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ABSTRACT

Phylogenetic estimation under the multispecies coalescent model (MSCM) assumes
all incongruence among loci is caused by incomplete lineage sorting. Therefore,
applying the MSCM to datasets that contain incongruence that is caused by other
processes, such as gene flow, can lead to biased phylogeny estimates. To identify
possible bias when using the MSCM, we present P2C2M.SNAPP. P2C2M.SNAPP is
an R package that identifies model violations using posterior predictive simulation.
P2C2M.SNAPP uses the posterior distribution of species trees output by the software
package SNAPP to simulate posterior predictive datasets under the MSCM, and then
uses summary statistics to compare either the empirical data or the posterior
distribution to the posterior predictive distribution to identify model violations.

In simulation testing, P2C2M.SNAPP correctly classified up to 83% of datasets
(depending on the summary statistic used) as to whether or not they violated the
MSCM model. P2C2M.SNAPP represents a user-friendly way for researchers to
perform posterior predictive model checks when using the popular SNAPP
phylogenetic estimation program. It is freely available as an R package, along with
additional program details and tutorials.

Subjects Bioinformatics, Evolutionary Studies, Genetics
Keywords Species trees, Coalescent, Posterior predictive simulation, Multispecies coalescent model

INTRODUCTION

Alleles that are shared across taxa present a formidable challenge to phylogenetic
inference. Species tree inference methods were introduced in an attempt to infer phylogeny
without the potentially confounding effects caused by ancestral alleles that were shared
across operational taxonomic units (OTUs) (Maddison, 1997; Carstens e Knowles, 2007).
Since the biological mechanisms that lead to this process (i.e., incomplete lineage sorting)
commonly occur at shallow levels of phylogenetic divergence, species trees have largely
(but not exclusively; Prum et al., 2015) been applied near the species boundary, and often
in clades where species limits are not entirely clear (Satler, Carstens ¢ Hedin, 2013). Such
applications of the species tree model make the implicit assumption that alleles shared
across lineages result from incompletely sorted ancestral polymorphism, even though gene
flow is possible in closely related taxa. While gene flow was once considered rare above the
species level (at least in animals), recent investigations have suggested that it is more
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common than previously recognized (e.g., snowshoe hares: Melo-Ferreira et al. (2014),
chipmunks: Sullivan et al. (2014), bears: Kumar et al. (2017), and Myotis bats: Morales et al.
(2017)).

Given that gene flow has been shown to bias estimates of both topology and branch
lengths when it is not accounted for in a phylogenetic analysis (Eckert ¢» Carstens, 2008;
Leaché et al., 2013), evolutionary biologists should (at the least) consider the possibility
that gene flow has interfered with phylogeny estimation, particularly when inferring
phylogenies from closely related species where reproductive isolation may not be complete.
One approach is to look for evidence of gene flow in the data, for example, by searching
for alleles that are shared across non-sister taxa because such alleles are more likely to
result from gene flow than coalescent processes. However, this is likely to be a laborious
process, particularly in genomic datasets, and gene flow can be easily missed in studies
that do not analyze data from all possible hybridization/introgression events. It is
considerably more efficient to utilize statistical methods, such as posterior predictive
simulation, that seek to determine whether a given dataset violates the model assumptions
of the phylogenetic analysis (Goldman, 1993; Reid et al., 2014).

