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Abstract
The classical continuous finite element method with Lagrangian Qk basis reduces to a finite
difference scheme when all the integrals are replaced by the (k + 1) × (k + 1) Gauss–
Lobatto quadrature. We prove that this finite difference scheme is (k + 2)th order accurate
in the discrete 2-norm for an elliptic equation with Dirichlet boundary conditions, which is a
superconvergence result of function values.We also give a convenient implementation for the
case k = 2, which is a simple fourth order accurate elliptic solver on a rectangular domain.

Keywords Superconvergence · High order accurate discrete Laplacian · Elliptic equations ·
Finite difference scheme based on variational formulation · Gauss–Lobatto quadrature

Mathematics Subject Classification 65N30 · 65N15 · 65N06

1 Introduction

1.1 Motivation

In this paperwe consider solving a two-dimensional elliptic equationwith smooth coefficients
on a rectangular domain by high order finite difference schemes, which are constructed via
using suitable quadrature in the classical continuous finite element method on a rectangular
mesh. Consider the following model problem as an example: a variable coefficient Poisson
equation −∇ · (a(x)∇u) = f , a(x) > 0 on a square domain � = (0, 1) × (0, 1) with
homogeneous Dirichlet boundary conditions. The variational form is to find u ∈ H1

0 (�) =
{v ∈ H1(�) : v|∂� = 0} satisfying
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Fig. 1 An illustration of Lagrangian Q2 element and the 3 × 3 Gauss–Lobatto quadrature

A(u, v) = ( f , v), ∀v ∈ H1
0 (�),

where A(u, v) = ∫∫
�
a∇u · ∇vdxdy, ( f , v) = ∫∫

�
f vdxdy. Let h be the mesh size of an

uniform rectangularmesh and V h
0 ⊆ H1

0 (�) be the continuous finite element space consisting
of piecewise Qk polynomials (i.e., tensor product of piecewise polynomials of degree k), then
the C0-Qk finite element solution is defined as uh ∈ V h

0 satisfying

A(uh, vh) = ( f , vh), ∀vh ∈ V h
0 . (1.1)

Standard error estimates of (1.1) are ‖u − uh‖1 ≤ Chk‖u‖k+1 and ‖u − uh‖0 ≤
Chk+1‖u‖k+1 where ‖ · ‖k denotes Hk(�)-norm, see [5]. For k ≥ 2, O(hk+1) supercon-
vergence for the gradient at Gauss quadrature points and O(hk+2) superconvergence for
functions values at Gauss–Lobatto quadrature points were proven for one-dimensional case
in [1,2,11] and for two-dimensional case in [4,8,14,17].

When implementing the scheme (1.1), integrals are usually approximated by quadrature.
The most convenient implementation is to use (k + 1) × (k + 1) Gauss–Lobatto quadrature
because they not only are superconvergence points but also can define all the degree of
freedoms of Lagrangian Qk basis. See Fig. 1 for the case k = 2. Such a quadrature scheme
can be denoted as finding uh ∈ V h

0 satisfying

Ah(uh, vh) = 〈 f , vh〉h, ∀vh ∈ V h
0 , (1.2)

where Ah(uh, vh) and 〈 f , vh〉h denote using tensor product of (k + 1)-point Gauss–Lobatto
quadrature for integrals A(uh, vh) and ( f , vh) respectively.

It is well known that many classical finite difference schemes are exactly finite element
methods with specific quadrature scheme, see [5]. We will write scheme (1.2) as an exact
finite difference type scheme in Sect. 7 for k = 2. Such a finite difference scheme not only
provides an efficient and also convenient way for assembling the stiffness matrix especially
for a variable coefficient problem, but also with has advantages inherited from the varia-
tional formulation, such as symmetry of stiffness matrix and easiness of handling boundary
conditions in high order schemes. This is the variational approach to construct a high order
accurate finite difference scheme.

Classical quadrature error estimates imply that standard finite element error estimates still
hold for (1.2), see [5,7]. The focus of this paper is to prove that the superconvergence of
function values at Gauss–Lobatto points still holds. To be more specific, for Dirichlet type
boundary conditions, we will show that (1.2) with k ≥ 2 is a (k + 2)th order accurate finite
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difference scheme in the discrete 2-norm under suitable smoothness assumptions on the exact
solution and the coefficients.

In this paper, the main motivation to study superconvergence is to use it for constructing
(k + 2)th order accurate finite difference schemes. For such a task, superconvergence points
should define all degree of freedoms over the whole computational domain including bound-
ary points. For high order finite element methods, this seems possible only on quite structured
meshes such as rectangular meshes for a rectangular domain and equilateral triangles for a
hexagonal domain, even though there are numerous superconvergence results for interior
cells in unstructured meshes.

1.2 RelatedWork and Difficulty in Using Standard Tools

To illustrate our perspectives and difficulties, we focus on the case k = 2 in the following.
For computing the bilinear form in the scheme (1.1), another convenient implementation is
to replace the smooth coefficient a(x, y) by a piecewise Q2 polynomial aI (x, y) obtained
by interpolating a(x, y) at the quadrature points in each cell shown in Fig. 1. Then one can
compute the integrals in the bilinear form exactly since the integrand is a polynomial. Super-
convergence of function values for such an approximated coefficient scheme was proven in
[13] and the proof can be easily extended to higher order polynomials and three-dimensional
cases. This result might seem surprising since interpolation error a(x, y) − aI (x, y) is of
third order. On the other hand, all the tools used in [13] are standard in the literature.

From a practical point of view, (1.2) is more interesting since it gives a genuine finite
difference scheme. It is straightforward to use standard tools in the literature for showing
superconvergence still holds for accurate enough quadrature. Even though the 3× 3 Gauss–
Lobatto quadrature is fourth order accurate, the standard quadrature error estimates cannot
be used directly to establish the fourth order accuracy of (1.2), as will be explained in detail
in Remark 3.8 in Sect. 3.2.

We can also rewrite (1.2) for k = 2 as a finite difference scheme but its local truncation
error is only second order aswill be shown in Sect. 7.4. The phenomenon that truncation errors
have lower orders was named supraconvergence in the literature. The second order truncation
error makes it difficult to establish the fourth order accuracy following any traditional finite
difference analysis approaches.

To construct high order finite difference schemes from variational formulation, we can
also consider finite element method with P2 basis on a regular triangular mesh in which
two adjacent triangles form a rectangle [18]. Superconvergence of function values in C0-P2

finite element method at the three vertices and three edge centers can be proven [4,17]. See
also [10]. Even though the quadrature using only three edge centers is third order accurate,
error cancellations happen on two adjacent triangles forming a rectangle, thus fourth order
accuracy of the corresponding finite difference scheme is still possible. However, extensions
to construct higher order finite difference schemes are much more difficult.

1.3 Contributions and Organization of the Paper

The main contribution is to give the proof of the (k+2)th order accuracy of (1.2) with k ≥ 2,
which is an easy construction of high order finite difference schemes for variable coefficient
problems. An important step is to obtain desired sharp quadrature estimate for the bilinear
form, for which it is necessary to count in quadrature error cancellations between neighboring
cells.Conventional quadrature estimating tools such as theBramble–HilbertLemmaonlygive
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the sharp estimate on each cell thus cannot be used directly. A key technique in this paper
is to apply the Bramble–Hilbert Lemma after integration by parts on proper interpolation
polynomials to allow error cancellations.

The paper is organized as follows. In Sect. 2, we introduce our notations and assumptions.
In Sect. 3, standard quadrature estimates are reviewed. Superconvergence of bilinear forms
with quadrature is shown in Sect. 4. Thenwe prove themain result for homogeneousDirichlet
boundary conditions in Sect. 5 and for nonhomogeneous Dirichlet boundary conditions in
Sect. 6. Section 7 provides a simple finite difference implementation of (1.2). Section 8
contains numerical tests. Concluding remarks are given in Sect. 9.

2 Notations and Assumptions

2.1 Notations and Basic Tools

We will use the same notations as in [13]:

• We only consider a rectangular domain � = (0, 1) × (0, 1) with its boundary denoted
as ∂�.

• Only for convenience, we assume �h is an uniform rectangular mesh for �̄ and e =
[xe − h, xe + h] × [ye − h, ye + h] denotes any cell in �h with cell center (xe, ye). The
assumption of an uniform mesh is not essential to the discussion of superconvergence.
All superconvergence results in this paper can be easily extended to continuous finite
element method with Qk element on a quasi-uniform rectangular mesh, but not on a
generic quadrilateral mesh or any curved mesh.

• Qk(e) =
{

p(x, y) =
k∑

i=0

k∑

j=0
pi j xi y j , (x, y) ∈ e

}

is the set of tensor product of poly-

nomials of degree k on a cell e.
• V h = {p(x, y) ∈ C0(�h) : p|e ∈ Qk(e), ∀e ∈ �h} denotes the continuous piecewise

Qk finite element space on �h .
• V h

0 = {vh ∈ V h : vh = 0 on ∂�}.
• The norm and seminorms for Wk,p(�) and 1 ≤ p < +∞, with standard modification

for p = +∞:

‖u‖k,p,� =
⎛

⎝
∑

i+ j≤k

∫∫

�

|∂ ix∂ j
y u(x, y)|pdxdy

⎞

⎠

1/p

,

|u|k,p,� =
⎛

⎝
∑

i+ j=k

∫∫

�

|∂ ix∂ j
y u(x, y)|pdxdy

⎞

⎠

1/p

,

[u]k,p,� =
(∫∫

�

|∂kx u(x, y)|pdxdy +
∫∫

�

|∂ky u(x, y)|pdxdy
)1/p

.

Notice that [u]k+1,p,� = 0 if u is a Qk polynomial.
• For simplicity, sometimes we may use ‖u‖k,�, |u|k,� and [u]k,� denote norm and semi-

norms for Hk(�) = Wk,2(�).
• When there is no confusion,�may be dropped in the norm and seminorms, e.g., ‖u‖k =

‖u‖k,2,�.
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• For any vh ∈ V h , 1 ≤ p < +∞ and k ≥ 1, we will abuse the notation to denote the
broken Sobolev norm and seminorms by the following symbols

‖vh‖k,p,� :=
(
∑

e

‖vh‖p
k,p,e

) 1
p

, |vh |k,p,� :=
(
∑

e

|vh |pk,p,e
) 1

p

,

[vh]k,p,� :=
(
∑

e

[vh]pk,p,e
) 1

p

.

• Let Z0,e denote the set of (k + 1) × (k + 1) Gauss–Lobatto points on a cell e.
• Z0 = ⋃

e Z0,e denotes all Gauss–Lobatto points in the mesh �h .
• Let ‖u‖2,Z0 and ‖u‖∞,Z0 denote the discrete 2-norm and the maximum norm over Z0

respectively:

‖u‖2,Z0 =
⎡

⎣h2
∑

(x,y)∈Z0

|u(x, y)|2
⎤

⎦

1
2

, ‖u‖∞,Z0 = max
(x,y)∈Z0

|u(x, y)|.

• For a continuous function f (x, y), let f I (x, y) denote its piecewise Qk Lagrange inter-
polant at Z0,e on each cell e, i.e., f I ∈ V h satisfies:

f (x, y) = f I (x, y), ∀(x, y) ∈ Z0.

• Pk(t) denotes the set of polynomial of degree k of variable t .
• ( f , v)e denotes the inner product in L2(e) and ( f , v) denotes the inner product in L2(�):

( f , v)e =
∫∫

e
f v dxdy, ( f , v) =

∫∫

�

f v dxdy =
∑

e

( f , v)e.

• 〈 f , v〉e,h denotes the approximation to ( f , v)e by using (k + 1) × (k + 1)-point Gauss
Lobatto quadrature with k ≥ 2 for integration over cell e.

• 〈 f , v〉h denotes the approximation to ( f , v) by using (k + 1) × (k + 1)-point Gauss
Lobatto quadrature with k ≥ 2 for integration over each cell e.

• K̂ = [−1, 1] × [−1, 1] denotes a reference cell.
• For f (x, y) defined on e, consider f̂ (s, t) = f (sh + xe, th + ye) defined on K̂ . Let

f̂ I denote the Qk Lagrange interpolation of f̂ at the (k + 1) × (k + 1) Gauss Lobatto
quadrature points on K̂ .

• ( f̂ , v̂)K̂ = ∫∫
K̂ f̂ v̂ dsdt .

• 〈 f̂ , v̂〉K̂ denotes the approximation to ( f̂ , v̂)K̂ by using (k + 1) × (k + 1)-point Gauss–
Lobatto quadrature.

• On the reference cell K̂ , for convenience we use the superscript h over the ds or dt to
denote we use (k + 1)-point Gauss–Lobatto quadrature on the corresponding variable.
For example,

∫∫

K̂
f̂ dhsdt =

∫ 1

−1

[

w1 f̂ (−1, t) + wk+1 f̂ (1, t) +
k∑

i=2

wi f̂ (xi , t)

]

dt .

Since ( f̂ v̂)I coincides with f̂ v̂ at the quadrature points, we have
∫∫

K̂
( f̂ v̂)I dxdy =

∫∫

K̂
( f̂ v̂)I d

hxdh y =
∫∫

K̂
f̂ v̂dhxdh y = 〈 f̂ , v̂〉K̂ .
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The following are commonly used tools and facts:

• For two-dimensional problems,

hk−2/p|v|k,p,e = |v̂|k,p,K̂ , hk−2/p[v]k,p,e = [v̂]k,p,K̂ , 1 ≤ p ≤ ∞.

• Inverse estimates for polynomials:

‖vh‖k+1,e ≤ Ch−1‖vh‖k,e, ∀vh ∈ V h, k ≥ 0. (2.1)

• Sobolev’s embedding in two and three dimensions: H2(K̂ ) ↪→ C0(K̂ ).
• The embedding implies

‖ f̂ ‖0,∞,K̂ ≤ C‖ f̂ ‖k,2,K̂ , ∀ f̂ ∈ Hk(K̂ ), k ≥ 2,

‖ f̂ ‖1,∞,K̂ ≤ C‖ f̂ ‖k+1,2,K̂ , ∀ f̂ ∈ Hk+1(K̂ ), k ≥ 2.

• Cauchy–Schwarz inequalities in two dimensions:

∑

e

‖u‖k,e‖v‖k,e ≤
(
∑

e

‖u‖2k,e
) 1

2
(
∑

e

‖v‖2k,e
) 1

2

, ‖u‖k,1,e = O(h)‖u‖k,2,e.

• Poincaré inequality: let ū be the average of u ∈ H1(�) on �, then

|u − ū|0,p,� ≤ C |∇u|0,p,�, p ≥ 1.

If ū is the average of u ∈ H1(e) on a cell e, we have

|u − ū|0,p,e ≤ Ch|∇u|0,p,e, p ≥ 1.

• For k ≥ 2, the (k + 1) × (k + 1) Gauss–Lobatto quadrature is exact for integration of
polynomials of degree 2k − 1 ≥ k + 1 on K̂ .

