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Covariance matrices are fundamental to the analysis and forecast of economic, physical and biological
systems. Although the eigenvalues {λi} and eigenvectors {ui} of a covariance matrix are central to such
endeavours, in practice one must inevitably approximate the covariance matrix based on data with finite
sample size n to obtain empirical eigenvalues {λ̃i} and eigenvectors {ũi}, and therefore understanding the
error so introduced is of central importance. We analyse eigenvector error ‖ui− ũi‖2 while leveraging the
assumption that the true covariance matrix having size p is drawn from a matrix ensemble with known
spectral properties—particularly, we assume the distribution of population eigenvalues weakly converges
as p → ∞ to a spectral density ρ(λ) and that the spacing between population eigenvalues is similar to
that for the Gaussian orthogonal ensemble. Our approach complements previous analyses of eigenvector
error that require the full set of eigenvalues to be known, which can be computationally infeasible when
p is large. To provide a scalable approach for uncertainty quantification of eigenvector error, we consider

a fixed eigenvalue λ and approximate the distribution of the expected square error r = E

[
‖ui − ũi‖2

]
across the matrix ensemble for all ui associated with λi = λ. We find, for example, that for sufficiently
large matrix size p and sample size n > p, the probability density of r scales as 1/nr2. This power-law
scaling implies that the eigenvector error is extremely heterogeneous—even if r is very small for most
eigenvectors, it can be large for others with non-negligible probability. We support this and further results
with numerical experiments.

Keywords: covariance matrix; empirical eigenvector; Wigner surmise; Wishart distribution; graphical
model;.
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290 D. TAYLOR ET AL.

1. Introduction

The spectral properties of covariance matrices are a central topic in mathematics, probability and
statistics (Mehta, 1991; Anderson, 2003; Hastie et al., 2009; Golub & Loan, 2012) and provide a corner-
stone to applications in physics, biology, economics and social science (Mantegna & Stanley, 2000;
Elton et al., 2009; Volkov et al., 2009; Weigt et al., 2009; Delvenne et al., 2010; Gatti et al., 2010;
Bassett et al., 2011). The estimation of eigenvectors of a sample covariance matrix remains a
fundamental tool for these and numerous other application domains. Sample covariance matrices can be
computed locally if the data set lies along a manifold, or globally if the data are organized along a linear
subspace (Hastie et al., 2009). Often, the practitioner has access to a generative stochastic model for the
covariance matrix that can be derived from first principles or domain knowledge, and he/she needs to
estimate the accuracy of eigenvectors calculated from a sample covariance matrix.

We consider the ‘classical’ (large sample, n > p) framework where one has access to n measure-
ments of a p-dimensional vector x with covariance C, which are encoded as the columns of a matrix X
of size p × n. The sample covariance matrix C̃ = n−1(X − E[X])(X − E[X])T is an unbiased estimator
to the population covariance matrix C, and the main motivation for our work is to estimate how well the
sample eigenvectors {̃ui} of C̃ approximate the population (i.e., true) eigenvectors {ui} of C in the limit
when both p and n are large. If we further assume that C̃ is distributed according to a Wishart distribution
W(C, n) centred at C (which occurs, for example, when x follows a multivariate normal distribution),
then for fixed p and n → ∞, the expected error between ũi and ui for C for i ∈ {1, . . . , p} is given
asymptotically by (Anderson, 2003, Theorem 13.5.1)

E

[
n‖ui − ũi‖2

]
→ hi, (1.1)

where

hi
�=

p∑
j=1; j�=i

λiλj

(λi − λj)
2

(1.2)

and λ1, . . . , λp are the population eigenvalues of C (which we assume to be simple and in ascending
order). One important application of the asymptotic result (1.1) is that it provides an estimate for the
expected residual error between the sample and the population eigenvectors for large n,

E

[
‖ui − ũi‖2

]
≈ 1

n
hi. (1.3)

The usefulness of (1.1)–(1.3), however, is limited by the fact that hi requires knowledge of all p
eigenvalues, which can be problematic—even computationally infeasible—when p is large. Moreover,
the values {λi} are typically unknown for empirical data, and in practice one often approximates (1.2)
using λ̃i ≈ λi, where {λ̃i} are the corresponding sample eigenvalues of C̃.

Thus motivated, we study (1.1)–(1.3) for the limit of large p, seeking to avoid the computation of
p distinct eigenvalues by considering situations in which the right-hand side of (1.2) converges with
increasing p. Defining such an extension, however, comes with several complications. One difficulty is
that by allowing p to increase, one ceases to study a single population covariance matrix C, but instead
studies a sequence of population covariance matrices of growing size p. One must therefore make an
assumption about the origin of these population covariance matrices, and herein we assume that they are
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ENSEMBLE-BASED ESTIMATES OF EIGENVECTOR ERROR 291

drawn from a random matrix ensemble. Moreover, because limp→∞ ‖ui − ũi‖2 is identical for any fixed
i (i.e. since i/p → 0 for fixed i), we find it more interesting to study the p → ∞ limiting behaviour of
(1.1)–(1.3) for fixed λi = λ, examining the associated eigenvectors {̃ui} across the ensemble. (Note that
the index i can vary from one population covariance matrix to another.) Finally, in this research we will
assume (1.1) as a starting point—that is, we assume n → ∞ much faster than p → ∞. In Section 4, we
study the necessary relative scaling behaviour of p and n, finding that n = O(p2) is a necessary relative
scaling for the ensemble of population covariance matrices that we study.

The first main contribution of this paper is an asymptotic p → ∞ estimate, ĥi ≈ hi, for when
the population eigenvalues {λi} are distributed according to a known limiting p → ∞ spectral density
ρ(λ). The idea of taking advantage of existing a priori knowledge about the spectral density ρ(λ) has
led to novel insights and improved inference for covariance analyses (Bickel & Levina, 2008; Lam
& Fan, 2009; Ledoit & Péché, 2011). In practice, the probability distribution ρ(λ) can be estimated
from empirical data or can sometimes be derived analytically (Mehta, 1991; Kuhn, 2008). A situation
of particular interest is when the covariance matrix follows a graphical (i.e. network-based) model in
which complex network properties can give rise to different spectral densities (c.f., Farkas et al., 2001;
Goh et al., 2001; Chung et al., 2003; Dorogovtsev et al., 2003; Benaych-Georges & Nadakuditi, 2011;
Peixoto, 2013; Zhang et al., 2014; Taylor et al., 2016, 2017).

Note that values hi given by (1.2) depend on the consecutive right and left eigengaps around each
eigenvalue λi,

s+i
�= λi+1 − λi and s−i

�= λi − λi−1. (1.4)

In the context of quantum physics, these eigengaps are often referred to as level spacings since the
eigenvalues typically represent energy levels (Guhr et al., 1998). Herein, we assume the population
covariance matrices have eigengap statistics consistent with the Gaussian orthogonal ensemble (GOE) of
random matrices, thereby allowing us to take advantage of existing theory for GOE eigengap statistics.
In particular, we leverage the Wigner surmise (Wigner, 1958, 1993)

P(s) = πp2ρ2(λ)

2
s exp

(
−πp2ρ2(λ)

4
s2
)

(1.5)

for s ∈ {s+i , s−i }, which is a celebrated result obtained by Eugene Wigner in the 1950s to describe
the distribution of eigengaps for GOE matrices of size p = 2. Equation (1.5) has had an enormous
impact in physics (Brody, 1973; Shklovskii et al., 1993; Ellegaard et al., 1995; Abul-Magd & Simbel,
1999; Pimpinelli et al., 2005; Schierenberg et al., 2012) and economics (Plerou et al., 2002; Akemann
et al., 2010). It was originally introduced as a ‘surmise’ because it was believed to offer an accurate
approximation to the eigengaps for large GOE matrices. Remarkably, over the past 5 decades there has
been considerable numerical support validating the approximation’s accuracy for large GOE matrices
in which p � 2. Moreover, (1.5) has been observed to accurately predict the eigengap distribution for
numerous empirical covariance matrices describing real-world datasets (Plerou et al., 2002; Akemann
et al., 2010).