Posterior predictive approaches have been developed for several types of phylogenetic
models, including models of sequence evolution (Huelsenbeck et al., 2001; Brown, 2014b),
species delimitation (Barley & Thomson, 2016; Barley, Brown & Thomson, 2018), and
species tree estimation (Reid et al., 2014). The basic approach is to (i) draw parameter
values from the posterior distribution, (ii) simulate new datasets using these parameter
values under the model assumed by the analysis, (iii) analyze the simulated data to
generate posterior predictive distributions, and (iv) calculate and compare summary
statistics from either the empirical data or the posterior distribution to the posterior
predictive distribution. Analytical models that represent a good fit for the empirical data
should produce summary statistics values that fall within the distribution of values
estimated under the correct model with posterior predictive datasets (Brown, 2014b).
Recently, posterior predictive checks have been incorporated into an R package (Posterior
Predictive Checks of Coalescent Models (P2C2M): Gruenstaeudl et al., 2016) for the
multispecies coalescent model (MSCM) framework. P2C2M was designed to easily allow
users to perform posterior predictive analyses, but the program uses the species tree
inference package *BEAST which is intended for smaller, sub-genomic data sets (Heled ¢
Drummond, 2010). Here, we expand P2C2M to the genomic era so that it can be used to
conduct posterior predictive checks using single nucleotide polymorphisms (SNPs) in the
SNAPP implementation of the MSCM (Bryant et al., 2012).

MATERIALS AND METHODS

Pipeline

The posterior predictive simulation framework for SNAPP (P2C2M.SNAPP) has been
implemented as an R package (R Core Team, 2018), with detailed program settings
described in the package documentation and tutorial. P2C2M.SNAPP differs from the
original P2C2M in the input datatype (sequence data in the original versus SNP data in the
SNAPP version) and consequently the summary statistics used to compare empirical and
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posterior predictive datasets. User input to P2C2M.SNAPP includes the SNAPP .xml
formatted input file, the posterior distribution of species trees and log file from a SNAPP
analysis, and a metadata text file containing the number of SNPs used, an estimated
mutation rate, and the number of samples per group. Importantly, P2C2M.SNAPP
assumes users have properly performed SNAPP species tree estimation analysis, including
selecting the proper priors for their data and study system and checking for Markov
chain convergence. Because P2C2M.SNAPP relies on the posterior distribution of species
trees, users should retain at least 100 trees in the posterior distribution to sample from.
P2C2M.SNAPP proceeds as follows: (i) it samples, either uniformly or at random, a
user-specified number of species trees from the posterior distribution, (ii) extracts
taxonomic relationships and branch lengths from each tree, and (iii) for each tree sampled
from the posterior, it simulates a posterior predictive dataset under the MSCM using
fastsimcoal2, a user-specified number of simulations (Excoffier et al., 2013) and the
parameters extracted from the metadata text file (Fig. 1). Posterior predictive datasets are
converted to SNAPP xml files, and users conduct SNAPP analyses on each posterior
predictive dataset using the .xml file output by P2C2M.SNAPP. Prior distributions and
Markov chain parameters for the posterior predictive SNAPP analyses are recycled
from those used in the original SNAPP analysis in order to maintain consistency.

Given the intense computational requirements of SNAPP, generation of the posterior
predictive species tree distributions is best conducted using parallel computation.
Example scripts for automating SNAPP analyses are included with the tutorial
(http://www.github.com/P2C2M/P2C2M_SNAPP). The results of SNAPP analyses on the
posterior predictive datasets (i.e., SNAPP .xml files, posterior species tree distributions,
and log files) are subsequently used as input for the second stage of the P2C2M.SNAPP
analysis, where summary statistics from the posterior and posterior predictive datasets are
calculated and compared to identify model violations.

Summary statistics

Generally, summary statistics used in posterior predictive checks fall into two categories:
data-based, which compare the empirical and posterior predictive datasets themselves, and
inference-based, which compare the inferences produced by analyzing the empirical and
posterior predictive datasets (Brown, 2014a; Barley ¢ Thomson, 2016). Inference-based
statistics can provide more insight as to whether a model violation affects the end

result (e.g., the estimated species tree), but can also be more computationally difficult
because posterior predictive datasets need to be analyzed with the same methods as the
posterior (i.e., species trees need to be estimated with SNAPP). In contrast, data-based
statistics do not determine the effect a model violation has on the inference, but are usually
computationally efficient. Both data-based and inference-based summary statistics were
evaluated to determine which statistic identified model violations to the MSCM with
the highest accuracy. Data-based statistics included several based on a fixation index
(Fsr), and inference-based statistics included tree metrics based on Robinson-Foulds

