
1

Distributed heavy-ball: A generalization and acceleration of
first-order methods with gradient tracking

Ran Xin, Student Member, IEEE, and Usman A. Khan, Senior Member, IEEE

Abstract—We study distributed optimization to minimize a
global objective that is a sum of smooth and strongly-convex local
cost functions. Recently, several algorithms over undirected and
directed graphs have been proposed that use a gradient tracking
method to achieve linear convergence to the global minimizer.
However, a connection between these different approaches has
been unclear. In this paper, we first show that many of the existing
first-order algorithms are in fact related with a simple state trans-
formation, at the heart of which lies the AB algorithm. We then
describe distributed heavy-ball, denoted as ABm, i.e., AB with
momentum, that combines gradient tracking with a momentum
term and uses nonidentical local step-sizes. By simultaneously
implementing both row- and column-stochastic weights, ABm
removes the conservatism in the related work due to doubly-
stochastic weights or eigenvector estimation. ABm thus naturally
leads to optimization and average-consensus over both undirected
and directed graphs, casting a unifying framework over sev-
eral well-known consensus algorithms over arbitrary strongly-
connected graphs. We show that ABm has a global R-linear
rate when the largest step-size is positive and sufficiently small.
Following the standard practice in the heavy-ball literature, we
numerically show that ABm achieves accelerated convergence
especially when the objective function is ill-conditioned.

Index Terms—Distributed optimization, linear convergence,
first-order method, heavy ball method, momentum.

I. INTRODUCTION

We consider distributed optimization, where n agents col-
laboratively solve the following problem:

min
x∈Rn

F (x) ,
1

n

n∑
i=1

fi(x),

and each local objective, fi : Rp → R, is smooth and strongly-
convex. The goal of the agents is to find the global minimizer
of the aggregate cost via only local communication with their
neighbors. This formulation has recently received great interest
with applications in e.g., machine learning [1–4], control [5],
cognitive networks, [6, 7], and source localization [8, 9].

Early work on this topic builds on the seminal work by
Tsitsiklis in [10] and includes Distributed Gradient Descent
(DGD) [11] and distributed dual averaging [12] over undi-
rected graphs. Leveraging push-sum consensus [13], Refs. [14,
15] extend the DGD framework to directed graphs. Based on
a similar concept, Refs. [16, 17] propose Directed-Distributed
Gradient Descent (D-DGD) for directed graphs that is based on
surplus consensus [18]. In general, the DGD-based methods
achieve sublinear convergence at O

(
log k√
k

)
, where k is the

number of iterations, because of the diminishing step-size
used in the iterations. The convergence rate of DGD can be
improved with the help of a constant step-size but at the

The authors are with the ECE Department at Tufts University, Medford,
MA; ran.xin@tufts.edu, khan@ece.tufts.edu. This work has
been partially supported by an NSF Career Award # CCF-1350264.

expense of an inexact solution [19, 20]. Follow-up work also
includes augmented Lagrangians [21–24], which shows exact
linear convergence for smooth and strongly-convex functions,
albeit requiring higher computation at each iteration.

To improve convergence and retain computational simplic-
ity, fast first-order methods that do not (explicitly) use a
dual update have been proposed. Reference [25] describes a
distributed Nesterov-type method based on multiple consensus
inner loops, at O

(
log k
k2

)
for smooth and convex functions,

with bounded gradients. EXTRA [26] uses the difference of
two consecutive DGD iterates to achieve an O

(
1
k

)
rate for

arbitrary convex functions and a Q-linear rate for strongly-
convex functions. DEXTRA [27] combines push-sum [13]
and EXTRA [26] to achieve an R-linear rate over directed
graphs given that a constant step-size is carefully chosen in
some interval. Refs. [28, 29] apply an adapt-then-combine
structure [30] to EXTRA [26] and generalize the symmetric
weights in EXTRA to row-stochastic, over undirected graphs.

Noting that DGD-type methods are faster with a constant
step-size, recent work [31–40] uses a constant step-size and
replaces the local gradient, at each agent in DGD, with an
estimate of the global gradient. A method based on gradient
tracking was first shown in [31] over undirected graphs, which
proposes Aug-DGM (that uses nonidentical step-sizes at the
agents) with the help of dynamic consensus [41] and shows
convergence for smooth convex functions. When the step-
sizes are identical, the convergence rate of Aug-DGM was
derived to be O

(
1
k

)
for arbitrary convex functions and R-

linear for strongly-convex functions in [32]. ADD-OPT [33]
extends [32] to directed graphs by combining push-sum with
gradient tracking and derives a contraction in an arbitrary norm
to establish an R-linear convergence rate when the global
objective is smooth and strongly-convex. Ref. [34] extends
the analysis in [32, 33] to time-varying graphs and establishes
an R-linear convergence using the small gain theorem [42].
In contrast to the aforementioned methods [31–34], where
the weights are doubly-stochastic for undirected graphs and
column-stochastic for directed graphs, FROST [35, 36] uses
row-stochastic weights, which have certain advantages over
column-stochastic weights. Ref. [39] unifies EXTRA [26] and
gradient tracking methods [31, 32] in a primal-dual frame-
work over static undirected graphs. More recently, Ref. [38]
proposes distributed Nesterov over undirected graphs that
also uses gradient tracking and shows a convergence rate
of O((1 − cQ− 5

7)k) for smooth, strongly-convex functions,
where Q is the condition number of the global objective.
Refs. [43, 44], on the other hand, consider gradient tracking in
distributed non-convex problems, while Ref. [40] uses second-
order information to accelerate the convergence.

ar
X

iv
:1

80
8.

02
94

2v
2

 [m
at

h.
O

C
]

10
 A

ug
 2

01
8

2

Of significant relevance here is the AB algorithm [37], also
appeared later in [45], which can be viewed as a generalization
of distributed first-order methods with gradient tracking. In
particular, the algorithms over undirected graphs in Refs. [31,
32] are a special case of AB because the doubly-stochastic
weights therein are replaced by row- and column- stochastic
weights. AB thus is naturally applicable to arbitrary directed
graphs. Moreover, the use of both row- and column-stochastic
weights removes the need for eigenvector estimation1, required
earlier in [33–36]. Ref. [37] derives an R-linear rate for AB
when the objective functions are smooth and strongly-convex.
In this paper, we provide an improved understanding of AB
and extend it to the ABm algorithm, a distributed heavy-ball
method, applicable to both undirected and directed graphs. We
now summarize the main contributions:

1) We show that many of the existing accelerated first-order
methods are either a special case of AB [31, 32], or can
be adapted from its equivalent forms [33–36].

2) We propose a distributed heavy-ball method, termed
as ABm, that combines AB with a heavy-ball (type)
momentum term. To the best of our knowledge, this paper
is the first to use a momentum term based on the heavy-
ball method in distributed optimization.

3) ABm employs nonidentical step-sizes at the agents and
thus its analysis naturally carries to nonidentical step-
sizes in AB and to the related algorithms in [31–36].

4) We cast a unifying framework for consensus over arbi-
trary graphs that results from ABm and subsumes several
well-known algorithms [18, 46].

On the analysis front, we show that AB (without momentum)
converges faster as compared to the algorithms over directed
graphs in [33–36], where separate iterations for eigenvector
estimation are applied nonlinearly to the underlying algorithm.
Towards ABm, we establish a global R-linear convergence
rate for smooth and strongly-convex objective functions when
the largest step-size at the agents is positive and sufficiently
small. This is in contrast to the earlier work on non-identical
step-sizes within the framework of gradient tracking [31, 47–
49], which requires the heterogeneity among the step-sizes to
be sufficiently small, i.e., the step-sizes are close to each other.
We also acknowledge that similar to the centralized heavy-ball
method [50, 51], dating back to more than 50 years, and the
recent work [52–58], a global acceleration can only be shown
via numerical simulations. Following the standard practice,
we provide simulations to verify that ABm has accelerated
convergence, the effect of which is more pronounced when
the global objective function is ill-conditioned.

We now describe the rest of the paper. Section II provides
preliminaries, problem formulation, and introduces distributed
heavy-ball, i.e., the ABm algorithm. Section III establishes
the connection between AB and related algorithms. Section IV
includes the main results on the convergence analysis, whereas
Section V provides a family of average-consensus algorithms
that result naturally from ABm. Finally, Section VI provides
numerical experiments and Section VII concludes the paper.