Our second and third main contributions utilize an extension to the Wigner surmise that approx-
imates the joint distribution J(s−, s+) and was derived for GOE matrices of size 3 × 3 (Herman et
al., 2007). While developing theory based on such approximations introduces error into our analysis,
as we shall show, the simplicity of these surmises allows us to make insights that may otherwise be
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292 D. TAYLOR ET AL.

unobtainable. For example, it is easy to show from (1.5) that an expected eigengap should have size

E[s±] = O

(
1

pρ(λi)

)
(1.6)

as p → ∞. See also Pastur et al. (2011, p. 16) in which this scaling is obtained as the ‘typical
spacing unit’ for a random matrix with convergent spectral density. In this work, we use (1.6) to study
the large-p scaling behaviour for hi as well as the necessary relative scaling between p and n. Our
approach involves introducing and estimating a probability density function fH(h) of hi in (1.2), which
describes the distribution of hi (keeping λi fixed) across the population covariance matrix ensemble.
We obtain estimates for fH(h) in terms of λi, ρ(λi) and p, which are of great consequence, because
they describe the expected uncertainty associated with sample eigenvectors across the ensemble of
population covariance matrices associated with ρ(λ). That is, our second and third main results offer
estimates for the expected eigenvector error E

[‖ui − ũi‖2
]

that neither require a covariance matrix
nor its eigenvalues. Importantly, the ensemble-based approach that we develop herein provides a new
direction for uncertainty quantification of empirical eigenvectors that is scalable for high-dimensional
(large p) data.

The paper is organized as follows. We state our main results in Section 2. In Section 3, we provide
numerical simulations to support these results. In Section 4, we describe conditions in which (1.1), and
thus our main results, are valid. The Appendix contains the derivations of our main results.

2. Main results

In this section, we present asymptotic (n → ∞ and p → ∞) approximations for the expected
residual error E

[‖ui − ũi‖2
]

of sample eigenvectors as well as their distribution across an ensemble of
population covariance matrices. We first provide preliminary discussion in Section 2.1. In Section 2.2,
we present main result 1, which provides a p → ∞ estimate for the right-hand side of (1.2) using
the assumption that the distribution of population eigenvalues weakly converges to a spectral density
ρ(λ). In Sections 2.3 and 2.4, we present main results 2 and 3, which additionally assume that the
distribution of eigengaps for population covariance matrices is the same as that for the GOE random
matrix ensemble.

2.1 Model specification and assumptions

We consider a sequence of population covariance matrices (each denoted C) of growing size p → ∞
such that each is drawn from a random matrix ensemble. Let {λi}pi=1 and {ui}pi=1 denote the population
eigenvalues and corresponding eigenvectors, respectively, for each C. We make the following two
assumptions regarding the eigenspectra for the matrix ensemble.

Assumption 2.1 We assume that the population eigenvalues {λi} are simple and that the spectral density
ρp(λ) = p−1 ∑p

i=1 δλi
(λ) weakly converges as p → ∞ to a limiting spectral density ρp(λ) → ρ(λ)

that has compact support [λmin, λmax] ⊂ R
+, and is continuous and differentiable on the interior of its

support, (λmin, λmax).

Many ensembles of symmetric random matrices satisfy Assumption 2.1 (see Mehta, 1991;
Anderson, 2003; Kuhn, 2008) including, for example, those described by the semicircle law (Pastur
et al., 2011, see Sections 2 and 6). For some applications, it may also be beneficial to posit a parametric
model for ρ(λ), which can be estimated for small p and n and extended to the entire dataset.
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ENSEMBLE-BASED ESTIMATES OF EIGENVECTOR ERROR 293

Assumption 2.2 We assume that the joint probability distribution J(s−, s+) of the left and right gaps,
s±i = |λi − λi±1|, around each eigenvalue λi is given by the following generalized Wigner surmise for
the GOE:

J(s−, s+) ≈ 37
[
pρ(λi)

]5

32π3

[
s+s−(s+ + s−)

]
exp

(
−
[
3pρ(λi)

]2

4π

[
(s+)2 + (s−)2 + s+s−

])
. (2.1)

The joint distribution given by (2.1) was derived in Herman et al. (2007) (see equation (15)) using
3 × 3 GOE matrices and can be constructed as a generalization of the Wigner surmise (see (1.5)),
which approximates marginal distributions for J(s−, s+). In addition to establishing the scaling E[s±] =
O
(
1/pρ(λi)

)
(see (1.6)), Assumption 2.2 also implies that the p population eigenvalues are simple (i.e.

distinct), λ1 < · · · < λp, and is akin to the ‘level repulsion of eigenvalues’ observed in large random
matrices that states that the eigengap probability is 0 for s± = 0 (Bourgade et al., 2014).

As shown in Herman et al. (2007), (2.1) gives a very good approximation to the exact distribution,
which may be expressed as an infinite-dimensional integral, and can be approximated using numerical
integration and Toeplitz determinants. We note in passing that it would be interesting in the future
research to connect this approach to (1.1)–(1.3); however, it is unclear whether or not this approach
would allow for the type of results as we present here. In contrast, while the surmises (i.e. (1.5) and
(2.1)) introduce an approximation error—which remains an open topic of great interest in random matrix
theory—their simplicity allows us to gain insights that may be otherwise unobtainable. In addition, as
demonstrated in our numerical simulations (see Figs 1 and 2), (2.1) provides a good approximation for
the ensemble of population covariance matrices that we study.

For each population covariance matrix C, we consider a sample covariance matrix C̃ = n−1(X −
E[X])(X − E[X])T computed from n observations, x1, . . . , xn, of a random vector x ∈ R

p and
X = [x1, . . . , xn]. We denote by λ̃1 � · · · � λ̃p the p sample eigenvalues of C̃ and ũ1, · · · , ũp the

corresponding sample eigenvectors. We assume each sample covariance matrix C̃ is Wishart-distributed
around C, as in the case when x follows a multivariate-Gaussian distribution (Anderson, 2003).

Fig. 1. Left: Empirical spectral densityρp(λ) for a k-regular graphical model converges towards McKay’s law (McKay, 1981)
given by (3.1) (black curve) in the limit p → ∞. Right: Distribution of normalized eigengaps {ps+i } for eigenvalues |λi − 20| < 1
is well described by the Wigner surmise for GOE matrices, which is given by (1.5) (black curve).
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294 D. TAYLOR ET AL.

Fig. 2. Joint distribution of consecutive eigengaps J(s−, s+): theoretical distribution (left) given by (2.1) and numerically observed
distribution (right). The colour indicates the unnormalized counting measure.