or Kuhner-Felsenstein tree distances, and the mean and standard deviation of tree
likelihoods. Fgr is a commonly used metric for measuring the amount of population
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structure, and the value ranges from 0 to 1, with populations becoming more structured as
Fsr approaches 1 (Wright, 1949). Therefore, lineages exchanging genes should exhibit
lower Fgr values because they will share alleles. Pairwise Fst was calculated across all loci
in the KRIS package (Chaichoompu et al., 2018). Fgy summary statistics included mean
Fgr, range of Fgr and an Fgr outlier test. For the mean and range Fgr statistics, the
summaries are calculated for each posterior predictive dataset and the empirical dataset.
Similar to a two-tailed posterior predictive p-value (Brown, 2014a; Barley, Brown ¢
Thomson, 2018), a p-value is calculated by counting the number of posterior predictive
datasets with summary statistic values falling above and below the empirical value,
multiplying the lesser of these values by two (to emulate a two-tailed test), and then
dividing by the total number of posterior predictive datasets. We consider p-values less
than o = 0.05 to indicate a model violation. The Fgr outlier test was conducted by
calculating the average difference between empirical and simulated values for each
pairwise comparison, and then conducting an outlier test using the function boxplot.stats
in the grDevices package (R Core Team, 2018). Since we consider any detected outlier
to indicate a model violation, the pairwise outliers identified by this approach can be used
to identify lineages exchanging genes.

Two tree distance metrics were also examined, one that considers topology only and
one that considers topology and branch lengths. The Robinson-Foulds distance compares
the topology between two phylogenetic trees, with values ranging from 0 (no topology
difference) to 1 (completely different topologies) (Robinson ¢ Foulds, 1981). High rates of
gene flow can influence topology estimation and result in an errant clade consisting of
two lineages that are not closely related but that share alleles due to gene flow. However,
it may be more likely that gene flow may mislead the estimation of branch lengths
even if the underlying topology is correct. Therefore, a tree distance metric incorporating
branch length differences as well as topology may prove to be a useful summary statistic
for comparing empirical and posterior predictive datasets. One such metric is the
Kuhner-Felsenstein distance, which also calculates values between 0 (no difference
between trees) and 1 (high difference between trees) (Kuhner ¢» Felsenstein, 1994). Both
tree distance metrics were calculated using the ape package (Paradis, Claude & Strimmer,
2004). If posterior trees were estimated from a dataset that violates the MSCM model,
we expect that these trees will have large tree distances when compared to posterior
predictive trees simulated under the correct model (MSCM). Additionally, as all posterior
trees reflect similar processes in the empirical dataset, we expect that tree distances among
trees in the posterior under a model violation will be less than distances between the
posterior and posterior predictive trees. Therefore, for the tree distance metrics, 1,000
comparisons were performed between random trees sampled from the original SNAPP
posterior distribution of species trees to create a null distribution. Then 100 random
trees from the posterior predictive distribution were compared to the posterior tree
they were simulated from, and this was repeated for each posterior predictive dataset.

A p-value was calculated by counting the number of posterior predictive to posterior
tree comparisons falling above the 95% null distribution (values below the 95% null
distribution represent high similarity between posterior and posterior predictive datasets,
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Figure 2 Models used in simulation testing. (A) MSCM model used for simulation testing. (B) Example
of the MSCM+m model that includes gene flow violating the MSCM model implemented in SNAPP.
The amount of gene flow and taxa exchanging genes were randomly selected for each simulation
replicate. Full-size k&) DOT: 10.7717/peerj.8271/fig-2

and thus are not useful for detecting violations), and then dividing by the total number of
comparisons. We consider p-values greater than a = 0.05 to indicate model violations.
Finally, because it is likely more difficult to estimate trees with high probability under an
incorrect model, we examined the mean and standard deviation of tree likelihoods as
calculated from SNAPP output. The evaluation of the likelihood statistics follows that of
the mean and range Fgr statistics, described above.