• Define the projection operator �̂1 : û ∈ L1(K̂ ) → �̂1û ∈ Q1(K̂ ) by
∫∫

K̂
(�̂1û)wdsdt =

∫∫

K̂
ûwdsdt,∀w ∈ Q1(K̂ ). (2.2)

Notice that all degree of freedoms of �̂1û can be represented as a linear combina-
tion of

∫∫
K̂ û(s, t)p(s, t)dsdt for p(s, t) = 1, s, t, st , thus the H1(K̂ ) (or H2(K̂ ))

norm of �̂1û are determined by
∫∫

K̂ û(s, t)p(s, t)dsdt . By Cauchy–Schwarz inequality
| ∫∫K̂ û(s, t) p̂(s, t)dsdt | ≤ ‖û‖0,2,K̂ ‖ p̂‖0,2,K̂ ≤ C‖û‖0,2,K̂ , we have ‖�1û‖1,2,K̂ ≤
C‖û‖0,2,K̂ , which means �̂1 is a continuous linear mapping from L2(K̂ ) to H1(K̂ ). By

a similar argument, one can show �̂1 is a continuous linear mapping from L2(K̂ ) to
H2(K̂ ).

2.2 Coercivity and Elliptic Regularity

We consider the elliptic variational problem of finding u ∈ H1
0 (�) to satisfy

A(u, v) :=
∫∫

�

(∇vT a∇u + b∇uv + cuv) dxdy = ( f , v),∀v ∈ H1
0 (�), (2.3)

where a =
(
a11 a12

a21 a22

)

is real symmetric positive definite and b = [b1 b2]. Assume the

coefficients a, b and c are smooth with uniform upper bounds, thus A(u, v) ≤ C‖u‖1‖v‖1
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for any u, v ∈ H1
0 (�). We denote λa as the smallest eigenvalues of a. Assume λa has a

positive lower bound and ∇ · b ≤ 2c, so that coercivity of the bilinear form can be easily
achieved. Since

(b · ∇u, v) =
∫

∂�

uvb · nds − (∇ · (vb), u) =
∫

∂�

uvb · nds − (b · ∇v, u) − (v∇ · b, u),

we have

2(b ·∇v, v)+2(cv, v) =
∫

∂�

v2b ·nds+ ((2c−∇ ·b)v, v) ≥ 0, ∀v ∈ H1
0 (�). (2.4)

By the equivalence of two norms | · |1 and ‖ · ‖1 for the space H1
0 (�) (see [5]), we conclude

that the bilinear form A(u, v) = (a∇u,∇v) + (b · ∇u, v) + (cu, v) satisfies coercivity
A(v, v) ≥ C‖v‖1 for any v ∈ H1

0 (�).
The coercivity can also be achieved if we assume |b| < 4λac. By Young’s inequality

|(b · ∇v, v)| ≤
∫∫

�

|b · ∇v|2
4c

+ c|v|2dxdy ≤
( |b|2

4c
∇v,∇v

)

+ (cv, v),

we have

A(v, v) ≥ (a∇v,∇v) + (cv, v) − |(b · ∇v, v)| ≥
((

λa − |b|2
4c

)

∇v,∇v

)

> 0,

∀v ∈ H1
0 (�). (2.5)

Let A∗ be the dual operator of A, i.e., A∗(u, v) = A(v, u). We need to assume the elliptic
regularity holds for the dual problem of (2.3) :

w ∈ H1
0 (�), A∗(w, v) = ( f , v), ∀v ∈ H1

0 (�) �⇒ ‖w‖2 ≤ C‖ f ‖0, (2.6)

where C is independent of w and f . See [9,16] for the elliptic regularity with Lipschitz
continuous coefficients on a Lipschitz domain.

3 Quadrature Error Estimates

In the following, we will use ˆ for a function to emphasize the function is defined on or
transformed to the reference cell K̂ = [−1, 1] × [−1, 1] from a mesh cell.

3.1 Standard Estimates

The Bramble–Hilbert Lemma for Qk polynomials can be stated as follows, see Exercise 3.1.1
and Theorem 4.1.3 in [6]:

Theorem 3.1 If a continuous linear mapping �̂ : Hk+1(K̂ ) → Hk+1(K̂ ) satisfies �̂v̂ = v̂

for any v̂ ∈ Qk(K̂ ), then

‖û − �̂û‖k+1,K̂ ≤ C[û]k+1,K̂ , ∀û ∈ Hk+1(K̂ ). (3.1)

Thus if l(·) is a continuous linear form on the space Hk+1(K̂ ) satisfying l(v̂) = 0,∀v̂ ∈
Qk(K̂ ), then

|l(û)| ≤ C‖l‖′
k+1,K̂

[û]k+1,K̂ , ∀û ∈ Hk+1(K̂ ),
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where ‖l‖′
k+1,K̂

is the norm in the dual space of Hk+1(K̂ ).

By applying Bramble–Hilbert Lemma, we have the following standard quadrature esti-
mates. See Theorems 2.3 and 2.4 in [13] for the detailed proof.

Theorem 3.2 For a sufficiently smooth function a(x, y) ∈ H2k(e) and k ≥ 2, let m is an
integer satisfying k ≤ m ≤ 2k, we have

∫∫

e
a(x, y)dxdy −

∫∫

e
aI (x, y)dxdy = O(hm+1)[a]m,e = O(hm+2)[a]m,∞,e.

Theorem 3.3 If f ∈ Hk+2(�) with k ≥ 2, then

( f , vh) − 〈 f , vh〉h = O(hk+2)‖ f ‖k+2‖vh‖2, ∀vh ∈ V h .

Remark 3.4 By the Theorem 3.1, on the reference cell K̂ , for a(x, y) ∈ Hk+2(e) and k ≥ 2,
we have ∫∫

K̂
â(s, t) − âI (s, t)dsdt ≤ C[â]k+2,K̂ ≤ C[â]k+2,∞,K̂ , (3.2)

and
‖â − âI ‖k+1,K̂ ≤ C[â]k+1,K̂ . (3.3)

The following two results are also standard estimates obtained by applying the Bramble–
Hilbert Lemma.

Lemma 3.5 If f ∈ H2(�) or f ∈ V h, we have ( f , vh)−〈 f , vh〉h = O(h2)| f |2‖vh‖0, ∀vh
∈ V h .

Proof For simplicity, we ignore the subscript in vh . Let E( f ) denote the quadrature error
for integrating f (x, y) on e. Let Ê( f̂ ) denote the quadrature error for integrating f̂ (s, t) =
f (xe + sh, ye + th) on the reference cell K̂ . Due to the embedding H2(K̂ ) ↪→ C0(K̂ ), we
have

|Ê( f̂ v̂)| ≤ C | f̂ v̂|0,∞,K̂ ≤ C | f̂ |0,∞,K̂ |v̂|0,∞,K̂ ≤ C‖ f̂ ‖2,K̂ ‖v̂‖0,K̂ .

Thus themapping f̂ → E( f̂ v̂) is a continuous linear formon H2(K̂ ) and its norm is bounded
by C‖v̂‖0,K̂ . If f̂ ∈ Q1(K̂ ), then we have Ê( f̂ v̂) = 0. By the Bramble–Hilbert Lemma
Theorem 3.1 on this continuous linear form, we get

|Ê( f̂ v̂)| ≤ C[ f̂ ]2,K̂ ‖v̂‖0,K̂ .

So on a cell e, we get

E( f v) = h2 Ê( f̂ v̂) ≤ Ch2[ f̂ ]2,K̂ ‖v̂‖0,K̂ ≤ Ch2| f |2,e‖v‖0,e. (3.4)

Summing over all elements and use Cauchy–Schwarz inequality, we get the desired
result. ��

Theorem 3.6 Assume all coefficients of (2.3) are in W 2,∞(�). We have

A(zh, vh) − Ah(zh, vh) = O(h)‖vh‖2‖zh‖1, ∀vh, zh ∈ V h .
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Proof Following the same arguments as in the proof of Lemma 3.4, we have

E( f v) ≤ Ch2| f |2,e‖v‖0,e, ∀ f , v ∈ V h .

Let f = a11(vh)x and v = (zh)x in the estimate above, we get

|(a11(zh)x , (vh)x ) − 〈a11(zh)x , (vh)x 〉h | ≤ Ch2‖a11(vh)x‖2‖(zh)x‖0
≤ Ch2‖a11‖2,∞‖vh‖3|zh |1 ≤ Ch‖a11‖2,∞‖vh‖2|zh |1,

where the inverse estimate (2.1) is used in the last inequality. Similarly, we have

(a12(zh)x , (vh)y) − 〈a12(zh)x , (vh)y〉h = Ch‖a12‖2,∞‖vh‖2|zh |1,
(a22(zh)y, (vh)y) − 〈a22(zh)y, (vh)y〉h = Ch‖a22‖2,∞‖vh‖2|zh |1,
(b1(zh)x , vh) − 〈b1(zh)x , vh〉h = Ch‖b1‖2,∞‖vh‖2|zh |0,
(b2(zh)y, vh) − 〈b2(zh)y, vh〉h = Ch‖b2‖2,∞‖vh‖2|zh |0,
(czh, vh) − 〈czh, vh〉h = Ch‖c‖2,∞‖vh‖1|zh |0,

which implies

A(zh, vh) − Ah(zh, vh) = O(h)‖vh‖2‖zh‖1.
��

3.2 A Refined Consistency Error

In this subsection, we will show how to establish the desired consistency error estimate for
smooth enough coefficients:

A(u, vh) − Ah(u, vh) =
{
O(hk+2)‖u‖k+3‖vh‖2, ∀vh ∈ V h

0

O(hk+ 3
2 )‖u‖k+3‖vh‖2, ∀vh ∈ V h

.

Theorem 3.7 Assume a(x, y) ∈ Wk+2,∞(�), u ∈ Hk+3(�), k ≥ 2, then

(a∂xu, ∂xvh) − 〈a∂xu, ∂xvh〉h =
{

O(hk+2)‖a‖k+2,∞‖u‖k+3‖vh‖2, ∀vh ∈ V h
0 , (3.5a)

O(hk+
3
2 )‖a‖k+2,∞‖u‖k+3‖vh‖2, ∀vh ∈ V h, (3.5b)

(a∂xu, ∂yvh) − 〈a∂xu, ∂yvh〉h =
{

O(hk+2)‖a‖k+2,∞‖u‖k+3‖vh‖2, ∀vh ∈ V h
0 , (3.6a)

O(hk+
3
2 )‖a‖k+2,∞‖u‖k+3‖vh‖2, ∀vh ∈ V h, (3.6b)

(a∂xu, vh) − 〈a∂xu, vh〉h = O(hk+2)‖a‖k+2,∞‖u‖k+3‖vh‖2, ∀vh ∈ V h
0 , (3.7)

(au, vh) − 〈au, vh〉h = O(hk+2)‖a‖k+2,∞‖u‖k+2‖vh‖2, ∀vh ∈ V h
0 . (3.8)

Remark 3.8 We emphasize that Theorem 3.7 cannot be proven by applying the Bramble–
Hilbert Lemma directly. Consider the constant coefficient case a(x, y) ≡ 1 and k = 2 as an
example,

(∂xu, ∂xvh) − 〈∂xu, ∂xvh〉h =
∑

e

(∫∫

e
ux (vh)xdxdy −

∫∫

e
ux (vh)xd

hxdh y

)

.
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Since the 3 × 3 Gauss–Lobatto quadrature is exact for integrating Q3 polynomials, by The-
orem 3.1 we have
∣
∣
∣
∣

∫∫

e
ux (vh)xdxdy −

∫∫

e
ux (vh)xd

hxdh y

∣
∣
∣
∣ =

∣
∣
∣
∣

∫∫

K̂
ûs(v̂h)sdsdt −

∫∫

K̂
ûs(v̂h)sd

hsdht

∣
∣
∣
∣

≤ C[ûs(v̂h)s]4,K̂ .

Notice that v̂h is Q2 thus (v̂h)stt does not vanish and [(v̂h)s]4,K̂ ≤ C |v̂h |3,K̂ . So by Bramble–

Hilbert Lemma for Qk polynomials, we can only get
∫∫

e
ux (vh)xdxdy −

∫∫

e
ux (vh)xd

hxdh y = O(h4)‖u‖5,e‖vh‖3,e.

Thus by Cauchy–Schwarz inequality after summing over e, we only have

(∂xu, ∂xvh) − 〈∂xu, ∂xvh〉h = O(h4)‖u‖5‖vh‖3.
In order to get the desired estimate involving only the broken H2-norm of vh , we will take

advantage of error cancellations between neighboring cells through integration by parts.

Proof For simplicity, we ignore the subscript h of vh in this proof and all the following v are
in V h which are Qk polynomials in each cell. First, by Theorem 3.3, we easily obtain (3.7)
and (3.8):

(aux , v) − 〈aux , v〉h = O(hk+2)‖aux‖k+2‖v‖2 = O(hk+2)‖a‖k+2,∞‖u‖k+3‖v‖2,
(au, v) − 〈au, v〉h = O(hk+2)‖au‖k+2‖v‖2 = O(hk+2)‖a‖k+2,∞‖u‖k+2‖v‖2.

We will only discuss (aux , vx ) − 〈aux , vx 〉h and the same discussion also applies to derive
(3.6a) and (3.6b).

Since we have

(aux , vx ) − 〈aux , vx 〉h =
∑

e

(∫∫

e
auxvxdxdy −

∫∫

e
auxvxd

hxdh y

)

=
∑

e

(∫∫

K̂
âûs v̂sdsdt −

∫∫

K̂
âûs v̂sd

hsdht

)

=
∑

e

(∫∫

K̂
âûs v̂sdsdt −

∫∫

K̂
(âûs)I v̂sd

hsdht

)

,

where we use the fact âûs v̂s = (âûs)I v̂s on the Gauss–Lobatto quadrature points. For fixed
t , (âûs)I v̂s is a polynomial of degree 2k − 1 w.r.t. variable s, thus the (k + 1)-point Gauss–
Lobatto quadrature is exact for its s-integration, i.e.,

∫∫

K̂
(âûs)I v̂sd

hsdht =
∫∫

K̂
(âûs)I v̂sdsd

ht .

To estimate the quadrature error we introduce some intermediate values then do interpretation
by parts,

∫∫

K̂
âûs v̂sdsdt −

∫∫

K̂
(âûs)I v̂sd

hsdht (3.9)

=
∫∫

K̂
âûs v̂sdsdt −

∫∫

K̂
(âûs)I v̂sdsdt +

∫∫

K̂
(âûs)I v̂sdsdt −

∫∫

K̂
(âûs)I v̂sdsd

ht

(3.10)
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=
∫∫

K̂

[
âûs − (âûs)I

]
v̂sdsdt +

(∫∫

K̂

[
(âûs)I

]
s v̂dsdht −

∫∫

K̂

[
(âûs)I

]
s v̂dsdt

)

(3.11)

+
(∫ 1

−1
(âûs)I v̂dt

∣
∣
∣
∣

s=1

s=−1
−

∫ 1

−1
(âûs)I v̂d

ht

∣
∣
∣
∣

s=1

s=−1

)

= I + I I + I I I . (3.12)

For the first term in (3.12), let v̂s be the cell average of v̂s on K̂ , then

I =
∫∫

K̂

(
âûs − (âûs)I

)
v̂sdsdt +

∫∫

K̂

(
âûs − (âûs)I

)
(v̂s − v̂s)dsdt .