1Simultaneous application of both row- and column-stochastic weights
was first employed for average-consensus in [18] and towards distributed
optimization in [16, 17], albeit without gradient tracking.

Basic Notation: We use lowercase bold letters to denote
vectors and uppercase letters for matrices. The matrix, In,
is the n × n identity, whereas 1n (0n) is the n-dimensional
column vector of all ones (zeros). For an arbitrary vector, x,
we denote its ith element by [x]i and its largest and smallest
element by [x]max and [x]min, respectively. We use diag(x)
to denote a diagonal matrix that has x on its main diagonal.
For two matrices, X and Y , diag (X,Y) is a block-diagonal
matrix with X and Y on its main diagonal, and X⊗Y denotes
their Kronecker product. The spectral radius of a matrix, X ,
is represented by ρ(X). For a primitive, row-stochastic ma-
trix, A, we denote its left and right eigenvectors corresponding
to the eigenvalue of 1 by πr and 1n, respectively, such
that π>r 1n = 1; similarly, for a primitive, column-stochastic
matrix, B, we denote its left and right eigenvectors corre-
sponding to the eigenvalue of 1 by 1n and πc, respectively,
such that 1>nπc = 1. For a matrix X , we denote X∞ as its
infinite power (if it exists), i.e., X∞ = limk→∞Xk. From
the Perron-Frobenius theorem [59], we have A∞ = 1nπ

>
r

and B∞ = πc1
>
n . We denote ‖·‖A and ‖·‖B as some arbitrary

vector norms, the choice of which will be clear in Lemma 1,
while ‖·‖ denotes the Euclidean matrix and vector norms.

II. PRELIMINARIES AND PROBLEM FORMULATION

Consider n agents connected over a directed graph, G =
(V , E), where V = {1, · · · , n} is the set of agents, and E is
the collection of ordered pairs, (i, j), i, j ∈ V , such that agent j
can send information to agent i, i.e., j → i. We define N in

i as
the collection of in-neighbors of agent i, i.e., the set of agents
that can send information to agent i. Similarly, N out

i is the
set of out-neighbors of agent i. Note that both N in

i and N out
i

include agent i. The agents solve the following problem:

P1 : min
x∈Rn

F (x) ,
1

n

n∑
i=1

fi(x),

where each fi : Rp → R is known only to agent i. We
formalize the set of assumptions as follows.

Assumption A1. The graph, G, is strongly-connected.

Assumption A2. Each local objective, fi, is µi-strongly-
convex, i.e., ∀i ∈ V and ∀x,y ∈ Rp, we have

fi(y) ≥ fi(x) +∇fi(x)>(y − x) +
µi
2
‖x− y‖2,

where µi ≥ 0 and
∑n
i=1 µi > 0.

Assumption A3. Each local objective, fi, is li-smooth, i.e.,
its gradient is Lipschitz-continuous: ∀i ∈ V and ∀x,y ∈ Rp,
we have, for some li > 0,

‖∇fi(x)−∇fi(y)‖ ≤ li‖x− y‖.

Assumptions A2 and A3 ensure that the global mini-
mizer, x∗ ∈ Rp, of F exists and is unique [60]. In the sub-
sequent analysis, we use µ , 1

n

∑n
i=1 µi and l , 1

n

∑n
i=1 li,

as the strong-convexity and Lipschitz-continuity constants, re-
spectively, for the global objective, F . We define l , maxi li.
We next describe the heavy-ball method that is credited to
Polyak and then introduce the distributed heavy-ball method,
termed as the ABm algorithm, to solve Problem P1.

3

A. Heavy-ball method

It is well known [51, 60] that the best achievable conver-
gence rate of the gradient descent algorithm,

xk+1 = xk − α∇F (xk) ,

is O((Q−1Q+1)k), where Q , l
µ is the condition number of

the objective function, F . Clearly, gradient descent is quite
slow when Q is large, i.e., when the objective function is ill-
conditioned. The seminal work by Polyak [50, 51] proposes
the following heavy-ball method:

xk+1 = xk − α∇F (xk) + β(xk − xk−1), (1)

where β (xk − xk−1) is interpreted as a “momentum” term,
used to accelerate the convergence process. Polyak shows that
with a specific choice of α and β, the heavy-ball method
achieves a local accelerated rate of O((

√
Q−1√
Q+1

)k). By local,
it is meant that the acceleration can only be analytically
shown when ‖x0−x∗‖ is sufficiently small. Globally, i.e., for
arbitrary initial conditions, only linear convergence is estab-
lished, while an analytical characterization of the acceleration
is still an open problem, see related work in [52, 53, 56–
58]. Numerical analysis and simulations are often employed
to show global acceleration, i.e., it is possible to tune α
and β such that the heavy-ball method is faster than gradient
descent [54, 55].

B. Distributed heavy-ball: The ABm algorithm

Recall, that our goal is to solve Problem P1 when the agents,
possessing only local objectives, exchange information over
a strongly-connected directed graph, G. Each agent, i ∈ V ,
maintains two variables: xik, yik ∈ Rp, where xik is the
local estimate of the global minimizer and yik is an auxiliary
variable. The ABm algorithm, initialized with arbitrary xi0’s,
xi−1 = 0p and yi0 = ∇fi(xi0), ∀i ∈ V , is given by2:

xik+1 =

n∑
j=1

aijx
j
k − αiy

i
k + βi

(
xik − xik−1

)
, (2a)

yik+1 =

n∑
j=1

bijy
j
k +∇fi

(
xik+1

)
−∇fi

(
xik
)
, (2b)

where αi ≥ 0 and βi ≥ 0 are respectively the local step-
size and the momentum parameter adopted by agent i. The
weights, aij’s and bij’s, are associated with the graph topology
and satisfy the following conditions:

aij =

 > 0, j ∈ N in
i ,

0, otherwise,

n∑
j=1

aij = 1, ∀i,

bij =

 > 0, i ∈ N out
j ,

0, otherwise,

n∑
i=1

bij = 1, ∀j.

2We note that several variants of this algorithm can be extracted by con-
sidering an adapt-then-combine update, e.g.,

∑n
j=1 bij(y

j
k +∇fi(x

i
k+1

)
−

∇fi
(
xik)), see [37], instead of the combine-then-adapt update that we have

used here in Eq. (2b). The momentum term in Eq. (2a) can also be integrated
similarly. We choose one of the applicable forms and note that extensions to
other cases follow from this exposition and the subsequent analysis.

Note that the weight matrix, A = {aij}, in Eq. (2a) is RS
(row-stochastic) and the weight matrix, B = {bij} in Eq. (2b)
is CS (column-stochastic), both of which can be implemented
over undirected and directed graphs alike. Intuitively, Eq. (2b)
tracks the average of local gradients, 1

n

∑n
i=1∇fi(xik),

see [31–39, 41], and therefore Eq. (2a) asymptotically ap-
proaches the centralized heavy-ball, Eq. (1), as the descent
direction yik becomes the gradient of the global objective.

Vector form: For the sake of analysis, we now write ABm
in vector form. We use the following notation:

xk ,


x1
k

...

xnk

 , yk ,


y1
k

...

ynk

 , ∇f(xk) ,


∇f1(x1

k)
...

∇fn(xnk)

 ,
all in Rnp. Let α and β define the vectors of the step-sizes
and the momentum parameters, respectively. We now define
augmented weight matrices, A,B, and augmented step-size
and momentum matrices, Dα, Dβ:

A , A⊗ Ip, Dα , diag(α)⊗ Ip,
B , B ⊗ Ip, Dβ , diag(β)⊗ Ip,

all in Rnp×np. Using the notation above, ABm can be
compactly written as:

xk+1 = Axk −Dαyk +Dβ (xk − xk−1) , (3a)
yk+1 = Byk +∇f(xk+1)−∇f(xk), . (3b)

We note here that when βi = 0, ∀i, ABm reduces to AB [37],
albeit with two distinguishing features: (i) the algorithm in [37]
uses an identical step-size, α, at each agent; and (ii) Eq. (2b)
in [37] is in an adapt-then-combine form.

