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Abstract

We show that the fourth order accurate finite difference implementation of continuous
finite element method with tensor product of quadratic polynomial basis is monotone
thus satisfies the discrete maximum principle for solving a scalar variable coefficient
equation —V - (aVu) + cu = f under a suitable mesh constraint.

Mathematics Subject Classification 65N30 - 65N06 - 65N12

1 Introduction
1.1 Monotonicity and discrete maximum principle

Consider a Poisson equation with variable coefficients and Dirichlet boundary condi-
tions on a two dimensional rectangular domain £2 = (0, 1) x (0, 1):

Lu=-V-(@Vu)+cu=0 onS2, o
u=g onas2,
where a(x,y) € C'(2), c(x,y) € C%(2) with 0 < amin < a(x,y) < amax and
c(x,y) > 0. For a smooth function u € C2(£2) N C(£2), maximum principle holds
[12]: Lu <0 in 2 = maxg u < max {0, maxyo u}, and in particular,
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Lu=0 in 2 = |u(x,y)| < 11()1?2X|M|, V(x,y) € £2. 2)

For various purposes, it is desired to have numerical schemes to satisfy (2) in the
discrete sense. A linear approximation to £ can be represented as a matrix Lj. The
matrix Ly, is called monotone if its inverse has nonnegative entries, i.e., L;l > 0. All
matrix inequalities in this paper are entrywise inequalities. One sufficient condition
for the discrete maximum principle is the monotonicity of the scheme, which was also
used to prove convergence of numerical schemes, e.g., [1,4,10,13].

In this paper, we will discuss the monotonicity and discrete maximum principle of
the simplest finite difference implementation of the continuous finite element method
with Q2 basis (i.e., tensor product of quadratic polynomial) for (1), which is a fourth
order accurate scheme [20].

1.2 Second order schemes and M-matrices

The second order centered difference u” ~ % for solving —u”(x) =
f(x),u(0) = u(l) = 0 results in a tridiagonal (—1, 2, —1) matrix, which is an
M-matrix. Nonsingular M-matrices are inverse-positive matrices and it is the most
convenient tool for constructing inverse-positive matrices. There are many equivalent
definitions or characterizations of M-matrices, see [24]. One convenient characteriza-
tion of nonsingular M-matrices are nonsingular matrices with nonpositive off-diagonal
entries and positive diagonal entries, and all row sums are non-negative with at least
one row sum is positive.

The continuous finite element method with piecewise linear basis forms an M-
matrix for the variable coefficient problem (1) on triangular meshes under reasonable
mesh constraints [33]. The M-matrix structure in linear finite element method also
holds for a nonlinear elliptic equation [15]. For solving —Au = f onregular triangular
meshes, linear finite element method reduces to the 5-point discrete Laplacian. Linear
finite element method or the 5-point discrete Laplacian is the most popular method in
the literature for constructing schemes satisfying a discrete maximum principle and
bound-preserving properties.

Almost all high order accurate schemes result in positive off-diagonal entries in Ly,
for solving —Au = f thus Lj, is no longer an M-matrix. The only known exceptions
are the fourth order accurate 9-point discrete Laplacian and the fourth order accurate
compact finite difference scheme.

1.3 Existing high order accurate monotone methods for two-dimensional
Laplacian

There are at least three kinds of high order accurate schemes which have been proven

to satisfy L,:l > 0 for the Laplacian operator Lu = —Au:
1. Both the fourth order accurate 9-point discrete Laplacian scheme [4,6] and the

fourth order accurate compact finite difference scheme [18,19] for —Au = f
can be written as Su = Wf with S being an M-matrix and W > 0, thus L;l =
S~'M > 0.
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2. In[5,7], Bramble and Hubbard constructed a fourth order accurate finite difference
discrete Laplacian operator for which Lj is not an M-matrix but monotonicity
L,;l > 0 is ensured through an M-matrix factorization L, = M1 M>, i.e., Ly is a
product of two M-matrices.

3. Finite element method with quadratic polynomial (P2 FEM) basis on a regular
triangular mesh can be implemented as a finite difference scheme defined at vertices
and edge centers of triangles [31]. The error estimate of P2 FEM is third order
in L2-norm. The error at at vertices and edge centers are fourth order accurate in
I>-norm due to superconvergence. The stiffness matrix is not an M-matrix but its
monotonicity was proven in [22].