By (3.2) we have
∣
∣
∣
∣

∫∫

K̂

(
âûs − (âûs)I

)
v̂sdsdt

∣
∣
∣
∣ ≤ C[âûs]k+2,K̂

∣
∣
∣v̂s

∣
∣
∣ = O(hk+2)‖â‖k+2,∞,e‖û‖k+3,e‖v̂‖1,e.

By Cauchy–Schwarz inequality, the Bramble–Hilbert Lemma on interpolation error and
Poincaré inequality, we have

∣
∣
∣
∣

∫∫

K̂

(
âûs − (âûs)I

)
(v̂s − v̂s)dsdt

∣
∣
∣
∣ ≤ |âûs − (âûs)I |0,K̂ |v̂s − v̂s |0,K̂

≤ C[âûs]k+1,K̂ |v̂|2,K̂ = O(hk+2)‖a‖k+1,∞,e‖u‖k+2,e‖v‖2,e.
Thus we have

I = O(hk+2)‖a‖k+2,∞,e‖u‖k+3,e‖v‖2,e.
For the second term in (3.12), we can estimate it the same way as in the proof of Theorem
2.4. in [13]. For each v̂ ∈ Qk(K̂ ) we can define a linear form on Hk(K̂ ) as

Êv̂( f̂ ) =
∫∫

K̂
(F̂I )s v̂dsdt −

∫∫

K̂
(F̂I )s v̂dsd

ht,

where F̂ is an antiderivative of f̂ w.r.t. variable s. Due to the linearity of interpolation operator
and differentiating operation, Êv̂ is well defined. By the embedding H2(K̂ ) ↪→ C0(K̂ ), we
have

Êv̂( f̂ ) ≤ C‖F̂‖0,∞,K̂ ‖v̂‖0,∞,K̂ ≤ C‖ f̂ ‖0,∞,K̂ ‖v̂‖0,∞,K̂

≤ C‖ f̂ ‖2,K̂ ‖v̂‖0,K̂ ≤ C‖ f̂ ‖k,K̂ ‖v̂‖0,K̂ ,

where we use the fact that all the norms on Qk(K̂ ) are equivalent to derive the first inequality.
The above inequalities imply that the mapping Êv̂ is a continuous linear form on Hk(K̂ ).
With projection �1 defined in (2.2), we have

Êv̂( f̂ ) = Êv̂−�1v̂( f̂ ) + Ê�1v̂( f̂ ), ∀v̂ ∈ Qk(K̂ ).

Notice that F̂ by definition is an antiderivative of f̂ w.r.t. only variable s. If f̂ ∈ Qk−1(K̂ ),
then F̂I is a polynomial of degree only k − 1 w.r.t. to variable t thus (F̂I )s ∈ Qk−1(K̂ ). The
quadrature is exact for polynomials of degree 2k − 1, thus Qk−1(K̂ ) ⊂ ker Êv̂−�1v̂ . So by
the Bramble–Hilbert Lemma, we get

Êv̂−�1v̂( f̂ ) ≤ C[ f ]k,K̂ ‖v̂ − �1v̂‖0,K̂ ≤ C[ f ]k,K̂ |v̂|2,K̂ ,
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and we also have

Ê�1v̂( f̂ ) =
∫∫

K̂
(F̂I )s�1v̂dsdt −

∫∫

K̂
(F̂I )s�1v̂dsd

ht = 0.

Thus we have
∫∫

K̂

[
(âûs)I

]
s v̂dsdht −

∫∫

K̂

[
(âûs)I

]
s v̂dsdt = −Êv̂((âûs)s) = −Êv̂−�1v̂((âûs)s)

≤ C[(âûs)s]k,K̂ |v̂h |2,K̂ ≤ C |âûs |k+1,K̂ |v̂|2,K̂ = O(hk+2)‖a‖k+1,∞,e‖u‖k+2,e|v|2,e
Now we only need to discuss the line integral term. Let L2 and L4 denote the left and

right boundary of � and let le2 and l
e
4 denote the left and right edge of element e or l K̂2 and l K̂4

for K̂ . Since (âûs)I v̂ mapped back to e will be 1
h (aux )I v which is continuous across le2 and

le4, after summing over all elements e, the line integrals along the inner edges are canceled
out and only the line integrals on L2 and L4 remain.

For a cell e adjacent to L2, consider its reference cell K̂ , and define a linear form Ê( f̂ ) =∫ 1
−1 f̂ (−1, t)dt − ∫ 1

−1 f̂ (−1, t)dht , then we have

Ê( f̂ v̂) ≤ C | f̂ |
0,∞,l K̂2

|v̂|
0,∞,l K̂2

≤ C‖ f̂ ‖
2,l K̂2

‖v̂‖
0,l K̂2

,

which means that the mapping f̂ → Ê( f̂ v̂) is continuous with operator norm less than
C‖v̂‖

0,l K̂2
for some C . Clearly we have

Ê( f̂ v̂) = Ê( f̂ �1v̂) + Ê( f̂ (v̂ − �1v̂)).

By the Theorem 3.1 we get

Ê((âûs)I (v̂ − �1v̂)) ≤ C[(âûs)I ]k,l K̂2 [v̂]
2,l K̂2

≤ C(|âûs − (âûs)I |k,l K̂2 + |âûs |k,l K̂2 )[v̂]
2,l K̂2

≤ (|âûs |k+1,l K̂2
+ |âûs |k,l K̂2 )[v̂]

2,l K̂2
= O(hk+2)‖a‖k+1,∞,le2

‖u‖k+2,le2
[v]2,le2 ,

where the first inequality comes from the accuracy of the (k+1)-pointGauss–Lobatto quadra-
ture rule, i.e. Ê( f̂ ) = 0, ∀ f̂ ∈ Q2k−1(K̂ ). The (k+1)-point Gauss–Lobatto quadrature rule
also gives

Ê((âûs)I�1v̂) = 0.

For the third term in (3.12), we sum them up over all the elements. Then for the line
integral along L2

∑

e∩L2 �=∅

∫ 1

−1
(âûs)I (−1, t)v̂(−1, t)dt −

∑

e∩L2 �=∅

∫ 1

−1
(âûs)I (−1, t)v̂(−1, t)dht

=
∑

e∩L2 �=∅
Ê((âûs)I v̂) =

∑

e∩L2 �=∅
O(hk+2)‖a‖k+1,∞,le2

‖u‖k+2,le2
|v|2,le2 .

Let sα and ωα (α = 1, 2, · · · , k + 2) denote the quadrature points and weights in (k + 2)-
point Gauss–Lobatto quadrature rule for s ∈ [−1, 1]. Since v̂2t t (s, t) ∈ Q2k(K̂ ), (k+2)-point
Gauss–Lobatto quadrature is exact for s-integration thus

∫ 1

−1

∫ 1

−1
v̂2t t (s, t)dsdt =

k+2∑

α=1

ωα

∫ 1

−1
v̂2t t (sα, t)dt,
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which implies ∫ 1

−1
v̂2t t (±1, t)dt ≤ C

∫ 1

−1

∫ 1

−1
v̂2t t (s, t)dsdt, (3.13)

thus

h
1
2 |v|2,le2 ≤ C[v]2,e.

By Cauchy–Schwarz inequality and trace inequality, we have

∑

e∩L2 �=∅

(∫ 1

−1
(âûs)I v̂dt

∣
∣
∣
∣

s=1

s=−1
−

∫ 1

−1
(âûs)I v̂d

ht

∣
∣
∣
∣

s=1

s=−1

)

=
∑

e∩L2 �=∅
O(hk+2)‖a‖k+1,∞,le2

‖u‖k+2,le2
|v|2,le2

=
∑

e∩L2 �=∅
O

(
hk+

3
2

)
‖a‖k+1,∞,le2

‖u‖k+2,le2
|v|2,e

= O
(
hk+

3
2

)
‖a‖k+1,∞,�‖u‖k+2,L2 |v|2,�

= O
(
hk+

3
2

)
‖a‖k+1,∞,�‖u‖k+3,�|v|2,�.

Combine all the estimates above, we get (3.5b). Since the 1
2 order loss is only due to the

line integral along the boundary ∂�. If v ∈ V h
0 , vyy = 0 on L2 and L4 so we have (3.5a). ��

4 Superconvergence of Bilinear Forms

The M-type projection in [3,4] is a very convenient tool for discussing the superconvergence
of function values. Let u p be the M-type Qk projection of the smooth exact solution u and
its definition will be given in the following subsection. To establish the superconvergence
of the original finite element method (1.1) for a generic elliptic problem (2.3) with smooth
coefficients, one can show the following superconvergence of bilinear forms, see [4,14] (see
also [13] for a detailed proof):

A(u − u p, vh) =
{
O(hk+2)‖u‖k+3‖vh‖2, ∀vh ∈ V h

0 ,

O(hk+ 3
2 )‖u‖k+3‖vh‖2, ∀vh ∈ V h .

In this section we will show the superconvergence of the bilinear form Ah :

Ah(u − u p, vh) =
{

O(hk+2)‖u‖k+3‖vh‖2, ∀vh ∈ V h
0 , (4.1a)

O(hk+
3
2 )‖u‖k+3‖vh‖2, ∀vh ∈ V h . (4.1b)

4.1 Definition of M-Type Projection

We first recall the definition of M-type projection. More detailed definition can also be found
in [13]. Legendre polynomials on the reference interval [−1, 1] are given as

lk(t) = 1

2kk!
dk

dtk
(t2 − 1)k : l0(t) = 1, l1(t) = t, l2(t) = 1

2
(3t2 − 1), . . . ,
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which are L2-orthogonal to one another. Define their antiderivatives as M-type polynomials:

Mk+1(t) = 1

2kk!
dk−1

dtk−1 (t2 − 1)k : M0(t) = 1, M1(t) = t, M2(t) = 1

2
(t2 − 1),

M3(t) = 1

2
(t3 − t), . . . .

which satisfy the following properties:

• If j − i �= 0,±2, then Mi (t) ⊥ Mj (t), i.e.,
∫ 1
−1 Mi (t)Mj (t)dt = 0.

• Roots of Mk(t) are the k-point Gauss–Lobatto quadrature points for [−1, 1].
Since Legendre polynomials form a complete orthogonal basis for L2([−1, 1]), for any
f̂ (t) ∈ H1([−1, 1]), its derivative f̂ ′(t) can be expressed as Fourier–Legendre series

f̂ ′(t) =
∞∑

j=0

b̂ j+1l j (t), b̂ j+1 =
(

j + 1

2

)∫ 1

−1
f̂ ′(t)l j (t)dt .

The one-dimensional M-type projection is defined as f̂k(t) = ∑k
j=0 b̂ j M j (t), where b̂0 =

f̂ (1)+ f̂ (−1)
2 is determined by b̂1 = f̂ (1)− f̂ (−1)

2 so that f̂k(±1) = f̂ (±1). We have f̂ (t) =
lim
k→∞ f̂k(t) =

∞∑
j=0

b̂ j M j (t). The remainder R̂[ f̂ ]k(t) of one-dimensional M-type projection

is

R̂[ f̂ ]k(t) = f̂ (t) − f̂k(t) =
∞∑

j=k+1

b̂ j M j (t).

For a function f̂ (s, t) ∈ H2(K̂ ) on the reference cell K̂ = [−1, 1] × [−1, 1], its two-
dimensional M-type expansion is given as

f̂ (s, t) =
∞∑

i=0

∞∑

j=0

b̂i, j Mi (s)Mj (t),

where

b̂0,0 = 1

4
[ f̂ (−1,−1) + f̂ (−1, 1) + f̂ (1,−1) + f̂ (1, 1)],

b̂0, j , b̂1, j = 2 j − 1

4

∫ 1

−1
[ f̂t (1, t) ± f̂t (−1, t)]l j−1(t)dt, j ≥ 1,

b̂i,0, b̂i,1 = 2i − 1

4

∫ 1

−1
[ f̂s(s, 1) ± f̂s(s,−1)]li−1(s)ds, i ≥ 1,

b̂i, j = (2i − 1)(2 j − 1)

4

∫∫

K̂
f̂st (s, t)li−1(s)l j−1(t)dsdt, i, j ≥ 1.

The M-type Qk projection of f̂ on K̂ and its remainder are defined as

f̂k,k(s, t) =
k∑

i=0

k∑

j=0

b̂i, j Mi (s)Mj (t), R̂[ f̂ ]k,k(s, t) = f̂ (s, t) − f̂k,k(s, t).

The M-type Qk projection is equivalent to the point-line-plane interpolation used in [14,15].
See Theorem 3.1 in [13] for the proof of the following fact:
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Theorem 4.1 For k ≥ 2, the M-type Qk projection is equivalent to the Qk point-line-plane
projection � defined as follows:

1. �û = û at four corners of K̂ = [−1, 1] × [−1, 1].
2. �û − û is orthogonal to polynomials of degree k − 2 on each edge of K̂ .
3. �û − û is orthogonal to any v̂ ∈ Qk−2(K̂ ) on K̂ .

For f (x, y) on e = [xe − h, xe + h] × [ye − h, ye + h], let f̂ (s, t) = f (sh + xe, th + ye)
then the M-type Qk projection of f on e and its remainder are defined as

fk,k(x, y) = f̂k,k

(
x − xe

h
,
y − ye

h

)

, R[ f ]k,k(x, y) = f (x, y) − fk,k(x, y).

Now consider a function u(x, y) ∈ Hk+2(�), let u p(x, y) denote its piecewise M-type Qk

projection on each element e in the mesh �h . The first two properties in Theorem 4.1 imply
that u p(x, y) on each edge of e is uniquely determined by u(x, y) along that edge. So u p(x, y)
is a piecewise continuous Qk polynomial on �h .

M-type projection has the following properties. See Theorem 3.2, Lemmas 3.1 and 3.2 in
[13] for the proof.

Theorem 4.2 For k ≥ 2,

‖u − u p‖2,Z0 = O(hk+2)‖u‖k+2, ∀u ∈ Hk+2(�).

‖u − u p‖∞,Z0 = O(hk+2)‖u‖k+2,∞, ∀u ∈ Wk+2,∞(�).

Lemma 4.3 For f̂ ∈ Hk+1(K̂ ), k ≥ 2,

1. |R̂[ f̂ ]k,k |0,∞,K̂ ≤ C[ f̂ ]k+1,K̂ , |∂s R̂[ f̂ ]k,k |0,∞,K̂ ≤ C[ f̂ ]k+1,K̂ .

2. R̂[ f̂ ]k+1,k+1 − R̂[ f̂ ]k,k = Mk+1(t)
∑k

i=0 b̂i,k+1Mi (s) + Mk+1(s)
∑k+1

j=0 b̂k+1, j M j (t).

3. |b̂i,k+1| ≤ Ck | f̂ |k+1,2,K̂ , |b̂k+1,i | ≤ Ck | f̂ |k+1,2,K̂ , 0 ≤ i ≤ k + 1.