III. CONNECTION WITH EXISTING FIRST-ORDER METHODS

In this section, we provide a generalization of several
existing methods that employ gradient tracking [31–36] and
show that AB lies at the heart of these approaches. To proceed,
we rewrite the AB updates below (without momentum) [37].

xk+1 = Axk − αyk, (4a)
yk+1 = Byk +∇f(xk+1)−∇f(xk). (4b)

Since AB uses both RS and CS weights simultaneously, it is
natural to ask how are the optimization algorithms that require
the weight matrices to be doubly-stochastic (DS) [26, 31, 32,
34], or only CS [33, 34], or only RS [35, 36], are related to
each other. We discuss this relationship next.
Optimization with DS weights: Refs. [31, 32, 34] consider
the following updates, termed as Aug-DGM in [31] and
DIGing in [34]:

xk+1 =Wxk − αyk, (5a)
yk+1 =Wyk +∇f(xk+1)−∇f(xk), (5b)

whereW = W⊗Ip, and W is a DS weight matrix. Clearly, to
obtain DS weights, the underlying graph must be undirected
(or balanced) and thus the algorithm in Eqs. (5) is not
applicable to arbitrary directed graphs. That AB generalizes

4

Eqs. (5) is straightforward as the DS weights naturally satisfy
the RS requirement in the top update and the CS requirement
in the bottom update, while the reverse is not true. Similarly,
we note that a related algorithm, EXTRA [26], is given by

xk+1 = (I +W)xk − W̃xk−1 − α (∇f(xk)−∇f(xk−1)) ,

where the two weight matrices,W and W̃ , must be symmetric
and satisfy some other stringent requirements, see [26] for
details. Eliminating the yk-update in AB, we note that AB
can be written in the EXTRA format as follows:

xk+1 = (I + (A+ B − I))xk

− (BA)xk−1 − α (∇f(xk)−∇f(xk−1)) . (6)

It can be seen that the linear convergence of AB does not
follow from the analysis in [26] as A+ B − I and BA are
not necessarily symmetric. Analysis of the AB algorithm,
therefore, generalizes that of EXTRA to non-doubly-stochastic
and non-symmetric weight matrices.
Optimization with CS weights: We now relate AB to ADD-
OPT/Push-DIGing that only require CS weights [33, 34].
Since B is already CS in AB, it suffices to seek a state trans-
formation that transforms A from RS to CS, while respecting
the graph topology. To this aim, let us consider the follow-
ing transformation on the xk-update in AB: x̃k , Πrxk,
where Πr , diag(nπr)⊗ Ip and πr is the left-eigenvector of
the RS weight matrix, A, corresponding to the eigenvalue 1.
The resulting transformed AB is given by

x̃k+1 = B̃ x̃k − αΠryk, (7a)

xk+1 = (diag(nπr)⊗ Ip)−1 x̃k+1, (7b)
yk+1 = Byk +∇f(xk+1)−∇f(xk), (7c)

where it is straightforward to show that B̃ = ΠrAΠ−1r is now
CS and B̃ (πr ⊗ Ip) = πr ⊗ Ip.

In order to implement the above equations, two different
CS matrices (B̃ and B) suffice, as long as they are primitive
and respect the graph topology. The second update requires
the right-eigenvector of the CS matrix used in the first update,
i.e., B̃. Since this eigenvector is not known locally to any
agent, ADD-OPT/Push-DIGing [33, 34] propose learning this
eigenvector with the following iterations: wk+1 = B̃wk,w0 =
1np. The algorithms provided in [33, 34] essentially implement
Eqs. (7), albeit with two differences: (i) the same CS weight
matrix is used in all updates; and, (ii) the division in Eq. (7b)
is replaced by the estimated component, wi

k+1, of the left-
eigenvector at each agent. This nonlinearity causes stability
issues in ADD-OPT/Push-DIGing, whereas their convergence
compared to AB is slower because such an eigenvector esti-
mation is not needed in the latter on the account of using the
RS weights. Furthermore, the local step-sizes are now given
by nα[πr]i that shows that ADD-OPT/Push-DIGing should
work with nonidentical step-sizes.
Optimization with RS weights: The state transformation
technique discussed above also leads to an algorithm from AB
that only requires RS weights. Since A in AB is RS, a
transformation now is imposed on the yk-update and is given
by ỹk , Π−1c yk, where Πc , diag(πc) ⊗ Ip, and πc is the

right-eigenvector of the CS weight matrix, B, corresponding
to the eigenvalue 1. Equivalently, AB is given by

xk+1 = Axk − αΠcỹk, (8a)

ỹk+1 = Ãỹk + Π−1c (∇f(xk+1)−∇f(xk)) , (8b)

where Ã = Π−1c BΠc is now RS and
(
π>c ⊗ Ip

)
Ã = π>c ⊗Ip.

Since the above form of AB cannot be implemented be-
cause πc is not locally known, an eigenvector estimation
is used in FROST [35, 36] and the division in Eq. (8b) is
replaced with the appropriate estimated component of πc. The
observations on different weight matrices in the two updates,
nonidentical step-sizes, stability, and convergence made earlier
for ADD-OPT/Push-DIGing are also applicable here.

In conclusion, the AB algorithm has various equivalent rep-
resentations and several already-known protocols can in fact
be derived from these representations. In a similar way, ABm
leads to protocols that add momentum to Aug-DGM, ADD-
OPT/Push-DIGing, and FROST. We will revisit the relation-
ship and equivalence cast here in Sections V and VI. In
Section V, we will show that both AB and ABm naturally
provide a non-trivial class of average-consensus algorithms, a
special case of which are [46] and surplus consensus [18]. In
Section VI, we will compare these algorithms numerically.

IV. CONVERGENCE ANALYSIS

We now start the convergence analysis of the proposed
distributed heavy-ball method, ABm. In the following, we first
provide some auxiliary results borrowed from the literature.

A. Auxiliary Results
The following lemma establishes contractions with RS and

CS matrices under arbitrary norms [37]; note thacontraction in
the Euclidean norm is not applicable unless the weight matrix
is DS as in [32, 34]. A similar result was first presented in [33]
for CS matrices, and later in [35, 36] for RS matrices.

Lemma 1. Consider the augmented weight matrices A and B.
There exist vector norms, denoted as ‖·‖A and ‖·‖B, such
that ∀x ∈ Rnp,

‖Ax−A∞x‖A ≤ σA ‖x−A∞x‖A , (9)
‖Bx− B∞x‖B ≤ σB ‖x− B∞x‖B , (10)

where 0 < σA < 1 and 0 < σB < 1 are some constants.

The next lemma from [37] states that the sum of yik’s pre-
serves the sum of local gradients. This is a direct consequence
of the dynamic consensus [41] employed with CS weights in
the yk-update of ABm.

Lemma 2. (1>n ⊗ Ip)yk = (1>n ⊗ Ip)∇f(xk), ∀k.

The next lemma is standard in the convex optimization
theory [61]. It states that the distance to the optimizer contracts
at each step in the standard gradient descent method.

Lemma 3. Let F be µ-strongly-convex and l-smooth. For 0 <
α < 2

l , we have

‖x− α∇F (x)− x∗‖ ≤ σF ‖x− x∗‖ ,
where σF = max (|1− µα| , |1− lα|).

5

Finally, we provide a result from nonnegative matrix theory.

Lemma 4. (Theorem 8.1.29 in [59]) Let X ∈ Rn×n be a
nonnegative matrix and x ∈ Rn be a positive vector. If Xx <
ωx with ω > 0, then ρ(X) < ω.

B. Main results

The convergence analysis of ABm is based on deriving
a contraction relationship between the following four quan-
tities: (i) ‖xk+1 − A∞xk+1‖A, the consensus error in the
network; (ii) ‖A∞xk+1 − 1n ⊗ x∗‖, the optimality gap;
(iii) ‖xk+1 − xk‖, the state difference; and (iv) ‖yk+1 −
B∞yk+1‖B, the (biased) gradient estimation error. We will
establish an LTI-system inequality where the state vector is
the collection of these four quantities and then develop the
convergence properties of the corresponding system matrix.
Before we proceed, note that since all vector norms on finite-
dimensional vector spaces are equivalent [59], there exist
positive constants cAB, cBA, c2A, cA2, c2B, cB2 such that

‖ · ‖A ≤ cAB‖ · ‖B, ‖ · ‖ ≤ c2A‖ · ‖A, ‖ · ‖A ≤ cA2‖ · ‖,
‖ · ‖B ≤ cBA‖ · ‖A, ‖ · ‖ ≤ c2B‖ · ‖B, ‖ · ‖B ≤ cB2‖ · ‖.

We also define α , [α]max and β , [β]max. In the following,
we first provide an upper bound on the estimate, yk, of the
gradient of the global objective that will be useful in deriving
the aforementioned LTI system.