For discrete maximum principle to hold in P2 FEM on a generic triangular mesh,
it was proven in [14] that it is necessary and sufficient to require a very strong mesh
constraint, which essentially gives either regular triangulation or equilateral triangula-
tion. Thus, the discrete maximum principle holds in P2 FEM on a regular triangulation
or an equilateral triangulation. For finite element method with cubic and higher order
polynomials on regular triangular meshes, it was shown that the discrete maximum
principle fails in [28].

1.4 Other known results regarding discrete maximum principle

For one-dimensional Laplacian, discrete maximum principle was proven for arbitrarily
high order finite element method using discrete Green’s function in [30]. The discrete
Green’s function was also used to analyze P1 FEM in two dimensions [11]. Discon-
tinuous coefficients were considered and a nonlinear scheme was constructed in [21].
Piecewise constant coefficient in one dimension was considered in [29]. A numerical
study for high order FEM with very accurate Gauss quadrature in two dimensions
showed that DMP was violated on non-uniform unstructured meshes for variable
coefficients in [23]. A more general operator V(aVu) with matrix coefficients a was
considered for linear FEM in [16]. See [17] for an anisotropic computational example.

1.5 Existing inverse-positive approaches when L, is not an M-matrix

In this paper, we will focus on the finite difference implementation of continuous finite
element method with Q2 basis (Q2 FEM), which will be reviewed in Sect. 2. The matrix
L, in such a scheme is not an M-matrix due to its off-diagonal positive entries. There
are at least three methods to study whether L,:l > (0 holds when M-matrix structure
is lost:

1. An M-matrix factorization of the form L, = MM, was shown in [2,7]. In
“Appendix 6”, we will demonstrate an M-matrix factorization for the finite differ-
ence implementation of Q% FEM solving —Au = f.

2. Perturbation of M-matrices by positive off-diagonal entries without losing mono-
tonicity was discussed in [3].

3. In[22], Lorenz proposed a sufficient condition for ensuring L;, = M| M>. Lorenz’s
condition will be reviewed in Sect. 3.3.
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The main result of this paper is to prove that L;l > 0 and a discrete maximum
principle holds under some mesh constraint in the fourth order accurate finite difference
implementation of Q% FEM solving (1) by verifying the Lorenz’s condition.

1.6 Extensions to the discrete maximum principle for parabolic equations

Classical solutions to the parabolic equation u; = V - (aVu) satisfy a maximum
principle [12]. With suitable boundary conditions and initial value u(x, y, 0) such
as periodic or homogeneous Dirichlet boundary conditions and initial minimum
ming u(x, y,0) = 0, the solution to the initial value problem satisfies the follow-
ing maximum principle:

minu(x,y,0) <u(x,y,t) <maxu(x,y,0). 3)
(x,y) (x,y)

Now consider solving u; = V - (aVu) with backward Euler time discretization,
then U"+! satisfies an elliptic equation of the form (1):

1 1
-Vv. VUn+l _Un+l — _—py". 4
(a )+ At At @)

If S;, denotes spatial discretization for —V - (aVu), then the numerical scheme can be

writtenas U"*! = (14+AtS,)~'U" Letl =[11 - I]T. Then for suitable boundary
conditions usually we have S;1 = 0 since Sj, approximates a differential operator. So
we have (14 At S,)1 = 1thus (I+ArS;)~'1 = 1.1f we further have the monotonicity
(I + AtS,)~! > 0, then each row of the (I + ArS,)~! has nonnegative entries and
sums to one, thus the discrete maximum principle holds min; U 7 < U}“Ll <max; U 7 s
which is a desired and useful property in many applications. For instance, second order
centered difference or P1 finite element method has been used to construct schemes
satisfying the discrete maximum principle in solving phase field equations [26,27,32].
In the rest of the paper, we will only focus on discussing the Eq. (1), even though all
discussions can be extended to solving the parabolic equation with backward Euler
time discretization.

1.7 Contributions and organization of the paper

To the best of our knowledge, this is the first time that a high order accurate scheme
under suitable mesh constraints is proven to be monotone in the sense L;l > ( for
solving a variable coefficient a(x) in (1) in two dimensions. For simplicity, we only
discuss an uniform mesh in this paper, even though the main results can be extended
to non-uniform meshes. However, an additional mesh constraint is expected for the
discrete maximum principle to hold. See such a mesh constraint of non-uniform meshes
for Q1 FEM in [8] and P2 FEM for one-dimensional problem in [30].

