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Abstract

The classical continuous finite element method with Lagrangian Q basis reduces to a finite
difference scheme when all the integrals are replaced by the (k + 1) x (k + 1) Gauss—
Lobatto quadrature. We prove that this finite difference scheme is (k 4 2)th order accurate
in the discrete 2-norm for an elliptic equation with Dirichlet boundary conditions, which is a
superconvergence result of function values. We also give a convenient implementation for the
case k = 2, which is a simple fourth order accurate elliptic solver on a rectangular domain.

Keywords Superconvergence - High order accurate discrete Laplacian - Elliptic equations -
Finite difference scheme based on variational formulation - Gauss—Lobatto quadrature

Mathematics Subject Classification 65N30 - 65N15 - 65N06

1 Introduction
1.1 Motivation

In this paper we consider solving a two-dimensional elliptic equation with smooth coefficients
on a rectangular domain by high order finite difference schemes, which are constructed via
using suitable quadrature in the classical continuous finite element method on a rectangular
mesh. Consider the following model problem as an example: a variable coefficient Poisson
equation —V - (a(x)Vu) = f,a(x) > 0 on a square domain 2 = (0, 1) x (0, 1) with
homogeneous Dirichlet boundary conditions. The variational form is to find u € HO1 (Q) =
{ve H'(Q) : v|yq = 0} satisfying
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(a) The quadrature points and a FEM (b) The corresponding finite differ-
mesh ence grid

Fig.1 An illustration of Lagrangian Q2 element and the 3 x 3 Gauss—Lobatto quadrature

A(u,v) = (f,v), Yve Hj(RQ),

where A(u,v) = [[qaVu - Vvdxdy, (f,v) = [[q fvdxdy. Let h be the mesh size of an
uniform rectangular mesh and V(f’ C HO1 (£2) be the continuous finite element space consisting
of piecewise Q¥ polynomials (i.e., tensor product of piecewise polynomials of degree k), then
the CO-Q* finite element solution is defined as u;, € Voh satisfying

Aun, o) = (f,vn), Vup € V. (1.1

Chk+1||u||k+1 where | - ||« denotes H¥(2)-norm, see [5]. For k > 2, O(hFt1) supercon-
vergence for the gradient at Gauss quadrature points and O(h**2) superconvergence for
functions values at Gauss—Lobatto quadrature points were proven for one-dimensional case
in [1,2,11] and for two-dimensional case in [4,8,14,17].

When implementing the scheme (1.1), integrals are usually approximated by quadrature.
The most convenient implementation is to use (k + 1) x (k 4+ 1) Gauss—Lobatto quadrature
because they not only are superconvergence points but also can define all the degree of
freedoms of Lagrangian QX basis. See Fig. 1 for the case k = 2. Such a quadrature scheme
can be denoted as finding uj, € Voh satisfying

Ap(up, vp) = (f,vndn, Yop € V], (1.2)

where Ap (up, vy) and (f, vp)n denote using tensor product of (k 4 1)-point Gauss—Lobatto
quadrature for integrals A(uy, v;) and (f, vy) respectively.

It is well known that many classical finite difference schemes are exactly finite element
methods with specific quadrature scheme, see [5]. We will write scheme (1.2) as an exact
finite difference type scheme in Sect. 7 for k = 2. Such a finite difference scheme not only
provides an efficient and also convenient way for assembling the stiffness matrix especially
for a variable coefficient problem, but also with has advantages inherited from the varia-
tional formulation, such as symmetry of stiffness matrix and easiness of handling boundary
conditions in high order schemes. This is the variational approach to construct a high order
accurate finite difference scheme.

Classical quadrature error estimates imply that standard finite element error estimates still
hold for (1.2), see [5,7]. The focus of this paper is to prove that the superconvergence of
function values at Gauss—Lobatto points still holds. To be more specific, for Dirichlet type
boundary conditions, we will show that (1.2) with k > 2 is a (k + 2)th order accurate finite

Standard error estimates of (1.1) are |lu — up|1 < Chk||u||k+1 and ||u — upllo <
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difference scheme in the discrete 2-norm under suitable smoothness assumptions on the exact
solution and the coefficients.

In this paper, the main motivation to study superconvergence is to use it for constructing
(k + 2)th order accurate finite difference schemes. For such a task, superconvergence points
should define all degree of freedoms over the whole computational domain including bound-
ary points. For high order finite element methods, this seems possible only on quite structured
meshes such as rectangular meshes for a rectangular domain and equilateral triangles for a
hexagonal domain, even though there are numerous superconvergence results for interior
cells in unstructured meshes.

1.2 Related Work and Difficulty in Using Standard Tools

To illustrate our perspectives and difficulties, we focus on the case k = 2 in the following.
For computing the bilinear form in the scheme (1.1), another convenient implementation is
to replace the smooth coefficient a(x, y) by a piecewise Q2 polynomial a;(x, y) obtained
by interpolating a(x, y) at the quadrature points in each cell shown in Fig. 1. Then one can
compute the integrals in the bilinear form exactly since the integrand is a polynomial. Super-
convergence of function values for such an approximated coefficient scheme was proven in
[13] and the proof can be easily extended to higher order polynomials and three-dimensional
cases. This result might seem surprising since interpolation error a(x, y) — ay(x, y) is of
third order. On the other hand, all the tools used in [13] are standard in the literature.

From a practical point of view, (1.2) is more interesting since it gives a genuine finite
difference scheme. It is straightforward to use standard tools in the literature for showing
superconvergence still holds for accurate enough quadrature. Even though the 3 x 3 Gauss—
Lobatto quadrature is fourth order accurate, the standard quadrature error estimates cannot
be used directly to establish the fourth order accuracy of (1.2), as will be explained in detail
in Remark 3.8 in Sect. 3.2.

We can also rewrite (1.2) for k = 2 as a finite difference scheme but its local truncation
error is only second order as will be shown in Sect. 7.4. The phenomenon that truncation errors
have lower orders was named supraconvergence in the literature. The second order truncation
error makes it difficult to establish the fourth order accuracy following any traditional finite
difference analysis approaches.

To construct high order finite difference schemes from variational formulation, we can
also consider finite element method with P2 basis on a regular triangular mesh in which
two adjacent triangles form a rectangle [18]. Superconvergence of function values in C°- P2
finite element method at the three vertices and three edge centers can be proven [4,17]. See
also [10]. Even though the quadrature using only three edge centers is third order accurate,
error cancellations happen on two adjacent triangles forming a rectangle, thus fourth order
accuracy of the corresponding finite difference scheme is still possible. However, extensions
to construct higher order finite difference schemes are much more difficult.

1.3 Contributions and Organization of the Paper

The main contribution is to give the proof of the (k +2)th order accuracy of (1.2) withk > 2,
which is an easy construction of high order finite difference schemes for variable coefficient
problems. An important step is to obtain desired sharp quadrature estimate for the bilinear
form, for which it is necessary to count in quadrature error cancellations between neighboring
cells. Conventional quadrature estimating tools such as the Bramble—Hilbert Lemma only give

@ Springer



36 Page4of39 Journal of Scientific Computing (2020) 82:36

the sharp estimate on each cell thus cannot be used directly. A key technique in this paper
is to apply the Bramble-Hilbert Lemma after integration by parts on proper interpolation
polynomials to allow error cancellations.

The paper is organized as follows. In Sect. 2, we introduce our notations and assumptions.
In Sect. 3, standard quadrature estimates are reviewed. Superconvergence of bilinear forms
with quadrature is shown in Sect. 4. Then we prove the main result for homogeneous Dirichlet
boundary conditions in Sect. 5 and for nonhomogeneous Dirichlet boundary conditions in
Sect. 6. Section 7 provides a simple finite difference implementation of (1.2). Section 8
contains numerical tests. Concluding remarks are given in Sect. 9.

2 Notations and Assumptions
2.1 Notations and Basic Tools

We will use the same notations as in [13]:

e We only consider a rectangular domain 2 = (0, 1) x (0, 1) with its boundary denoted
as 0€2.

e Only for convenience, we assume €2, is an uniform rectangular mesh for  and e =
[xe —h, xo + h] X [ye — h, yo + h] denotes any cell in 2, with cell center (x,, y.). The
assumption of an uniform mesh is not essential to the discussion of superconvergence.
All superconvergence results in this paper can be easily extended to continuous finite
element method with QX element on a quasi-uniform rectangular mesh, but not on a
generic quadrilateral mesh or any curved mesh.

kK k

o Ok(e) = {p(x,y) = >y p,-jxiyj, (x,y) € e} is the set of tensor product of poly-

i=0 j=0
nomials of degree k on a cell e.

o VI = {px,y) e o : Ple € Qk(e), Ve € Qp,} denotes the continuous piecewise
QF finite element space on 2.

° V&:{vhevh:vhzo on 0%Q}.

e The norm and seminorms for Wk’P(Q) and 1 < p < +o0, with standard modification
for p = +oc:

1/p

ulpa=| X [[ 10ldfuce nirasay | .
i+j<k? 8

1/p

lule.p.0 = Zf/ﬂ|a;;a§u(x,y)|f’dxdy :

itj=k

1/p
Wl p2 = (// |afu<x,y)|”dxdy+// |a{%u<x,y)|f’dxdy) .
Q Q7

Notice that [u]x41,p,0 =0ifuisa Qk polynomial.

e For simplicity, sometimes we may use ||u ||, @, |#|k,o and [u]i,q denote norm and semi-
norms for H¥(Q) = W52(Q).

e When there is no confusion, €2 may be dropped in the norm and seminorms, e.g., ||u||x =
lulle.2.0-
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e Forany v, € V", 1 < p < +oo and k > 1, we will abuse the notation to denote the
broken Sobolev norm and seminorms by the following symbols

1

1
P P
. p . P
lallep.o = D lMvalf o)+ Tonlpa =D lwlf,.] -
e e

1

»
[rlk,p.@ = (Z[vh]{;p,e> .
e
e Let Zy , denote the set of (k + 1) x (k + 1) Gauss—Lobatto points on a cell e.
o Zo =, Zo,. denotes all Gauss—Lobatto points in the mesh €2j,.
e Let |[u]l2,z, and ||u||0,z, denote the discrete 2-norm and the maximum norm over Zg
respectively:

Wz = |2 Y WP | o Wz = max futx. .
(x,y)€Zo (x,y)€Zp

e For a continuous function f(x, y), let f;(x, y) denote its piecewise Q¥ Lagrange inter-
polant at Zp ., on each cell e, i.e., f; € v satisfies:

S, y) = fix,y), VY(x,y) e Zy.

o PX(r) denotes the set of polynomial of degree k of variable ¢.
e (f,v),denotes the inner productin L?(e) and ( f, v) denotes the inner product in L2():

(fooe= [[ roasas, oo = [[ poasay =Y.

e (f, V). denotes the approximation to (f, v). by using (k 4+ 1) x (k + 1)-point Gauss
Lobatto quadrature with k > 2 for integration over cell e.

e (f,v); denotes the approximation to (f, v) by using (k + 1) x (k + 1)-point Gauss
Lobatto quadrature with k > 2 for integration over each cell e.

e K = [—1, 1] x [—1, 1] denotes a reference cell.

e For f(x, y) defined on e, consider f(s, t) = f(sh + x.,th + y.) defined on K. Let
fl denote the QF Lagrange interpolation of f at the (k + 1) x (k + 1) Gauss Lobatto
quAadrature pointsA on K.

e (f, lA))I% = ffk fodsdt.