Lemma 5. The following inequality holds, ∀k:

‖yk‖ ≤ c2Al ‖B∞‖ ‖xk −A∞xk‖A + c2B‖yk − B∞yk‖B
+ l ‖B∞‖ ‖A∞xk − 1n ⊗ x∗‖.

Proof. Recall that B∞ = (πc ⊗ Ip)(1>n ⊗ Ip). We have

‖yk‖ ≤ c2B ‖yk − B∞yk‖B + ‖B∞yk‖ . (11)

We next bound ‖B∞yk‖:

‖B∞yk‖ = ‖(πc ⊗ Ip)(1>n ⊗ Ip)∇f(xk)‖,
= ‖πc‖

∥∥∑n
i=1∇fi(x

i
k)−

∑n
i=1∇fi(x

∗)
∥∥ ,

≤ ‖πc‖ l
√
n‖xk − 1n ⊗ x∗‖,

≤ c2A l ‖B∞‖ ‖xk −A∞xk‖A
+ l ‖B∞‖ ‖A∞xk − 1n ⊗ x∗‖, (12)

where the first inequality uses Jensen’s inequality and the last
inequality uses the fact that ‖B∞‖ =

√
n‖πc‖. The lemma

follows by plugging Eq. (12) into Eq. (11).

In the next Lemmas 6-9, we derive the relationships among
the four quantities mentioned above. We start with a bound
on ‖xk+1 −A∞xk+1‖A, the consensus error in the network.

Lemma 6. The following inequality holds, ∀k:

‖xk+1 −A∞xk+1‖A
≤
(
σA + αcA2c2A l ‖Inp −A∞‖ ‖B∞‖

)
‖xk −A∞xk‖A

+ αcA2 l ‖Inp −A∞‖ ‖B∞‖ ‖A∞xk − 1n ⊗ x∗‖
+ βcA2 ‖Inp −A∞‖ ‖xk − xk−1‖
+ αcA2c2B ‖Inp −A∞‖ ‖yk − B∞yk‖B .

Proof. First, note that A∞A = A∞. Following the xk-
update of ABm in Eq. (3a) and using the one-step contraction
property of A from Lemma 1, we have:∥∥xk+1 −A∞xk+1

∥∥
A

=
∥∥Axk −Dαyk +Dβ(xk − xk−1)

−A∞
(
Axk −Dαyk +Dβ(xk − xk−1)

)∥∥
A,

≤ σA ‖xk −A∞xk‖A + α cA2 ‖Inp −A∞‖ ‖yk‖
+ β cA2 ‖Inp −A∞‖ ‖xk − xk−1‖ ,

and the proof follows from Lemma 5.

Next, we derive a bound for ‖A∞xk+1 − 1n ⊗ x∗‖, which
can be interpreted as the optimality gap between the network
accumulation state, A∞xk, and the global minimizer, 1n⊗x∗.

Lemma 7. The following inequality holds, ∀k, when
0 < π>r diag(α)πc <

2
nl :

‖A∞xk+1 − 1n ⊗ x∗‖
≤ α

(
π>r πc

)
nlc2A ‖xk −A∞xk‖A

+ λ ‖A∞xk − 1n ⊗ x∗‖
+ β‖A∞‖‖xk − xk−1‖
+ αc2B‖A∞‖ ‖yk − B∞yk‖B , (13)

where λ = max
{∣∣1− µnπ>r diag(α)πc

∣∣ , ∣∣1− lnπ>r diag(α)πc
∣∣} .

Proof. Recall the xk-update of ABm in Eq. (3a), we have that

‖A∞xk+1 − 1n ⊗ x∗‖
=
∥∥A∞(Axk −Dαyk +Dβ(xk − xk−1)

)
− 1n ⊗ x∗

∥∥ ,
=
∥∥A∞(Axk −Dαyk + (Dα −Dα)B∞yk

+Dβ(xk − xk−1)
)
− 1n ⊗ x∗

∥∥,
≤‖A∞xk −A∞DαB∞∇f (xk)− (1n ⊗ Ip)x∗‖

+ β‖A∞‖‖xk − xk−1‖
+ αc2B‖A∞‖ ‖yk − B∞yk‖B , (14)

where in the last inequality, we use B∞yk = B∞∇f (xk)
adapted from Lemma 2. Since the last two terms in Eq. (14)
match the last two terms in Eq. (13), what is left is to bound
the first term. Before we proceed, define

x̃k , (π>r ⊗ Ip)xk,

∇f ((1n ⊗ Ip)x̃k) ,
[
∇f1(x̃k)>, · · · ,∇fn(x̃k)>

]>
,

and note that

A∞DαB∞
= (1n ⊗ Ip)

(
π>r ⊗ Ip

)
(diag(α)⊗ Ip) (πc ⊗ Ip)

(
1>n ⊗ Ip

)
=
(
π>r diag(α)πc

)
(1n ⊗ Ip)

(
1>n ⊗ Ip

)
.

Now we bound the first term in Eq. (14). We have

‖A∞xk −A∞DαB∞∇f(xk)− (1n ⊗ Ip)x∗‖

=
∥∥∥ (1n ⊗ Ip)(x̃k − (π>r diag(α)πc)(1

>
n ⊗ Ip)∇f(xk)− x∗

)∥∥∥,
≤
∥∥∥(1n ⊗ Ip)(x̃k − n(π>r diag(α)πc)∇F (x̃k)− x∗

)∥∥∥
+ π>r diag(α)πc

∥∥∥(1n ⊗ Ip) (n∇F (x̃k)− (1>n ⊗ Ip)∇f(xk)
)∥∥∥ ,

, s1 + s2,

6

and we bound s1 and s2 next. Using Lemma 3, we have that
if 0 < π>r diag(α)πc <

2
nl ,

s1 =
√
n
∥∥x̃k − n(π>r diag(α)πc)∇F (x̃k)− x∗

∥∥ ,
≤
√
nλ ‖x̃k − x∗‖ ,

= λ ‖A∞xk − 1n ⊗ x∗‖ , (15)

where λ = max
{∣∣1− µnπ>r diag(α)πc

∣∣ , ∣∣1− lnπ>r diag(α)πc
∣∣} .

We next bound s2. Since ∇F (x̃k) =
1
n
(1>n ⊗ Ip)∇f(x̃k),

s2 ≤
(
π>r diag(α)πc

)
n ‖∇f ((1n ⊗ Ip)x̃k)−∇f(xk)‖ ,

≤
(
π>r diag(α)πc

)
nlc2A ‖xk −A∞xk‖A ,

≤ α
(
π>r πc

)
nlc2A ‖xk −A∞xk‖A , (16)

and the lemma follows from Eqs. (15), (16), and (14).

The next step is to bound the state difference, ‖xk+1 − xk‖.

Lemma 8. The following inequality holds, ∀k:

‖xk+1 − xk‖
≤
(
c2A ‖A − Inp‖+ αc2Al ‖B∞‖

)
‖xk −A∞xk‖A

+ αl ‖B∞‖ ‖A∞xk − 1n ⊗ x∗‖
+ β ‖xk − xk−1‖+ αc2B‖yk − B∞yk‖B.

Proof. Note that AA∞ = A∞ and hence AA∞ − A∞ is a
zero matrix. Following the xk-update of ABm, we have:

‖xk+1 − xk‖
= ‖Axk −Dαyk +Dβ(xk − xk−1)− xk‖ ,
= ‖(A− Inp)(xk −A∞xk)−Dαyk +Dβ(xk − xk−1)‖ ,
≤ c2A ‖A − Inp‖ ‖xk −A∞xk‖A + β ‖xk − xk−1‖+ α ‖yk‖ ,

and the proof follows from Lemma 5.

The final step in formulating the LTI system is to
write ‖yk+1 − B∞yk+1‖, the biased gradient estimation error,
in terms of the other three quantities. We call this biased
to make a distinction with the unbiased gradient estimation
error: ‖yk+1 −W∞yk+1‖, where W is doubly-stochastic.

Lemma 9. The following inequality holds, ∀k:

‖yk+1 − B∞yk+1‖

=
(
c2AcB2 l ‖Inp − B∞‖ ‖A − Inp‖

+ αc2AcB2 l
2 ‖Inp − B∞‖ ‖B∞‖

)
‖xk −A∞xk‖A

+ αcB2 l
2 ‖Inp − B∞‖ ‖B∞‖ ‖A∞xk − 1n ⊗ x∗‖

+ βcB2 l ‖Inp − B∞‖ ‖xk − xk−1‖

+
(
σB + αcB2c2B l ‖Inp − B∞‖

)
‖yk − B∞yk‖B .