2.2 Main result 1: estimate of hi for large p

We may now present our first main result, an estimate ĥi for hi (see (1.2)) for high-dimensional (large p)
covariance matrices. Under Assumption 2.1, we find the following asymptotic p → ∞ approximation
for hi:

ĥi = λ2
i

[(
1

(s−i )2
+ 1

(s+i )2

)
+ pρ(λi)

(
1

s−i
+ 1

s+i

)]
. (2.2)

See Appendix A for the derivation.
Equation (2.2) is an asymptotic approximation in that hi/ĥi → 1 as p → ∞, and we can explain

the role of the different terms as follows. The left term in the squared brackets approximates the terms
in (1.2) that involve the nearest-neighbour eigenvalues of λi, which are respectively located at λi−1 =
λi − s−i and λi+1 = λi + s+i and dominate the summation in (1.2) when p is large. This term does not
require the knowledge of the probability distribution ρ(λ). The second term accounts for the remaining
terms in (1.2), which involve the remaining eigenvalues, {λj : |j− i| > 1}. Finally, as explained for (1.6),
since 1/pρ(λi) is the same order as the expected gap between two population eigenvalues (Pastur et al.,
2011, p. 16), all terms in the right-hand side of (2.2) can potentially obtain similar magnitudes.

Note that main result 1 does not depend on n. It approximates hi for population covariance matrices
drawn from a matrix ensemble with a convergent spectral density ρ(λ). By combining (2.2) with (1.3),
we obtain a large-p approximation to the expected error of a sample eigenvector ũi:

E

[
‖ui − ũi‖2

]
≈ ĥi/n. (2.3)

Importantly, this result uses knowledge of the population eigenvalue distribution ρ(λ) and nearest-
neighbour eigengaps s±i . Thus, it does not require knowledge of the full set of sample eigenvalues {̃λi}
and is therefore scalable for high-dimensional (large p) data. However, we stress that approximation
(2.3) is valid only when p and n are sufficiently large, which we will explore in Section 4.
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2.3 Main result 2: estimate of the probability density of hi across matrix ensemble

Equation (2.2) gives an asymptotic estimate for hi that uses λi, s
+
i and s−i , which can be calculated for

a given population covariance matrix C (or estimated from C̃). We now turn our attention to studying
the distribution of hi—denoted by fH(hi)—across all the population covariance matrices in the matrix
ensemble for which λi = λ is an eigenvalue. That is, we consider fixed λi and approximate fH(hi) by
allowing (s+i , s−i ) to be distributed according to Assumption 2.2. Note that, once λ is fixed, the index
i can differ from one population covariance matrix to another, and so from here on we will drop the
subscript i whenever describing the distribution of a variable across the matrix ensemble.

We again consider the case where p is large, and we study the limit of the distribution of ĥ given by
(2.2) for p → ∞. By combining (2.2) with (2.1), we obtain the following semi-analytical expression for
the limiting probability density of the approximation ĥ to h,

fH(h) = −
∫ ∞

s0(h)
J
(
s∗(h, s+), s+

) ∂s∗(h, s+)

∂h
ds+, (2.4)

where the variables s0(h) and s∗(h, s+) depend on the eigenvalue λ around which h is computed and are
given by

s0(h) = λ2pρ(λ)

2h

{
1 +

√
1 + 4h

[λpρ(λ)]2

}
, (2.5)

and

s∗(h, s+) = λ2pρ(λ)

1 +
√

1 + 4
[λpρ(λ)]2

(
h − λ2

(s+)2 − λpρ(λ)
s+

)
2
(
h − λ2

(s+)2 − λpρ(λ)

s+
) , (2.6)

respectively. See Appendix B for the derivation.
The significance of (2.4) stems from the fact that it allows one to approximate the distribution of h,

and therefore the distribution of expected eigenvector errors using the approximation (2.3), which again
assumes sufficiently large p and n. Specifically, fH(h) estimates the distribution of expected residual
error across the covariance matrix ensemble associated, that is, as opposed to (1.1), which is an estimate
for a single covariance matrix from the ensemble.

2.4 Main result 3: asymptotic behaviour of fH(h) for large h

Keeping λ and ρ(λ) fixed, in the limit when the left gap, s−, or right gap, s+, goes to zero, then h goes
to infinity, and we find the following scaling behaviour for the probability density function:

fH(h) = O

(
p2

h2

)
. (2.7)

See Appendix C for the derivation.
We point out that the limit of large h is especially interesting because it corresponds to the case

where the sample estimates ũi of the eigenvectors ui are the least accurate. The observation that fH(h)
has a power-law decay for large h implies that the error associated with sample eigenvectors is very
heterogeneous, and one should expect situations in which the error E

[‖ui − ũi‖2
] ≈ hi/n is small for
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296 D. TAYLOR ET AL.

many ũi; but on the rare occasions in which s+i and/or s−i are small, E
[‖ui − ũi‖2

]
can be orders-of-

magnitude larger. Later, in Section 4 we show that n � hi/2 is a necessary (but not sufficient) condition
for (1.3) to offer an accurate approximation. Because hi = O(p2), we find n = O(p2) to be a necessary
(but not sufficient) relative scaling for (1.3) when n, p → ∞. This should be further explored in a future
work.

3. Numerical validation of main results

We now report the results of numerical experiments to validate the theoretical predictions given by the
main results described in Section 2. In Section 3.1, we describe the matrix ensemble for population
covariance matrices used for these experiments. In Section 3.2, we support main result 1. We support
main results 2 and 3 in Sections 3.3 and 3.4, respectively.

3.1 Population covariance matrix ensemble: Laplacians of k-regular graphs

We seek to study the error of sample eigenvectors in the limit of large p and n > p, focusing on the
scenario in which the population covariance matrices are drawn from a matrix ensemble satisfying
Assumptions 2.1 and 2.2. All covariance matrices must also be positive semi-definite (Anderson, 2003)
so that λi � 0 for all i. In addition, to help mitigate the computational cost of studying the eigenspectra
for high-dimensional (large p) covariance matrices, we would like to study a sparse random matrix
ensemble in which most matrix entries are zero.

Thus motivated, we study a graphical model (Hastie et al., 2009). We let the population covariance
matrices be given by the unnormalized—also called combinatorial (Bapat, 2010)—Laplacian matrices1

of random k-regular graphs, which we generate using the configuration model (Newman, 2003). For
k-regular graphs with fixed k � 1, the spectral density ρp(λ) = ∑

i δλi
(λ) weakly converges as p → ∞

to a semicircle distribution

ρp(λ) →ρ(λ) =
⎧⎨⎩ k

√
4(k−1)−(λ−k)2

2π(k2−(λ−k)2)
, if |(λ − k)| � 2

√
k − 1,

0, otherwise.
(3.1)

Equation (3.1) is known as McKay’s law (McKay, 1981). While McKay obtained (3.1) for fixed k � 1,
it also describes the case for increasing k, provided that k grows sufficiently slowly with p (Dumitriu &
Pal, 2012).