° (f, ﬁ>1€ denotes the approximation to (f, ﬁ)k by using (k + 1) x (k 4 1)-point Gauss—
Lobatto quadrature.

e On the reference cell K, for convenience we use the superscript i over the ds or dt to
denote we use (k + 1)-point Gauss—Lobatto quadrature on the corresponding variable.
For example,

1 k
//K fdsdt = /1 [wlf(—l,t) + w1 f(1, 1) + Zwif(x,',t):| dr.

i=2

Since (f1); coincides with £ at the quadrature points, we have
J[ Goraxay= [[ Fonarsaty = [[ foatxaty = f. 0.
K K K
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The following are commonly used tools and facts:
e For two-dimensional problems,
hkiz/p|v|k,p,e = |ﬁ|k’p.]€7 hkiZ/p[v]k’[’se = [ﬁ]k,p,le’ l<p=oo
e Inverse estimates for polynomials:
lonllk+t.e < Ch™ vplle,  Yon € V", k = 0. @1

e Sobolev’s embedding in two and three dimensions: H2(K) <> C%(K).
e The embedding implies
1l oo < ClFllage VfeHNEK). k=2,
1Ay o < ClF gy nge VF € HFNE) k= 2.

e Cauchy-Schwarz inequalities in two dimensions:

1 1
2 2
2 2
Znunk,envnk,es(Znunk,g) (vank,e) o luller.e = OB lullg 2.c-
e e e

e Poincaré inequality: let it be the average of u € H'(2) on 2, then
lu —itlo,p.o < ClVulo,pe, p=>1.
If i is the average of u € H'(e) on a cell e, we have
lu —itlo,p,e = Ch|Vulo,pe, p=1.

e Fork >2,the (k+1) x (k+ 1) Gauss—Lgbatto quadrature is exact for integration of
polynomials of degree 2k — 1 > k + 1 on K. . .
e Define the projection operator I1; : it € L'(K) — IT1i € Q' (K) by

//A(ﬁlﬁ)wdsdt = f/ dwdsdt,Yw € Q' (K). (2.2)
K

K

Notice that all degree of freedoms of M4 can be represented as a linear combina-
tion of [[¢ d(s,1)p(s, )dsdt for p(s,1) = 1,s,t,st, thus the H'(K) (or H*(K))
norm of I, are determined by f f £ U(s, 1) p(s, t)dsdt. By Cauchy—Schwarz inequality
| [fg s, 0)pGs.0dsdt] < llill o ¢1hllgrz < Clidlly, ¢ we have [Tl , ¢ <
Clla ||0’2’[2, which means fIl is a continuous linear mapping from L2(I€) to H! (12). By

a similar argument, one can show f1; is a continuous linear mapping from L2(1€ ) to
H*(K).

2.2 Coercivity and Elliptic Regularity
We consider the elliptic variational problem of finding u € H(} (2) to satisty

A, v) = // (VoTaVu + bVuv 4 cuv) dxdy = (f, v), Yo € H (), (2.3)
Q

11 12
a a-y . . . .
where a = <a2 1 a22> is real symmetric positive definite and b = [b! b?]. Assume the

coefficients a, b and ¢ are smooth with uniform upper bounds, thus A(u, v) < C|lull1||v|1
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for any u,v € Hol(Q). We denote 1, as the smallest eigenvalues of a. Assume A, has a
positive lower bound and V - b < 2¢, so that coercivity of the bilinear form can be easily
achieved. Since

(b~Vu,v)=/ uvb~nds—(V-(vb),u)=/ uvb -nds — (b-Vv,u) — (wV - b, u),
Q2 19

we have

2(b~Vu,v)+2(cv,v)=/ v*b-nds +(2c—V-b)v,v) >0, Yve Hy(Q). (2.4)
0

By the equivalence of two norms | - |{ and || - ||1 for the space Hé (2) (see [5]), we conclude
that the bilinear form A(u,v) = (aVu, Vv) + (b - Vu, v) + (cu, v) satisfies coercivity
A(v,v) = Cllv]; forany v € H} ().

The coercivity can also be achieved if we assume |b| < 4A,c. By Young’s inequality

b - Vu|? b|?
[(b-Vv,v)| < // ﬁ—l—dmzdxdy < uVv,Vv + (cv, v),
o 4c 4c
we have
[b?
A(v,v) > (aVu, Vv) + (cv,v) — |(b- Vo, v)| > (| Aa — e Vv, Vv | > 0,
c

Yv € Hy (). (2.5)

Let A* be the dual operator of A, i.e., A*(u, v) = A(v, u). We need to assume the elliptic
regularity holds for the dual problem of (2.3) :

w € Hy(Q), A*(w,v) = (f,v), Yve Hy(Q) = |wl2 < Cllflo, (2.6)

where C is independent of w and f. See [9,16] for the elliptic regularity with Lipschitz
continuous coefficients on a Lipschitz domain.

3 Quadrature Error Estimates

In the following, we will use ~ for a function to emphasize the function is defined on or
transformed to the reference cell K = [—1, 1] x [—1, 1] from a mesh cell.

3.1 Standard Estimates

The Bramble—Hilbert Lemma for Q¥ polynomials can be stated as follows, see Exercise 3.1.1
and Theorem 4.1.3 in [6]:

Theorem 3.1 If a continuous linear mapping I: Hk"H(IQ') — Hk""l(le) satisfies 10 = 0
forany v € QX(K), then

Il —M1al ¢ < Clidl,, g, Vi e H*(K). 3.1
ThusAifl(-) is a continuous linear form on the space Hk“(le) satisfying 1(v) = 0,V0 €
OK(K), then

vii e H1(K),

@) < CIIL,, el 4o
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where ||l||;(+l 2 is the norm in the dual space of H**! (13).

By applying Bramble—Hilbert Lemma, we have the following standard quadrature esti-
mates. See Theorems 2.3 and 2.4 in [13] for the detailed proof.

Theorem 3.2 For a sufficiently smooth function a(x,y) € H*(e) and k > 2, let m is an
integer satisfying k < m < 2k, we have

/ / a(x, y)dxdy — / / ar(x, y)dxdy = O(h" Oaly.e = O™ ) [aln.co.e-

Theorem 3.3 If f € H*"2(Q) with k > 2, then
(fsvn) = {fy vndn = OB Fllsallonlla, Vo, € V.

Remark 3.4 By the Theorem 3.1, on the reference cell 12, fora(x, y) € Hk+2(e) and k > 2,
we have

//Ie&(s’ 1) —a (s, dsdt < Clal, g < Clale, o ¢+ (3.2)

and
la—arlly,, ¢ < Clal,,, ¢- (3.3)

The following two results are also standard estimates obtained by applying the Bramble—
Hilbert Lemma.

Lemma3.5 If f € H*(Q)or f € VI, wehave (f,vi)—(f, vi)n = OB fl2llvallo, Yon
e Vh.

Proof For simplicity, we ignore the subscrlpt in vy. Let E(f) denote the quadrature error
for integrating f(x, y) on e. Let E ( f ) denote the quadrature error for 1ntegrat1ng f (s, 1) =
f(xe + sh, ye + th) on the reference cell K. Due to the embedding H2(K) < C%(K), we
have

|E(fD)] < levlooo g = lel()ooKlvl()(,o g = CIIf||2 2ol &-
Thus the mapping f — E( f v) is a continuous linear form on H 2(I% ) and its norm is bounded

by Clloll, ¢ If f € Q'(K), then we have E(f0) = 0. By the Bramble-Hilbert Lemma
Theorem 3.1 on this continuous linear form, we get

IE(fD) < CL A, ¢ 1D lg -
So on acell e, we get
E(fv) = P E(fD) < CR*[f1, ¢llDllg ¢ < CR*| flaellvlo.e. (3.4)

Summing over all elements and use Cauchy—Schwarz inequality, we get the desired
result. O

Theorem 3.6 Assume all coefficients of (2.3) are in W2°(Q). We have

Az, vn) — An(zns vn) = O v ll2llzalli, Yo, zw € V.
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Proof Following the same arguments as in the proof of Lemma 3.4, we have
E(fv) < Ch*flaellvlioe, Vf, veVh
Let f = a'"(vp)x and v = (z3), in the estimate above, we get
1@ @)y (n)x) — (@ @), Wi)xdnl < Ch2 ™ (i) 21l zn)xllo
< Ch2Jla" a.collvnlislznli < Chlla' 2. collvnllalzalt,

where the inverse estimate (2.1) is used in the last inequality. Similarly, we have
(@ (zn)x, (n)y) — (@ @n)xs i) yhn = Chllall2.00llvallalznli,
@?@n)y, (n)y) — (@ (zn)y, Wn)yhn = Chlla® 2,00 llvnll2zal1,
b zn)x, vi) — (b @), vidn = ChIb 2,00 llvnll212110s

(b*(zn)y, vn) — (B> zn)y, vi)n = ChID? 2.00llvn 121240,

(czn, vn) = (czn, viyn = Chllcll2,00llvnllilzalo,
which implies

A(zp, vp) — ApGp, vp) = O Nvpll2 Izl -

3.2 A Refined Consistency Error

In this subsection, we will show how to establish the desired consistency error estimate for
smooth enough coefficients:

O ) lullks3llvalla, Yop € V!

Au, vp) — Ap(u, vp) = 3
O ) ullkssllvnllz, Yo, € VE

Theorem 3.7 Assume a(x, y) € WKt2°(Q), u € H*3(Q), k > 2, then

OR* ) lalksa.colullesslivalla, Yop € VY, (3.5a)
(adxu, dyvp) — <aaxus 8xvh>h :

3
O ) lalks2.colullkralivnlla, Yon € V", (3.5b)

(adyu, 8yvh) — {(adyu, ay”h)h

: O ) allks2.collullissllvallz. You € Vg, (3.6a)
3
O ) allksa.oolulliaslivnllz, Yo € V. (3.6b)

(adcut, vp) — (adeu, vp)n = O laliso,00lullissllvnlla, Yop € VY, (3.7)
(au, vy) — (au, vp)p = O ) |alr2 00 lullis2llvnllz, VYo € VL. (3.8)
Remark 3.8 We emphasize that Theorem 3.7 cannot be proven by applying the Bramble—

Hilbert Lemma directly. Consider the constant coefficient case a(x, y) = 1 and k = 2 as an
example,

(Dt Dy vp) — (D, Dvop)y = ) ( / /  (vp)xdxdy — / / ux(vh)xdhxd”y) :
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Since the 3 x 3 Gauss—Lobatto quadrature is exact for integrating Q3 polynomials, by The-

orem 3.1 we have

// uy(vp)xdxdy — // uy (vp)xd"xd"y| = ‘//A iy (Op)sdsdt — //A Gy (Dp)sd"sd"t
e e K K

= C[ﬁs(ﬁh)s]ékk-

Notice that 9y, is Q2 thus (3):; does not vanish and [(Dn)sly g < Clin 5 ¢ So by Bramble—

Hilbert Lemma for Q¥ polynomials, we can only get

f f uy (vy)vdxdy — / / wy (vp)ed"xd"y = O |ulls e vall3,e-
e e

Thus by Cauchy—Schwarz inequality after summing over e, we only have
(@, Dxvp) — (Dxtu, dxvn)y = OB uls v 3.

In order to get the desired estimate involving only the broken H2-norm of vy, we will take
advantage of error cancellations between neighboring cells through integration by parts.