Proof. Note that B∞B = B∞. From Eq. (3b), we have:

‖yk+1 − B∞yk+1‖B
=
∥∥Byk +∇f(xk+1)−∇f(xk)

− B∞
(
yk +∇f(xk+1)−∇f(xk)

)∥∥
B

≤ σB‖y(k)− B∞y(k)‖B + cB2l ‖Inp − B∞‖ ‖xk+1 − xk‖2,

where in the inequality above we use the contraction property
of B from Lemma 1. The proof follows by applying the result
of Lemma 8 to the inequality above.

With the help of the Lemmas 6-9, we now present the main
result of this paper, i.e., the ABm algorithm converges to the
global minimizer at a global R-linear rate.

Theorem 1. Let 0 < π>r diag(α)πc <
2
nl , then the following

LTI inequality holds entry-wise:

tk+1 ≤ Jα,βtk, (17)

where tk ∈ R4 and Jα,β ∈ R4×4 are respectively given by:

tk =


‖xk −A∞xk‖A
‖A∞xk − 1n ⊗ x∗‖
‖xk − xk−1‖
‖yk − B∞yk‖B

 ,

Jα,β =


σA + a1α a2α βa3 a4α

a5α λ βa6 a7α

a8 + a9α a10α β a11α

a12 + a13α a14α βa15 σB + a16α

 ,
and the constants ai’s in the above expression are

a1 = cA2c2Al ‖Inp −A∞‖ ‖B∞‖ ,
a2 = cA2l ‖Inp −A∞‖ ‖B∞‖ ,
a3 = cA2 ‖Inp −A∞‖ ,
a4 = cA2c2B ‖Inp −A∞‖ ,

a5 = nc2A
(
π>r πc

)
l,

a6 = ‖A∞‖,
a7 = c2B‖A∞‖,
a8 = c2A ‖A − Inp‖ ,
a9 = c2Al ‖B∞‖ ,
a10 = l ‖B∞‖ ,
a11 = c2B,

a12 = cB2c2Al ‖Inp − B∞‖ ‖A − Inp‖ ,
a13 = cB2c2Al

2 ‖Inp − B∞‖ ‖B∞‖ ,
a14 = cB2l

2 ‖Inp − B∞‖ ‖B∞‖ ,
a15 = cB2l ‖Inp − B∞‖ ,
a16 = cB2c2Bl ‖Inp −B∞‖ .

When the largest step-size, α, satisfies

0 < α < min

{
1

nlπ>r πc
,

δ3 − δ1a8
a9δ1 + a10δ2 + a11δ4

,

(1− σB)δ4 − δ1a12
a13δ1 + a14δ2 + a14δ4

,
(1− σB)δ4 − δ1a12
a13δ1 + a14δ2 + a14δ4

}
(18)

and when the largest momentum parameter, β, satisfies

0 ≤ β < min

{
δ1(1− σA)− (a1δ1 + a2δ2 + a4δ4)α

a3δ3
,(

δ2µ[πr]min[πc]min − (a5δ1 + a7δ4)
)
α

a6δ3
,

δ3 − δ1a8 − (a9δ1 + a10δ2 + a11δ4)α

δ3
,

(1− σB)δ4 − δ1a12 − (a13δ1 + a14δ2 + a14δ4)α

a15δ3

}
, (19)

7

where δ1, δ2, δ3, δ4 are arbitrary constants such that
δ1 < max

{
δ3
a8
, (1−σB)δ4

a12

}
,

δ2 > a5δ1+a7δ4
µ[πr]min[πc]min

,

δ3 > 0,

δ4 > 0,

then ρ(Jα,β) < 1 and thus ‖xk − 1n⊗x∗‖ converges to zero
linearly at the rate of O(ρ(Jα,β))k.

Proof. It is straightforward to verify Eq. (17) by combining
Lemmas 6-9. The next step is to find the range of α and β
such that ρ(Jα,β) < 1. In the light of Lemma 4, we solve
for a positive vector δ = [δ1, δ2, δ3, δ4]> and the range of α
and β such that the following inequality holds:

Jα,βδ < δ,

which is equivalent to the following four conditions:

a3δ3β < δ1(1− σA)− (a1δ1 + a2δ2 + a4δ4)α, (20)
a6δ3β < δ2 − δ2λ− (a5δ1 + a7δ4)α, (21)
δ3β < δ3 − δ1a8 − (a9δ1 + a10δ2 + a11δ4)α, (22)

a15δ3β < (1− σB)δ4 − δ1a12 − (a13δ1 + a14δ2 + a14δ4)α. (23)

Recall λ in Lemma 7, when α < 1
nlπ>

r πc
, we have

λ = 1− µnπ>r diag(α)πc ≤ 1− µn[πr]min[πc]minα.

Therefore, the third condition in Eq. (21) is satisfied when

a6δ3β < δ2µn[πr]min[πc]minα− (a5δ1 + a7δ4)α. (24)

For the right hand side of the Eq. (20), (24), (22) and (23) to
be positive, each one of these equations needs to satisfy the
conditions we give below.

Eq. (20) : α <
δ1(1− σA)

a1δ1 + a2δ2 + a4δ4
, (25)

Eq. (24) : δ2 >
a5δ1 + a7δ4

µ[πr]min[πc]min
, (26)

Eq. (22) :

 δ1 <
δ3
a8
,

α < δ3−δ1a8
a9δ1+a10δ2+a11δ4

.
(27)

Eq. (23) :

 δ1 <
(1−σB)δ4

a12
,

α < (1−σB)δ4−δ1a12
a13δ1+a14δ2+a14δ4

.
(28)

We first choose arbitrary positive constants, δ3 and δ4, then
pick δ1 satisfying Eqs. (27) and (28), and finally choose δ2
according to Eq. (26). Note that δ1, δ2, δ3, and δ4 are chosen
to ensure that the upper bounds on α are all positive. Sub-
sequently, from Eqs. (25), (27), and (28), together with the
requirement that α < 1

nlπ>
r πc

, we obtain the upper bound on
the largest step-size, α. Finally, the original four conditions in
Eqs. (20), (24), (22) and (23) lead to an upper bound on β,
and the theorem follows.

Remark 1: In Theorem 1, we have established the R-linear
rate of ABm when the largest step-size, α, and the largest
momentum parameter, β, respectively follow the upper bounds
described in Eq. (18) and Eq. (19). Note that δ1, δ2, δ3, δ4
therein are tunable parameters and only depend on the network
topology and the objective functions. The upper bounds for α

and β may not be computable for arbitrary directed graphs as
the contraction coefficients, σA, σB, and the norm equivalence
constants may be unknown. However, when the graph is
undirected, we can obtain computable bounds for α and β, as
developed in [32, 38] for example. The upper bound on β also
implies that if the step-sizes are relatively large, only small
momentum parameters can be picked to ensure stability.

Remark 2: The nonidentical step-sizes in gradient tracking
methods [31, 32] have previously been studied in [31, 47–49].
These works rely on some notion of heterogeneity among the
step-sizes, defined respectively as the relative deviation of the
step-sizes from their average, ‖(I−W)α‖

‖Wα‖ , in [31, 48], and as
the ratio of the largest to the smallest step-size, [α]max/[α]min,
in [47, 49]. The authors then show that when the hetero-
geneity is sufficiently small and when the largest step-size
follows a bound that is a function of the heterogeneity,
the proposed algorithms converge to the global minimizer.
It is worth noting that sufficiently small step-sizes do not
guarantee sufficiently small heterogeneity in both of the above
definitions. In contrast, the upper bound on the largest step-
size in this paper, Eq. (18), is independent of any notion of
heterogeneity and only depends on the objective functions and
the network topology. Each agent therefore locally picks a
sufficiently small step-size without any coordination. Based on
the discussion in Section III, our approach thus improves the
analysis in [31, 47–49]. Besides, Eq. (18) allows the existence
of zero step-sizes among the agents as long as the largest step-
size is positive and is sufficiently small.

Remark 3: To show that ABm has an R-linear rate for
sufficiently small α and β, one can alternatively use matrix
perturbation analysis as in [37] (Theorem 1). However, it does
not provide explicit upper bounds on α and β in closed form.

V. AVERAGE-CONSENSUS FROM ABm
In this section, we show that ABm subsumes a novel

average-consensus algorithm over strongly-connected directed
graphs. To show this, we choose the objective functions as

f̃i(x) = 1
2‖x− υi‖2, ∀i.