4. If f̂ ∈ Hk+2(K̂ ), then |b̂i,k+1| ≤ Ck | f̂ |k+2,2,K̂ , 1 ≤ i ≤ k + 1.

4.2 Estimates of M-Type Projection with Quadrature

Lemma 4.4 Assume f̂ (s, t) ∈ Hk+3(K̂ ), k ≥ 2,

〈R̂[ f̂ ]k+1,k+1 − R̂[ f̂ ]k,k, 1〉K̂ = 0, |〈∂s R̂[ f̂ ]k+1,k+1, 1〉K̂ | ≤ C | f̂ |k+3,K̂ .

Proof First, we have

〈R̂[ f̂ ]k+1,k+1 − R̂[ f̂ ]k,k, 1〉K̂ =
〈

Mk+1(t)
k∑

i=0

b̂i,k+1Mi (s)

+Mk+1(s)
k+1∑

j=0

b̂k+1, j M j (t), 1

〉

K̂

= 0

due to the fact that roots of Mk+1(t) are the (k + 1)-point Gauss–Lobatto quadrature points
for [−1, 1].
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We have

〈∂s R̂[ f̂ ]k+1,k+1, 1〉K̂
= 〈∂s R̂[ f̂ ]k+2,k+2, 1〉K̂ − 〈∂s(R̂[ f̂ ]k+2,k+2 − R̂[ f̂ ]k+1,k+1), 1〉K̂
= 〈∂s R̂[ f̂ ]k+2,k+2, 1〉K̂ −

〈

Mk+2(t)
k+1∑

i=0

b̂i,k+2M
′
i (s)

+M ′
k+2(s)

k+2∑

j=0

b̂k+2, j M j (t), 1

〉

K̂

= 〈∂s R̂[ f̂ ]k+2,k+2, 1〉K̂ −
〈

Mk+2(t)
k∑

i=0

b̂i+1,k+2li (s), 1

〉

K̂

+
〈

lk+1(s)
k+2∑

j=0

b̂k+2, j M j (t), 1

〉

K̂

.

Then by Lemma 4.3,

|〈∂s R̂[ f̂ ]k+2,k+2, 1〉K̂ | ≤ C | f̂ |k+3,K̂ .

Notice that we have 〈lk+1(s)
∑k+2

j=0 b̂k+2, j M j (t), 1〉K̂ = 0 since the (k + 1)-point Gauss–
Lobatto quadrature for s-integration is exact and lk+1(s) is orthogonal to 1. Lemma 4.3
implies |b̂i+1,k+2| ≤ C[ f̂ ]k+3,K̂ for i ≥ 0, thus we have

∣
∣
∣
∣
∣

〈

Mk+2(t)
k∑

i=0

b̂i+1,k+2li (s), 1

〉

K̂

∣
∣
∣
∣
∣
≤ C[ f̂ ]k+3,K̂ .

��
Lemma 4.5 Assume a(x, y) ∈ Wk,∞(�), u(x, y) ∈ Hk+3(�) and k ≥ 2. Then

〈a(u − u p)x , (vh)x 〉h = O(hk+2)‖a‖2,∞‖u‖k+3‖vh‖2, ∀vh ∈ V h .

Proof As before, we ignore the subscript of vh for simplicity. We have

〈a(u − u p)x , vx 〉h =
∑

e

〈a(u − u p)x , vx 〉e,h,

and on each cell e,

〈a(u − u p)x , vx 〉e,h = 〈(R[u]k,k)x , avx 〉e,h = 〈(R̂[û]k,k)s, âv̂s〉K̂
= 〈(R̂[û]k+1,k+1)s, âv̂s〉K̂ + 〈(R̂[û]k,k − R̂[û]k+1,k+1)s, âv̂s〉K̂ . (4.2)

For the first term in (4.2), we have

〈(R̂[û]k+1,k+1)s, âv̂s〉K̂ = 〈(R̂[û]k+1,k+1)s, âv̂s〉K̂ + 〈(R̂[û]k+1,k+1)s, â(v̂s − v̂s)〉K̂ .

By Lemma 4.4,
〈(R̂[û]k+1,k+1)s, â v̂s〉K̂ ≤ C |â|0,∞|û|k+3,K̂ |v̂|1,K̂ .

By Lemma 4.3,

|(R̂[û]k+1,k+1)s |0,∞,K̂ ≤ C[û]k+2,K̂ .
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By Bramble–Hilbert Lemma Theorem 3.1 we have

〈(R̂[û]k+1,k+1)s, âv̂s〉K̂ = 〈(R̂[û]k+1,k+1)s, â v̂s〉K̂ + 〈(R̂[û]k+1,k+1)s, (â − â)v̂s〉K̂
≤ C(|â|0,∞|û|k+3,K̂ |v̂|1,K̂ + |â − â|0,∞|û|k+2,K̂ |v̂|1,K̂ )

≤ C(|â|0,∞|û|k+3,K̂ |v̂|1,K̂ + |â|1,∞|û|k+2,K̂ |v̂|1,K̂ )

= O(hk+2)‖a‖1,∞,e‖u‖k+3,e‖v‖1,e,
and

〈(R̂[û]k+1,k+1)s, â(v̂s − v̂s)〉K̂ ≤ C[û]k+2,2,K̂ |â|0,∞,K̂ |v̂s − v̂s |0,∞,K̂

≤ C[û]k+2,2,K̂ |â|0,∞,K̂ |v̂s − v̂s |0,2,K̂
= O(hk+2)[u]k+2,2,e|a|0,∞,e|v|2,2,e.

Thus,
〈(R̂[û]k+1,k+1)s, âv̂s〉K̂ = O(hk+2)‖a‖1,∞,e|u|k+3,2,e‖v‖2,e. (4.3)

For the second term in (4.2), we have

〈(R̂[û]k,k − R̂[û]k+1,k+1)s, âv̂s〉K̂
= −

〈

(Mk+1(t)
k∑

i=0

b̂i,k+1Mi (s) + Mk+1(s)
k+1∑

j=0

b̂k+1, j M j (t))s, âv̂s

〉

K̂

= −
〈

Mk+1(t)
k−1∑

i=0

b̂i+1,k+1li (s) + lk(s)
k+1∑

j=0

b̂k+1, j M j (t), âv̂s

〉

K̂

= −
〈

Mk+1(t)
k−1∑

i=0

b̂i+1,k+1li (s), âv̂s

〉

K̂

−
〈

lk(s)
k+1∑

j=0

b̂k+1, j M j (t), âv̂s

〉

K̂

. (4.4)

Since Mk+1(t) vanishes at (k + 1) Gauss–Lobatto points, we have
〈

Mk+1(t)
k−1∑

i=0

b̂i+1,3li (s), âv̂s

〉

K̂

= 0.

For the second term in (4.4),
〈

lk(s)
k+1∑

j=0

b̂k+1, j M j (t), âv̂s

〉

K̂

=
〈

lk(s)
k+1∑

j=0

b̂k+1, j M j (t), âv̂s

〉

K̂

+
〈

lk(s)
k+1∑

j=0

b̂k+1, j M j (t), â(v̂s − v̂s)

〉

K̂

=
〈

lk(s)
k+1∑

j=0

b̂k+1, j M j (t), (â − �̂1â)v̂s

〉

K̂

+
〈

lk(s)
k+1∑

j=0

b̂k+1, j M j (t), (�̂1â)v̂s

〉

K̂
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+
〈

lk(s)
k+1∑

j=0

b̂k+1, j M j (t), (â − â)(v̂s − v̂s)

〉

K̂

+
〈

lk(s)
k+1∑

j=0

b̂k+1, j M j (t), â(v̂s − v̂s)

〉

K̂

=
〈

lk(s)
k+1∑

j=0

b̂k+1, j M j (t), (â − �̂1â)v̂s

〉

K̂

+
〈

lk(s)
k+1∑

j=0

b̂k+1, j M j (t), (â − â)(v̂s − v̂s)

〉

K̂

,

where the last step is due to the facts that (�̂1â)v̂s and â(v̂s − v̂s) are polynomials of degree
at most k − 1 with respect to variable s, the (k + 1)-point Gauss–Lobatto quadrature on
s-integration is exact for polynomial of degree 2k−1, and lk(s) is orthogonal to polynomials
of lower degree. With Lemma 4.3, we have

〈

lk(s)
k+1∑

j=0

b̂k+1, j M j (t), âv̂s

〉

K̂

≤ C |û|k+1,2,K̂ (|â|2,∞|v̂|1,K̂ + |â|1,∞|v̂|2,K̂ )

= O(hk+2)‖a‖2,∞‖u‖k+1,e‖v‖2,e. (4.5)

Combined with (4.3), we have proved the estimate. ��
Lemma 4.6 Assume a(x, y) ∈ W 2,∞(�), u(x, y) ∈ Hk+2(�) and k ≥ 2. Then

〈a(u − u p), vh〉h = O(hk+2)‖a‖2,∞‖u‖k+2‖vh‖2, ∀vh ∈ V h .

Proof As before, we ignore the subscript of vh for simplicity and

〈a(u − u p), v〉h =
∑

e

〈a(u − u p), v〉e,h .

On each cell e we have

〈a(u − u p), v〉e,h = 〈R[u]k,k, av〉e,h = h2〈R̂[û]k,k, âv̂〉K̂
= h2〈R̂[û]k,k, âv̂ − âv̂〉K̂ + h2〈R̂[û]k,k, âv̂〉K̂ . (4.6)

For the first term in (4.6), due to the embedding H2(K̂ ) ↪→ C0(K̂ ), Bramble–Hilbert Lemma
Theorem 3.1 and Lemma 4.3, we have

h2〈R̂[û]k,k, âv̂ − âv̂〉K̂ ≤ Ch2|R[û]k,k |∞|âv̂ − âv̂|∞ ≤ Ch2|û|k+1,K̂ ‖âv̂ − âv̂‖2,K̂
≤ Ch2|û|k+1,K̂ (‖âv̂ − âv̂‖L2(K̂ )

+ |âv̂|1,K̂ + |âv̂|2,K̂ )

≤ Ch2|û|k+1,K̂ (|âv̂|1,K̂ + |âv̂|2,K̂ ) = O(hk+2)‖a‖2,∞,e‖u‖k+1,e‖v‖2,e.
For the second term in (4.6), we have

h2〈R̂[û]k+1,k+1, âv̂〉K̂ = h2〈R̂[û]k+1,k+1, âv̂〉K̂ − h2〈R̂[û]k+1,k+1 − R̂[û]k,k, âv̂〉K̂ .

By Lemmas 4.3 and 4.4 we have

h2〈R̂[û]k+1,k+1, âv̂〉K̂ ≤ Ch2|û|k+2,K̂ |âv̂|0,K̂ = O(hk+2)‖a‖0,∞,e‖u‖k+2,e‖v‖0,e,
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and

h2〈R̂[û]k+1,k+1 − R̂[û]k,k, âv̂〉K̂ = 0.

Thus, we have 〈a(u − u p), vh〉h = O(hk+2)‖a‖2,∞‖u‖k+2‖vh‖2. ��
Lemma 4.7 Assume a ∈ W 2,∞(�), u ∈ Hk+3(�) and k ≥ 2. Then

〈a(u − u p)x , vh〉h = O(hk+2)‖a‖2,∞‖u‖k+3‖vh‖2, ∀vh ∈ V h .

Proof As before, we ignore the subscript in vh and we have

〈a(u − u p)x , v〉h =
∑

e

〈a(u − u p)x , v〉e,h .

On each cell e, we have

〈a(u − u p)x , v〉e,h = 〈(R[u]k,k)x , av〉e,h = h〈(R̂[û]k,k)s, âv̂〉K̂
= h〈(R̂[û]k+1,k+1)s, âv̂〉K̂ − h〈(R̂[û]k+1,k+1 − R̂[û]k,k)s, âv̂〉K̂ . (4.7)

For the first term in (4.7), we have

〈(R̂[û]k+1,k+1)s, âv̂〉K̂ ≤ 〈(R̂[û]k+1,k+1)s, âv̂〉K̂ + 〈(R̂[û]k+1,k+1)s, âv̂ − âv̂〉K̂
Due to Lemma 4.4,

h〈(R̂[û]k+1,k+1)s, âv̂〉K̂ ≤ Ch‖a‖0,∞|u|k+3,K̂ ‖v‖0,K̂ = O(hk+2)‖a‖0,∞‖u‖k+3,e‖v‖0,e,
and by the same arguments as in the proof of Lemma 4.6 we have

h〈(R̂[û]k+1,k+1)s, âv̂ − âv̂〉K̂ ≤ Ch|(R[û]k+1,k+1)s |∞|âv̂ − âv̂|∞
≤ Ch|û|k+2,K̂ ‖âv̂ − âv̂‖2,K̂
≤ Ch|û|k+2,K̂ (‖âv̂ − âv̂‖L2(K̂ )

+ |âv̂|1,K̂ + |âv̂|2,K̂ )

≤ Ch|û|k+2,K̂ (|âv̂|1,K̂ + |âv̂|2,K̂ ) = O(hk+2)‖a‖2,∞‖u‖k+2,e‖v‖2,e.
Thus

h〈(R̂[û]k+1,k+1)s, âv̂〉K̂ = O(hk+2)‖a‖2,∞‖u‖k+3,e‖v‖2,e. (4.8)

For the second term in (4.7), we have

〈(R̂[û]k+1,k+1 − R̂[û]k,k)s, âv̂〉K̂
=

〈

(Mk+1(t)
k∑

i=0

b̂i,k+1Mi (s) + Mk+1(s)
k+1∑

j=0

b̂k+1, j M j (t))s, âv̂

〉

K̂

=
〈

Mk+1(t)
k−1∑

i=0

b̂i+1,k+1li (s) + lk(s)
k+1∑

j=0

b̂k+1, j M j (t), âv̂

〉

K̂

=
〈

Mk+1(t)
k−1∑

i=0

b̂i+1,k+1li (s), âv̂

〉

K̂

+
〈

lk(s)
k+1∑

j=0

b̂k+1, j M j (t), âv̂

〉

K̂

=
〈

lk(s)
k+1∑

j=0

b̂k+1, j M j (t), âv̂

〉

K̂

,
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where the last step is due to that Mk+1(t) vanishes at (k + 1) Gauss–Lobatto points. Then

〈(R̂[û]k,k − R̂[û]k+1,k+1)s, âv̂〉K̂ =
〈

lk(s)
k+1∑

j=0

b̂k+1, j M j (t), âv̂

〉

K̂

=
〈

lk(s)
k+1∑

j=0

b̂k+1, j M j (t), âv̂ − �̂1(âv̂)

〉

K̂

+
〈

lk(s)
k+1∑

j=0

b̂k+1, j M j (t), �̂1(âv̂)

〉

K̂

=
〈

lk(s)
k+1∑

j=0

b̂k+1, j M j (t), âv̂ − �̂1(âv̂)

〉

K̂

,

where the last step is due to the facts that �̂1(âv̂) is a linear function in s thus the (k+1)-point
Gauss–Lobatto quadrature on s-variable is exact, and lk(s) is orthogonal to linear functions.