Proof For simplicity, we ignore the subscript j, of vy, in this proof and all the following v are
in V" which are Q¥ polynomials in each cell. First, by Theorem 3.3, we easily obtain (3.7)
and (3.8):

k+2 k+2

(i, v) = (auy, v)p = O a2 vlle = OB T) lallks2,00 lulli3 V]2,
k+2 k+2

(au, v) — {au, v}y = O ) lauler2llvle = OGF) lallks2,00 lulli+2lV]l2-

We will only discuss (auy, vy) — {auy, vy), and the same discussion also applies to derive
(3.6a) and (3.6b).
Since we have

(auty, vy) — (Quy, Vi)p = Z (//auxvxdxdy — //auxvxdhxdhy>
e e e
=Y (// angbgdsdt — // &ﬁsﬁsdhsdht)
- K K
=Y (// aigbsdsdt — // (&ﬁs)lﬁsdhsdht),
- K K

where we use the fact aiis 0y = (aiis) s on the Gauss—Lobatto quadrature points. For fixed
t, (atis) 0y is a polynomial of degree 2k — 1 w.r.t. variable s, thus the (k + 1)-point Gauss—
Lobatto quadrature is exact for its s-integration, i.e.,

// (aiis)1vsd"sd"t = // (aiig) 1 vydsd"t.
K K

To estimate the quadrature error we introduce some intermediate values then do interpretation
by parts,

// aigdsdsdt — // (aitg) 0sd"sd"t (3.9)
K K
- / / Gitydydsdt — / / ity Bydsd + / / ity Dydsdi — / / ity Dydsd"t
K K K K

(3.10)
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:/f [a, — (aity)1] dedsd + <// [(&ﬁs)l]yﬁdsdhz—/ A [(&ﬁg,]f%d:)
K K ' K '
s=1 1

311
1
+ ‘/ iy ddt —‘/ (iy)rod"t
-1 s=—1 -1

For the first term in (3.12), let fTS be the cell average of 7 on K , then

I = // (adiy — (aiy) ;) Odsdt + // (aits — (aits) 1) (D5 — by)dsdt.
K K

By (3.2) we have

‘ / / (ais — (aiiy) ) dydsdt
K

By Cauchy-Schwarz inequality, the Bramble—Hilbert Lemma on interpolation error and
Poincaré inequality, we have

‘//A (&'23 - (&ﬁs)l) (ﬁ_& - ﬁ?)dsdt
K

nn A k42
< Claugly gVl g = O(h Palir1.00ellirzellvlze.

s=1

): I+ 11+111. (3.12)

s=—1

K42y 114 . .
= O ) allkt2.00.e I lt3.el1D1l1c-

Uy

< Claitsl i ¢

= |&’25 - (&ﬁs)”()’]%ws - ﬁs|0,1€

Thus we have

k+2
=00 ) alks2.00elullis3.ellvlze.

For the second term in (3.12), we can estimate it the same way as in the proof of Theorem
2.4.in [13]. For each 0 € Q*(K) we can define a linear form on H*(K) as

Eaﬁ=[&@mmmni[#ExMMM

where F is an antiderivative of f w.r.t. variable s. Due to the linearity of interpolation operator
and differentiating operation, E; is well defined. By the embedding H>(K) — C%(K), we
have

Es(f) < CIElly w2 19llg we 2 < CllFllg e 2 18110 o 2

< CIf I, ¢l0llg ¢ < ClLANL 2190 ¢-

where we use the fact that all the norms on Q¥ (K ) are equivalent to derive the first mequahty
The above inequalities imply that the mapping E is a continuous linear form on H*(K).
With projection I1; defined in (2.2), we have

Es(f) = Ey_mo(f) + Enyo (F), Vi e QK(K).

Notlce that £ by definition is an antiderivative of f w.r.t. only varlable s If f € Q¢! (K ),
then F1 is a polynomial of degree only k — 1 w.r.t. to variable ¢ thus (F;)s Qk 1(K) The
quadrature is exact for polynomials of degree 2k — 1, thus Q%~ Y(K) C ker Ej_ ;5. So by
the Bramble—Hilbert Lemma, we get

§(f) < CLL gD — bl ¢ < CLfY, 1Dl 2.
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and we also have
En(f) = f/;e(ﬁl)snlﬁdsdt - //Ie(ﬁl)snlﬁdsdht =0.
Thus we have
//K [@ii) ], ddsd"t — //K [@ii) 1], Ddsdt = —Eg((aitg)s) = —Es_n,p((@ils)s)

o n . An A k42
= C[(au:)s]k’12|vh|2’]2 = C|aus|k+1,klv|2,12 = Oh** Mallk+1,00.elltllkt2.elv]2.e

Now we only need to discuss the line integral term. Let L, and L4 denote the left and
right boundary of 2 and let /5 and [§ denote the left and right edge of element e or ZZK and [ f

for K. Since (aiis) 10 mapped back to e will be %(aux) v which is continuous across /5 and
I3, after summing over all elements e, the line integrals along the inner edges are canceled
out and only the line integrals on L, and L4 remain.

For a cell e adjacent to L, consider its reference cell K , and define a linear form E ( f ) =
[Y F=1,0dr = [, f(=1,1)d"t, then we have

E(FD) < 3 2|0 . < 3 210 p
E(f9) < CIfly 1101 o6 < CIFIL 100

which means that the mapping f — E(f) is continuous with operator norm less than

C|l ﬁ”o,lf for some C. Clearly we have

E(fo) = E(fT19) + E(f (D — T19)).
By the Theorem 3.1 we get

E(@i); (0~ TH0)) < Cll@is) 11, g 01, < Cdits — @its)1l g + Vsl )10], )¢

PN ~n . k+2
= (latsl gk +latsl 0], g = OB D lallerr.o0us Il 0)2.sg

where the first inequality comes from the accuracy of the (k4 1)-point Gauss—Lobatto quadra-
turerule,i.e. E(f) =0, Vf € Q2k ~1(K). The (k + 1)-point Gauss—Lobatto quadrature rule
also gives

E((aiig)(T119) = 0.

For the third term in (3.12), we sum them up over all the elements. Then for the line
integral along L»

1 1
Giig) (=1, N0(—1, t)dr — aiig) (=1, 00(—=1, 1)d"
> [ @it = ¥ [ G@iocnoietod

eNLy#B° ~ eNLy#B° ~
= Y E@i)h) = Y OO0 )lalkstcouslulisas vl
eNLy#) eNLy#)
Letsy and wy (@ = 1,2, - - - , k 4 2) denote the quadrature points and weights in (k + 2)-

point Gauss—Lobatto quadrature rule for s € [—1, 1]. Since ﬁ,zt (s,1) € Q% (12 ), (k+2)-point
Gauss—Lobatto quadrature is exact for s-integration thus

k+2

1 1 1
//ﬁ,zt(s,t)dsdt:Zwa/ 02 (54, 1)dt,
—1J-1 a=1 -1
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which implies
1 1 pl
/ 0Z(1, ndr < c/ / 02 (s, dsdr, (3.13)

-1 —1J-1

thus
1
h2lvlp s < Clvle.

By Cauchy—Schwarz inequality and trace inequality, we have

1 s=1 1
Z /(&ﬂs)lﬁdt —/ (aiig) od"t
-1 s=—1 -1

eNLy#Y

s=1
s:l)
k+2
= > O ™) allir,00.s 12,16 V12,06
eNLy#0

k+3
> O (W) lallesssoslulisslve
eNLy#0)

=0\(h % Q 2.1 2.Q
||a||k+l,oo, [leellx+ s 2|v| s
= k % llallk+ +
O\h allk l,oo,Q”u“k 3,Q|U|2,Q-

Combine all the estimates above, we get (3.5b). Since the % order loss is only due to the
line integral along the boundary d2. If v € Voh, vyy =0on L; and L4 so we have (3.5a). O

4 Superconvergence of Bilinear Forms

The M-type projection in [3,4] is a very convenient tool for discussing the superconvergence
of function values. Let u, be the M-type Q* projection of the smooth exact solution « and
its definition will be given in the following subsection. To establish the superconvergence
of the original finite element method (1.1) for a generic elliptic problem (2.3) with smooth
coefficients, one can show the following superconvergence of bilinear forms, see [4,14] (see
also [13] for a detailed proof):

O ) ullk43llvalla,  You € V',
Al —up,vp) = el A
O™ 2) ullk+3llvellz,  VYop € V.
In this section we will show the superconvergence of the bilinear form Ay:
OW ) lullkssllvallz,  Yor € Vg, (4.1a)
Ap(u —up,vp) = fa N
O™ " D) ullk+3llvellz,  Yop € V. (4.1b)

4.1 Definition of M-Type Projection

We first recall the definition of M-type projection. More detailed definition can also be found
in [13]. Legendre polynomials on the reference interval [—1, 1] are given as

(1) = : dk(ﬁ 1)k~l(t)—1l(z)—tl(z)—l(3t2 1)
k = Sk dik () =1, 00) =t 12 =5
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which are L2-orthogonal to one another. Define their antiderivatives as M-type polynomials:

k—1

2Kk drk=1
13

M) = E(t — 1)y

M4 (1) =

2 yk. _ _ _1 2 _
=1 -Mo(t)—l,Ml(t)—t,Mz(t)—2(t D,

which satisfy the following properties:

o If j —i #0,£2,then M;(r) L M;(1),ie., fll M;(t)M (t)dt = 0.
e Roots of My (t) are the k-point Gauss—Lobatto quadrature points for [—1, 1].

Since Legendre polynomials form a complete orthogonal basis for L2([—1, 1]), for any
f@t)eH 1 ([—1, 11), its derivative f'(r) can be expressed as Fourier-Legendre series

VX X o,
7o) =jZ:(j)b,»+1l,-(r), biai = (;+5> /_lf(t)l,-(t)dt.

The one-dimensional M-type projection is defined as fk(t) = Z];=0 5, M;(t), where by =
LOHED 5 determined by by = LO=SCED g0 that fr(+1) = f(&1). We have f(1) =
~ o0 A~ A~ A~
klim fe@)=>b M (t). The remainder R[ f]x(¢) of one-dimensional M-type projection
—00

j=0
is

o0
RIf k@) = f() = futy = > b;iM;(0).
Jj=k+1
For a function f(s, t) € HZ(I%) on the reference cell K = [—1,1] x [—1, 1], its two-

dimensional M-type expansion is given as

oo o0

Fla.)y =" "bi jMi(s)M;(0).

i=0 j=0

where

A

1 4 A A N
boo=ZIf (=L =D+ f=L D+ fd, =D+ £, D],

2j —1

l;O,ij;I,j: 4

1
fl[f,(l,niﬁ(—l,mljfl(r)dr, i

PO 2i—1 (' . R
bio,bi1 = , /[fs(s,1)ifs(s,—1)]li_1(s)ds, i>1,
—1

R 2~ H2j—1 R
bi; = (’)4#//’( Fuls. DL ) (dsdt, i, > 1.

The M-type QF projection of f on K and its remainder are defined as

k Kk

fea(s, 0y =" "bi iMi()M;(1), RLflx(s,t) = fis,0) = fan(s, 0).

i=0 j=0

The M-type Q¥ projection is equivalent to the point-line-plane interpolation used in [14,15].
See Theorem 3.1 in [13] for the proof of the following fact:
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Theorem 4.1 For k > 2, the M-type QX projection is equivalent to the Q point-line-plane
projection T1 defined as follows:

1. I'Ift:ﬁatfourcornersofle:[—1,1]><[—1,l]. A
2. Ta — u is orthogonal to polynomials of degree k — 2 on each edge of K.
3. Tl — i is orthogonal to any © € Q*~2(K) on K.

For f(x,y)one =[x, — h,x, + h] X [ye — h, y. + h], let f(s, t) = f(sh+xe,th+y.)
then the M-type Q¥ projection of f on e and its remainder are defined as

X —Xe Y —Ye
h  h

fox@,») = fx ( ) s RIS Irer(x, y) = f(x, ) = fer(x, ).

Now consider a function u(x, y) € H**2(Q), let u p(x, y) denote its piecewise M-type ok
projection on each element e in the mesh €2;,. The first two properties in Theorem 4.1 imply
thatu, (x, y) oneachedge of e is uniquely determined by u (x, y) along thatedge. Sou , (x, y)
is a piecewise continuous QX polynomial on €2;,.