Clearly, the minimization of F̃ =
∑n
i=1 f̃i is now achieved

at x∗ = 1
n

∑n
i=1 υi. The ABm algorithm, Eq. (3), thus

naturally leads to the following average-consensus algorithm,
termed as ABm-C, with ∇f(xk+1) −∇f(xk) = xk+1 − xk;
for the sake of simplicity, we choose αi = α, βi = β, ∀i:

xk+1 = (A+ βI)xk − αyk − βxk−1,
yk+1 = (A+ βI − I)xk + (B − αI)yk − βxk−1.

Its local implementation at each agent i is given by:

xik+1 =
∑

j∈Ni\i

aijx
j
k + (aii + β)xik − αyik − βxik−1,

yik+1 =
∑

j∈Ni\i

aijx
j
k + (aii + β − 1)xik

+
∑

j∈Ni\i

bijy
j
k + (bii − α)yik − βxik−1,

where xi0 = υi and y0
i = 0, ∀i.

8

From the analysis of ABm, an R-linear convergence
of ABm-C to the average of υi’s is clear from Theorem 1. It
may be possible to make concrete rate statements by studying
the spectral radius of the following system matrix:

xk+1

yk+1

xk

 =


A+ βI −αI −βI

A+ βI − I B − αI −βI

I 0 0




xk

yk

xk−1

 .
(29)

However, this analysis is beyond the scope of this paper. We
note that when β = 0, the above equations still converge to the
average of υi’s according to Theorem 1. What is surprising is
that, with β = 0, ABm-C reduces to xk+1

yk+1

 =

 A −αI

A− I B − αI

 xk

yk

 , (30)

which is surplus consensus [18], after a state transformation
with diag (I,−I); in fact, any state transformation of the
form diag(I, Ĩ) applies here as long as Ĩ is diagonal (to respect
the graph topology) and invertible. More importantly, com-
pared with surplus consensus [18], ABm-C uses information
from the past iterations. This history information is in fact the
momentum from a distributed optimization perspective, which
may lead to accelerated convergence as we will numerically
show in Section VI.

Following this discussion, choosing the local functions
as f̃i’s in [31, 32], or in ADD-OPT [33, 34], or in FROST [35,
36], we get average-consensus with only DS, CS, or RS
weights. The protocol that results directly from AB is surplus
consensus, while the one resulting directly from FROST was
presented in [46]. With the analysis provided in Section III,
we see that the algorithm in [46] is in fact related to surplus
consensus after a state transformation. Clearly, accelerated
average-consensus based exclusively on either row- or column-
stochastic weights can be abstracted from the discussion
herein, after adding a momentum term.

VI. NUMERICAL EXPERIMENTS

We now provide numerical experiments to illustrate the
theoretical findings described in this paper. To this aim, we
use two different graphs: an undirected graph, G1, and a
directed graph, G2. Both graphs have n = 500 agents and are
generated using nearest neighbor rules and then we add less
than 0.05% random links. The number of edges in all cases
is less 4% of the total possible edges. Since the graphs are
randomly generated across experiments, two sample graphs
are shown in Fig. 1, without the self-edges and random links
for visual clarity. We generate DS weights using the Laplacian
method: W = I − 1

maxi degi +1L, where L is the graph
Laplacian and degi is the degree of node i. Additionally,
we generate RS and CS weights with the uniform weighting
strategy: aij = 1

|N in
j |

and bij = 1
|N out

j |
, ∀i, j. We note that both

weighting strategies are applicable to undirected graphs, while
only the uniform strategy can be used over directed graphs.

-6 -4 -2 0 2 4

-6

-4

-2

0

2

4

6

Fig. 1: (Left) Undirected graph, G1. (Right) Directed graph, G2.

A. Logistic Regression

We first consider distributed logistic regression: each agent i
has access to mi training data, (cij , yij) ∈ Rp × {−1,+1},
where cij contains p features of the jth training data at agent i,
and yij is the corresponding binary label. The agents cooper-
atively minimize F =

∑n
i=1 fi(b, c), to find b ∈ Rp, c ∈ R,

with each private loss function being

fi(b, c) =

mi∑
j=1

ln
[
1 + exp

(
−
(
b>cij + c

)
yij
)]

+
λ

2
‖b‖22,

where λ
2 ‖b‖

2
2 is a regularization term used to prevent over-

fitting of the data. The feature vectors, cij’s, are ran-
domly generated from a Gaussian distribution with zero
mean and the binary labels are randomly generated from a
Bernoulli distribution. We plot the average of residuals at
each agent, 1

n

∑n
i=1 ‖xi(k) − x∗‖2, and first compare the

performance of the following over undirected graphs in Fig. 2
(Left): (i) ABm with RS and CS weights; (ii) ABm with
DS weights; (iii) distributed optimization based on gradient
tracking from [31, 32, 34], with DS weights; (iv) EXTRA
from [26]; and, (v) centralized gradient descent.

0 500 1000 1500 2000 2500 3000
10-20

10-15

10-10

10-5

100

105 Logistic classification: Undirected graphs

0 500 1000 1500 2000
10-20

10-15

10-10

10-5

100

105 Logistic classification: Directed graphs

Fig. 2: Logistic regression over undirected (Left) and directed graph (Right).

Next, we compare the performance similarly over directed
graphs in Fig. 2 (Right). Here, the algorithms with doubly-
stochastic weights [26, 31, 32, 34] are not applicable, and
instead we compare ABm with AB [37], ADD-OPT/Push-
DIGing [33, 34], and centralized gradient descent. The weight
matrices are chosen as we discussed before and the algorithm
parameters are hand-tuned for best performance (except for
gradient descent where the optimal step-size is given by α =
2
µ+l). We note that momentum improves the convergence
when compared to applicable algorithms without momentum,
while ADD-OPT/Push-DIGing are much slower because of
the eigenvector estimation, see Section III for details.

9

0 100 200 300 400 500
10-15

10-10

10-5

100

105

0 500 1000 1500 2000 2500 3000
10-15

10-10

10-5

100

105

0 2000 4000 6000 8000 10000
10-15

10-10

10-5

100

105

Fig. 3: Performance comparison over undirected graph, G1, as a function of the condition numbers.

0 200 400 600 800 1000
10-15

10-10

10-5

100

105

0 1000 2000 3000 4000 5000
10-15

10-10

10-5

100

105

0 2000 4000 6000 8000 10000
10-15

10-10

10-5

100

105

Fig. 4: Performance comparison over directed graph, G2, as a function of the condition numbers.

B. Distributed Quadratic Programming
We now compare the performance of the aforementioned al-

gorithms over different condition numbers of the global objec-
tive function, chosen to be quadratic, i.e., F =

∑
i x
>Qix +

b>i x, where Qi ∈ Rp×p is diagonal and positive-definite. The
condition number Q of F is given by the ratio of the largest
to the smallest eigenvalue of Q ,

∑n
i=1Qi. We first provide

the performance comparison over undirected graphs in Fig. 3,
and then provide the results over directed graphs in Fig. 4.
In all of these experiments, we have hand-tuned the algorithm
parameters for best performance.

For small condition numbers, we note that gradient descent
is quite fast and the distributed algorithms suffer from a
relatively slower fusion over the graphs. Recall that the optimal
convergence rate of gradient decent is O((Q−1Q+1)k). When the
condition number is large, gradient descent is quite conserva-
tive allowing fusion to catch up. Finally, we note that ABm,
with momentum, outperforms the centralized gradient descent
when the condition number is large. This observation is con-
sistent with the existing literature, see e.g., [50, 51, 53–55].

C. ABm and Average-Consensus
We now provide numerical analysis and simulations to show

that ABm-C, in Eq. (29), possibly achieves acceleration when
compared with surplus-consensus, in Eq. (30). To explain our
choice of α and β, we first note that the power limit of the
system matrix in Eq. (30), denoted as H, is [18]:

lim
k→∞

Hk = H∞ =

 W∞ −W∞
0np×np 0np×np

 ,

where W∞ = (1
n1n1

>
n) ⊗ Ip. It is straightforward to show

that Hk −H∞ = (H−H∞)
k
. Similarly, for the augmented

system matrix, H̃, in Eq. (29), we observe that

lim
k→∞

H̃k = H̃∞ =


W∞ −W∞ 0np×np

0np×np 0np×np 0np×np

W∞ −W∞ 0np×np

 ,
and it can be verified that H̃k − H̃∞ = (H̃ − H̃∞)k. We
therefore use grid search [60] to choose the optimal α∗

in H and the optimal α̃∗ and β̃∗ in H̃, which respectively
minimize ρ(H − H∞) and ρ(H̃ − H̃∞). Numerically, we
observe that it may be possible for the minimum of ρ(H̃−H̃∞)
to be smaller than that of ρ (H−H∞). The convergence speed
comparison between ABm-C and surplus consensus [18] is
shown in Fig 5 over a directed graph, G2.