By Lemma 4.3 and Theorem 3.1, we have

〈(R̂[û]k,k − R̂[û]k+1,k+1)s, âv̂〉K̂ =
〈

lk(s)
k+1∑

j=0

b̂k+1, j M j (t), âv̂ − �̂1(âv̂)

〉

K̂

≤ C |u|k+1,K̂ |âv̂|2,K̂ ≤ C |u|k+1,K̂ (|â|2,∞,K̂ |v̂|0,K̂ + |â|1,∞,K̂ |v̂|1,K̂ + |â|0,∞|v̂|2,K̂ )

Thus
h〈(R̂[û]k,k − R̂[û]k+1,k+1)s, âv̂〉K̂ = O(hk+2)‖a‖2,∞‖u‖k+1,e‖v‖2,e. (4.9)

By (4.8) and (4.9) and sum up over all the cells, we get the desired estimate. ��
Lemma 4.8 Assume a(x, y) ∈ W 4,∞(�), u(x, y) ∈ Hk+3(�) and k ≥ 2. Then

〈a(u − u p)x , (vh)y〉h =
{
O(hk+

3
2 )‖a‖k+2,∞‖u‖k+3‖vh‖2, ∀vh ∈ V h, (4.10a)

O(hk+2)‖a‖k+2,∞‖u‖k+3‖vh‖2, ∀vh ∈ V h
0 . (4.10b)

Proof We ignore the subscript in vh and we have

〈a(u − u p)x , vy〉h =
∑

e

〈a(u − u p)x , vy〉e,h,

and on each cell e

〈a(u − u p)x , vy〉e,h = 〈(R[u]k,k)x , avy〉e,h = 〈(R̂[û]k,k)s, âv̂t 〉K̂
= 〈(R̂[û]k+1,k+1)s, âv̂t 〉K̂ + 〈(R̂[û]k,k − R̂[û]k+1,k+1)s, âv̂t 〉K̂ . (4.11)

By the same arguments as in the proof of Lemma 4.5, we have

〈(R̂[û]k+1,k+1)s, âv̂t 〉K̂ = O(hk+2)‖a‖1,∞|u|k+3,2,e‖v‖2,e, (4.12)

and

〈(R̂[û]k,k − R̂[û]k+1,k+1)s, âv̂t 〉K̂ = −
〈

lk(s)
k+1∑

j=0

b̂k+1, j M j (t), âv̂t

〉

K̂

.

For simplicity, we define

b̂k+1(t) :=
k+1∑

j=0

b̂k+1, j M j (t).
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then by the third and fourth estimates in Lemma 4.3, we have

|b̂k+1(t)| ≤ C
k+1∑

j=0

|b̂k+1, j | ≤ C |û|k+1,K̂ ,

|b̂(m)
k+1(t)| ≤ C

k+1∑

j=m

|b̂k+1, j | ≤ C |û|k+2,K̂ , 1 ≤ m,

where b̂(m)
k+1(t) is the mth derivative of b̂k+1(t). We use the same technique in the proof of

Theorem 3.7 and we let lk = lk(s), bk+1 = bk+1(t) in the following,

〈(R̂[û]k,k − R̂[û]k+1,k+1)s, âv̂t 〉K̂ = −〈lk(s)b̂k+1(t), âv̂t 〉K̂
= −

∫∫

K̂
lk(s)b̂k+1(t)âv̂t d

hsdht = −
∫∫

K̂
(lk b̂k+1â)I v̂t d

hsdht

= −
∫∫

K̂
(lk b̂k+1â)I v̂t d

hsdht +
∫∫

K̂
lk b̂k+1âv̂t dsdt −

∫∫

K̂
lk b̂k+1âv̂t dsdt,

and

−
∫∫

K̂
(lk b̂k+1â)I v̂t d

hsdht +
∫∫

K̂
lk b̂k+1âv̂t dsdt

=
∫∫

K̂

[
lk b̂k+1â − (lk b̂k+1â)I

]
v̂t dsdt +

∫∫

K̂
(lk b̂k+1â)I v̂t dsdt

−
∫∫

K̂
(lk b̂k+1â)I v̂t d

hsdt

=
∫∫

K̂

[
lk b̂k+1â − (lk b̂k+1â)I

]
v̂t dsdt +

∫∫

K̂
∂t (lk b̂k+1â)I v̂d

hsdt

−
∫∫

K̂
∂t (lk b̂k+1â)I v̂dsdt

+
(∫ 1

−1
(lk b̂k+1â)I v̂ds

∣
∣
∣
∣

t=1

t=−1
−

∫ 1

−1
(lk b̂k+1â)I v̂d

hs

∣
∣
∣
∣

t=1

t=−1

)

= I + I I + I I I .

After integration by parts with respect to the variable s, we have
∫∫

K̂
lk(s)b̂k+1(t)âv̂t dsdt = −

∫∫

K̂
Mk+1(s)b̂k+1(t)(âs v̂t + âv̂st )dsdt,

which is exactly the same integral estimated in the proof of Lemma 3.7 in [13]. By the same
proof of Lemma 3.7 in [13], after summing over all elements, we have the estimate for the
term

∫∫
K̂ lk(s)b̂k+1(t)âv̂t dsdt :

∑

e

∫∫

K̂
lk(s)b̂k+1(t)âv̂t dsdt =

{
O(hk+ 3

2 )‖a‖k+2,∞‖u‖k+3‖v‖2, ∀v ∈ V h,

O(hk+2)‖a‖k+2,∞‖u‖k+3‖v‖2, ∀v ∈ V h
0 .

Then we can do similar estimation as in Theorem 3.7 for I , I I , I I I separately.
For term I , by Theorem 3.1 and the estimate (3.2), we have

∫∫

K̂

[
lk b̂k+1â − (lk b̂k+1â)I

]
v̂t dsdt

=
∫∫

K̂

[
lk b̂k+1â − (lk b̂k+1â)I

]
v̂t dsdt +

∫∫

K̂

[
lk b̂k+1â − (lk b̂k+1â)I

]
(v̂t − v̂t )dsdt
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≤ C
[
lk b̂k+1â

]

k+2,K̂
|v̂|1,K̂ + C

[
lk b̂k+1â

]

k+1,K̂
|v̂|2,K̂

≤ C

(
k+2∑

m=2

|â|m,∞,K̂ max
t∈[−1,1] |b̂k+1(t)|

)

|v̂|1,K̂

+ C

(
k+2∑

m=0

|â|m,∞,K̂ max
t∈[−1,1] |b̂

(k+2−m)
k+1 (t)|

)

|v̂|1,K̂

+ C

(
k+1∑

m=1

|â|m,∞,K̂ max
t∈[−1,1] |b̂k+1(t)|

)

|v̂|2,K̂

+ C

(
k+1∑

m=0

|â|m,∞,K̂ max
t∈[−1,1] |b̂

(k+1−m)
k+1 (t)|

)

|v̂|2,K̂

= O(hk+2)‖a‖k+2,∞‖u‖k+2,e‖v‖2,e.
For term I I , as in the proof of Theorem 3.7, we define the linear form as

Êv̂( f̂ ) =
∫∫

K̂
(F̂I )t v̂dsdt −

∫∫

K̂
(F̂I )t v̂d

hsdt,

for each v̂ ∈ Qk(K̂ ) and F̂ is an antiderivative of f̂ w.r.t. variable t . We can easily see that
Êv̂ is well defined and Êv̂ is a continuous linear form on Hk(K̂ ). With projection �̂1 defined
in (2.2), we have

Êv̂( f̂ ) = Ê
v̂−�̂1v̂

( f̂ ) + Ê
�̂1v̂

( f̂ ), ∀v̂ ∈ Qk(K̂ ).

Since Qk−1(K̂ ) ⊂ ker Ê
v̂−�̂1v̂

thus

Ê
v̂−�̂1v̂

( f̂ ) ≤ C[ f ]k,K̂ ‖v̂ − �̂1v̂‖0,K̂ ≤ C[ f ]k,K̂ |v̂|2,K̂
and

Ê
�̂1v̂

( f̂ ) =
∫∫

K̂
(F̂I )t�̂1v̂dsdt −

∫∫

K̂
(F̂I )t�̂1v̂d

hsdt = 0.

Thus we have
∫∫

K̂
∂t (lk b̂k+1â)I v̂d

hsdt −
∫∫

K̂
∂t (lk b̂k+1â)I v̂dsdt = −Êv̂((lk b̂k+1â)t )

= −Êv̂−�1v̂((lk b̂k+1â)t ) ≤ C[(lk b̂k+1â)t ]k,K̂ |v̂h |2,K̂
= O(hk+2)‖a‖k+1,∞,e‖u‖k+2,e|v|2,e.

Nowweonlyneed todiscuss term I I I . Let L1 and L3 denote the top andbottomboundaries

of� and let le1, l
e
3 denote the top and bottom edges of element e (and l K̂1 and l K̂3 for K̂ ). Notice

that after mapping back to the cell e we have

bk+1(ye + h) = b̂k+1(1) =
k+1∑

j=0

b̂k+1, j M j (1) = b̂k+1,0 + b̂k+1,1 =
(

k + 1

2

)

∫ 1

−1
∂s û(s, 1)lk(s)ds =

(

k + 1

2

)∫ xe+h

xe−h
∂xu(x, ye + h)lk

(
x − xe

h

)

dx,
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and similarly we get bk+1(ye − h) = b̂k+1(−1) = (k + 1
2 )

∫ xe+h
xe−h ∂xu(x, ye − h)lk(

x−xe
h )dx .

Thus the term l( x−xe
h )bk+1(y)av is continuous across the top and bottom edges of cells.

Therefore, if summing over all elements e, the line integral on the inner edges are cancelled
out. So after summing over all elements, the line integral reduces to two line integrals along L1

and L3.We only need to discuss one of them. For a cell e adjacent to L1, consider its reference
cell K̂ and define linear form Ê( f̂ ) = ∫ 1

−1 f̂ (s, 1)ds − ∫ 1
−1 f̂ (s, 1)dhs, then we have

Ê( f̂ v̂) ≤ C | f̂ |
0,∞,l K̂1

|v̂|
0,∞,l K̂1

≤ C‖ f̂ ‖
2,l K̂1

‖v̂‖
0,l K̂1

,

thus the mapping f̂ → Ê( f̂ v̂) is continuous with operator norm less thanC‖v̂‖
0,l K̂1

for some

C . Since Ê((âûs)I �̂1v̂) = 0 we have

∑

e∩L1 �=∅

∫ 1

−1
(lk b̂k+1â)I v̂ds −

∫ 1

−1
(lk b̂k+1â)I v̂d

hs

=
∑

e∩L1 �=∅
Ê((lk b̂k+1â)I v̂) =

∑

e∩L1 �=∅
Ê((lk b̂k+1â)I (v̂ − �̂1v̂))

≤
∑

e∩L1 �=∅
C[(lk b̂k+1â)I ]k,l K̂1 [v̂]

2,l K̂1

≤
∑

e∩L1 �=∅
C(|lk b̂k+1â − (lk b̂k+1â)I |k,l K̂1 + |lk b̂k+1â|

k,l K̂1
)[v̂]

2,l K̂1

≤
∑

e∩L1 �=∅
(|lk b̂k+1â|

k+1,l K̂1
+ |lk b̂k+1â|

k,l K̂1
)[v̂]

2,l K̂1

≤
∑

e∩L1 �=∅
C‖â‖k,∞,K̂ |b̂k+1(1)|[v̂]

2,l K̂1
,

where the first inequality is derived from Ê( f̂ (v̂ − �̂1v̂)) = 0,∀ f̂ ∈ Qk−1(K̂ ) and Theo-
rem 3.1.

Since lk(t) = 1
2kk!

dk

dtk
(t2 − 1)k , after integration by parts k times,

b̂k+1(1) =
(

k + 1

2

)∫ 1

−1
∂su(s, 1)lk(s)dx = (−1)k

(

k + 1

2

)∫ 1

−1
∂k+1
s u(s, 1)L(s)ds,

where L(s) is a polynomial of degree 2k by taking antiderivatives of lk(s) k times. Then by
Cauchy–Schwarz inequality we have

b̂k+1(1) ≤ C

(∫ 1

−1
|∂k+1
s û(s, 1)|2ds

) 1
2

≤ Chk+
1
2 |u|k+1,le1

.

By (3.13), we get |v̂|
2,l K̂1

= h
3
2 |v̂|2,le1 ≤ Ch|v|2,e. Thus we have

∑

e∩L1 �=∅

∫ 1

−1
(lk b̂k+1â)I v̂ds −

∫ 1

−1
(lk b̂k+1â)I v̂d

hs ≤
∑

e∩L1 �=∅
C‖â‖k,∞,K̂ |b̂k+1(1)||v̂|

2,l K̂1

= O
(
hk+

3
2

) ∑

e∩L1 �=∅
‖a‖k,∞|u|k+1,le1

|v|2,e = O
(
hk+

3
2

)
‖a‖k,∞|u|k+1,L1‖v‖2,�

= O
(
hk+

3
2

)
‖a‖k,∞‖u‖k+2,�‖v‖2,�,
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where the trace inequality ‖u‖k+1,∂� ≤ C‖u‖k+2,� is used.
Combine all the estimates above, we get (4.10a). Since the 1

2 order loss is only due to the
line integral along L1 and L3, on which vxx = 0 if v ∈ V h

0 , we get 4.10b). ��
By all the discussions in this subsection, we have proven (4.1a) and (4.1b).

5 Homogeneous Dirichlet Boundary Conditions

5.1 Vh-Ellipticity

In order to discuss the scheme (1.2), we need to show Ah satisfies V h-ellipticity

∀vh ∈ V h
0 , C‖vh‖21 ≤ Ah(vh, vh). (5.1)

We first consider the Vh-ellipticity for the case b ≡ 0.

Lemma 5.1 Assume the coefficients in (2.3) satisfy that b ≡ 0, both c(x, y) and the eigenval-
ues of a(x, y) have a uniform upper bound and a uniform positive lower bound, then there
exist two constants C1,C2 > 0 independent of mesh size h such that

∀vh ∈ V h
0 , C1‖vh‖21 ≤ Ah(vh, vh) ≤ C2‖vh‖21.

Proof Let Z0,K̂ denote the set of (k+1)×(k+1)Gauss–Lobatto points on the reference cell

K̂ . First we notice that the set Z0,K̂ is a Qk(K̂ )-unisolvent subset. Since the Gauss–Lobatto
quadrature weights are strictly positive, we have

∀ p̂ ∈ Qk(K̂ ),

2∑

i=1

〈∂i p̂, ∂i p̂〉K̂ = 0 �⇒ ∂i p̂ = 0 at quadrature points,

where i = 1, 2 represents the spatial derivative on variable xi respectively. Since ∂i p̂ ∈
Qk(K̂ ) and it vanishes on a Qk(K̂ )-unisolvent subset, we have ∂i p̂ ≡ 0. As a consequence,√∑n

i=1〈∂i p̂, ∂i p̂〉h defines a norm over the quotient space Qk(K̂ )/Q0(K̂ ). Since that | · |1,K̂
is also a norm over the same quotient space, by the equivalence of norms over a finite
dimensional space, we have

∀ p̂ ∈ Qk(K̂ ), C1| p̂|21,K̂ ≤
n∑

i=1

〈∂i p̂, ∂i p̂〉K̂ ≤ C2| p̂|21,K̂ .