M-type projection has the following properties. See Theorem 3.2, Lemmas 3.1 and 3.2 in
[13] for the proof.

Theorem 4.2 Fork > 2,

lu —uplo,zg = OB ) lullesa, Yu € HFH(SQ).

It —tuplloo,zg = OB ullk42,00, Y € WET2(Q).

Lemma4.3 For f € H*'(K), k > 2,

LR ekl ot < CL gy g0 10sRU Tkl oo 2 < CU Ty 5

2. RU Tesrhet = RUF Tk = Mipa (6) X bigst Mi(s) + M1 () X520 i i M (1),
3. |bigs1] < Ck|f|k+1,2,,3, brsril < Ck|f|k+]’2’[2’ 0<i<k+1

4. If f € HY2(K), then |bi g1 < Cul flynp 4o 1 S0 <k 41

4.2 Estimates of M-Type Projection with Quadrature

Lemma4.4 Assume f(s,1) € H*P3(K), k > 2,

(RUf Tkt — RO Ders Vg =0, 1@ RL egrasr, Dgl < Clfls ¢

Proof First, we have

k

(RUf Vet i — R Tew g = <Mk+1(z) > bikp1Mi(s)
i=0

k+1
+Mk+1<s)2bk+1,ij(r>,1> =0
=0 I

due to the fact that roots of My 1(t) are the (k + 1)-point Gauss—Lobatto quadrature points
for [—1, 1].
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‘We have

(ORI f k4141, 1) g

= (ORI fler2k42. D g — B (RLf Wes2ks2 — RU st k1), D g
k+1

= (s RIS k2,42, Vg — <Mk+2(r) D bi k2 M](s)
i=0

k+2
+Mk+2(s)zbk+2 /M ), l>
j=0 e

k
= (35 RIS k2,42, Vg — <Mk+2(t) D bisiaali(s), 1>
K

i=0
k+2
<lk+1(s)2bk+2,M,<r) 1> :
j=0 K
Then by Lemma 4.3,
[(0s RLf Tesaksas 1) g C|f|k+3 e

Notice that we have (I;41(s) ZI;LZ) l;k_,_z,ij (1), 1) p = O since the (k + 1)-point Gauss—
Lobatto quadrature for s-integration is exact and /;41(s) is orthogonal to 1. Lemma 4.3
implies |5 +1 k42| < C[f]k+3 ¢ fori > 0, thus we have

k
KMM(r) Y biiksali(s), 1> < Clf s i
i=0 4
]
Lemma 4.5 Assume a(x,y) € WE(Q), u(x, y) € H*t3(Q) and k > 2. Then
(@ = 1p)x, Wi)x)n = O ) allz.colliellkrsllonllz, Yo € V"
Proof As before, we ignore the subscript of v, for simplicity. We have
(@ —up)e, vedn = Y (@l —up)x, vx)es:
e
and on each cell e,
(@@ — up)x. ve)esn = ((RIulks)x avx)en = ((R[Aki)s. abs) g
= ((R[Aks1,k4+1)s. aDs) g + (R[ATkk — RIATks1,k41)s, GDs) - (4.2)

For the first term in (4.2), we have

((RIk41,k41)s50 A0s) g = ((RIAk4 1.441)s55 A05) g + (RIA41,441)s50 A(D5 — 5)) -

By Lemma 4.4, L
((Rl@1k+1,k+1)s, @ Vs) g = Clalo,oclitly 5 g 101, -

By Lemma 4.3,

[(RIATe41 k415l 0 ¢ < Clitls 2-
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By Bramble—Hilbert Lemma Theorem 3.1 we have

((RIATk+1.k+1)s> @0s) g = ((R[Ak+1.k+1)s5 @ Os) g + ((R[@k+1.k+1)s, (@ — @)Vs) p
= C(|&|O,oo|12|k+3’]2|ﬁ|1’1€ +la — &|0,oo|’2|k+2,[2|ﬁ|1’1€')
= C(|&|Ooo|’2|k+3’1€|ﬁ|112 + |&|],oo|12|k+2’1€|ﬁ|1'1€)

k42
= O ) lallt,o0elullissellvlie,

and
((RITkr1k41)s5. @05 — 03)) ¢ < Clil s 5 plaly oo 105 = D5l oo 2
< Cliliys 5 gllg oo g 10s _mo,z,k
= O ) [Ulk42,2,elal0,00,1V]2,2.c-
Thus,

(RA1k+1.4+1)s. a0s) g = OB a1 00, lt k43,2, 1V]12,e- 4.3)

For the second term in (4.2), we have

(RUkk — RUAk4 14415 a0s)

k k+1
- <(Mk+1(f) D bi ki1 Mi(s) + Miy1 () Y b j M (1)), &ﬁs>
i=0 Jj=0 e

k—1 k+1
- <Mk+1 ) bigraliCs) + () D byt M (1), &ﬁs>

i=0 Jj=0 2

k—1 k+1
—<Mk+1(r>Zéi+1,k+lli(s>,&ﬁs> —<lk<s>25k+1,ij(r>,aﬁs> RNCE)
. = .

i=0 K

Since My 1(t) vanishes at (k + 1) Gauss—Lobatto points, we have

k=1
<Mk+1(t) > bi1sli(s), flﬁs> =0.

i=0 g

For the second term in (4.4),

k+1 k+1 L
<lk(s)2bk+1,,-Mj<r),aﬁs> =<lk(s>2bk+1,,-M,-<r>,&ﬁs>
i = i

j=0 K R

Jj=0

k1
+ <lk(S) Zl;k+l,ij(t)a a(ds — ﬁs)>
K

K

k+1 R ) |
= <lk(s> > bt M), @ - n1&)6s>

Jj=0

k1
+ <lk(S) Zl;kJrl,ij(t)a (fllft)ﬁs>
K

j=0
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k+1
+ <lk(s) D b1 i M;(1), (@ — ) (D —ﬁs>>
K

j=0

k+1
<lk(s) D b1 M), a(d; — vs)>
K

j=0

k+1
= <lk(s> Y bir M), @ - ﬁ1a>ﬁs>
j=0 I3
k+1
<lk(s) D b1 M), @ — a)(ds — vs)> ,
K

j=0

where the last step is due to the facts that (1), and a(dy — Oy) are polynomials of degree
at most k — 1 with respect to variable s, the (k + 1)-point Gauss—Lobatto quadrature on
s-integration is exact for polynomial of degree 2k — 1, and I (s) is orthogonal to polynomials
of lower degree. With Lemma 4.3, we have

k+1
<lk<s) D iy iM;(0), aﬁs> < Clillgyy 5 g (lal2.00101, ¢ +1al1.00l01, 2)
K

j=0
= O ) allz.colltlisrellv]a.e. (4.5)
Combined with (4.3), we have proved the estimate. ]

Lemma 4.6 Assume a(x,y) € W>»®(Q), u(x,y) € H**2(Q) and k > 2. Then

(a(u —up), vi)y = O ) allz.collllks2llvnllz, Yon € VI
Proof As before, we ignore the subscript of v, for simplicity and

(au —up), v)p = Z(a(u —Up), Ve h-
e
On each cell ¢ we have

(a(u —1up), vV)en = (Rlulk k> av)es = h*(Rlil, ad)

= h*(R[ATk k, @0 — ad) ¢ + h* (Rl k. ad) ¢ - (4.6)

For the first term in (4.6), due to the embedding H2(K) <> C°(K), Bramble-Hilbert Lemma
Theorem 3.1 and Lemma 4.3, we have

2, hrA A = 2 pra an = 24 A ~
h*(R[it]g k> av — av) p < Ch*|R[u]g kloolav — av| <Ch |u|k+1’1€||av—av||2,le
2 A A xR AA A A
< CHitly ., ¢ (Nad — abll o, + bl ¢ +1adl, 2)
20~ ~ A ~ A k42
< Ch2il,,, ¢ (1adl, ¢ +adly o) = OW ) allz.coellelirrellvll.e.

For the second term in (4.6), we have
R (R[ATkt1,k41, D) g = h*(R[Alks1 k41, @0) g — B> (R[ATk41 541 — R[ATk k. aD) .
By Lemmas 4.3 and 4.4 we have

W (RlAles1 k41, @) p < Ch2Jil,, pladly g = OB ) lallo.co.ellllisa.ellvlloe.
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and
h*(R[idli41,41 — Rl k. @0) ¢ = 0.
Thus, we have (a(u — up), vi)n = OF2)|all2,c0luller2llvnll2. o
Lemma 4.7 Assume a € W2°°(Q), u € H**3(Q) and k > 2. Then
(a(u = up)y, vahp = OW ) lall2,colullisslivnlla, Yon € V7.
Proof As before, we ignore the subscript in v, and we have

(a(u —up)e, v)n =Y {al —up)y, v)en.

.
On each cell e, we have
(@@ —up)e, v)esn = (R[ulk)xs avden = h((R[ATk k)5, aD) ¢

= h{(R[@k+1.4+1)s5, @0) g — H{(R[ATk41 541 — RIATk k)5, @D) . 4.7)

For the first term in (4.7), we have
((RIAVk41,k41)50 A0) g < ((RIANk41,k41)50 @0) g + (R[ATks1,k41)s, @D — aD) p

Due to Lemma 4.4,
h((RIATk41.541)s» @D) g < Chllallo colulys g IVl ¢ = OGP allo collullicrs.ellvlio.e,

and by the same arguments as in the proof of Lemma 4.6 we have

R{(R[@1k41,k41)5, @0 — @0) p < ChI(R@lk41 k1) lo0l@d — D)oo

< Chlilly, g llad — ad

MZ
>

= Ch|12|k+2’]€(”&i) ai}”LZ(K) + |Cll)|1 gt |av|2 K)
N PN k+2
< Chlitl ¢ (D], ¢ + 1abl, ) = OW*D) alln o lullis2ellvlae.

Thus .
R{(R[i1k41,k+1)s, a0) p = O ) allz, o0 lutllk43,eV]12,e- (4.8)

For the second term in (4.7), we have

et ka1 — R[M]k ks, av) p

k+1
= (M1 (1) Zb, k1 Mi(s) + M1 () Y bt jMj (1)), av>

Jj=0 K

j=0

k+1
Mm(t)ZblHkHl (5), av> <lk(s>2bk+1 M), av>
K K

j=0

[i2]
k+1
<Mk+1<r) D bigragili(s) + () Y bry i M (1), av>
K

k+1
k() me M), av> ,
K
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where the last step is due to that My (¢) vanishes at (k 4+ 1) Gauss—Lobatto points. Then

A A k1
((Rlilkk — Rltlk+1.k+1)s, a0) p = <

()Y by j M (1), aﬁ>
< k+1

j=0
k() Y ber,jM (1), D — T (@d)

K
k+1
> +<lk(s)213k+1,,»M,»(r>,ﬁ1<&ﬁ>>
Jj=0 7 Jj=0 @
k+1 A
= <lk(s) D by M1, @b — n1<&6)> :
j=0 K

where the last step is due to the facts that f, (av) is alinear function in s thus the (k 4 1)-point
Gauss—Lobatto quadrature on s-variable is exact, and I (s) is orthogonal to linear functions.