0 500 1000 1500 2000
10-15

10-10

10-5

100

105

Fig. 5: Average-consensus via ABm-C (with momentum) and surplus con-
sensus (without momentum) implemented over a directed graph.

10

VII. CONCLUSIONS

In this paper, we provide a framework for distributed opti-
mization that removes the need for doubly-stochastic weights
and thus is naturally applicable to both undirected and directed
graphs. Using a state transformation based on the non-1n
eigenvector, we show that the underlying algorithm,AB, based
on a simultaneous application of both RS and CS weights,
lies at the heart of several algorithms studied earlier that rely
on eigenvector estimation when using only CS (or only RS)
weights. We then propose the distributed heavy-ball method,
termed as ABm, that combines AB with a heavy-ball (type)
momentum term. To the best of our knowledge, this paper
is the first to use a momentum term based on the heavy-
ball method in distributed optimization. We show that ABm
subsumes a novel average-consensus algorithm as a special
case that unifies earlier attempts over directed graphs, with
potential acceleration due to the momentum term.

REFERENCES

[1] P. A. Forero, A. Cano, and G. B. Giannakis, “Consensus-
based distributed support vector machines,” Journal of Machine
Learning Research, vol. 11, no. May, pp. 1663–1707, 2010.

[2] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Dis-
tributed optimization and statistical learning via the alternating
direction method of multipliers,” Foundation and Trends in
Maching Learning, vol. 3, no. 1, pp. 1–122, Jan. 2011.

[3] H. Raja and W. U. Bajwa, “Cloud k-svd: A collaborative
dictionary learning algorithm for big, distributed data,” IEEE
Trans. on Signal Processing, vol. 64, no. 1, pp. 173–188, 2016.

[4] H.-T. Wai, Z. Yang, Z. Wang, and M. Hong, “Multi-agent
reinforcement learning via double averaging primal-dual opti-
mization,” arXiv preprint arXiv:1806.00877, 2018.

[5] A. Jadbabaie, J. Lin, and A. Morse, “Coordination of groups of
mobile autonomous agents using nearest neighbor rules,” IEEE
Trans. on Automatic Control, vol. 48, no. 6, pp. 988–1001, 2003.

[6] G. Mateos, J. A. Bazerque, and G. B. Giannakis, “Distributed
sparse linear regression,” IEEE Trans. on Signal Processing,
vol. 58, no. 10, pp. 5262–5276, Oct. 2010.

[7] J. A. Bazerque and G. B. Giannakis, “Distributed spectrum
sensing for cognitive radio networks by exploiting sparsity,”
IEEE Trans. on Signal Processing, vol. 58, no. 3, pp. 1847–
1862, March 2010.

[8] M. Rabbat and R. Nowak, “Distributed optimization in sensor
networks,” in 3rd International Symposium on Information
Processing in Sensor Networks, Berkeley, CA, Apr. 2004, pp.
20–27.

[9] S. Safavi, U. A. Khan, S. Kar, and J. M. F. Moura, “Distributed
localization: A linear theory,” Proceedings of the IEEE, 2018.

[10] J. Tsitsiklis, D. P. Bertsekas, and M. Athans, “Distributed
asynchronous deterministic and stochastic gradient optimization
algorithms,” IEEE Transactions on Automatic Control, vol. 31,
no. 9, pp. 803–812, 1986.

[11] A. Nedić and A. Ozdaglar, “Distributed subgradient methods for
multi-agent optimization,” IEEE Trans. on Automatic Control,
vol. 54, no. 1, pp. 48–61, Jan. 2009.

[12] J. C. Duchi, A. Agarwal, and M. J. Wainwright, “Dual averaging
for distributed optimization: Convergence analysis and network
scaling,” IEEE Transactions on Automatic control, vol. 57, no.
3, pp. 592–606, 2012.

[13] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based computa-
tion of aggregate information,” in 44th Annual IEEE Symposium
on Foundations of Computer Science, Oct. 2003, pp. 482–491.

[14] K. I. Tsianos, S. Lawlor, and M. G. Rabbat, “Push-sum dis-
tributed dual averaging for convex optimization,” in 51st IEEE

Annual Conference on Decision and Control, Maui, Hawaii,
Dec. 2012, pp. 5453–5458.

[15] A. Nedić and A. Olshevsky, “Distributed optimization over
time-varying directed graphs,” IEEE Trans. on Automatic
Control, vol. 60, no. 3, pp. 601–615, Mar. 2015.

[16] C. Xi, Q. Wu, and U. A. Khan, “On the distributed optimization
over directed networks,” Neurocomputing, vol. 267, pp. 508–
515, Dec. 2017.

[17] C. Xi and U. A. Khan, “Distributed subgradient projection
algorithm over directed graphs,” IEEE Trans. on Automatic
Control, vol. 62, no. 8, pp. 3986–3992, Oct. 2016.

[18] K. Cai and H. Ishii, “Average consensus on general strongly
connected digraphs,” Automatica, vol. 48, no. 11, pp. 2750 –
2761, 2012.

[19] K. Yuan, Q. Ling, and W. Yin, “On the convergence of
decentralized gradient descent,” SIAM Journal on Optimization,
vol. 26, no. 3, pp. 1835–1854, Sep. 2016.

[20] A. S. Berahas, R. Bollapragada, N. S. Keskar, and E. Wei,
“Balancing communication and computation in distributed op-
timization,” arXiv preprint arXiv:1709.02999, 2017.

[21] E. Wei and A. Ozdaglar, “Distributed alternating direction
method of multipliers,” in 51st IEEE Annual Conference on
Decision and Control, Dec. 2012, pp. 5445–5450.

[22] J. F. C. Mota, J. M. F. Xavier, P. M. Q. Aguiar, and M. Puschel,
“D-ADMM: A communication-efficient distributed algorithm
for separable optimization,” IEEE Trans. on Signal Processing,
vol. 61, no. 10, pp. 2718–2723, May 2013.

[23] W. Shi, Q. Ling, K Yuan, G Wu, and W Yin, “On the
linear convergence of the admm in decentralized consensus
optimization,” IEEE Trans. on Signal Processing, vol. 62, no.
7, pp. 1750–1761, April 2014.

[24] A. Mokhtari, W. Shi, Q. Ling, and A. Ribeiro, “A decentralized
second-order method with exact linear convergence rate for con-
sensus optimization,” IEEE Trans. on Signal and Information
Processing over Networks, vol. 2, no. 4, pp. 507–522, 2016.

[25] D. Jakovetić, J. Xavier, and J. M. F. Moura, “Fast distributed
gradient methods,” IEEE Transactions on Automatic Control,
vol. 59, no. 5, pp. 1131–1146, May 2014.

[26] W. Shi, Q. Ling, G. Wu, and W Yin, “Extra: An exact first-order
algorithm for decentralized consensus optimization,” SIAM
Journal on Optimization, vol. 25, no. 2, pp. 944–966, 2015.

[27] C. Xi and U. A. Khan, “DEXTRA: A fast algorithm for
optimization over directed graphs,” IEEE Trans. on Automatic
Control, vol. 62, no. 10, pp. 4980–4993, Oct. 2017.

[28] K. Yuan, B. Ying, X. Zhao, and A. H. Sayed, “Exact diffusion
for distributed optimization and learning—part i: Algorithm
development,” arXiv preprint arXiv:1702.05122, 2017.

[29] K. Yuan, B. Ying, X. Zhao, and A. H. Sayed, “Exact diffusion
for distributed optimization and learning—part ii: Convergence
analysis,” arXiv preprint arXiv:1702.05142, 2017.

[30] A. H. Sayed, “Diffusion adaptation over networks,” in
Academic Press Library in Signal Processing, vol. 3, pp. 323–
453. Elsevier, 2014.

[31] J. Xu, S. Zhu, Y. C. Soh, and L. Xie, “Augmented distributed
gradient methods for multi-agent optimization under uncoordi-
nated constant stepsizes,” in IEEE 54th Annual Conference on
Decision and Control, 2015, pp. 2055–2060.