Numerous empirical Laplacian matrices have been observed to give rise to eigengap statistics
consistent with the Wigner surmise given by (1.5) (Plerou et al., 2002; Akemann et al., 2010), and
we therefore believe the extended surmise given by (2.1) will also be widely applicable. Importantly,
our assumption that k � 1 ensures all graphs are strongly connected, which has been observed to be an
important requirement for the eigengap statistics to behave similarly to that for the GOE (Murphy et al.,
2017). Understanding the relation between eigengap statistics and graph topology remains an important

1 Any Laplacian matrix C is positive semi-definite: vTCv � 0 for any vector v. Moreover, Laplacian matrices arise for many
types of random processes on graphs and are related, for example, to the autocovariance matrices of random walks on graphs
(Delvenne et al., 2010). We also note that a Laplacian matrix C can be written as C = XXT , where X is a random incidence
matrix that describes the connectivity of a random graph G = (V ,E), with an arbitrary orientation of the edges. Each entry xe,v of
X can take one of three values: 1 if v is the head of the oriented edge e, −1 if v is the tail of the oriented edge e, or 0 otherwise.
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open topic (Murphy et al., 2017; Taylor et al., 2017). In future work, it would be interesting to allow for
graphs with more complicated structure—often called complex networks—and there is a large body of
work exploring spectral densities for these graphs (Farkas et al., 2001; Goh et al., 2001; Chung et al.,
2003; Dorogovtsev et al., 2003; Benaych-Georges & Nadakuditi, 2011; Peixoto, 2013; Zhang et al.,
2014; Taylor et al., 2016, 2017).

We now illustrate that this graphical model satisfies Assumptions 2.1 and 2.2. Figure 1 (left) displays
the empirical spectral density computed over 50 population covariance matrices sampled from the
graphical model, using matrix sizes p = 100 (blue crosses) and p = 500 (cyan squares). Note that
p indicates both the matrix size and the number of vertices in the k-regular graph. As p increases
from 100 to 500, we observe the convergence of the empirical spectral density towards (3.1) (black
curve). Figure 1 (right) displays the empirical probability density of the normalized spacing ps+ for
the set of eigenvalues {λi} such that |λi − 20| < 1. We used approximately 2pρ(λ) eigengaps to
estimate the empirical densities. As expected, the eigengap distributions appear to be consistent with
the Wigner surmise given by (1.5) (black curve). Note that the agreement improves with increasing
p. To gain further insight into the gap distribution and to validate Assumption 2.2, we compared the
unnormalized counting measure with the joint eigengap distribution J(s−, s+) for the eigenvalues {λi}
such that |λi − 20| < 1. Figure 2 (left) displays the level sets of p2J(s−, s+) according to (2.1) with
p = 1, 000. Figure 2 (right) shows the unnormalized counting measure computed across 100 covariance
matrices of size p = 1, 000. These are in very good agreement.

Before continuing, we need to make two clarifying points. First, while we could use (3.1) to test our
approximations (see Section 2), in the numerical experiments to follow, we instead estimate the limiting
distribution of eigenvalues using the data, as this approach would be more relevant for empirical data.
That is, we estimate ρ(λ) by numerically computing the average spectral density of random population
covariance matrices drawn from the graphical model for a given p.

Secondly, main results 2 and 3 describe the distribution fH(hi) across the random matrix ensemble
from which population covariance matrices are drawn. That is, we consider the distribution of hi
associated with a particular eigenvalue λi = λ. However, if one fixes λ, then one is confronted with
an undersampling issue since it is unlikely that the Laplacian of a randomly generated k-regular graph
will have λ as a particular eigenvalue. To overcome this issue, we fix λ and numerically study the
distribution fH(h) for values {hi} associated with eigenvalues {λi : |λi − λ| < δ} for small δ > 0. For
each p, we choose δ to be sufficiently small so that the resulting distribution appears to not depend on
δ. We note that this represents a compromise between undersampling the random matrix ensemble and
the error introduced by allowing λi lie within a small neighbourhood (rather than remain fixed at λ).

3.2 Experimental validation of main result 1

We first compared the estimate ĥi, given by (2.2), with the true values of hi, defined by (1.2), for
covariance matrices ensemble described in Section 3.1. We considered graphs of fixed degree k = 20
and p = 100 vertices. In Fig. 3 (left), we compare (2.2) with the true value of hi computed directly from
the eigenvalues. The points lie close to the diagonal (dashed line), which validates the accuracy of the
approximations. To illustrate the effect of the terms pρ(λi)λ

2
i /s

±
i in (2.2), we plot our approximation

with (red plus symbols) and without (blue crosses) these corrections. One can observe that these terms
improve the estimate for small hi and have little effect for large hi. This is expected since large hi
corresponds to very small s±i . In this limit, the correction terms become negligible as (s±i )−2 � (s±i )−1.

In the next experiment, we compare ĥi given by (2.2) with a bootstrap estimate of the mean
sample error, nÊ

[‖ui − ũi‖2
]
, for Wishart distribution W(C, n). Specifically, we generated a population
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Fig. 3. Support for main result 1. Left: Approximation ĥi given by (2.2) as function of the true hi given by (1.2). Results indicate
ĥi and hi for a single population covariance matrix C of size p = 100 and i ∈ {1, . . . , p}. We show ĥi with (red plus symbols)

and without (blue crosses) the correction terms. Right: Bootstrap estimate of the sample mean error, nÊ
[
‖ui − ũi‖2

]
, which is

computed from 100 samples from Wishart distribution W(C, n) with n = 107, vs. approximation ĥi given by (2.2). The mean is
plotted by the black curve, and the standard deviation is shown in blue. See text for details.

covariance matrix C with k = 20 and p = 200. We then generated 100 random realizations C̃ from
W(C, n) with n =107. Let {ui}pi=1 be the eigenvectors of C. For each random realization C̃, we calculated
its eigenvectors {̃ui}pi=1 and computed the residual error ui − ũi between the sample eigenvectors and
the population eigenvectors. We then computed a bootstrap estimate, Ê

[‖ui − ũi‖2
]
, indicating the

observed mean eigenvector error across the 100 realizations of C̃. In Fig. 3 (right), we plot the observed
values nÊ

[‖ui − ũi‖2
]

vs. our prediction given by (2.3). The mean is plotted in black, and the standard
deviation is shown in blue. We note that the solid curves lie very close to the diagonal indicating the
accuracy of (2.3).

In these experiments, the sample size n was chosen to be sufficiently large so that (1.3) and (2.3)
are accurate. Recall that (1.1) is an asymptotic n → ∞ limit for E

[
n‖ui − ũi‖2

]
, and we numerically

observe that n must be very large for the asymptotic result to provide an accurate approximation. We
discuss in Section 4 a simple and practical bound that can be used to choose appropriate values of n.

3.3 Experimental validation of main result 2

We now describe experiments that validate the second main result presented in Section 2.3. We confirm
that the approximation of fH(h) given by (2.4) is in good agreement with the empirical distribution of
hi. Furthermore, we show experimentally that fH(h) in (2.4) also approximates the distribution of the
expected residual error E

[
n‖ui − ũi‖2

]
, provided that n and p are sufficiently large.