By Lemma 4.3 and Theorem 3.1, we have

k1
((R[ATkk — R[Aks1,k41)s, D) g = <lk(S) Zékﬂ,ij(l‘)» av — ﬁl(&ﬁ)>
K

j=0
Thus

= C|u|k+1’k|&ﬁ|2,1€ = C|M|k+l,12(|&|2,oo,le|ﬁ|0,1€ + |a|],oo,l€|ﬁ|l,1€ + |&|O,oo|ﬁ|2’[2)

R{(R[1kx — RI@)ks1k41)s, @0) g = OB |all2 o0 llullis1,ellv]12e

(4.9)
By (4.8) and (4.9) and sum up over all the cells, we get the desired estimate. ]
Lemma 4.8 Assume a(x,y) € W**(Q), u(x, y) € H**3(Q) and k > 2. Then
(@ — w)e, (R = O(h’:%)||a||k+z,oo||u||k+3||vh I, Yune V", (@100)
OW ) lallksz.oolullesallvallz. Yon € Vg (4.10b)
Proof We ignore the subscript in v, and we have

(a(u — up)x, vy)h = Z(a(u - up)x, vy>e,h7
and on each cell e

e

{a(u — up)x, vy>e,h = <(R[”]k,k)x» avy)e,h = ((R\[ﬁ]k,k)s» &ﬁt)k

= ((RIVe+1,k41)s, a00) p + ((RIATek — RIATk41,441)50 @01 ¢ -
By the same arguments as in the proof of Lemma 4.5, we have

@.11)
((RIATkt1.441)s5, a01) ¢ = OB all 1 oolulirs 2.ellV]2ee. (4.12)
and
k+1
(RUYkk — RUks1,k51)5, A00) p = — <lk(s) > i1, M;(0), &ﬁf>
j=0 K
For simplicity, we define

k+1

b1 (t) :="Y_ by jM;(0).
j=0
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then by the third and fourth estimates in Lemma 4.3, we have

k+1
b1 (D] < C Y lbiya jl < Clil,y ¢
j=0
k+1
7 (m) i ~
b (O] < C Y b1 jl < Clil s go 1 <m,
j=m

where b( 41 (7) is the mth derivative of ka (t). We use the same technique in the proof of
Theorem 3.7 and we let [y = I;(s), bg+1 = br41(t) in the following,

(RO — RUVr1,k41)50 A00) p = — (e (9)brs1 (1), D)

— //A lk(s)l;k+1(t)aﬁ,dhsdht = —/ . (ZkékH&)]ﬁ,dhsdht
K K

= —/ A(lkl;k+1&)lﬁ,dhsdht+//A zkékﬂaﬁtdsdt—fﬁ libgt1at,dsdt,
K K K

// (lkbk+1a)1v,d sdht—l—// lkbk+1av,dsdt

- / / (b — @ibpany | rdsds + f (bps1d) Brdsd
K K

and

- / (ibyy10)10,d" sdt
g

=// zk5k+1a—(zk5k+la),] ﬁtdsdt—kf/A 3 (bgird) 1 0d" sdt
K

// 3t(lkbk+]a)lvdsdt
(/ (lkbk+1a)1vds

After integration by parts with respect to the variable s, we have

t=1

/ (kbrs1d)0d" s

>=I+II+III.

t=—1 t=—1

J[ ibesaiasar = - [[ @b @i+ asdsar,
K K

which is exactly the same integral estimated in the proof of Lemma 3.7 in [13]. By the same
proof of Lemrqa 3.7 in [13], after summing over all elements, we have the estimate for the
term ffk Ik (8)bry1(t)av.dsdt:

R . hk-‘ré v Vh
Z//Alk(s)bkﬂ(t)avtdsdt::O( Dllallscoluliesslvl, Vo€ VP,
K
e

O ) allksa,00 lulls3lvlla, Yo € V.

Then we can do similar estimation as in Theorem 3.7 for I, 11, 111 separately.
For term 7, by Theorem 3.1 and the estimate (3.2), we have

// [lk5k+1& — (lkl;k+1&)l] Uydsdt
R

= //A I:lkEkJrlfl - (lkBk+1&)I:|lATzdet + //A I:lkék+1& — (lkék+1&)1] (ﬁt _ﬁit)det
K R
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<c[15 ] NE C[H; ] NE
=Cllbina) o vl g + C |lkbry1a .y vl ¢

k+2
<C (Z @, o0 i max, |bk+1<t>|) 101, ¢

m=2

k+2
~ ~(k+2— A
+C (Z @10, I, 1B "”ml) 911 &

m=0

k+1
C a > max |b t 0|, 5
+ (Z | |m,oo,K IE[—1,1]| k+1( )|> | |2,K

m=1
k+1
~ ~(k+1—m) ~
+c (ZO e i X, 5 <r>|) 81, ¢
m=

k+2
= O ) |allk+2.00lullk+2.el0]12.e-

For term /1, as in the proof of Theorem 3.7, we define the linear form as

E;(f) = /f;e(ﬁ’)’ﬁdm —//k(ﬁ]),ﬁd}’sdt,

for each o € QF (I% ) and F is an antiderivative of f w.r.t. variable 7. We can easily see that
E; is well defined and Ej is a continuous linear form on H* (K'). With projection IT; defined
in (2.2), we have

s
<>
>

Il

>
?
=

B

)
_|_

o]
_;|>
<>
>

<

<>

m
Q

=~

z

E;_g () < CLA D = TLdllg ¢ < CLf, ¢ 101, ¢

and

Eﬁlﬁ(f)://Ie(ﬁl),ﬁlf)dsdt—//Ie(l:ﬁ)lf[lﬁdhsdt:0.

Thus we have

J[ attbiriyiiatsar ~ [[ antubinarsasds = - Eshbenian
K K

= —E5_n,5((kbi1@)0) < Cllibiia)y ¢1nly ¢
= O™ lallkt1,00¢ lttllk42,e V]2

Now we only need todiscussterm / / /. Let L and L3 denote the top and bottom boundaries

of Q and let{, I5 denote the top and bottom edges of element e (and / IK and 1312 for K ). Notice
that after mapping back to the cell e we have

k+1
N N N N 1
byt e + 1) = b1 (1) =Y b1 jMj(1) = b1+ by = (k + 5)

J=0

1 1 Xet+h X — X
/ it (s, Dl (s)ds =k + = / Oxu(x, ye + h)ly dx,
—1 2 Xe—h h
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and similarly we get by 1(ye —h) = bk+1 (=1) = (k+ 2) fxejh A (x, yo — M (F57¢)dx.
Thus the term [(* hx‘f )br+1(y)av is continuous across the top and bottom edges of cells.
Therefore, if summing over all elements e, the line integral on the inner edges are cancelled
out. So after summing over all elements, the line integral reduces to two line integrals along L
and L3. We only need to discuss one of them. For a cell e adjacent to L, consider its reference
cell K and define linear form £(f) = f_ll f(s, Dds — f_ll f(s, Dd"s, then we have

AA < |0 . < 3 - || 0 p
E(f9) < CIfly 0 101y o s < CUF Ny 190

thus the mapping f —E ( f ?) is continuous with operator norm less than C || 0 || for some

0.1k
C. Since E((aiiy);T119) = 0 we have

/ (lkbk+1a)1vds—f (kbs1a)vd"s
eNL1#)
= Y E(hbendid) = Y E(Ukbi1d)(d —1119))
eNLi#0 enL1#8
> Clibenidyl, ¢ 18], ¢
eNL#0

E C(|libyy1a — (lk5k+151)1|k &t |lk5k+1fl|k O, ¢
sby sby 3
eNL#0

< D0 (il g + bl )01, ¢
eNLy#)

Y Cllall o glber1 (DD,
eNL1#Y% !

IA

IA

IA

where the first inequality is derived from E(f(ﬁ — f[lﬁ)) =0, Vf e Qk! (I%) and Theo-
rem 3.1.
Since Ik () = 2kk' dtk (t2 — 1)X, after integration by parts k times,

1 1
bry1(1) = <k + %) / dgu(s, Dix(s)dx = (—1)k (k + %) / 3 u(s, DL(s)ds,
—1 -1

where L(s) is a polynomial of degree 2k by taking antiderivatives of /i (s) k times. Then by
Cauchy-Schwarz inequality we have

1

1 2
biri(1) < C (/ o5 acs, 1)|2ds) < CIM 2 Julypy e
-1

By (3.13), we get |f)|2 k= h%|f)|2,lf < Chlv|z,.. Thus we have

3 /(zkbk+1a>,vds—/ (bpardiid's = Y Clal o g e DI,

eNL1#Y eNL1#Y

k 32 k+3
=0 (1H5) 2 lalkoolulisi g lvle = O (K53 lalk colulisn,ry 0]
eNL1#Y

-0 hk+%
= llallk,colltellkr2,2llv2,0,
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where the trace inequality ||u|lx+1,00 < Cllullk+2. is used.
Combine all the estimates above, we get (4.10a). Since the % order loss is only due to the
line integral along L and L3, on which vy, =0ifv € v we get 4.10b). ]

By all the discussions in this subsection, we have proven (4.1a) and (4.1b).

5 Homogeneous Dirichlet Boundary Conditions
5.1 V-Ellipticity

In order to discuss the scheme (1.2), we need to show Ay, satisfies Vh-ellipticity

Yo, € V', Clonll} < An(on, o). (5.1)

We first consider the Vj,-ellipticity for the case b = 0.

Lemma 5.1 Assume the coefficients in (2.3) satisfy thatb = 0, both c(x, y) and the eigenval-
ues of a(x, y) have a uniform upper bound and a uniform positive lower bound, then there
exist two constants C1, Co > 0 independent of mesh size h such that

h 2 2
Yo, € Vi, Crilloplly < Ao, vp) < Calloplly.

Proof Let Z,  denote the set of (k+1) x (k+ 1) Gauss—Lobatto points on the reference cell

K . First we notice that the set Zypisa ok (I% )-unisolvent subset. Since the Gauss—Lobatto
quadrature weights are strictly positive, we have

2
vp e OK(K), Z(aiﬁ, 3 p) p = 0 = 9; p = 0 at quadrature points,
i=1

where i = 1,2 represents the spatial derivative on variable x; respectively. Since 9;p €
Q*(K) and it vanishes on a Q% (K)-unisolvent subset, we have 3; p = 0. As a consequence,

N Z?:l (9; p, 9; p)1, defines a norm over the quotient space Qk(Ie)/QO(I%). Since that |- |, p
is also a norm over the same quotient space, by the equivalence of norms over a finite
dimensional space, we have

n
Vpe ONK), Cilpll o <D (aip, dip)g < Calpl .
i=1

On the reference cell K , by the assumption on the coefficients, we have

n

n
Cilnl? ¢ < Cu Y (@0 30n) g < ) ((@ijd;0n, ;0m) g + (€0n. D)) < C2lldnll} 2
i

i,j=1
Mapping these back to the original cell e and summing over all elements, by the equivalence
of two norms | - |1 and || - |1 for the space H{ () D V! [5], we get Cy[|vp |12 < Ap(vy, vp) <
Callvall?. o

For discussing Vj,-ellipticity when b is nonzero, by Young’s inequality we have

b Vu;)? b|?
- un v = X [[ Bk cuPataaty < (BEvu un) + tcun, v
e ¢ h
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Thus we have
Ib|?
@V, Vop)p + (b - Vg, vp)p + (cvp, vadn = (AaVop, Vop)y — ZVW, Vop)
h

where A, is smallest eigenvalue of a. Then we have the following Lemma

Lemma 5.2 Assume 4iac > |b|?, then there exists a constant C > 0 independent of mesh
size h such that
h 2
Yo, € Vi, Ap(up, vp) = Clluglly.