Testing

P2C2M.SNAPP was tested by simulating data under the MSCM and via a second
simulation under the MSCM with gene flow (i.e., MSCM+m; Fig. 2). One hundred
replicates were performed under each model. Note that the MSCM+m model is a clear
violation of the underlying coalescent model that is incorporated into SNAPP because an
appreciable portion of the shared polymorphism results from gene flow. All simulations
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were based on 2,000 SNPs, six species with two individuals sampled per species, an
effective population size (N,) of 100 K individuals, and a symmetric topology with
speciation event times of 5N, 10 N and 20 N generations. The number of SNPs simulated
is lower than many empirical data sets, but it allows SNAPP analyses to proceed in less
time and should represent a conservative test of the ability of P2C2M.SNAPP to detect
model violations because the performance of SNAPP generally improves with additional
data (Bryant et al., 2012). The MSCM+m model was designed as a secondary contact
scenario, with gene flow between two lineages starting at 2.5 N generations in the past and
continuing until the present. Both the species experiencing gene flow and the rate of gene
flow were selected at random, with the rate of gene flow having a uniform prior
distribution between 0.5 and 5 migrants per generation. Simulations were performed using
fastsimcoal2 (Excoffier et al., 2013) and simulated datasets were converted to SNAPP .xml
files using custom Python scripts (http://www.github.com/P2C2M/P2C2M_SNAPP).
SNAPP analyses were conducted using the following parameters: a gamma prior on the
rate of species divergence (lambda) under the Yule speciation prior with a = 2 and p = 200,
a gamma rate prior on ancestral effective population sizes (theta), mutation rate of

p =v = 1.0, and a Markov chain of 1 M steps with 100 K burn-in steps and sampling every
1 K steps. In order to evaluate the summary statistics, the number of correct inferences,
false positives, and false negatives were calculated for each model (200 total) using the
posterior and posterior predictive distributions from the SNAPP analyses. False positives
are defined as datasets simulated under the MSCM that were indicated as model violations
by P2C2M.SNAPP. Conversely, false negatives are defined as datasets simulated under
the MSCM+m model that were not detected as model violations by P2C2M.SNAPP.
Mathews Correlation Coefficient (MCC; Matthews, 1975) was also calculated for each
summary statistic with the R package mltools (Gorman, 2018). The MCC takes into
account false negatives and positives while measuring how well a binary classifier
performs, in this case whether a summary statistic correctly classifies a dataset. The
coefficient ranges from —1 to 1 with —1 indicating the classifier is completely wrong and
1 indicating it is completely correct. Additionally, pairwise Fsr outliers were compared to
the MSCM+m simulation parameters to assess if the statistic could identify the species
exchanging genes to cause model violations. Finally, p-values for each simulation were
plotted against gene flow to identify any trends between the level of gene flow and
summary statistic performance.

RESULTS

P2C2M.SNAPP requires about 5 min on an average laptop (2.6 GHz Intel Core i5, 8 GB
RAM) to generate posterior predictive datasets at the beginning of the pipeline and to
evaluate summary statistics in order to identify model violations at the end of the pipeline.
However, the entire pipeline requires a considerable amount of time due to the demands
of the SNAPP program itself. For example, each replicate of our simulation testing
required 300-450 CPU hours on the Pitzer cluster (28 cores and 112 GB RAM) at the Ohio
Supercomputer Center (2018). While this is clearly not an analysis that users would likely
conduct on a laptop computer, the time required for users to analyze their data using
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Table 1 Results of simulation testing. Results include all simulations with both the MSCM and
MSCM+m models. False positives are datasets simulated under the MSCM model which P2C2M.SNAPP
classified as a model violation. False negatives are datatsets simulated under the MSCM+m model that
P2C2M.SNAPP classified as not violating the model implemented in SNAPP.