We generated 50 unweighted graphs of fixed degree k = 20 and fixed size p = 1, 000. For each
graph, we constructed the population covariance matrix, C, as explained in Section 3.1. For each C, we
generated 10 sample covariance matrices C̃ from Wishart distribution W(C, n) with n = 1010. For each
C̃, we calculated its eigenvectors {̃ui}pi=1 and computed the residual error, ui − ũi, between the sample
and population eigenvectors.We consider all eigenvectors such that their associated eigenvalues satisfy
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Fig. 4. Support for main result 2. Accuracy of probability density function fH(h) of h given by (2.4) (left) and its associated
cumulative density (right). We depict the following: (black curves) semi-analytical expression of the probability distribution
fH(h) given by (2.4), (blue crosses, ×) an empirically observed distribution of hi computed for {hi : |λi − λ| < 1} with λ = 20,

(red squares, �) empirically observed distribution of bootstrap estimate, nÊ
[
‖ui − ũi‖2

]
.

|λi − λ| < 1. We then computed a bootstrap estimate, nÊ
[‖ui − ũi‖2

]
, of the mean sample error for

each C using the 10 realizations of C̃.
In Fig. 4 (left), we use a solid black curve to represent the semi-analytical expression of the

probability distribution fH(h) given by (2.4). We plot its corresponding cumulative distribution in Fig. 4
(right). We plot with blue crosses in both panels a numerically observed distribution of hi, which we
estimate using 50 covariances C drawn from the graphical model described in Section 3.1. We plot
with red squares an empirical distribution of bootstrap estimates, nÊ

[‖ui − ũi‖2
]
. As expected, the

probability density function fH(h) provides a good approximation of the empirical distribution of hi
as well as the distribution of nÊ

[‖ui − ũi‖2
]

(that is, provided n and p are both sufficiently large).
However, we note that the distribution fH(h) is shifted slightly to the right. This is in agreement with
Fig. 4, where one can observe that ĥi typically overestimates hi by a very small amount (i.e. the red +
symbols tend to be just above the diagonal).

3.4 Experimental validation of main result 3

We conclude with numerical validation of main result 3, fH(h) ∝ h−2 for large h, which we presented in
Section 2.4. We generated 500 covariance matrices C using the graphical model described in Section 3.1,
with k = 20 and p = 2,000. Figure 5 displays P[log(h)] using our theoretical distribution fH(h) given by
(2.4) (dashed red curve) as a function of log(h). We also display as a solid black line the limiting scaling
behaviour, fH(h) ∝ h−2, given by (2.7). Finally, we compare these two probability density functions
with the empirical distribution of log(h), shown as blue crosses. We note for large h that all distributions
are parallel in this log–log plot, indicating that they have the same asymptotic power-law scaling.

4. Discussion

A central motivator for our research has been equation (1.1), which describes the limiting n → ∞
expected sample error ‖ui − ũi‖2 of a sample eigenvector ũi for a covariance matrix drawn from a
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Fig. 5. Support for main result 3. O(p2/h2) scaling of fH(h) in the limit of large h. We plot P[log(h)] as a function of log(h):
semi-analytical expression fH(h) computed from (2.4) in red (−−); limiting approximation to fH(h) for large h, given by (2.7) in
black (–); empirical distribution, shown as blue crosses (×).

Wishart distribution. However, this equality only holds asymptotically. In this discussion, we describe
the conditions in which the approximation (1.3) is expected to be accurate. That is, when is the sample
size n sufficiently large for given covariance matrix size p?

The standard approach to this problem usually involves a tail bound. Instead, we use here a simple
argument that yields a lower bound that works very well in practice. Indeed, we provide a necessary (but
not sufficient) lower bound on n such that (1.1) and (2.2) are valid. Since both ui and ũi are normalized
and we assume ui ≈ ũi, we have

‖ui − ũi‖2 = 2[1 − 〈ui, ũi〉] � 2. (4.1)

Under the approximation ‖ui − ũi‖2 ≈ hi/n given by (3), it follows that

n � hi/2. (4.2)

We now provide numerical support for this bound using the graphical model described in
Section 3.1. We first generate a k-regular graph with p vertices and compute the unnormalized Laplacian
matrix, C, which we treat as a covariance matrix. Let {ui}pi=1 be the eigenvectors of C. In order to study
the convergence of the empirical eigenvectors, we generate 100 random matrices C̃ from the Wishart
distribution W(C, n). For each random realization C̃, we calculate its eigenvectors {̃ui}pi=1 and compute
the residual error ui − ũi between the sample eigenvectors and the population eigenvectors.

Figure 6 (left) displays log(hi) as a function of log(n‖ui − ũi‖2) for each random realization of a
Wishart matrix C̃ for p = 200, k = 5 and several choices of n. For each value of n, we plot the bound
given by (4.2), log(2n), as a vertical solid line. Figure 6 (right) displays a scatterplot of log(hi) as a
function of log(n‖ui − ũi‖2) for k = 5, n = 105 and several values of p. We also plot log(2n) as a
vertical solid line. Both panels illustrate (4.2) as a useful bound for considering when the approximation
hi ≈ E

[
n‖ui − ũi‖2

]
given by (1.3) will be valid. Specifically, we require E

[‖ui − ũi‖2
]

< 2 and
observe considerable discrepancy as E

[‖ui − ũi‖2
] → 2.
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Fig. 6. True values of hi given by (1.2) vs. residual eigenvector error n‖ui − ũi‖2 across 100 Wishart-distributed sample
covariance matrices C̃ with expectation C with (left) p = 200 and various n and (right) n = 105 and various p. The vertical

lines indicate hi � 2n is a necessary (but not sufficient) condition for accuracy of the approximation E

[
n‖ui − ũi‖2

]
≈ hi/n

given by (1.3).

We conclude by exploring the effect of inaccuracy for (1.3) on the distribution of the bootstrap esti-
mates, nÊ

[‖ui − ũi‖2
]
, of the mean residual error across the covariance matrix ensemble. We identify

two sources of discrepancy: (i) choosing n too small so that the bound (4.2) is violated and (ii) using
insufficiently many samples from the Wishart distribution W(C, n) to provide an accurate bootstrap
estimate, nÊ

[‖ui − ũi‖2
]
. That is, the bootstrap estimate Ê

[‖ui − ũi‖2
]

is only a reliable estimate of
E
[‖ui − ũi‖2

]
if we generate enough random samples C̃ from the Wishart distribution W(C, n).

We highlight these two sources of discrepancy with a numerical experiment similar to the one
described in Section 3.3. We generated 50 covariance matrices, C, with k = 20 and p = 1, 000, as ex-
plained in Section 3.1. For each C, we generated R random realizations C̃ from the Wishart distribution
W(C, n). For each C̃, we calculated its eigenvectors {̃ui}pi=1 and computed the residual error ui − ũi
between the sample eigenvectors and the population eigenvectors. We then computed a bootstrap
estimate, Ê

[‖ui − ũi‖2
]
, of the mean sample error for each C using the R realizations of C̃.

In Fig. 7 (left) and Fig. 7 (right), we plot as solid black curves the probability distribution fH(h)
given by (2.4) and its corresponding cumulative distribution, respectively. We plot by blue crosses the
empirical distribution of hi, which we estimate using the 50 covariances C. Note that fH(h) accurately
predicts the observed distribution of hi, since p is sufficiently large. In addition, we plot the distribution
of the bootstrap estimates Ê

[
n‖ui − ũi‖2

]
of the mean sample error for R = 10 and n = 107 (green

circles) as well as R = 1 and n = 1010 (red squares). Note that when R = 1, the bootstrap estimate
Ê
[‖ui − ũi‖2

]
is actually just the sample error ‖ui − ũi‖2.