5.2 Standard Estimates for the Dual Problem

In order to apply the Aubin—Nitsche duality argument for establishing superconvergence of
function values, we need certain estimates on a proper dual problem. Define 6, := uy — u.
Then we consider the dual problem: find w € H(} (2) satisfying

A*(w, v) = Oy, v), Vv e H}(Q), (5.2)
where A*(-, ) is the adjoint bilinear form of A(-, -) such that
A*(u,v) = A(v,u) = (@Vv, Vu) + (b - Vv, u) + (cv, u).
Let wy, € Voh be the solution to
A (wp, vp) = Op, vn), Vo € V' (5.3)

Notice that the right hand side of (5.3) is different from the right hand side of the scheme
(L.2).
We need the following standard estimates on wy, for the dual problem.

Theorem 5.3 Assume all coefficients in (2.3) are in W22(Q). Let w be defined in (5.2), wy
be defined in (5.3), and 6y, = uy — up. Assume elliptic regularity (2.6) and vV ellipticity
holds, we have

lw—wil < Chlwll,

lwnll2 < Cliéalo.

Proof By yh ellipticity, we have C ||lwy — vy 1% < A} (wp — vp, w, — vp). By the definition
of the dual problem, we have

Aj(wp, wyp — vp) = O, wp — vp) = A" (w, w, —vp), Vi € Voh-
Thus for any vy, € V(f', by Theorem 3.6, we have

Cillwy — v} < A (wi — vi, wy — vp)
= A*(w — vy, wy — vp) + [Af (wp, wp — vp) — A™(w, wy — vy)]
+ [A*(vp, wp — vp) — A} (vp, wy — vp)]
= A" (w — vy, wp — vp) + [A(wy — vi, vp) — Ap(wp — Vg, vp)]
< Cllw —vpllillwp — vallr + Chllvpll2lwn — valls-
Thus
lw—wnl < lw—wvplli + lwp —valli < Cllw — vills + Chllvgll2. (5.4)
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Now consider ITjw € Vé’ where IT; is the piecewise Q! projection and its definition on
each cell is defined through (2.2) on the reference cell. By the Bramble Hilbert Lemma
Theorem 3.1 on the projection error, we have

lw—Thwli < Chllwlz, [lw—Twl2 = Cllwlz, (5.5
thus [TTiw|2 < ||lw]2+ |lw —ITiw|2 < C|lw]2. By setting vj, = ITjw, from (5.4) we have
lw—=wslli = Cllw —Thwl + ChlTiwlz < Chllw|>. (5.6)

By the inverse estimate on the piecewise polynomial w;, — ITjw, we get
lwallz < lwa — Miwllz + [Mw — w2 + [wll2 < CA~Hwy, — Miwli + Cllwllz. (5.7)

By (5.5) and (5.6), we also have
lwp — Thwlli < [lw —Thwlh + lw —wpll < Chilwl>. (5.8)
With (5.7), (5.8) and the elliptic regularity ||w|l> < C||60]l0, we get

lwrll2 = Cllwll2 < Cli6nllo-

5.3 Superconvergence of Function Values

Theorem 5.4 Assume ajj,bi,c € WKT2.20(Q) and u(x,y) € HM3(Q), f(x,y) €
H*2(Q) with k > 2. Assume elliptic regularity (2.6) and V" ellipticity holds. Then uy,
the numerical solution from scheme (1.2), is a (k + 2)th order accurate approximation to the
exact solution u in the discrete 2-norm over all the (k + 1) x (k + 1) Gauss—Lobatto points:

lup — ull2,z, = O ) (lullirs,e + 11 f lkt2,0)-
Proof By Theorems 3.7 and 3.3, for any v, € V!,
Ap(u —up, vp) = [A(u, vp) — Apup, vi)] + [Ap(u, vi) — A(u, vy)]
= A, va) = An(up, va) + O )| allis2.00 lllis3]1vall2
=[(f, vn) = (fs vadn) + OE D) ullessllvnlla = O Nulless + 11 F i) llnll2-

Let 6, = up —up, then 6y € Voh due to the properties of the M-type projection. So by (4.1a)
and Theorem 5.3, we get

16413 = Gn, ) = An(On, wi) = Anup — w, wp) + Ap(u — up, wy)
= Ap(u — up, wp) + O (lulligs + I f ) lwnll2
= O ) (ullkss + 1l f s lwnlla = ORFT2) Qulless + 1L F le+2) 16k llo,

thus
lun —upllo = 116nllo = O (lulless + I flks2)-

Finally, by the equivalence of the discrete 2-norm on Zo and the L?(2) norm in finite-
dimensional space V" and Theorem 4.2, we obtain

lup —ull2,zg < Nlup —uplla,zy + llup —ull2,zy < Cllup —upllo + llup — ull2,z,
k42
= O ) (Nullks3s + 11 f lk+2)-
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Remark 5.5 To extend the discussions to Neumann type boundary conditions, due to (4.1b)
and Theorem 3.7, one can only prove (k + %)th order accuracy:

3
lun — ulla, zg = OR T2 Nullirs + 11 £ llks2)-

On the other hand, for solving a general elliptic equation, only O(hk+%) superconvergence
at all Lobatto point can be proven for Neumann boundary conditions even for the full finite
element scheme (1.1), see [4].

Remark 5.6 All key discussions can be extended to three-dimensional cases. For instance,
M-type expansion has been used for discussing superconvergence for the three-dimensional
case [4]. The most useful technique in Sect. 3.2 to obtain desired consistency error estimate
is to derive error cancellations between neighboring cells through integration by parts on
suitable interpolation polynomials, which still seems possible on rectangular meshes in three
dimensions.

6 Nonhomogeneous Dirichlet Boundary Conditions

We consider a two-dimensional elliptic problem on € = (0, 1)> with nonhomogeneous
Dirichlet boundary condition,

—V-(@Vu)+b-Vu+cu= fon

u=gonadQ. 6.1)

Assume there is a function g € H'() as a smooth extension of g so that g|3q = g. The
variational formisto findu =u — g € HO1 (R2) satisfying

A, v) = (f.v) — A(Z.v), Vv e H)(Q). (6.2)

In practice, g is not used explicitly. By abusing notations, the most convenient implemen-
tation is to consider

0, if (x,y) € (0,1) x (0, 1),
glx,y), if (x,y) €0,

and g; € V" which is defined as the Q% Lagrange interpolation at (k + 1) x (k + 1)
Gauss—Lobatto points for each cell on 2 of g(x, y). Namely, g; € V" is the piecewise P¥
interpolation of g along the boundary grid points and g; = 0 at the interior grid points. The
numerical scheme is to find i, € Voh, S.t.

Anin, vn) = (fs vndn — An(gr, o), Vo, € V' (6.3)

Then up, = uy, + g; will be our numerical solution for (6.1). Notice that (6.3) is not a
straightforward approximation to (6.2) since g is never used. Assuming elliptic regularity
and V" ellipticity hold, we will show that uj, — u is of (k +2)th order in the discrete 2-norm
over all (k + 1) x (k + 1) Gauss—Lobatto points.

glx,y) = {

6.1 An Auxiliary Scheme

In order to discuss the superconvergence of (6.3), we need to prove the superconvergence
of an auxiliary scheme. Notice that we discuss the auxiliary scheme only for proving the
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accuracy of (6.3). In practice one should not implement the auxiliary scheme since (6.3) is
a much more convenient implementation with the same accuracy.

Let g, € V" be the piecewise M-type Q projection of the smooth extension function
g, and define g, € V" as gp = &p on 32 and g, = O at all the inner grids. The auxiliary
scheme is to find i}, € Voh satisfying

Al vn) = (fs vndn — An(gp, vn), Yop € VI, (6.4)

Then uj, = it} + g, is the numerical solution for problem (6.2). Define 6, = uj —u ,, then
by Theorem 4.1 we have 6, € Vg’. Following Sect. 5.2, define the following dual problem:
findw e HO1 (£2) satistying

A*(w, v) = By, v), Yv e H}(RQ). (6.5)
Let wy, € Voh be the solution to
A (wp, vy) = B, vp), Vo € Vi (6.6)

Notice that the dual problem has homogeneous Dirichlet boundary conditions. By Theo-
rems 3.3, 3.7, for any v, € Voh,

Ap(u —up, vp) = [Au, vp) — Ap(ugy, vi)] + [An(u, vp) — A, vp)]
= A, v) — An(ufy, va) + O ) |allkr2.00 et lvnll2
=[(f.vn) = (£, vn)nd + O ) ullisllvnll = OB (lulliss + 1f k) lvalla-
By (4.1a) and Theorem 5.3, we get
161113 = B, 61) = An(On, wi) = Ap(u} — u, wp) + Ap(u — Up, Wp)
= Ap(u —up, wp) + O ) (ulliess + 1 f le2) lwall2
= O ) (lulli+s + 1L f a2 lwnll2 = OE ) Qullers + 1L £ llks2) 16 lo.

thus [Juj, — upllo = 110nllo = OM**2)(lullxss + 11 fllx+2). So Theorem 5.4 still holds for
the auxiliary scheme (6.4):

g — ull2,zg = OR*2) Nuelliss + I les2)- (6.7)

6.2 The Main Result

In order to extend Theorem 5.4 to (6.3), we only need to prove
lun — jllo = OREF2).
The difference between (6.4) and (6.3) is
Ay, — i, vp) = An(gr — 8p, vn), Yo € V- (6.8)
We need the following Lemma.

Lemma 6.1 Assuming u € H*™(Q) for k > 2, with g; and gp being defined as in this
Section, then we have

An(gr — &p> vn) = O D) lulleraellvnlle, Yo, € VY. (6.9)
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Prooz For simplicity, we ignore the subscript 5, of vy, in this proof and all the following v are
in V",

Notice that g7 — g, = 0 in interior cells. Thus we only consider cells adjacent to 9€2. Let
Ly, Ly, L3 and L4 denote the top, left, bottom and right boundary edges of Q = [0, 11x[0, 1]
respectively. Without loss of generality, we considercell e = [x, —h, x,+h] X [ye—h, y.+h]
adjacent to the left boundary L, i.e., x, —h = 0. Let [{, [5, I5 and I denote the top, left,
bottom and right boundary edges of e respectively.

Only C Ly, Let¢;j(x,y),i,j=0,1,..., k, be Lagrange basis functions on edge 15 for
the (k 4+ 1) x (k + 1) Gauss—Lobatto points in cell e. Then g; — g, = Zf,j:O Aij@ij(x,y)
and |A;;| < llgr — &plloo,z,- Due to Sobolev’s embedding, we have u € Wht2.0o(Q). By
Theorem 4.2, we have

hk+2 hk+2

lgr = gplloo.zg < llu —uplloc,zg = OB )ullk42,00.2 = O™ ) ullx14.2-

Thus we get Vv € Voh,

(a(gr — gp)Xa Uy)e

k k
= <a Z Aijdij (X, ¥)xs Ux> = Cllallc.2 max Aijll < Z Gij(x, ¥)x, Ux>

i,j=0 . i,j=0 .

Since for polynomials on K all the norm are equivalent, we have

k k
<Z i (X, Y vx> = <Z Bij(s, s, v> < Clislo g < Clvly g = Clvli,
K

i.j=0 . i.j=0

which implies
(a(gr — gp)x v < Cllalloo@ Z“}a,x Aijllvle = OR ) lallco @l lka.llvlize
Similarly, for any v € VO”, we have

(a(gr — gp)y vy)n = O ) ||allcollulli+4llv ]2,
(a(gr — gp)xs vyhn = O ) lallollutllrallv]l2,
(b-V(gr — gp). V)i = OL* ) bllscllullerallvl2,
(c(gr — gp) vIn = OB ) cllos llullisallv]l2-

)
)
)
)

Thus we conclude that

An(gr — &p> vn) = O lullegallvalla,  You € V.