Statistic True True False False Matthews
positives negatives positives negatives correlation
coefficient (MCC)

Average pairwise Fgp (FSTA) 66 0 100 34 —-0.45
Range of pairwise Fgr (FSTR) 81 0 100 19 -0.32
Fgr outlier test (PFST) 3 88 12 97 -0.17
Kuhner-Felsenstein distance (KF) 100 0 100 0 0.00
Robinson-Foulds distance (RF) 0 100 0 100 0.00
Mean of maximum likelihood (MLM) 84 0 100 16 -0.29
Standard deviation of maximum 71 95 5 29 0.68

likelihood (MLSD)

P2C2M.SNAPP is still likely to be less than the time required to collect the samples,
generate the sequencing libraries, and conduct the bioinformatics.

There was a dramatic difference across summary statistics in the ability of P2C2M.
SNAPP to identify model violations due to gene flow (Table 1). The mean and range of
pairwise Fgr values correctly classified datasets in only 33% and 41% of simulations
respectively (MCC equals —0.45 and —0.32 respectively; Fig. 2). Each of these statistics
exhibited a large number of false positives in which a model violation was detected in a
dataset that was simulated under the assumptions of the MSCM. While the pairwise Fsr
outlier test classified 46% of datasets correctly, the majority of misclassifications were
false negatives (MCC equals —0.17). Additionally, we examined the ability of the pairwise
Fgr outlier test to identify the OTUs exchanging genes in the MSCM+m datasets. As the
statistic only identified 3% of true model violations, there were very few datasets to test.
The pairwise Fgr outlier test did not correctly identify the OTUs exchanging genes in any
of the datasets. Each tree statistic correctly classified only around half of the datasets, with a
high number of false negatives when using the Robinson-Foulds distance and a similar
number of false positives when using the Kuhner-Felsenstein distance (MCC equals 0 for
each). Similarly, evaluations by the mean tree likelihood statistic were split evenly between
correct inferences and false positives (MCC equals —0.29). Our results identified one
statistic that performed well. The standard deviation of tree likelihoods correctly
classified 83% of simulated datasets, with 14% false negatives and 3% false positives (MCC
equals 0.68). Only two summary statistics showed a trend between the rate of gene flow
and the p-value of posterior predictive checks (Fig. 3). For the range of pairwise Fgr and
mean of tree likelihoods, p-values decreased as the rate of gene flow increased.

DISCUSSION

While it has been known for some time that model violations can degrade the
accuracy of phylogenetic estimation (Huelsenbeck et al., 2001; Eckert ¢ Carstens, 2008,
Leaché et al., 2013; Brown, 2014a; Reid et al., 2014; Barley & Thomson, 2016;
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Barley, Brown & Thomson, 2018), few studies explore possible violations inherent in their
datasets to the phylogenetic model used in the analysis (Morales et al., 2017; Diaz et al.,
2018; Richards et al., 2018). Apart from the computational demands of the SNAPP
analyses, P2C2M.SNAPP represents a user-friendly and reasonably accurate method for
identifying violations of the MSCM. The package and tutorial, including examples for
running analyses, are available on the P2C2M GitHub page (https://github.com/P2C2M/
P2C2M_SNAPP).

Our simulation testing indicates that the standard deviation of tree likelihoods is useful
in identifying datasets that contain SNP patterns resulting from gene flow between
lineages, a clear violation of SNAPP’s analytical model. This statistic is likely useful because
datasets that violate the MSCM model will be more difficult to estimate and may exhibit
posterior distributions with poor convergence. Methods examining the variance within
and between posterior and posterior predictive datasets have previously proven useful for
posterior predictive checks of Bayesian phylogenetic models (Gelfand ¢» Ghosh, 1998;
Lewis et al., 2014). Users of P2C2M.SNAPP should focus on the standard deviation of tree
likelihoods when assessing their datasets. Although higher rates of gene flow should
result in a more egregious model violation, it does not appear to be the case that model
violations are easier to detect under scenarios with high rates of gene flow. Two summary
statistics (range of pairwise Fgr, mean of tree likelihoods) exhibit an inverse correlation
between gene flow and the resulting p-value, but both exhibited a high rate of false
positives which makes them a poor choice for use in posterior predictive checks. While
this relationship does not hold for the standard deviation of tree likelihoods, the statistic is
able to detect model violations equally well across a range of migration rates.