Observe that both distributions disagree with fH(h) for different reasons: for R = 10 and n = 107,
the distribution of Ê

[
n‖ui − ũi‖2

]
is expected to differ because n = 107 is too small and does not

satisfy the bound given by (4.2) (vertical dashed lines). On the other hand, for R = 1 and n = 1010,
the sample error does not provide a good bootstrap estimate for the mean sample error E

[
n‖ui − ũi‖2

]
,

which is the relevant quantity that is described in (1.1) and (1.3). We observe in Fig. 7 that using too
few samples (i.e. small R) affects the distribution of Ê

[
n‖ui − ũi‖2

]
by shifting it towards small values

of h (see red squares).
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Fig. 7. Discrepancy between theoretical distribution fH(h) of h given by (2.4) and a distribution of bootstrap estimates,

Ê

[
n‖ui − ũi‖2

]
, due to error for (1.1) and (1.3). We plot results for two sources of error (green circles, ◦). Sample size n is

too small and does not satisfy bound (4.2), which is shown by the vertical dashed lines (red squares, �). Insufficiently, many

(particularly, R = 1) samples are used to provide a reliable bootstrap estimate Ê

[
n‖ui − ũi‖2

]
to E

[
n‖ui − ũi‖2

]
. (See text for

details.)
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A. Derivation of main result 1

In this Appendix, we approximate hi in (1.1) in terms of the nearest-neighbour eigenvalue gaps. By doing
so, we will be able to exploit the knowledge of the p → ∞ limiting distribution of the eigenvalues. We
begin by dividing the summation into two parts so that

hi = h−
i + h+

i , (A.1)

with

h−
i =

i−1∑
j=1

λiλj

(λi − λj)
2 , (A.2)

h+
i =

p∑
j=i+1

λiλj

(λi − λj)
2

. (A.3)

Our numerical experiments show that typically the nearest-neighbour terms dominate the others. Taking
this into account, we isolate the first spacing and rewrite h±

i as

h−
i = λiλi−1

(λi − λi−1)
2 +

i−2∑
j=1

λiλj

(λi − λj)
2 , (A.4)

h+
i = λiλi+1

(λi − λi+1)
2 +

p∑
j=i+2

λiλj

(λi − λj)
2 . (A.5)

We study the large p behaviour of (A.4) and (A.5) by separately considering the nearest-neighbour
terms and the summations. In particular, we will obtain approximations that rely only on the right and
left nearest-neighbour eigenvalue gaps,

s±i = |λi − λi±1|. (A.6)

We first consider the isolated terms

λiλi±1

(λi − λi±1)
2 = λi

(
λi ± s±i

)(
s±i

)2 (A.7)

= λ2
i(

s±i
)2

[
1 + O

(
s±i

)]
. (A.8)
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Using that s±i → 0 as p → ∞ (which is established by Assumption 2.2 and convergences, in
expectation, with rate s±i = O(1/p)), we find the asymptotic estimate

λiλi±1

(λi − λi±1)
2 → λ2

i

(s±i )2
. (A.9)

We now turn our attention to the summations, which we will approximate using the limiting
p → ∞ spectral density ρ(λ) of the normalized empirical counting measure of the eigenvalues. More
precisely, consider a sequence of size-p symmetric covariance matrices, each having eigenvalues {λj} for
j ∈ {1, . . . , p}. We define for each matrix the empirical spectral density

ρp(λ) = p−1
∑
j

δ(λj), (A.10)

where δ(λ) is the Dirac delta function and λ ∈ R. We assume the covariance matrices are drawn from
an ensemble such that the sequence {ρp(λ)} weakly converges, implying that∫ ∞

−∞
ρp(λ)f (λ) dλ →

∫ ∞

−∞
ρ(λ)f (λ) dλ (A.11)

as p → ∞ for any continuous and bounded function f (λ). We assume that ρ(λ) is continuous, is
bounded, has compact support (denoted by supp(ρ)) and is differentiable on supp(ρ). For notational
convenience, we assume supp(ρ) = (α, β) for some α, β ∈ R, allowing us to replace the limits of
integration in (A.11) by (α, β). However, our analysis can be easily extended to unions of such intervals.

We begin be rewriting the summations in (A.4) and (A.5) as the integration of function

fλi(λ) = λiλ

(λi−λ)2 (A.12)

with probability measure ρp(λ) given by (A.10),

1

p

i−2∑
j=1

λiλj

(λi − λj)
2 =

∫ λi−1

α

ρp(λ)fλi(λ) dλ, (A.13)

1

p

p∑
j=i+2

λiλj

(λi − λj)
2

=
∫ β

λi+1

ρp(λ)fλi(λ) dλ. (A.14)

Because fλi(λ) is unbounded at the singularity λ = λi, (A.11) does not describe the behaviour of integral∫ β

α
ρp(λ)fλi(λ) dλ, which we find to diverge with p for any λi ∈ supp(ρ). Fortunately, (A.13) and (A.14)

do not require integration across the singularity at λ = λi; however, the limits of integration, i.e. λi−1 in
(A.13) and λi+1 in (A.14), depend on p (and converge to the singularity at λi). Thus, (A.11) is also not
directly applicable to (A.13) and (A.14).

To proceed, we restrict our attention to (A.13) since analogous results can be obtained for (A.14).
We consider, for the moment, (A.13) with fixed upper limit λi − ε for ε > 0 and ε ≈ 0. Equation (A.11)
implies the p → ∞ limit ∫ λi−ε

α

fλi(λ)ρp(λ) dλ →
∫ λi−ε

α

fλi(λ)ρ(λ) dλ. (A.15)
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We now study how the right-hand side of (A.15) scales with ε. Using that both ρ(λ) and fλi(λ) are
differentiable for λ ∈ supp(ρ) \ {λi}, we implement integration by parts, treating the numerator and
denominator separately, to obtain∫ λi−ε

α

fλi(λ)ρ(λ) dλ = λi
(λi − ε)ρ(λi − ε)

ε
− λi

∫ λi−ε

α

ρ(λ) + λρ′(λ)

λi − λ
dλ. (A.16)

The first term in the right-hand side of (A.16) has the ε → 0 asymptotic estimate

λi
(λi − ε)ρ(λi − ε)

ε
→ λ2

i ρ(λi)

ε
. (A.17)

The second term on the right-hand side of (A.16) is bounded as∣∣∣∣∣λi
∫ λi−ε

α

[
ρ(λ) + λρ′(λ)

]
λi − λ

dλ

∣∣∣∣∣ � λi

[
sup

λ∈(α,λi−ε]
|ρ(λ) + λρ′(λ)|

]∫ λi−ε

α

1

|λi − λ| dλ

= λi

[
sup

λ∈(α,λi−ε]
|ρ(λ) + λρ′(λ)|

]
ln

(
λi − α

ε

)
. (A.18)

It follows that the second term in the right-hand side of (A.16) has scaling O(ln(1/ε)) and is dominated
in the limit ε → 0 by the first term, which is O(1/ε). We combine (A.17) and (A.18) to obtain the
ε → 0 asymptotic estimate ∫ λi−ε

α

fλi(λ)ρ(λ) dλ → λ2
i ρ(λi)

ε
. (A.19)

We finally note that in the case where ρ′(λ) is unbounded, it is straightforward to separate the
integral on the left-hand side of (A.18) into two domains: one containing all values λ, where ρ′(λ) is
unbounded and the second domain having the upper limit λi − ε. The first integral will converge to zero
due to (A.11); whereas the second satisfies the bound given by (A.18), implying that the integral term
in (A.16) is O(ln(1/ε)), provided that ρ(λ) is differentiable in a small neighbourhood containing λi.