[32] G. Qu and N. Li, “Harnessing smoothness to accelerate
distributed optimization,” IEEE Trans. on Control of Network
Systems, Apr. 2017.

[33] C. Xi, R. Xin, and U. A. Khan, “ADD-OPT: Accelerated
distributed directed optimization,” IEEE Trans. on Automatic
Control, Aug. 2017, in press.

[34] A. Nedić, A. Olshevsky, and W. Shi, “Achieving geometric con-
vergence for distributed optimization over time-varying graphs,”
SIAM Journal of Optimization, Dec. 2017.

[35] C. Xi, V. S. Mai, R. Xin, E. Abed, and U. A. Khan, “Linear
convergence in optimization over directed graphs with row-
stochastic matrices,” IEEE Trans. on Automatic Control, Jan.

11

2018, in press.
[36] R. Xin, C. Xi, and U. A. Khan, “FROST – Fast row-

stochastic optimization with uncoordinated step-sizes,” Arxiv:
https://arxiv.org/abs/1803.09169, Mar. 2018.

[37] R. Xin and U. A. Khan, “A linear algorithm for optimization
over directed graphs with geometric convergence,” IEEE
Control Systems Letters, vol. 2, no. 3, pp. 325–330, Jul. 2018.

[38] G. Qu and N. Li, “Accelerated distributed Nesterov gradient
descent,” Arxiv: https://arxiv.org/abs/1705.07176, May 2017.

[39] D. Jakovetic, “A unification and generalization of exact dis-
tributed first order methods,” IEEE Transactions on Signal and
Information Processing over Networks, 2018.

[40] H.-T. Wai, N. M. Freris, A. Nedić, and A. Scaglione, “Sucag:
Stochastic unbiased curvature-aided gradient method for dis-
tributed optimization,” arXiv preprint arXiv:1803.08198, 2018.

[41] M. Zhu and S. Martı́nez, “Discrete-time dynamic average
consensus,” Automatica, vol. 46, no. 2, pp. 322–329, 2010.

[42] C. A. Desoer and M. Vidyasagar, Feedback systems: input-
output properties, vol. 55, Siam, 1975.

[43] P. Di Lorenzo and G. Scutari, “Next: In-network nonconvex op-
timization,” IEEE Trans. on Signal and Information Processing
over Networks, vol. 2, no. 2, pp. 120–136, 2016.

[44] Y. Sun, G. Scutari, and D. Palomar, “Distributed nonconvex
multiagent optimization over time-varying networks,” in Sig-
nals, Systems and Computers, 2016 50th Asilomar Conference
on. IEEE, 2016, pp. 788–794.

[45] S. Pu, W. Shi, J. Xu, and A. Nedić, “A push-pull gradient
method for distributed optimization in networks,” arXiv preprint
arXiv:1803.07588, 2018.

[46] A. Priolo, A. Gasparri, E. Montijano, and C. Sagues, “A dis-
tributed algorithm for average consensus on strongly connected
weighted digraphs,” Automatica, vol. 50, no. 3, pp. 946–951,
2014.

[47] A. Nedić, A. Olshevsky, W. Shi, and C. A. Uribe, “Geomet-
rically convergent distributed optimization with uncoordinated
step-sizes,” in IEEE American Control Conference, May 2017.

[48] J. Xu, S. Zhu, Y. C. Soh, and L. Xie, “Convergence of
asynchronous distributed gradient methods over stochastic net-
works,” IEEE Transactions on Automatic Control, vol. 63, no.
2, pp. 434–448, 2018.

[49] Q. Lü, H. Li, and D. Xia, “Geometrical convergence rate for
distributed optimization with time-varying directed graphs and
uncoordinated step-sizes,” Information Sciences, vol. 422, pp.
516–530, 2018.

[50] B. Polyak, “Some methods of speeding up the convergence
of iteration methods,” USSR Computational Mathematics and
Mathematical Physics, vol. 4, no. 5, pp. 1–17, 1964.

[51] B. Polyak, Introduction to optimization, Optimization Software,
1987.

[52] E. Ghadimi, H. R. Feyzmahdavian, and M. Johansson, “Global
convergence of the heavy-ball method for convex optimization,”
in Control Conference (ECC), 2015 European. IEEE, 2015, pp.
310–315.

[53] M. Gurbuzbalaban, A. Ozdaglar, and P. A. Parrilo, “On the con-
vergence rate of incremental aggregated gradient algorithms,”
SIAM Journal on Optimization, vol. 27, no. 2, pp. 1035–1048,
2017.

[54] L. Lessard, B. Recht, and A. Packard, “Analysis and design
of optimization algorithms via integral quadratic constraints,”
SIAM Journal on Optimization, vol. 26, no. 1, pp. 57–95, 2016.

[55] Y. Drori and M. Teboulle, “Performance of first-order methods
for smooth convex minimization: a novel approach,” Mathe-
matical Programming, vol. 145, no. 1-2, pp. 451–482, 2014.

[56] B. Polyak and P. Shcherbakov, “Lyapunov functions: An
optimization theory perspective,” IFAC-PapersOnLine, vol. 50,
no. 1, pp. 7456–7461, 2017.

[57] P. Tseng, “An incremental gradient (-projection) method with
momentum term and adaptive stepsize rule,” SIAM Journal on
Optimization, vol. 8, no. 2, pp. 506–531, 1998.

[58] N. Loizou and P. Richtárik, “Linearly convergent stochastic
heavy ball method for minimizing generalization error,” arXiv
preprint arXiv:1710.10737, 2017.

[59] R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd ed.,
Cambridge University Press, New York, NY, 2013.

[60] Y. Nesterov, Introductory lectures on convex optimization: A
basic course, vol. 87, Springer Science & Business Media,
2013.

[61] D. P. Bertsekas, Nonlinear programming, Athena scientific
Belmont, 1999.

Ran Xin received his B.S. degree in Mathematics
and Applied Mathematics from Xiamen Univer-
sity, China, in 2016, and M.S. degree in Electrical
and Computer Engineering from Tufts University
in 2018. Currently, he is a Ph.D. student in the
Electrical and Computer Engineering department
at Tufts University. His research interests include
optimization theory and algorithms.

Usman A. Khan has been an Associate Professor
of Electrical and Computer Engineering (ECE) at
Tufts University, Medford, MA, USA, since Septem-
ber 2017, where he is the Director of Signal Pro-
cessing and Robotic Networks laboratory. His re-
search interests include statistical signal processing,
network science, and distributed optimization over
autonomous multi-agent systems. He has published
extensively in these topics with more than 75 articles
in journals and conference proceedings and holds
multiple patents. Recognition of his work includes

the prestigious National Science Foundation (NSF) Career award, several
NSF REU awards, an IEEE journal cover, three best student paper awards
in IEEE conferences, and several news articles. Dr. Khan joined Tufts as an
Assistant Professor in 2011 and held a Visiting Professor position at KTH,
Sweden, in Spring 2015. Prior to joining Tufts, he was a postdoc in the
GRASP lab at the University of Pennsylvania. He received his B.S. degree in
2002 from University of Engineering and Technology, Pakistan, M.S. degree
in 2004 from University of Wisconsin-Madison, USA, and Ph.D. degree in
2009 from Carnegie Mellon University, USA, all in ECE. Dr. Khan is an IEEE
senior member and has been an associate member of the Sensor Array and
Multichannel Technical Committee with the IEEE Signal Processing Society
since 2010. He is an elected member of the IEEE Big Data special interest
group and has served on the IEEE Young Professionals Committee and on
IEEE Technical Activities Board. He was an editor of the IEEE Transactions
on Smart Grid from 2014 to 2017, and is currently an associate editor of
the IEEE Control System Letters. He has served on the Technical Program
Committees of several IEEE conferences and has organized and chaired
several IEEE workshops and sessions.

	I Introduction
	II Preliminaries and Problem Formulation
	II-A Heavy-ball method
	II-B Distributed heavy-ball: The ABm algorithm

	III Connection with existing first-order methods
	IV Convergence Analysis
	IV-A Auxiliary Results
	IV-B Main results

	V Average-Consensus from ABm
	VI Numerical Experiments
	VI-A Logistic Regression
	VI-B Distributed Quadratic Programming
	VI-C ABm and Average-Consensus

	VII Conclusions
	Biographies
	Ran Xin
	Usman A. Khan