By (6.8) and Lemma 6.1, we have
An(iif, — i, va) = O ) lullerallvnllz. You € V' (6.10)

Let 6y = i} — iy € V(f’. Following Sect. 5.2, define the following dual problem: find
w e HO1 (£2) satistying
A*(w, v) = By, v), Yv e H} (). 6.11)
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Let wy, € Voh be the solution to
A (wh, vp) = O, vp), Vop € V. (6.12)
By (6.10) and Theorem 5.3, we get
161113 = Gn, ) = Ajs(wi, O) = An (i} — iin, wp)
= O ) lullegallwnlla = OGT) ulleralBnllo,

thus ||y —itpllo = 16kllo = O ||lu |lx+4. By equivalence of norms for polynomials, we
have
&), — inll2,zy < Cllity — iinllo = OK**?) ullira,0- (6.13)

Notice that both i, and ﬁ,”; are constant zero along 92, and u, |3 = gy is the Lagrangian
interpolation of g along d2. With (6.7), we have proven the following main result.

Theorem 6.2 Assume elliptic regularity (2.6) and V" ellipticity holds. For a nonhomoge-
neous Dirichlet boundary problem (6.1), with suitable smoothness assumptions for k > 2,
ajj,bi,c € Wk+2.00(Q), the exact solution of (62) u(x,y) = i +5 € H* Q) and
flx,y) € H*2(Q), the numerical solution uy, by scheme (6.3) is a (k + 2)th order accurate
approximation to u in the discrete 2-norm over all the (k + 1) x (k + 1) Gauss—Lobatto
points:

lun — ull2.zy = OE ) (lullira + 11 llk42)-

7 Finite Difference Implementation

In this section we present the finite difference implementation of the scheme (6.3) for the
case k = 2 on a uniform mesh. The finite difference implementation of the nonhomogeneous
Dirichlet boundary value problem is based on ahomogeneous Neumann boundary value prob-
lem, which will be discussed first. We demonstrate how it is derived for the one-dimensional
case then give the two-dimensional implementation. It provides efficient assembling of the
stiffness matrix and one can easily implement it in MATLAB. Implementations for higher
order elements or quasi-uniform meshes can be similarly derived, even though it will no
longer be a conventional finite difference scheme on a uniform grid.

7.1 One-Dimensional Case

Consider a homogeneous Neumann boundary value problem —(au’)’ = f on [0, 1], u’(0) =
0, u'(1) = 0, and its variational form is to seek u € H!([0, 1]) satisfying

(au', vy = (f,v), Yve H'([0,1]). (7.1)
Consider a uniform mesh x; = ih,i =0,1,...,n+ 1, h = ﬁ Assume »n is odd and let
N = % Define intervals I} = [x2k, xop+2] fork =0, ..., N — 1 as a finite element mesh

for P2 basis. Define
Vi ={vec®0,11) : vl € PP(Ik), k=0,...,N —1}.

Let {v;}7f) C V" be a basis of V" such that v;(x;) = &;, i,j = 0,1,...,n + 1. With
3-point Gauss—Lobatto quadrature, the C°-P? finite element method for (7.1) is to seek
up € V" satisfying
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(aup, vi)p = {(f vidn, i=0,1,....,n+1. (7.2)

n+1
Letu; =up(xj),a;j =a(xj)and f; = f(x;) then up(x) = u;ivj(x). We have
J j)4aj J J J jYij
Jj=0

n+1 n+1
Zu, av],vl n = (auy, U;)h = (f,vi)n = ij(vj, vih, 1=0,1,...,n+1
=0

The matrix form of this scheme is Sa = Mf, where

u= [uo,ul,...,un,un+1]T, f= [fo, f],...,ﬁ,,ﬁ,+]]T,

the stiffness matrix S is has size (n 4+ 2) x (n + 2) with (i, Jj)th entry as (av v; "N, and
the lumped mass matrix M is a (n + 2) x (n + 2) diagonal matrix with dlagonal entries

h (l 4242 2 4 )

3°3:33°3°23°3:3 _

Next we derive an explicit representation of the matrix S. Since basis functions v; € V”
and uj (x) are not C I at the knots xx (k=1,2,..., N — 1), their derivatives at the knots

are double valued. We will use superscripts + and — to denote derivatives obtained from
the right and from the left respectively, e.g., v;,g and v), o denote the derivatives of vy, and
vok+2 respectively in the interval Iy = [x2x, x2k+2]. Then in the interval Iy = [xok, x2x+2]
we have the following representation of derivatives

vt (x) R 6]
vék+l x) | = o -1 0 1 vkl (X) | . (7.3)
Vg o (X) 1 —4 3 | [ogga()

By abusing notations, we use (v;)%; to denote the average of two derivatives of v; at the
knots xo:

1 _
(Vi) = 5[(1;;)2,( + (W3]
Let [v;] denote the difference between the right derivative and left derivative:
o = [Wlnr2 =0, [k = W)3 — W)y, k=1,2,...,N—1.
Then at the knots, we have
_ _ 1
W W)y + (vlf);rk(v});rk = 2(v)2k (V)ok + E[Uihk[vjhk- 7.4
We also have
(av), vi)

1
2 @441 (V) 2k41 (V) 2k 41 + 3a2k+2(v )oegn (V; )2k+2]

(7.5)

4
=h |:3a2k(v )Zk(v )2k + 3

Let v; denote a column vector of size n + 2 consisting of grid point values of v; (x). Plugging
(7.4) into (7.5), with (7.3), we get

N-—1
1
(av’, vy, = Z(av;, W)y = EviT(DTWAD + ETWAE)v;,
k=0
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where A is a diagonal matrix with diagonal entries ag, ay, .. ., a,, dp+1, and
_ 14242 2 41
W_dlag(3’3’3’3’3""’3’3’3)(n+2)><(n+2)’
-3 4 -1
-1 0 1
1
=2 0 2 -}
-1 0 1
1 1
1 o2 0 2 -}
D= -1 0 1
2 —
1 0 1
1
o2 0 2 -1
-1 0 1
L =4 37 (+2)x(n+2)
0 0 0
0 0 0 1
-1 2 3 2 -]
0o 0 0 1
1 -z 2 3 ~3
E—- 0 0 0
2 .
0 00 |
-2 3 2 -1
0 0 0
0 0 0 (n+2)x(n+2)

Since {v;}7_, are the Lagrangian basis for V", we have

- 1
S = Z(DTWAD—#ETWAE). (7.6)
Now consider the one-dimensional Dirichlet boundary value problem:

—(au)" =f on [0, 1],
u0) =o1, u(l) =o3.

Consider the same mesh as above and define
Ve ={v e %0, 1]): vly, € PP(I),k=0,...,N — 1;v(0) = v(1) = 0}.

Then {v;}_, C V" is a basis of V(f’ for {v; };’iol defined above. The one-dimensional version
of (6.3)1is to seek uy, € V(f' satisfying

(aup, vy = (f,vi)n — lagp, v, i=1,2,....n,

7.7
g1(x) = opvo(x) + o1V,41(x).

Notice that we can obtain (7.7) by simply setting u;,(0) = op and u; (1) = o in (7.2). So
the finite difference implementation of (7.7) is given as follows:

1. Assemble the (n + 2) x (n + 2) stiffness matrix S for homogeneous Neumann problem
as in (7.6). . .

2. Let S denote the n x n submatrix S(2_: n+1,2:n+1),ie.,[S;;]fori, j=2,--- ,n+1.

3. Letl denote the n x 1 submatrix S(2 : n + 1, 1) and r denote the n x 1 submatrix
S(2:n+1,n+ 2), which correspond to vg(x) and v,41(x).

T T

4. Letu = [u1 Uy - - un] and f = [f1 fo - fn] . Define w = [%,%, ‘3‘,%,...,%, %]
as a column vector of size n. The scheme (7.7) can be implemented as

Su = hw!f — ool — oyr.

@ Springer



Journal of Scientific Computing (2020) 82:36 Page330f39 36

7.2 Notations and Tools for the Two-Dimensional Case
We will need two operators:

e Kronecker product of two matrices: if Aism x n and Bis p x g,then A® B ismp X nq
give by
annB --- a,B
A®B=| : :
amB -+ amnB

e For am x n matrix X, vec(X) denotes the vectorization of the matrix X by rearranging
X into a vector column by column.

The following properties will be used:

1. (A®Q B)(C® D) = AC ® BD.
2. A®@B)'=A"1gB L

3. (BT ® A)vec(X) = vec(AXB).
4. (AQ B)T = AT @ BT.

Consider a uniform grid (x;, y;) for a rectangular domain Q = [0, 1] x [0, 1] where

Xi=ihy i =0,1,. . e+ he = Hgandy; = jhy, j=0,1,....ny+1,hy = =
Assume n, and ny are odd and let N, = "‘2"' L and Ny = ny2+ ! . We consider rectangular
cells ey = [xok, x2k42] X [y21, ya42l fork =0,...,Ny —land/ =0,...,Ny —lasa

finite element mesh for Q2 basis. Define

V= {ve %) : vl € 0%(er), k=0,...,Ny = 1,1 =0,..., Ny, — 1},
Ve = {v e C%Q): vy € 0% (er) k=0,..., Ny —1,1=0,..., Ny — 1; v|pq = 0}.

all 012

For the coefficients a(x, y) = 2 g2 ) b = [b' b?] and c in the elliptic operator

(2.3), consider their grid point values in the following form:

ago ap1 e ao,ny+1
. aio ai - at,m,+1 .
AY = ,oaig=a (xj,y), k1=12,
ny+1,0  Any+1.1 -+ Auy+lne+l (ny+2) X (ny+2)
boo bo1 cee o bontr
. byo b1 bl +1 m
B" = ) s bij =b"(xj,y), m=1,2,
bn}-+l.0 bn}-+l.l ce bny+],nx+l (ny+2)x (nx+2)
€00 o1 CO,my+1
10 11 ceo Clngtl
C= . cij =c(xj, yi).
Cny+1.0 - Cnytll o -oe Cnytlnatl/ oy (n,+2)
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Let diag(x) denote a diagonal matrix with the vector x as diagonal entries and define

V. — di 142 42 2 41
Wx—d"’g(y3’3’3»3""’3’3»3)(nx+2)x(n,,+2)’
Sl 42 42 2 41
Wy =diag (3,5,5.3: 5+ 5+ 3 §)<,,y+z)x(ny+z)’
— i 4 2 4 2 2 4 — di 4 2 4 2 2 4
Wx—d’ag(3’3’3’3~“’3’ )nxxnx’Wy_dlag(:’)’:i’3’3”"’3’3)n).><n\

Let s = x or y, we define the D and E matrices with dimension (ng + 2) x (ng; + 2) for
each variable:

-3 4 -1
-1 0 1
1 1
2 0 2 -}
-1 0 1
| =2 0 2 -}
D.Yzi -1 0 1 b
2 .
-1 0 1
1 1
7 2 2 =3
-1 0 1
I -4 3
0 0 0
0 0 0 ]
-1 2 3 2 I
0 0 0 1
I -z 2 -3 ~2
E, = 0 0 0
2 N
1 0. 0 1
-2 3 2 -]
0 0 0
0 0 0

Define an inflation operator Infl : R™*"x —s R +2X01+2) by adding zeros:
0 --- 0
InflilU)y=|:
0 (ny+2)x (nx+2)

and its matrix representation is given as I, ® I, where

0 0
Ix = Inxxn,\- s Iy = Inyxn/\-
0 (nx+2)xny 0 (ny+2)xny

Its adjoint is a restriction operator Res : R T2)X01H2) __ Ry X1 gg
Res(X) =XQ2:ny+1,2:n, +1) ,VX € R T2x(t2)

and its matrix representation is I, T® in.