We study the p → ∞ limiting behaviour for the right-hand side of (A.13) by considering the
following identity:∫ λi−1

α

fλi(λ)ρp(λ) dλ =
∫ λi−s−i

α

fλi(λ)ρ(λ) dλ +
∫ λi−s−i

α

fλi(λ)
[
ρp(λ) − ρ(λ)

]
dλ. (A.20)

The first term on the right-hand side grows linearly with p, which is straightforward to show by setting
ε = s−i in (A.19) and using that s−i = O(1/p). Turning our attention to the second term on the right-
hand side of (A.20), recall that it would converge to zero if the upper limit of integration was fixed.
However, λi − s−i limits to λi and the p → ∞ behaviour of the second term therefore depends on the
rate of weak convergence for ρp(λ) → ρ(λ). We assume that this term scales sublinearly with p and is
therefore dominated by the first term on the right-hand side of (A.20). Under this assumption (and by
conducting a similar analysis for (A.5)), we obtain the asymptotic estimates

p
∫ λi−1

α

fλi(λ)pρp(λ) dλ → λ2
i pρ(λi)

s−i
, (A.21)

p
∫ β

λi+1

fλi(λ)ρp(λ) dλ → λ2
i pρ(λi)

s+i
. (A.22)
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In summary, we combine (A.21), (A.22) and (A.17) to obtain the asymptotic large p approximation,

h±
i ≈ λ2

i(
s±i

)2 + pρ(λi)λ
2
i

s±i
, (A.23)

which gives approximation (2.2). We stress that this approximation assumes a sufficiently high rate of
weak convergence for the spectral density so that the second term on the right-hand side of (A.20) is
sublinear.

B. Derivation of main result 2

In this section, we take a different perspective and consider hi, defined by (1.2), to be the realization of
a random variable that is a function of the corresponding family of random covariance matrices. Using
the approximation ĥ of h provided by (2.2), we derive an estimate for the probability distribution, P(h)
of h. Let us denote by H the random variable for which hi is a realization.

Our goal is to remove the dependency on the random variables s+ and s− in (2.2), so that ĥ becomes
a function of only λ, which is distributed according to the density ρ(λ). The only missing ingredients
are the probability distributions of s+ and s−. We note that these two random variables are correlated,
and thus our line of attack involves using an approximation to the joint probability for the eigenvalue
gaps, J(s−, s+), and derive an expression for the limiting probability density of approximation ĥ. In this
section, we keep the discussion general and derive an expression that is valid for all ρ(λ).

We assume that the joint probability distribution J(s−, s+) of the left and right gaps around each
eigenvalue λ can be approximated by (2.1), which is reproduced below for ease of presentation:

J(s−, s+) ≈ 37 [pρ(λ)]5

32π3

[
s+s−(s+ + s−)

]
exp

(
− [3pρ(λ)]2

4π

[
(s+)2 + (s−)2 + s+s−

])
.

The expression (2.1) was derived in Herman et al. (2007) using 3 × 3 matrices from the GOE. As
suggested by our numerical simulations (see Fig. 2), (2.1) provides a good approximation for the
covariance matrices that we study.

To derive the distribution P(h) of H, we first consider the cumulative distribution

F(h)
�= P(H < h). (B.1)

Given an eigenvalue λ, we can find all the pairs of gaps s− and s+, such that ĥ in (2.2) is less than h. Let

S
�= {(s−, s+) : ĥ(s−, s+) < h} (B.2)

be this set. We then proceed to compute the measure of S using the joint probability density function
defined above,

F(h) =
∫
S

J(s−, s+) ds− ds+. (B.3)

It turns out that we can describe analytically the set S (see Fig. A1). For a given value of h, ĥ(s−, s+) <

h implies that both h+< h and h− < h, where h± is given by (A.23) (with the subscript omitted).
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Fig. A1. The cumulative distribution F(h) for the random variable H is shown as the integral of J(s−, s+) over region S given
by (B.2) (shaded region). This region corresponds to s+ ∈ (s0(h), ∞) and s− ∈ (

s∗(h, s+), ∞)
, where s0(h) is found so that

h+(s+) < h for s+ > s0(h) and s∗(h, s+) is found so that ĥ(s−, s+) < h for s− > s∗(h, s+).

Therefore the region of integration has the lower bounds s− > s0(h) and s+ > s0(h), where s0(h) is
given by

s0(h) = λ2pρ(λ)

2h
+

√
λ2

h
+

(
λ2pρ(λ)

2h

)2

= λ2pρ(λ)

2h

(
1 +

√
1 + 4h

[λpρ(λ)]2

)
, (B.4)

which follows directly from solving (A.23) for s± with h± = h. We therefore integrate s+ over the range
(s0(h), ∞). For given values h and s+, requiring that ĥ(s−, s+) > h implies that s− > s∗(s+, h), where
s∗(h, s+) is found by substituting h �→ ĥ(s−, s+) in (2.2) and solving for the positive root of s−,

s∗(h, s+) = λ2pρ(λ)

1 +
√

1 + 4
[λpρ(λ)]2

(
h − λ2

(s+)2 − λpρ(λ)
s+

)
2
(
h − λ2

(s+)2 − λpρ(λ)

s+
) . (B.5)

We therefore integrate s− over the range (s∗(h, s+), ∞),

F(h) =
∫ ∞

s0(h)

∫ ∞

s∗(h,s+)

J(s−, s+) ds− ds+. (B.6)
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To obtain an estimate for the distribution of h, fH(h), we differentiate (B.6) with respect to h to obtain

fH(h) = ∂

∂h

∫ ∞

s0(h)

∫ ∞

s∗(h,s+)

J(s−, s+) ds− ds+ (B.7)

= −∂s0

∂h
(h)

∫ ∞

s∗(h,s0(h))
J(s−, s0(h)) ds− +

∫ ∞

s0(h)

∂

∂h

[∫ ∞

s∗(h,s+)

J(s−, s+) ds−
]

ds+

= −
∫ ∞

s0(h)
J
(
s∗(h, s+), s+

) ∂s∗(h, s+)

∂h
ds+.

We note that in the above derivation, the first term in the second line vanishes since s∗(h, s+) → ∞ in
the limit s+ → s0(h) and J(s−, s+) is bounded.

C. Derivation of main result 3

With h distributed according to fH(h), given by (B.7), we derive in this section an asymptotic expression
for fH(h) in the limit h → ∞. Examining (2.2), we note that ĥ(s−, s+) is large when s− and/or s+ are
small, and thus in the large h limit one can consider only the contributions of the terms proportional to
s−2− and s−2+ ,

h ≈ λ2

(s−)2 + λ2

(s+)2 . (C.1)

In this case, we find

s0(h) = λ√
h

, (C.2)

s∗(h, s+) = λs+[
(s+)2h − λ2

]1/2 , (C.3)

∂

∂h

(
s∗(h, s+)

) = −λ(s+)3

2
[
(s+)2h − λ2

]3/2 = −1

2λ2 [s∗(h, s+)]3. (C.4)

Substituting these values into (B.7) and dropping the arguments for s∗, i.e. s∗(h, s+) �→ s∗, we find

fH(h) = −
∫ ∞
√

λ2/h

(
37 [pρ(λ)]5

32π3 s+s∗(s∗ + s+) e− [3pρ(λ)]2

4π

[
(s∗)2+(s+)2+s∗s+

])(−(s∗)3

2λ2

)
ds+

= 37 [pρ(λ)]5

32π3

1

2λ2

∫ ∞
√

λ2/h

((
s+(s∗)5 + (s+)2(s∗)4

)
e− [3pρ(λ)]2

4π

[
(s∗)2+(s+)2+s∗s+

])
ds+.