On the reference cell K̂ , by the assumption on the coefficients, we have

C1|v̂h |21,K̂ ≤ C1

n∑

i

〈∂i v̂h, ∂i v̂h〉K̂ ≤
n∑

i, j=1

(〈âi j∂i v̂h, ∂ j v̂h〉K̂ + 〈ĉv̂h, v̂h〉K̂
) ≤ C2‖v̂h‖21,K̂

Mapping these back to theoriginal cell e and summingover all elements, by the equivalence
of two norms | · |1 and ‖ ·‖1 for the space H1

0 (�) ⊃ V h
0 [5], we getC1‖vh‖21 ≤ Ah(vh, vh) ≤

C2‖vh‖21. ��
For discussing Vh-ellipticity when b is nonzero, by Young’s inequality we have

|〈b · ∇vh, vh〉h | ≤
∑

e

∫∫

e

(b · ∇vh)
2

4c
+ c|vh |2dhxdh y ≤

〈 |b|2
4c

∇vh,∇vh

〉

h
+ 〈cvh, vh〉h .
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Thus we have

〈a∇vh,∇vh〉h + 〈b · ∇vh, vh〉h + 〈cvh, vh〉h ≥ 〈λa∇vh,∇vh〉h −
〈 |b|2
4c

∇vh,∇vh

〉

h
,

where λa is smallest eigenvalue of a. Then we have the following Lemma

Lemma 5.2 Assume 4λac > |b|2, then there exists a constant C > 0 independent of mesh
size h such that

∀vh ∈ V h
0 , Ah(vh, vh) ≥ C‖vh‖21.

5.2 Standard Estimates for the Dual Problem

In order to apply the Aubin–Nitsche duality argument for establishing superconvergence of
function values, we need certain estimates on a proper dual problem. Define θh := uh − u p .
Then we consider the dual problem: find w ∈ H1

0 (�) satisfying

A∗(w, v) = (θh, v), ∀v ∈ H1
0 (�), (5.2)

where A∗(·, ·) is the adjoint bilinear form of A(·, ·) such that

A∗(u, v) = A(v, u) = (a∇v,∇u) + (b · ∇v, u) + (cv, u).

Let wh ∈ V h
0 be the solution to

A∗
h(wh, vh) = (θh, vh), ∀vh ∈ V h

0 . (5.3)

Notice that the right hand side of (5.3) is different from the right hand side of the scheme
(1.2).

We need the following standard estimates on wh for the dual problem.

Theorem 5.3 Assume all coefficients in (2.3) are in W 2,∞(�). Let w be defined in (5.2), wh

be defined in (5.3), and θh = uh − u p. Assume elliptic regularity (2.6) and V h ellipticity
holds, we have

‖w − wh‖1 ≤ Ch‖w‖2,
‖wh‖2 ≤ C‖θh‖0.

Proof By V h ellipticity, we have C1‖wh − vh‖21 ≤ A∗
h(wh − vh, wh − vh). By the definition

of the dual problem, we have

A∗
h(wh, wh − vh) = (θh, wh − vh) = A∗(w,wh − vh), ∀vh ∈ V h

0 .

Thus for any vh ∈ V h
0 , by Theorem 3.6, we have

C1‖wh − vh‖21 ≤ A∗
h(wh − vh, wh − vh)

= A∗(w − vh, wh − vh) + [A∗
h(wh, wh − vh) − A∗(w,wh − vh)]

+ [A∗(vh, wh − vh) − A∗
h(vh, wh − vh)]

= A∗(w − vh, wh − vh) + [A(wh − vh, vh) − Ah(wh − vh, vh)]
≤ C‖w − vh‖1‖wh − vh‖1 + Ch‖vh‖2‖wh − vh‖1.

Thus
‖w − wh‖1 ≤ ‖w − vh‖1 + ‖wh − vh‖1 ≤ C‖w − vh‖1 + Ch‖vh‖2. (5.4)
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Now consider �1w ∈ V h
0 where �1 is the piecewise Q1 projection and its definition on

each cell is defined through (2.2) on the reference cell. By the Bramble Hilbert Lemma
Theorem 3.1 on the projection error, we have

‖w − �1w‖1 ≤ Ch‖w‖2, ‖w − �1w‖2 ≤ C‖w‖2, (5.5)

thus ‖�1w‖2 ≤ ‖w‖2 +‖w −�1w‖2 ≤ C‖w‖2. By setting vh = �1w, from (5.4) we have

‖w − wh‖1 ≤ C‖w − �1w‖1 + Ch‖�1w‖2 ≤ Ch‖w‖2. (5.6)

By the inverse estimate on the piecewise polynomial wh − �1w, we get

‖wh‖2 ≤ ‖wh − �1w‖2 + ‖�1w − w‖2 + ‖w‖2 ≤ Ch−1‖wh − �1w‖1 +C‖w‖2. (5.7)

By (5.5) and (5.6), we also have

‖wh − �1w‖1 ≤ ‖w − �1w‖1 + ‖w − wh‖1 ≤ Ch‖w‖2. (5.8)

With (5.7), (5.8) and the elliptic regularity ‖w‖2 ≤ C‖θh‖0, we get
‖wh‖2 ≤ C‖w‖2 ≤ C‖θh‖0.

��

5.3 Superconvergence of FunctionValues

Theorem 5.4 Assume ai j , bi , c ∈ Wk+2,∞(�) and u(x, y) ∈ Hk+3(�), f (x, y) ∈
Hk+2(�) with k ≥ 2. Assume elliptic regularity (2.6) and V h ellipticity holds. Then uh,
the numerical solution from scheme (1.2), is a (k + 2)th order accurate approximation to the
exact solution u in the discrete 2-norm over all the (k + 1)× (k + 1) Gauss–Lobatto points:

‖uh − u‖2,Z0 = O(hk+2)(‖u‖k+3,� + ‖ f ‖k+2,�).

Proof By Theorems 3.7 and 3.3, for any vh ∈ V h
0 ,

Ah(u − uh, vh) = [A(u, vh) − Ah(uh, vh)] + [Ah(u, vh) − A(u, vh)]
= A(u, vh) − Ah(uh, vh) + O(hk+2)‖a‖k+2,∞‖u‖k+3‖vh‖2
= [( f , vh) − 〈 f , vh〉h] + O(hk+2)‖u‖k+3‖vh‖2 = O(hk+2)(‖u‖k+3 + ‖ f ‖k+2)‖vh‖2.

Let θh = uh − u p , then θh ∈ V h
0 due to the properties of the M-type projection. So by (4.1a)

and Theorem 5.3, we get

‖θh‖20 = (θh, θh) = Ah(θh, wh) = Ah(uh − u, wh) + Ah(u − u p, wh)

= Ah(u − u p, wh) + O(hk+2)(‖u‖k+3 + ‖ f ‖k+2)‖wh‖2
= O(hk+2)(‖u‖k+3 + ‖ f ‖k+2)‖wh‖2 = O(hk+2)(‖u‖k+3 + ‖ f ‖k+2)‖θh‖0,

thus
‖uh − u p‖0 = ‖θh‖0 = O(hk+2)(‖u‖k+3 + ‖ f ‖k+2).

Finally, by the equivalence of the discrete 2-norm on Z0 and the L2(�) norm in finite-
dimensional space V h and Theorem 4.2, we obtain

‖uh − u‖2,Z0 ≤ ‖uh − u p‖2,Z0 + ‖u p − u‖2,Z0 ≤ C‖uh − u p‖0 + ‖u p − u‖2,Z0

= O(hk+2)(‖u‖k+3 + ‖ f ‖k+2).

��
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Remark 5.5 To extend the discussions to Neumann type boundary conditions, due to (4.1b)
and Theorem 3.7, one can only prove (k + 3

2 )th order accuracy:

‖uh − u‖2,Z0 = O(hk+
3
2 )(‖u‖k+3 + ‖ f ‖k+2).

On the other hand, for solving a general elliptic equation, only O(hk+ 3
2 ) superconvergence

at all Lobatto point can be proven for Neumann boundary conditions even for the full finite
element scheme (1.1), see [4].

Remark 5.6 All key discussions can be extended to three-dimensional cases. For instance,
M-type expansion has been used for discussing superconvergence for the three-dimensional
case [4]. The most useful technique in Sect. 3.2 to obtain desired consistency error estimate
is to derive error cancellations between neighboring cells through integration by parts on
suitable interpolation polynomials, which still seems possible on rectangular meshes in three
dimensions.

6 Nonhomogeneous Dirichlet Boundary Conditions

We consider a two-dimensional elliptic problem on � = (0, 1)2 with nonhomogeneous
Dirichlet boundary condition,

−∇ · (a∇u) + b · ∇u + cu = f on �

u = g on ∂�. (6.1)

Assume there is a function ḡ ∈ H1(�) as a smooth extension of g so that ḡ|∂� = g. The
variational form is to find ũ = u − ḡ ∈ H1

0 (�) satisfying

A(ũ, v) = ( f , v) − A(ḡ, v), ∀v ∈ H1
0 (�). (6.2)

In practice, ḡ is not used explicitly. By abusing notations, the most convenient implemen-
tation is to consider

g(x, y) =
{
0, if (x, y) ∈ (0, 1) × (0, 1),

g(x, y), if (x, y) ∈ ∂�,

and gI ∈ V h which is defined as the Qk Lagrange interpolation at (k + 1) × (k + 1)
Gauss–Lobatto points for each cell on � of g(x, y). Namely, gI ∈ V h is the piecewise Pk

interpolation of g along the boundary grid points and gI = 0 at the interior grid points. The
numerical scheme is to find ũh ∈ V h

0 , s.t.

Ah(ũh, vh) = 〈 f , vh〉h − Ah(gI , vh), ∀vh ∈ V h
0 . (6.3)

Then uh = ũh + gI will be our numerical solution for (6.1). Notice that (6.3) is not a
straightforward approximation to (6.2) since ḡ is never used. Assuming elliptic regularity
and V h ellipticity hold, we will show that uh − u is of (k + 2)th order in the discrete 2-norm
over all (k + 1) × (k + 1) Gauss–Lobatto points.

6.1 An Auxiliary Scheme

In order to discuss the superconvergence of (6.3), we need to prove the superconvergence
of an auxiliary scheme. Notice that we discuss the auxiliary scheme only for proving the
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accuracy of (6.3). In practice one should not implement the auxiliary scheme since (6.3) is
a much more convenient implementation with the same accuracy.

Let ḡp ∈ V h be the piecewise M-type Qk projection of the smooth extension function
ḡ, and define gp ∈ V h as gp = ḡp on ∂� and gp = 0 at all the inner grids. The auxiliary
scheme is to find ũ∗

h ∈ V h
0 satisfying

Ah(ũ
∗
h, vh) = 〈 f , vh〉h − Ah(gp, vh), ∀vh ∈ V h

0 , (6.4)

Then u∗
h = ũ∗

h +gp is the numerical solution for problem (6.2). Define θh = u∗
h −u p , then

by Theorem 4.1 we have θh ∈ V h
0 . Following Sect. 5.2, define the following dual problem:

find w ∈ H1
0 (�) satisfying

A∗(w, v) = (θh, v), ∀v ∈ H1
0 (�). (6.5)

Let wh ∈ V h
0 be the solution to

A∗
h(wh, vh) = (θh, vh), ∀vh ∈ V h

0 . (6.6)

Notice that the dual problem has homogeneous Dirichlet boundary conditions. By Theo-
rems 3.3, 3.7, for any vh ∈ V h

0 ,

Ah(u − u∗
h, vh) = [A(u, vh) − Ah(u

∗
h, vh)] + [Ah(u, vh) − A(u, vh)]

= A(u, vh) − Ah(u
∗
h, vh) + O(hk+2)‖a‖k+2,∞‖u‖k+3‖vh‖2

= [( f , vh) − 〈 f , vh〉h] + O(hk+2)‖u‖k+3‖vh‖2 = O(hk+2)(‖u‖k+3 + ‖ f ‖k+2)‖vh‖2.
By (4.1a) and Theorem 5.3, we get

‖θh‖20 = (θh, θh) = Ah(θh, wh) = Ah(u
∗
h − u, wh) + Ah(u − u p, wh)

= Ah(u − u p, wh) + O(hk+2)(‖u‖k+3 + ‖ f ‖k+2)‖wh‖2
= O(hk+2)(‖u‖k+3 + ‖ f ‖k+2)‖wh‖2 = O(hk+2)(‖u‖k+3 + ‖ f ‖k+2)‖θh‖0,

thus ‖u∗
h − u p‖0 = ‖θh‖0 = O(hk+2)(‖u‖k+3 + ‖ f ‖k+2). So Theorem 5.4 still holds for

the auxiliary scheme (6.4):

‖u∗
h − u‖2,Z0 = O(hk+2)(‖u‖k+3 + ‖ f ‖k+2). (6.7)

6.2 TheMain Result

In order to extend Theorem 5.4 to (6.3), we only need to prove

‖uh − u∗
h‖0 = O(hk+2).

The difference between (6.4) and (6.3) is

Ah(ũ
∗
h − ũh, vh) = Ah(gI − gp, vh), ∀vh ∈ V h

0 . (6.8)

We need the following Lemma.

Lemma 6.1 Assuming u ∈ Hk+4(�) for k ≥ 2, with gI and gp being defined as in this
Section, then we have

Ah(gI − gp, vh) = O(hk+2)‖u‖k+4,�‖vh‖2,�, ∀vh ∈ V h
0 . (6.9)
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Proof For simplicity, we ignore the subscript h of vh in this proof and all the following v are
in V h .

Notice that gI − gp ≡ 0 in interior cells. Thus we only consider cells adjacent to ∂�. Let
L1, L2, L3 and L4 denote the top, left, bottom and right boundary edges of �̄ = [0, 1]×[0, 1]
respectively.Without loss of generality, we consider cell e = [xe−h, xe+h]×[ye−h, ye+h]
adjacent to the left boundary L2, i.e., xe − h = 0. Let le1, l

e
2, l

e
3 and le4 denote the top, left,

bottom and right boundary edges of e respectively.
On l2 ⊂ L2, Let φi j (x, y), i, j = 0, 1, . . . , k, be Lagrange basis functions on edge le2 for

the (k + 1) × (k + 1) Gauss–Lobatto points in cell e. Then gI − gp = ∑k
i, j=0 λi jφi j (x, y)

and |λi j | ≤ ‖gI − gp‖∞,Z0 . Due to Sobolev’s embedding, we have u ∈ Wk+2,∞(�). By
Theorem 4.2, we have

‖gI − gp‖∞,Z0 ≤ ‖u − u p‖∞,Z0 = O(hk+2)‖u‖k+2,∞,� = O(hk+2)‖u‖k+4,�.

Thus we get ∀v ∈ V h
0 ,

〈a(gI − gp)x , vx 〉e

=
〈

a
k∑

i, j=0

λi jφi j (x, y)x , vx

〉

e

≤ C‖a‖∞,� max
i, j

∣
∣
∣
∣
∣
∣
λi j ||

〈
k∑

i, j=0

φi j (x, y)x , vx

〉

e

∣
∣
∣
∣
∣
∣
.

