ p" (t'/2)) ® H* (Yei; 12/ p" (1/2))
= H*(Ye; jkHZ/p"(1'/2)) ® H* (Ye; NHZ/p" (1/2))
— H*(Yei; j«HZ/p"(t'/2) A JHZ/ p" (1/2))

and the map of étale hypersheaves

WHZ/P"(t'/2) N WHZ/P"(t)2) — JHZ/p"(t/2+1'/2)
~ HJZ/p"(t/2+1'/2)
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induced by the pairing. Using the equivalence of étale hypersheaves of spectra
WHZ/p"(t/2) N W HZ/p"(t'/2) = ji(HZ/p" (t/2) A HZ/p"(t'/2)),
since the target
JHZ/p"(t/2+1'/2) = HHZ/p"(t/2 +1'/2)

is an Filenberg—Mac Lane presheaf, the map is determined by the factorization
through the coconnective cover

JHZ/p"(t/2) N HZ/p"(t'/2)) (=00, 01 = ji(HZ/p" (/2 +1'/2)).

By looking at stalks, we see that the self-map of ji(HZ/p"(t/2+1"/2)) is the
identity. As a consequence, it follows that the map

H*(Uei Z/ p" (t/2)) ® H* (Yei: WZ/p"(t'/2)) —> H*(Ye; JZ/p" (/2 +1/2))

on the E;-term in Theorem 3.1 factors through the corresponding cup product
map in the derived category of sheaves of abelian groups on Yy,

H*(Ug; Z) p™(1/2)) ® H* (Yei; hZ/ p"(t'/2))
= H*(Ye; RjsZ/p"(1/2)) ® H* (Yei; hZ/p"(1'/2))
— H*(Hap(Yer: RjxZ/p" (t/2)) ®" Hoap (Yei: 1Z/p"(t'/2)))
— H*(Yer: RjLZ/p"(t/2) @™ HiZ/ p" (1 /2))
= H*(Yei: /(Z/p" (1/2) " Z/p"(1'/2)))
— H*(Ye, j(Z/p"(t/2) @ Z/ p" (1 /2)))
= H*(Ya, 2/ p"(1/2+1'/2)).

Here for ease of comparison to algebraic conventions, we have switched to
derived category notation and written H 45 (Yg; —) for the hypercohomology
object of a sheaf of abelian groups (i.e., the sections of the hypersheaf, viewed
as an object of the derived category of abelian groups) and H*(Yg; —) for its
hypercohomology groups H*(H 45 (Ys; —)).

This identifies the multiplication on the E5 term in terms of the cup product,
and Theorem 3.2 now follows from the basic relationship between the cup
product and the Yoneda product in the derived category of sheaves of abelian
groups on Yy, cf. [16, §5.1]: For sheaves of abelian groups F and G, the
following diagram in the derived category commutes
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H 45 (Ye: R Hom(F, G)) @F H 45 Yei; F) — H 4 (Ye; R Hom(F, G) @ F)

- |

RHom(F, G) @ H 45 (Yei; F) H 4y (Yei: G)

where the top arrow is the cup product and the bottom arrow and righthand
arrows are the appropriate evaluation maps. This completes the proof of The-
orem 3.2.
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