The change of variables u = (s+)2h − λ2 transforms this into

fH(h) = 37 [pρ(λ)]5

32π3

λ2

4
h−7/2I(h), (C.5)
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where we have defined

I(h) =
∫ ∞

0

(
1 + λ2

u

)5/2 (
u1/2 + λ

)
e−ϕ(u)/h du, (C.6)

and

ϕ(u) = [3pρ(λ)]2

4π

(
u + λ2) (1 + λ√

u
+ λ2

u

)
. (C.7)

The distribution fH(h) in (C.5) depends on h through the power law h−7/2 as well as I(h). In Appendix D,

we show that (C.6) has the large-h scaling I(h) = O
(
h3/2

p3

)
. Combining this with (C.5), we find

fH(h) = O
(
p2

h2

)
for large h.

D. Large-h scaling of I(h)

We now study how I(h) given by (C.6) scales in the limit of large h. Recall that the limit of large h
corresponds to when an eigenvalue λi has a nearest-neighbouring eigenvalue that is very close (i.e. |λi −
λi±j| � 1), which results in large values of hi and subsequently the error of the empirical eigenvector
(i.e. large ‖ui − ũi‖ ≈ hi/n).

Our strategy for evaluating (C.6) is to split the integral into three regions of integration, which are
chosen based on studying the function ϕ(u). Examining (C.7) for limiting values of u, we find that the
function ϕ(u) approaches +∞, both as u → 0 and as u → ∞, and has the minimum

min
u∈[0∞)

ϕ(u) = ϕ
(
λ2) = 27

2π
[λpρ(λ)]2, (D.1)

which occurs at u = λ2. For large h, there are two values of u such that ϕ(u) = h. We refer to these
values as u1(h) and u2(h), with u1(h) < u2(h). Considering the limits u → 0 and u → ∞, we find the
asymptotic approximations

u1(h) → [3pρ(λ)]2

4π
λ4h−1, (D.2)

u2(h) → 4π

[3pρ(λ)]2
h. (D.3)

We will evaluate (C.6) by dividing the integration into three ranges, I(h) = I1(h) + I2(h) + I3(h), where
we define

I1(h) =
∫ u1(h)

0

(
1 + λ2

u

)5/2 (
u1/2 + λ

)
e−ϕ(u)/h du, (D.4)

I2(h) =
∫ u2(h)

u1(h)

(
1 + λ2

u

)5/2 (
u1/2 + λ

)
e−ϕ(u)/h du, (D.5)

I3(h) =
∫ ∞

u2(h)

(
1 + λ2

u

)5/2 (
u1/2 + λ

)
e−ϕ(u)/h du. (D.6)
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We now study the h → ∞ scaling for integrals I1(h), I2(h) and I3(h). Beginning with (D.4), we first
note that for the range u ∈ (0, u1(h)](

u + λ2)5/2(
u1/2 + λ

)
�

(
u1 + λ2)5/2(

u1/2
1 + λ

)
. (D.7)

It follows that (
1 + λ2

u

)5/2 (
u1/2 + λ

)
� Eu−5/2, (D.8)

where

E(λ) = (
u1(h) + λ2)5/2(

u1(h)
1/2 + λ

)
. (D.9)

Note that E(λ) ≈ λ6 as h → ∞, since u1(h) → 0. Similarly, since u is positive, one finds

ϕ(u) = [3pρ(λ)]2

4π

(
u + λ2) [1 + (

λ2/u
) + (

λ2/u
)1/2

]
� [3pρ(λ)]2

4π

(
λ2)(λ2/u

)
= Fu−1, (D.10)

where we have defined

F = [3pρ(λ)]2

4π
λ4. (D.11)

Using these two inequalities, we have

I1(h) � E(λ)

∫ u1(h)

0
u−5/2 e−F/(hu) du, (D.12)

= E(λ)

(
h

F

)3/2 ∫ ∞

F/(hu1(h))
w1/2 e−w dw, (D.13)

which uses the change of variables w = F/(hu(h)). Using (D.2), the lower limit of integration converges
as F/(hu1(h)) → 1 with h → ∞. The integral in (D.13) therefore limits to a constant, implying that
I1(h) is dominated by a term which scales like h3/2.

To estimate I3(h), note for large h that (D.3) implies u > λ2 for any u > u2(h). It follows that(
1 + λ2

u

)5/2 (
u1/2 + λ

)
� 25/2(2u1/2). (D.14)

The integral I3(h) is thus dominated by

I3(h) � 8
∫ ∞

u2(h)
u1/2 e−ϕ(u)/h du, (D.15)

� 8
∫ ∞

u2(h)
u1/2 exp

(
− [3pρ(λ)]2

4π

u

h

)
du, (D.16)
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where the second inequality uses u > 0 and λ2/u > 0 to bound

ϕ(u) = [3pρ(λ)]2

4π

(
u + λ2) [1 + (

λ2/u
) + (

λ2/u
)1/2

]
� [3pρ(λ)]2

4π
u. (D.17)

We define the change of variables w = [3pρ(λ)]2

4π
u
h to obtain

I3(h) � 8

(
[3pρ(λ)]2

4π

)3/2 ∫ ∞
[3pρ(λ)]2

4π
u2(h)/h

w1/2 e−w dw. (D.18)

From (D.3), the lower limit of integration converges as [3pρ(λ)]2

4π
u2(h)/h → 1 and the integral in (D.18)

converges to a constant as h → ∞. Therefore, I3(h) is also bounded by a term scaling as h3/2.
We will now show that I2(h) has scaling O(h3/2) (as opposed to the other terms, which we showed

are bounded by terms that scale as h3/2). Note that because of our definition of u1 and u2, and using that
ϕ(u) reaches a minimum at u = λ2 ∈ (u1, u2), we find the bounds

ϕ(λ2)/h � ϕ(u)/h � 1 (D.19)

for any u ∈ (u1, u2). Substituting these into (D.6), we bound I2(h) as

Q(h) e−1 � I2(h) � Q(h) e−ϕ(λ2)/h, (D.20)

where we have defined

Q(h) ≡
∫ u2(h)

u1(h)

(
1 + λ2

u

)5/2 (
u1/2 + λ

)
du. (D.21)

Using the asymptotic approximations for u1(h) and u2(h) given by (D.2) and (D.3), we integrate
(D.21) using the software Mathematica (using the ‘Series[Q(h), {h, Infinity,1}]’ command) to obtain
its asymptotic behaviour,

Q(h) ≈ 24π3/2

34[pρ(λ)]3 h
3/2. (D.22)

Furthermore, we combine ϕ(λ2)/h → 0 with (D.20) to obtain the asymptotic bound

Q(h) e−1 � I2(h) � Q(h). (D.23)

We combine (D.23) with (D.13) and (D.18) to obtain the large-h scaling I(h) = O
(
h3/2

p3

)
.
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