Since for polynomials on K̂ all the norm are equivalent, we have
∣
∣
∣
∣
∣
∣

〈
k∑

i, j=0

φi j (x, y)x , vx

〉

e

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

〈
k∑

i, j=0

φ̂i j (s, t)s, v̂s

〉

K̂

∣
∣
∣
∣
∣
∣
≤ C |v̂s |∞,K̂ ≤ C |v|1,K̂ = C |v|1,e,

which implies

〈a(gI − gp)x , vx 〉h ≤ C‖a‖∞,�

∑

e

max
i, j

|λi j ||v|1,e = O(hk+2)‖a‖∞,�‖u‖k+4,�‖v‖2,�

Similarly, for any v ∈ V h
0 , we have

〈a(gI − gp)y, vy〉h = O(hk+2)‖a‖∞‖u‖k+4‖v‖2,
〈a(gI − gp)x , vy〉h = O(hk+2)‖a‖∞‖u‖k+4‖v‖2,

〈b · ∇(gI − gp), v〉h = O(hk+2)‖b‖∞‖u‖k+4‖v‖2,
〈c(gI − gp), v〉h = O(hk+2)‖c‖∞‖u‖k+4‖v‖2.

Thus we conclude that

Ah(gI − gp, vh) = O(hk+2)‖u‖k+4‖vh‖2, ∀vh ∈ V h
0 .

��
By (6.8) and Lemma 6.1, we have

Ah(ũ
∗
h − ũh, vh) = O(hk+2)‖u‖k+4‖vh‖2, ∀vh ∈ V h

0 . (6.10)

Let θh = ũ∗
h − ũh ∈ V h

0 . Following Sect. 5.2, define the following dual problem: find
w ∈ H1

0 (�) satisfying
A∗(w, v) = (θh, v), ∀v ∈ H1

0 (�). (6.11)
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Let wh ∈ V h
0 be the solution to

A∗
h(wh, vh) = (θh, vh), ∀vh ∈ V h

0 . (6.12)

By (6.10) and Theorem 5.3, we get

‖θh‖20 = (θh, θh) = A∗
h(wh, θh) = Ah(ũ

∗
h − ũh, wh)

= O(hk+2)‖u‖k+4‖wh‖2 = O(hk+2)‖u‖k+4‖θh‖0,
thus ‖ũ∗

h − ũh‖0 = ‖θh‖0 = O(hk+2)‖u‖k+4. By equivalence of norms for polynomials, we
have

‖ũ∗
h − ũh‖2,Z0 ≤ C‖ũ∗

h − ũh‖0 = O(hk+2)‖u‖k+4,�. (6.13)

Notice that both ũh and ũ∗
h are constant zero along ∂�, and uh |∂� = gI is the Lagrangian

interpolation of g along ∂�. With (6.7), we have proven the following main result.

Theorem 6.2 Assume elliptic regularity (2.6) and V h ellipticity holds. For a nonhomoge-
neous Dirichlet boundary problem (6.1), with suitable smoothness assumptions for k ≥ 2,
ai j , bi , c ∈ Wk+2,∞(�), the exact solution of (6.2) u(x, y) = ũ + ḡ ∈ Hk+4(�) and
f (x, y) ∈ Hk+2(�), the numerical solution uh by scheme (6.3) is a (k+2)th order accurate
approximation to u in the discrete 2-norm over all the (k + 1) × (k + 1) Gauss–Lobatto
points:

‖uh − u‖2,Z0 = O(hk+2)(‖u‖k+4 + ‖ f ‖k+2).

7 Finite Difference Implementation

In this section we present the finite difference implementation of the scheme (6.3) for the
case k = 2 on a uniformmesh. The finite difference implementation of the nonhomogeneous
Dirichlet boundary value problem is based on a homogeneousNeumannboundary value prob-
lem, which will be discussed first. We demonstrate how it is derived for the one-dimensional
case then give the two-dimensional implementation. It provides efficient assembling of the
stiffness matrix and one can easily implement it in MATLAB. Implementations for higher
order elements or quasi-uniform meshes can be similarly derived, even though it will no
longer be a conventional finite difference scheme on a uniform grid.

7.1 One-Dimensional Case

Consider a homogeneous Neumann boundary value problem−(au′)′ = f on [0, 1], u′(0) =
0, u′(1) = 0, and its variational form is to seek u ∈ H1([0, 1]) satisfying

(au′, v′) = ( f , v), ∀v ∈ H1([0, 1]). (7.1)

Consider a uniform mesh xi = ih, i = 0, 1, . . . , n + 1, h = 1
n+1 . Assume n is odd and let

N = n+1
2 . Define intervals Ik = [x2k, x2k+2] for k = 0, . . . , N − 1 as a finite element mesh

for P2 basis. Define

V h = {v ∈ C0([0, 1]) : v|Ik ∈ P2(Ik), k = 0, . . . , N − 1}.
Let {vi }n+1

i=0 ⊂ V h be a basis of V h such that vi (x j ) = δi j , i, j = 0, 1, . . . , n + 1. With
3-point Gauss–Lobatto quadrature, the C0-P2 finite element method for (7.1) is to seek
uh ∈ V h satisfying
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〈au′
h, v

′
i 〉h = 〈 f , vi 〉h, i = 0, 1, . . . , n + 1. (7.2)

Let u j = uh(x j ), a j = a(x j ) and f j = f (x j ) then uh(x) =
n+1∑

j=0
u jv j (x). We have

n+1∑

j=0

u j 〈av′
j , v

′
i 〉h = 〈au′

h, v
′
j 〉h = 〈 f , vi 〉h =

n+1∑

j=0

f j 〈v j , vi 〉h, i = 0, 1, . . . , n + 1.

The matrix form of this scheme is S̄ū = M̄ f̄ , where

ū = [
u0, u1, . . . , un, un+1

]T
, f̄ = [

f0, f1, . . . , fn, fn+1
]T

,

the stiffness matrix S̄ is has size (n + 2) × (n + 2) with (i, j)th entry as 〈av′
i , v

′
j 〉h , and

the lumped mass matrix M is a (n + 2) × (n + 2) diagonal matrix with diagonal entries
h
( 1
3 ,

4
3 ,

2
3 ,

4
3 ,

2
3 , . . . ,

2
3 ,

4
3 ,

1
3

)
.

Next we derive an explicit representation of the matrix S̄. Since basis functions vi ∈ V h

and uh(x) are not C1 at the knots x2k (k = 1, 2, . . . , N − 1), their derivatives at the knots
are double valued. We will use superscripts + and − to denote derivatives obtained from
the right and from the left respectively, e.g., v′+

2k and v′−
2k+2 denote the derivatives of v2k and

v2k+2 respectively in the interval Ik = [x2k, x2k+2]. Then in the interval Ik = [x2k, x2k+2]
we have the following representation of derivatives

⎡

⎣
v′+
2k (x)

v′
2k+1(x)

v′−
2k+2(x)

⎤

⎦ = 1

2h

⎡

⎣
−3 4 −1
−1 0 1
1 − 4 3

⎤

⎦

⎡

⎣
v2k(x)

v2k+1(x)
v2k+2(x)

⎤

⎦ . (7.3)

By abusing notations, we use (vi )
′
2k to denote the average of two derivatives of vi at the

knots x2k :

(vi )
′
2k = 1

2
[(v′

i )
−
2k + (v′

i )
+
2k].

Let [vi ] denote the difference between the right derivative and left derivative:

[v′
i ]0 = [v′

i ]n+2 = 0, [v′
i ]2k := (v′

i )
+
2k − (v′

i )
−
2k, k = 1, 2, . . . , N − 1.

Then at the knots, we have

(v′
i )

−
2k(v

′
j )

−
2k + (v′

i )
+
2k(v

′
j )

+
2k = 2(v′

i )2k(v
′
j )2k + 1

2
[vi ]2k[v j ]2k . (7.4)

We also have

〈av′
j , v

′
i 〉I2k

= h

[
1

3
a2k(v

′
j )

+
2k(v

′
i )

+
2k + 4

3
a2k+1(v

′
j )2k+1(v

′
i )2k+1 + 1

3
a2k+2(v

′
j )

−
2k+2(v

′
i )

−
2k+2

]

.

(7.5)

Let vi denote a column vector of size n+2 consisting of grid point values of vi (x). Plugging
(7.4) into (7.5), with (7.3), we get

〈av′
j , v

′
i 〉h =

N−1∑

k=0

〈av′
j , v

′
i 〉I2k = 1

h
vTi (DTW AD + ETW AE)v j ,
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where A is a diagonal matrix with diagonal entries a0, a1, . . . , an, an+1, and

W = diag
( 1
3 ,

4
3 ,

2
3 ,

4
3 ,

2
3 , . . . ,

2
3 ,

4
3 ,

1
3

)
(n+2)×(n+2) ,

D =1

2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−3 4 −1
−1 0 1
1
2 −2 0 2 − 1

2−1 0 1
1
2 −2 0 2 − 1

2−1 0 1
. . .

. . .
. . .

−1 0 1
1
2 −2 0 2 − 1

2−1 0 1
1 −4 3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(n+2)×(n+2)

,

E = 1

2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0
0 0 0

− 1
2 2 −3 2 − 1

2
0 0 0

− 1
2 2 −3 2 − 1

2
0 0 0

. . .
. . .

. . .
0 0 0

− 1
2 2 −3 2 − 1

2
0 0 0
0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(n+2)×(n+2)

.

Since {vi }ni=0 are the Lagrangian basis for V
h , we have

S̄ = 1

h
(DTW AD + ETW AE). (7.6)

Now consider the one-dimensional Dirichlet boundary value problem:

−(au′)′ = f on [0, 1],
u(0) = σ1, u(1) = σ2.

Consider the same mesh as above and define

V h
0 = {v ∈ C0([0, 1]) : v|Ik ∈ P2(Ik), k = 0, . . . , N − 1; v(0) = v(1) = 0}.

Then {vi }ni=1 ⊂ V h is a basis of V h
0 for {vi }n+1

i=0 defined above. The one-dimensional version
of (6.3) is to seek uh ∈ V h

0 satisfying

〈au′
h, v

′
i 〉h = 〈 f , vi 〉h − 〈ag′

I , v
′
i 〉h, i = 1, 2, . . . , n,

gI (x) = σ0v0(x) + σ1vn+1(x).
(7.7)

Notice that we can obtain (7.7) by simply setting uh(0) = σ0 and uh(1) = σ1 in (7.2). So
the finite difference implementation of (7.7) is given as follows:

1. Assemble the (n + 2) × (n + 2) stiffness matrix S̄ for homogeneous Neumann problem
as in (7.6).

2. Let S denote the n×n submatrix S̄(2 : n+1, 2 : n+1), i.e., [S̄i j ] for i, j = 2, · · · , n+1.
3. Let l denote the n × 1 submatrix S̄(2 : n + 1, 1) and r denote the n × 1 submatrix

S̄(2 : n + 1, n + 2), which correspond to v0(x) and vn+1(x).
4. Let u = [

u1 u2 · · · un
]T

and f = [
f1 f2 · · · fn

]T
. Define w = [ 4

3 ,
2
3 ,

4
3 ,

2
3 , . . . ,

2
3 ,

4
3

]

as a column vector of size n. The scheme (7.7) can be implemented as

Su = hwT f − σ0l − σ1r.
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7.2 Notations and Tools for the Two-Dimensional Case

We will need two operators:

• Kronecker product of two matrices: if A ism×n and B is p×q , then A⊗ B ismp×nq
give by

A ⊗ B =
⎛

⎜
⎝

a11B · · · a1n B
...

...
...

am1B · · · amn B

⎞

⎟
⎠ .

• For a m × n matrix X , vec(X) denotes the vectorization of the matrix X by rearranging
X into a vector column by column.

The following properties will be used:

1. (A ⊗ B)(C ⊗ D) = AC ⊗ BD.
2. (A ⊗ B)−1 = A−1 ⊗ B−1.
3. (BT ⊗ A)vec(X) = vec(AXB).
4. (A ⊗ B)T = AT ⊗ BT .

Consider a uniform grid (xi , y j ) for a rectangular domain �̄ = [0, 1] × [0, 1] where
xi = ihx , i = 0, 1, . . . , nx +1, hx = 1

nx+1 and y j = jhy , j = 0, 1, . . . , ny +1, hy = 1
ny+1 .

Assume nx and ny are odd and let Nx = nx+1
2 and Ny = ny+1

2 . We consider rectangular
cells ekl = [x2k, x2k+2] × [y2l , y2l+2] for k = 0, . . . , Nx − 1 and l = 0, . . . , Ny − 1 as a
finite element mesh for Q2 basis. Define

V h = {v ∈ C0(�) : v|ekl ∈ Q2(ekl), k = 0, . . . , Nx − 1, l = 0, . . . , Ny − 1},
V h
0 = {v ∈ C0(�) : v|ekl ∈ Q2(ekl), k = 0, . . . , Nx − 1, l = 0, . . . , Ny − 1; v|∂� ≡ 0}.

For the coefficients a(x, y) =
(
a11 a12

a21 a22

)

, b = [b1 b2] and c in the elliptic operator

(2.3), consider their grid point values in the following form:

Akl =

⎛

⎜
⎜
⎜
⎝

a00 a01 . . . a0,nx+1

a10 a11 . . . a1,nx+1
.
.
.

.

.

.
.
.
.

any+1,0 any+1,1 . . . any+1,,nx+1

⎞

⎟
⎟
⎟
⎠

(ny+2)×(nx+2)

, ai j = akl(x j , yi ), k, l = 1, 2,

Bm =

⎛

⎜
⎜
⎜
⎝

b00 b01 . . . b0,nx+1

b10 b11 . . . b1,nx+1
.
.
.

.

.

.
.
.
.

bny+1,0 bny+1,1 . . . bny+1,nx+1

⎞

⎟
⎟
⎟
⎠

(ny+2)×(nx+2)

, bi j = bm(x j , yi ), m = 1, 2,

C =

⎛

⎜
⎜
⎜
⎝

c00 c01 . . . c0,nx+1

c10 c11 . . . c1,nx+1
.
.
.

.

.

.
.
.
.

cny+1,0 cny+1,1 . . . cny+1,nx+1

⎞

⎟
⎟
⎟
⎠

(ny+2)×(nx+2)

, ci j = c(x j , yi ).
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Let diag(x) denote a diagonal matrix with the vector x as diagonal entries and define

W̄x = diag
( 1
3 ,

4
3 ,

2
3 ,

4
3 ,

2
3 , . . . ,

2
3 ,

4
3 ,

1
3

)
(nx+2)×(nx+2) ,

W̄y = diag
( 1
3 ,

4
3 ,

2
3 ,

4
3 ,

2
3 , . . . ,

2
3 ,

4
3 ,

1
3

)
(ny+2)×(ny+2) ,

Wx = diag
( 4
3 ,

2
3 ,

4
3 ,

2
3 , . . . ,

2
3 ,

4
3

)
nx×nx

,Wy = diag
( 4
3 ,

2
3 ,

4
3 ,

2
3 , . . . ,

2
3 ,

4
3

)
ny×ny

.