7.3 Two-Dimensional Case

For Q = [0, 1] we first consider an elliptic equation with homogeneous Neumann boundary
condition:

—V-(@Vu) +bVu +cu= fonQ, (7.8)
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aVu -n =0on 0. (7.9)
The variational form is to find u € H'(Q) satisfying
A, v) = (f,v), Yve HY(Q). (7.10)
The C-Q? finite element method with 3 x 3 Gauss—Lobatto quadrature is to find uj, € V"
satisfying
(@Vun, Voun + (0Vup, vp)n + (cun, vin = (f, vn)n, Yo, € V", (7.11)

Let U bea (n,+2) x (n,+2) matrix such thatits (j, i)thentryis U (j, i) = up(xi—1, yj-1),
i=1,...,nx+2,j=1,...,ny+2. Let Fbea (ny +2) x (nyx + 2) matrix such that its
(j,Dthentryis F(j,i) = f(xi—1, yj—1). Then the matrix form of (7.11) is

2

2
Svec(U) = Mvec(F), M =hh,W,® Wy, S= Y S+ sp+5s. (7.12)
k=1 1

m=

where

s — hl(DT ® Iy)diag(vec(WyA'' W) (Dy @ I,)
a hx X y y X X y

h -
+ h—y(Ef ® Iy)diag(vec(WyA" W) (E, ® 1),
X

512 = (DI ® Iy)diag(vec(Wy A Wy))(Ix ® Dy)
+(EI' ® Iy)diag(vec(Wy A2 W)) (I, ® Ey),

S = (I ® DY)diag(vee(Wy, A* W) (Dx ® )
+ (I ® E])diag(vec(Wy A* W) (Ex ® 1),

h _ _
§2 = hlux ® D])diag(vec(WyAZW,))(I, ® Dy)
y

h i} B}
+ hi(lx ® Eldiag(vec(Wy A Wy))(I, ® Ey),
y

Sp = hydiag(vec(WyB'W,)(Dx ® 1),
S = hydiag(vec(WyB*W,)(Iy ® Dy),
Se = hyhydiag(vec(WyCWy).

Now consider the scheme (6.3) for nonhomogeneous Dirichlet boundary conditions. Its
numerical solution can be represented as a matrix U of size ny xnx with (j, i)-entry U (j, i) =
up(x;,y;) fori = 1,---,nx;j = 1,---,ny. Simi}ar to the one—diplensional case, its
stiffness matrix can be obtained as thg submatrix of § in (7.12). Let G be a (n, + 2) by
(ny + 2) matrix with (j, i)th entry as G(j, i) = g(x;j—1, yj—1), Where

(.X )_ 0’ lf (xay)6(07 I)X(O, 1),
#= glx,y), if (x,y) € 0Q.

In particular, (_;(j—i— lL,i+1)=0forj=1,...,ny,i =1,...,n,. Let F be a matrix of
size ny x nx with (j,i)-entry as F(j,i) = f(x;,y;) fori =1,--- ,nx;j=1,---,ny.
Then the scheme (6.3) becomes

(IT @ IS ® Lyyvec(U) = (Wy @ Wy)vec(F) — (I] @ I])Svec(G).  (7.13)

@ Springer



36 Page360f39 Journal of Scientific Computing (2020) 82:36

Even though the stiffness matrix is given as S = (I;T ® in)S(ix ® iy), S should be imple-
mented as a linear operator in iterative linear system solvers. For example, the matrix vector
multiplication (/ XT Q1 }T )S;l(l x ® Iy)vec(U) is equivalent to the following linear operator
from R™ "™ to R™ ™

hy ~ - - -
o {1, (W A" Wl o 11,(,UTDIT) D,
+1y (W, A" W o 11, (LUTDET ) Ex} i,
where o is the Hadamard product (i.e., entrywise multiplication).
7.4 The Laplacian Case

For one-dimensional constant coefficient case with homogeneous Dirichlet boundary condi-
tion, the scheme can be written as a classical finite difference scheme Hu = f with

2 -1
7 1
-2 5 =2 g
12 -1
_ 1 o232 g
H:M 15:}17 -1 2 —1
1 7.
i 2 1 -2
12

In other words, if x; is a cell center, the scheme is

—ui—1 +2u; —ujqq
hZ = /i

and if x; is a knot away from the boundary, the scheme is

wi— —8uj—1 + 14u; — 8ujr1 +ujtn
4n? = Ji

It is straightforward to verify that the local truncation error is only second order.

For the two-dimensional Laplacian case homogeneous Dirichlet boundary condition, the
scheme can be rewritten as

(Hy ® I_v) + U ® Hy)vec(U) = vec(F),

where H, and H\, are the same H matrix above with size n, xn, and n, xn, respectively. The

inverse of (Hy ® 1) + (I, ® Hy) can be efficiently constructed via the eigen-decomposition
of small matrices H, and Hy:

1. Compute eigen-decomposition of Hy = T A, T, ' and Hy = Ty A, T, .
2. The properties of Kronecker product imply that

(H® 1) + (I, @ Hy) = (Te @ T))(Ax @ Iy + L @ AT, @ T,7)),
thus

[(He ® 1) + (L @ H)] ' = (L @ T (A @ Iy + L @ Ay) (1,7 @ ;7).

3. It is nontrivial to determine whether H is diagonalizable. In all our numerical tests, H
has no repeated eigenvalues. So if assuming A and A, are diagonal matrices, the matrix
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vector multiplication [(H, ® I,) + (I, ® Hy)]’l vec(F') can be implemented as a linear
operator on F:
T (( T, P Y /M (7.14)

where A is any x ny matrix with (i, j)thentry as A(i, j) = Ay, i) + Ax(j, j) and ./
denotes entry-wise division for two matrices of the same size.

For the 3D Laplacian, the matrix can be represented as Hy ® I, ® I, + Iy ® Hy @ I; +
I, ® I, ® H, thus can be efficiently inverted through eigen-decomposition of small matrices
Hy, Hy and H; as well.

Since the eigen-decomposition of small matrices H, and H, can be precomputed, and
(7.14) costs only O®3) for a 2D problem on a mesh size n X n, in practice (7.14) can be
used as a simple preconditioner in conjugate gradient solvers for the following linear system
equivalent to (7.13):

W@ wyh(I! @ IS, ® Iy)vec(U) = vec(F) — (W' @ W)U ® IF)Svec(G),

even though the multigrid method as reviewed in [19] is the optimal solver in terms of
computational complexity.

8 Numerical Results

In this section we show a few numerical tests verifying the accuracy of the scheme (6.3) for
k = 2 implemented as a finite difference scheme on a uniform grid. We first consider the
following two dimensional elliptic equation:

—V-@Vu)+b-Vu+cu=f onl0,1] x [0, 2] (8.1)

where a = (le le>, ayjp = 10+ 30y5 +xcosy+y,app = ay; =2+ 0.5(sin(wx) +
21 422

x)inry) + y3) + cos(x* + y3), a0 = 10+ x>, b = 0, ¢ = 1 4+ x*y3, with an exact
solution

u(x, y) = 0.1(sin(rx) 4+ x>)(sin(ry) + y°) + cos(x* + y).

The errors at grid points are listed in Table 1 for purely Dirichlet boundary condition and
Table 2 for purely Neumann boundary condition. We observe fourth order accuracy in the
discrete 2-norm for both tests, even though only @ (/3) can be proven for Neumann boundary
condition as discussed in Remark 5.5. Regarding the maximum norm of the superconvergence
of the function values at Gauss—Lobatto points, one can only prove @ (h3 log i) even for the
full finite element scheme (1.1) since discrete Green’s function is used, see [4].

Next we consider a three-dimensional problem —Au = f with homogeneous Dirichlet
boundary conditions on a cube [0, 1]* with the following exact solution

u(x, y,z) = sin(rx) sinry) sin(37z) + (x — ) (y? — yH(z — 2.

See Table 3 for the performance of the finite difference scheme. There is no essential dif-
ficulty to extend the proof to three dimensions, even though it is not very straightforward.
Nonetheless we observe that the scheme is indeed fourth order accurate. The linear system
is solved by the eigenvector method shown in Sect. 7.4. The discrete 2-norm over the set of

1
all grid points Z is defined as ||lull2,z, = [h3 Z(x,y,z)EZ() lu(x,y, Z)|2] °

@ Springer



36 Page380f39 Journal of Scientific Computing (2020) 82:36

Table 1 A 2D elliptic equation

with Dirichlet boundary FEM mesh  FD grid 12 error Order  [*°error  Order

conditions 2x4 3x7 394E-2 - 715E-2 -
4x8 7x15 1.23E-2  1.67 328E—2 1.12
8 x 16 15 x 31 146E—-3  3.08 542E-3  2.60
16 x 32 31 x 63 1.14E—4  3.68 396E—4 3.78
32 x 64 63 x 127 7.75E—6  3.88 2.62E-5 3.92

64 x 128 127 x 255  5.02E-7  3.95 1.73E—6  3.92
128 x 256 255 x 511  3.23E-8  3.96 1.L1I3E-7  3.94

The first column is the number of regular cells in a finite element mesh.
The second column is the number of grid points in a finite difference
implementation, i.e., number of degree of freedoms

Table2 A 2D elliptic equation
with Neumann boundary
conditions

FEM mesh  FD grid 12 error Order  [*° error Order

2x4 5x9 1.38E0 - 2.27E0 -

4x8 9 x 17 146E—1  3.24 2.52E—-1  3.17
8 x 16 17 x 33 749E-3  4.28 1.64E-2  3.94
16 x 32 33 x 65 431E—-4 412 1.02E-3  4.01
32 x 64 65 x 129  2.61E-5 4.04 747E-5  3.78

Table3 —Au = f in 3D with

homogeneous Dirichlet boundary Finite difference grid 12 error Order [°° error Order

condition 7x7x7 151E-2 - 487E-2 -
15x15%x 15 9.23E—4 4.04 3.12E-3 3.96
31 x 31 x 31 5.68E—5 4.02 1.95E—4 4.00
63 x 63 x 63 3.54E—6 4.01 1.22E-5 4.00
127 x 127 x 127 2.21E-7 4.00 7.59E-7 4.00

Table4 A 2D elliptic equation
with convection term and
Dirichlet boundary conditions

FEM mesh  FD grid 12 error Order  [*° error Order

2x4 3x17 1.26E—1 - 2.71E—1 -

4x8 7x 15 285E-2 215 9.70E-2  1.48
8 x 16 15 x 31 1.80E-3  3.92 725E-3  3.74
16 x 32 31 x 63 1.17E—4  4.01 40lE—4 4.17
32 x 64 63 x 127  741E-6  3.98 2.54E-5  3.98

Last we consider (8.1) with convection term and the coefficients b is incompressible
V-b=0:a= <Z;l Z;i),an = 100+30y> +xcosy+y,ap = az = 2+0.5(sin(rx) +
1
. b
2)(sin(ry) +3%) + cos@? +y?), az = 100+ x7, b = <b;) bi = Yy, by = — .
¥ = xexp(x? + ), c = 1 + x*y3, with an exact solution
u(x, y) = 0.1(sin(rx) + x>)(sin(ry) + y°) + cos(x* + y?).

The errors at grid points are listed in Table 4 for Dirichlet boundary conditions.
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9 Concluding Remarks

In this paper we have proven the superconvergence of function values in the simplest finite
difference implementation of C°-QF finite element method for elliptic equations. In par-
ticular, for the case k = 2 the scheme (6.3) can be easily implemented as a fourth order
accurate finite difference scheme as shown in Sect. 7. It provides only only an convenient
approach for constructing fourth order accurate finite difference schemes but also the most
efficient implementation of C%-Q* finite element method without losing superconvergence
of function values. In a follow up paper [12], we will show that discrete maximum principle
can be proven for the scheme (6.3) in the case k = 2 when solving a variable coefficient
Poisson equation.
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