Several statistics were much less useful than we expected them to be. Although the
tree distance metrics are conceptually simple, their poor performance may be explained by
the reliance of posterior predictive simulation on the empirical phylogeny. Because the
posterior predictive data sets are simulated from the empirical phylogeny estimates,
inaccuracies in topology and branch lengths of the empirical phylogeny due to gene flow
are translated into inaccurate topology and divergence times in the posterior predictive
simulations. The result is similar, but inaccurate phylogeny estimates for each data type. Fsr
is a popular metric in population genetics for examining population structure and gene flow,
but may not be applicable to phylogenetic analyses due to fixed differences among lineages.
It is possible that including more samples per lineage may increase the usefulness of Fgr
because more shared polymorphism may be evident, but this may be unfeasible due to the
computational requirements of SNAPP. Summary statistics such as Fgr are appealing
because they can be computed from the posterior predictive datasets without additional
SNAPP runs, but many existing statistics were developed for population genetic
applications. Summary statistics such as the number of shared or private alleles may be
useful. Additionally, the calculation of effect sizes could be beneficial to users because it
provides information regarding the degree to which model violation has influenced their
results (Brown, 2014a). Our simulation design investigated a relatively recent diversification
scenario because the presence of gene flow is likely to occur when lineages have not become
completely reproductively isolated. However, if gene flow occurs in older systems, it should
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presumably be easier to differentiate from incompletely sorted ancestral polymorphism and
thus more easily recognized. Finally, other processes, such as natural selection, also violate
the MSCM model, and these additional model violations may potentially be detectable
using the posterior predictive framework implemented in P2C2M.SNAPP, but further
research is necessary to identify summary statistics that can detect these violations.

While the detection of a model violation can have implications for the interpretation of
a phylogeny estimate, a model violation does not render the data useless. Minimally,
researchers should acknowledge the model violation and temper their interpretation of the
patterns evident in the phylogeny. Specifically, the possibility that a model violation may
have confounded topology estimates or, more likely, biased branch length/divergence time
estimates should be addressed. More preferably, researchers should conduct additional
analyses to examine the cause of the model violation, as such violations indicate interesting
evolutionary processes not accounted for by the MSCM model. In the case of gene flow,
model violations can indicate unknown hybridization among OTUs, and lead to the
collection of population-level data that can be analyzed using methods such as Migrate-n
(Beerli ¢ Felsenstein, 2001) or Bayesass (Wilson ¢ Rannala, 2003). Finally, many recently
developed models attempt to infer gene flow and phylogeny under the MSCM for small
numbers of lineages (e.g., IMa3: Hey et al., 2018; PhyloNet: Wen et al., 2018;
SpeciesNetwork: Zhang et al., 2018). Model violations identified by P2C2M.SNAPP are
likely to point researchers to additional analyses that will enable them to understand the
history of their focal system.

CONCLUSIONS

Here we present a new R package for assessing model violations in the species tree
estimation program SNAPP. The package uses posterior predictive simulations to identify
model violations, and is successful in testing with simulated datasets. P2C2M.SNAPP is the
newest addition to a small suite of user-friendly programs for conducting posterior
predictive checks (Gruenstaeud] et al., 2016). Due to the proven benefit of model checking
for phylogenetic analyses, we recommend researchers make posterior predictive checks a
routine step in estimating phylogenies.
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