Let s = x or y, we define the D and E matrices with dimension (ns + 2) × (ns + 2) for
each variable:

Ds = 1

2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−3 4 −1
−1 0 1
1
2 −2 0 2 − 1

2−1 0 1
1
2 −2 0 2 − 1

2−1 0 1
. . .

. . .
. . .

−1 0 1
1
2 −2 0 2 − 1

2−1 0 1
1 −4 3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

Es = 1

2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0
0 0 0

− 1
2 2 −3 2 − 1

2
0 0 0

− 1
2 2 −3 2 − 1

2
0 0 0

. . .
. . .

. . .
0 0 0

− 1
2 2 −3 2 − 1

2
0 0 0
0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Define an inflation operator I n f l : Rny×nx −→ R(ny+2)×(nx+2) by adding zeros:

I n f l(U ) =
⎛

⎜
⎝

0 · · · 0
... U

...

0 · · · 0

⎞

⎟
⎠

(ny+2)×(nx+2)

and its matrix representation is given as Ĩx ⊗ Ĩy where

Ĩx =
⎛

⎝
0

Inx×nx
0

⎞

⎠

(nx+2)×nx

, Ĩy =
⎛

⎝
0

Iny×ny
0

⎞

⎠

(ny+2)×ny

.

Its adjoint is a restriction operator Res : R(ny+2)×(nx+2) −→ Rny×nx as

Res(X) = X(2 : ny + 1, 2 : nx + 1) ,∀X ∈ R(ny+2)×(nx+2),

and its matrix representation is Ĩ Tx ⊗ Ĩ Ty .

7.3 Two-Dimensional Case

For �̄ = [0, 1]2 we first consider an elliptic equation with homogeneous Neumann boundary
condition:

− ∇ · (a∇u) + b∇u + cu = f on �, (7.8)
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a∇u · n = 0 on ∂�. (7.9)

The variational form is to find u ∈ H1(�) satisfying

A(u, v) = ( f , v), ∀v ∈ H1(�). (7.10)

The C0-Q2 finite element method with 3 × 3 Gauss–Lobatto quadrature is to find uh ∈ V h

satisfying

〈a∇uh,∇vh〉h + 〈b∇uh, vh〉h + 〈cuh, vh〉h = 〈 f , vh〉h, ∀vh ∈ V h, (7.11)

Let Ū be a (ny+2)×(nx+2)matrix such that its ( j, i)th entry is Ū ( j, i) = uh(xi−1, y j−1),
i = 1, . . . , nx + 2, j = 1, . . . , ny + 2. Let F̄ be a (ny + 2) × (nx + 2) matrix such that its
( j, i)th entry is F̄( j, i) = f (xi−1, y j−1). Then the matrix form of (7.11) is

S̄vec(Ū ) = M̄vec(F̄), M̄ = hxhyW̄x ⊗ W̄y, S̄ =
2∑

k,l=1

Skla +
2∑

m=1

Smb + Sc, (7.12)

where

S11a = hy

hx
(DT

x ⊗ Iy)diag(vec(W̄y A
11W̄x ))(Dx ⊗ Iy)

+ hy

hx
(ET

x ⊗ Iy)diag(vec(W̄y A
11W̄x ))(Ex ⊗ Iy),

S12a = (DT
x ⊗ Iy)diag(vec(W̄y A

12W̄x ))(Ix ⊗ Dy)

+ (ET
x ⊗ Iy)diag(vec(W̄y A

12W̄x ))(Ix ⊗ Ey),

S21a = (Ix ⊗ DT
y )diag(vec(W̄y A

21W̄x ))(Dx ⊗ Iy)

+ (Ix ⊗ ET
y )diag(vec(W̄y A

21W̄x ))(Ex ⊗ Iy),

S22a = hx
hy

(Ix ⊗ DT
y )diag(vec(W̄y A

22W̄x ))(Ix ⊗ Dy)

+ hx
hy

(Ix ⊗ ET
y )diag(vec(W̄y A

22W̄x ))(Ix ⊗ Ey),

S1b = hydiag(vec(W̄y B
1W̄x ))(Dx ⊗ Iy),

S2b = hxdiag(vec(W̄y B
2W̄x ))(Ix ⊗ Dy),

Sc = hxhydiag(vec(W̄yCW̄x ).

Now consider the scheme (6.3) for nonhomogeneous Dirichlet boundary conditions. Its
numerical solution canbe represented as amatrixU of sizeny×nx with ( j, i)-entryU ( j, i) =
uh(xi , y j ) for i = 1, · · · , nx; j = 1, · · · , ny. Similar to the one-dimensional case, its
stiffness matrix can be obtained as the submatrix of S̄ in (7.12). Let Ḡ be a (ny + 2) by
(nx + 2) matrix with ( j, i)th entry as Ḡ( j, i) = g(xi−1, y j−1), where

g(x, y) =
{
0, if (x, y) ∈ (0, 1) × (0, 1),

g(x, y), if (x, y) ∈ ∂�.

In particular, Ḡ( j + 1, i + 1) = 0 for j = 1, . . . , ny , i = 1, . . . , nx . Let F be a matrix of
size ny × nx with ( j, i)-entry as F( j, i) = f (xi , y j ) for i = 1, · · · , nx; j = 1, · · · , ny.
Then the scheme (6.3) becomes

( Ĩ Tx ⊗ Ĩ Ty )S̄( Ĩx ⊗ Ĩy)vec(U ) = (Wx ⊗ Wy)vec(F) − ( Ĩ Tx ⊗ Ĩ Ty )S̄vec(Ḡ). (7.13)
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Even though the stiffness matrix is given as S = ( Ĩ Tx ⊗ Ĩ Ty )S̄( Ĩx ⊗ Ĩy), S should be imple-
mented as a linear operator in iterative linear system solvers. For example, the matrix vector
multiplication ( Ĩ Tx ⊗ Ĩ Ty )S11a ( Ĩx ⊗ Ĩy)vec(U ) is equivalent to the following linear operator
from Rny×nx to Rny×nx :

hy

hx
Ĩ Ty

{
Iy

(
[W̄y A

11W̄x ] ◦ [Iy( ĨyU Ĩ Tx )DT
x ]

)
Dx

+Iy
(
[W̄y A

11W̄x ] ◦ [Iy( ĨyU Ĩ Tx )ET
x ]

)
Ex

}
Ĩx ,

where ◦ is the Hadamard product (i.e., entrywise multiplication).

7.4 The Laplacian Case

For one-dimensional constant coefficient case with homogeneous Dirichlet boundary condi-
tion, the scheme can be written as a classical finite difference scheme Hu = f with

H = M−1S = 1

h2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 −1
−2 7

2 −2 1
4−1 2 −1

1
4 −2 7

2 −2 1
4−1 2 −1

. . .
. . .

1
4 −2 7

2 −2
−1 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

In other words, if xi is a cell center, the scheme is

−ui−1 + 2ui − ui+1

h2
= fi ,

and if xi is a knot away from the boundary, the scheme is

ui−2 − 8ui−1 + 14ui − 8ui+1 + ui+2

4h2
= fi .

It is straightforward to verify that the local truncation error is only second order.
For the two-dimensional Laplacian case homogeneous Dirichlet boundary condition, the

scheme can be rewritten as

(Hx ⊗ Iy) + (Ix ⊗ Hy)vec(U ) = vec(F),

where Hx and Hy are the same H matrix abovewith size nx×nx and ny×ny respectively. The
inverse of (Hx ⊗ Iy)+ (Ix ⊗ Hy) can be efficiently constructed via the eigen-decomposition
of small matrices Hx and Hy :

1. Compute eigen-decomposition of Hx = Txx T−1
x and Hy = TyyT−1

y .
2. The properties of Kronecker product imply that

(Hx ⊗ Iy) + (Ix ⊗ Hy) = (Tx ⊗ Ty)(x ⊗ Iy + Ix ⊗ y)(T
−1
x ⊗ T−1

y ),

thus

[(Hx ⊗ Iy) + (Ix ⊗ Hy)]−1 = (Tx ⊗ Ty)(x ⊗ Iy + Ix ⊗ y)
−1(T−1

x ⊗ T−1
y ).

3. It is nontrivial to determine whether H is diagonalizable. In all our numerical tests, H
has no repeated eigenvalues. So if assumingx andy are diagonal matrices, the matrix
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vector multiplication [(Hx ⊗ Iy) + (Ix ⊗ Hy)]−1vec(F) can be implemented as a linear
operator on F :

Ty([T−1
y F(T−1

x )T ]./)T T
x , (7.14)

where  is a ny × nx matrix with (i, j)th entry as (i, j) = y(i, i) + x ( j, j) and ./
denotes entry-wise division for two matrices of the same size.

For the 3D Laplacian, the matrix can be represented as Hx ⊗ Iy ⊗ Iz + Ix ⊗ Hy ⊗ Iz +
Ix ⊗ Iy ⊗ Hz thus can be efficiently inverted through eigen-decomposition of small matrices
Hx , Hy and Hz as well.

Since the eigen-decomposition of small matrices Hx and Hy can be precomputed, and
(7.14) costs only O(n3) for a 2D problem on a mesh size n × n, in practice (7.14) can be
used as a simple preconditioner in conjugate gradient solvers for the following linear system
equivalent to (7.13):

(W−1
x ⊗ W−1

y )( Ĩ Tx ⊗ Ĩ Ty )S̄( Ĩx ⊗ Ĩy)vec(U ) = vec(F) − (W−1
x ⊗ W−1

y )( Ĩ Tx ⊗ Ĩ Ty )S̄vec(G),

even though the multigrid method as reviewed in [19] is the optimal solver in terms of
computational complexity.

8 Numerical Results

In this section we show a few numerical tests verifying the accuracy of the scheme (6.3) for
k = 2 implemented as a finite difference scheme on a uniform grid. We first consider the
following two dimensional elliptic equation:

− ∇ · (a∇u) + b · ∇u + cu = f on [0, 1] × [0, 2] (8.1)

where a =
(
a11 a12
a21 a22

)

, a11 = 10 + 30y5 + x cos y + y, a12 = a21 = 2 + 0.5(sin(πx) +
x3)(sin(π y) + y3) + cos(x4 + y3), a22 = 10 + x5, b = 0, c = 1 + x4y3, with an exact
solution

u(x, y) = 0.1(sin(πx) + x3)(sin(π y) + y3) + cos(x4 + y3).

The errors at grid points are listed in Table 1 for purely Dirichlet boundary condition and
Table 2 for purely Neumann boundary condition. We observe fourth order accuracy in the
discrete 2-norm for both tests, even thoughonlyO(h3.5) can be proven forNeumannboundary
condition as discussed inRemark 5.5. Regarding themaximumnormof the superconvergence
of the function values at Gauss–Lobatto points, one can only prove O(h3 log h) even for the
full finite element scheme (1.1) since discrete Green’s function is used, see [4].

Next we consider a three-dimensional problem −�u = f with homogeneous Dirichlet
boundary conditions on a cube [0, 1]3 with the following exact solution

u(x, y, z) = sin(πx) sin(2π y) sin(3π z) + (x − x3)(y2 − y4)(z − z2).

See Table 3 for the performance of the finite difference scheme. There is no essential dif-
ficulty to extend the proof to three dimensions, even though it is not very straightforward.
Nonetheless we observe that the scheme is indeed fourth order accurate. The linear system
is solved by the eigenvector method shown in Sect. 7.4. The discrete 2-norm over the set of

all grid points Z0 is defined as ‖u‖2,Z0 =
[
h3

∑
(x,y,z)∈Z0

|u(x, y, z)|2
] 1
2
.
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Table 1 A 2D elliptic equation
with Dirichlet boundary
conditions

FEM mesh FD grid l2 error Order l∞ error Order

2 × 4 3 × 7 3.94E−2 – 7.15E−2 –

4 × 8 7 × 15 1.23E−2 1.67 3.28E−2 1.12

8 × 16 15 × 31 1.46E−3 3.08 5.42E−3 2.60

16 × 32 31 × 63 1.14E−4 3.68 3.96E−4 3.78

32 × 64 63 × 127 7.75E−6 3.88 2.62E−5 3.92

64 × 128 127 × 255 5.02E−7 3.95 1.73E−6 3.92

128 × 256 255 × 511 3.23E−8 3.96 1.13E−7 3.94

The first column is the number of regular cells in a finite element mesh.
The second column is the number of grid points in a finite difference
implementation, i.e., number of degree of freedoms

Table 2 A 2D elliptic equation
with Neumann boundary
conditions

FEM mesh FD grid l2 error Order l∞ error Order

2 × 4 5 × 9 1.38E0 – 2.27E0 –

4 × 8 9 × 17 1.46E−1 3.24 2.52E−1 3.17

8 × 16 17 × 33 7.49E−3 4.28 1.64E−2 3.94

16 × 32 33 × 65 4.31E−4 4.12 1.02E−3 4.01

32 × 64 65 × 129 2.61E−5 4.04 7.47E−5 3.78

Table 3 −�u = f in 3D with
homogeneous Dirichlet boundary
condition

Finite difference grid l2 error Order l∞ error Order

7 × 7 × 7 1.51E−2 – 4.87E−2 –

15 × 15 × 15 9.23E−4 4.04 3.12E−3 3.96

31 × 31 × 31 5.68E−5 4.02 1.95E−4 4.00

63 × 63 × 63 3.54E−6 4.01 1.22E−5 4.00

127 × 127 × 127 2.21E−7 4.00 7.59E−7 4.00

Table 4 A 2D elliptic equation
with convection term and
Dirichlet boundary conditions

FEM mesh FD grid l2 error Order l∞ error Order

2 × 4 3 × 7 1.26E−1 – 2.71E−1 –

4 × 8 7 × 15 2.85E−2 2.15 9.70E−2 1.48

8 × 16 15 × 31 1.89E−3 3.92 7.25E−3 3.74

16 × 32 31 × 63 1.17E−4 4.01 4.01E−4 4.17

32 × 64 63 × 127 7.41E−6 3.98 2.54E−5 3.98

Last we consider (8.1) with convection term and the coefficients b is incompressible

∇ ·b = 0: a =
(
a11 a12
a21 a22

)

, a11 = 100+30y5+ x cos y+ y, a12 = a21 = 2+0.5(sin(πx)+

x3)(sin(π y) + y3) + cos(x4 + y3), a22 = 100 + x5, b =
(
b1
b2

)

, b1 = ψy , b2 = −ψx ,

ψ = x exp(x2 + y), c = 1 + x4y3, with an exact solution

u(x, y) = 0.1(sin(πx) + x3)(sin(π y) + y3) + cos(x4 + y3).

The errors at grid points are listed in Table 4 for Dirichlet boundary conditions.
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9 Concluding Remarks

In this paper we have proven the superconvergence of function values in the simplest finite
difference implementation of C0-Qk finite element method for elliptic equations. In par-
ticular, for the case k = 2 the scheme (6.3) can be easily implemented as a fourth order
accurate finite difference scheme as shown in Sect. 7. It provides only only an convenient
approach for constructing fourth order accurate finite difference schemes but also the most
efficient implementation of C0-Qk finite element method without losing superconvergence
of function values. In a follow up paper [12], we will show that discrete maximum principle
can be proven for the scheme (6.3) in the case k = 2 when solving a variable coefficient
Poisson equation.
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