This paper is organized as follows. In Sect. 2, we describe the fourth order accurate
finite difference implementation of CcO- Q2 finite element method. In Sect. 3, we review
the sufficient conditions to ensure monotonicity and discrete maximum principle. In
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Sect. 4, we prove that the fourth order accurate finite difference implementation of
CY-0? finite element method is monotone under some mesh constraints. Numerical
tests are given in Sect. 5. Concluding remarks are given in Sect. 6.

2 Finite difference implementation of C°-Q? finite element method

Consider solving the following elliptic equation on 2 = (0, 1) x (0, 1) with Dirichlet
boundary conditions:

Lu=—-V-(@Vu)+cu=f onf2,

5
u=g onas2. )

Assume there is a function g € H'(£2) as an extension of g so that g|3o = g. The
variational form of (1)istofindit =u — g € H(; (£2) satisfying

A, v) = (f,v) — A(g,v), Yve Hj(2), (6)

where A(u,v) = [ aVu - Vvdxdy + [[, cuvdxdy, (f,v) = [[, fvdxdy.

Let i be the mesh size of the rectangular mesh and Vél - HO1 (£2) be the continuous
finite element space consisting of piecewise Q> polynomials (i.e., tensor product of
piecewise quadratic polynomials), then the most convenient implementation of C°-Q?
finite element method is to use 3 x 3 Gauss—Lobatto quadrature rule for all the integrals,
see Fig. 1. Such a numerical scheme can be defined as: find u;, € V(? satisfying

ApCup,vn) = (f, vn)n — An(gr, vn), You € V¢, (7

where Ay (up,, vy) and ( f, v,);, denote using tensor product of 3-point Gauss—Lobatto
quadrature for integrals A(uy, vy) and (f, vy) respectively, and g; is the piecewise
Q? Lagrangian interpolation polynomial at the 3 x 3 quadrature points shown in Fig. 1
of the following function:

(a) The quadrature points and a FEM (b) The corresponding finite differ-
mesh ence grid

Fig.1 An illustration of 0? clement and the 3 x 3 Gauss—Lobatto quadrature
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(. y) = 0, if (x,y) € (0, 1) x (0, 1),
g g(x,y), if(x,y) € 082.

Then uj;, = uj, + gy is the numerical solution for the problem (5). We emphasize that
(7) is not a straightforward approximation to (6) since g is never used. It was proven
in [20] that the scheme (7) is fourth order accurate if coefficients and exact solutions
are smooth. Notice that i satisfies:

An G, vp) = (f, va)n, Yop € V. (8

See [20] for the detailed finite difference implementation and proof of fourth order
accuracy for the scheme (7).

2.1 One-dimensional case

Now consider the one-dimensional Dirichlet boundary value problem:

—(au) +cu=f on(0,1),
u(0) =09, u(l)=oy.

Consider a uniform mesh x; = ih,i =0,1,...,n+1,h = % Assume 7 is odd
and let M = % Define intervals Iy = [x2k, xok42] fork =0, ..., M — 1 as a finite
element mesh for P2 basis. Define

h={wec®0,1]):ve P2(I),k=0,...,M —1}.

Let {qb,}”Jrl C V" be a basis for V" so that ¢; (x;) = 8;;, i, j =0,1,...,n+ 1. Let
ug = oo, u;j = up(x;) and u,4+1 = oy, then uy, uj € V" can be represented as

n n+1
wp(x) =) wighi (x), itn(x) = Y uighi(x).

i=1 i=0

Let f; = f(x;), then (8) becomes

(aup, §)n + (cun, pidn = (f, @idn, i =1,....,n,u0 =00, Upt1 =01,
which are
n+1 n+1
> s ((ag) @ + (e o) = Zf, @, $idns i =1,....m;
j=0

Uy = 00, Uyt1 = O1.
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The matrix form is Sa = M where
_ T = T
u=[uguius--upupr] . f=[oo fi fo-- fuor] .

The scheme can be written as £ (1) = f. The linear operator L, has the matrix
representation L, = M!S,

For the Laplacian Lu = —u”, we have
Lp(@)o =ug =00, Lp(@)yy1 =upy1 = o1, (9a)
if i is odd, i.e., x; is a cell center, (9b)
—Ui_ 2 P .
L)) = Uj—1 +h2ul Ui+l s 9¢)
if i is even, i.e., x; is a cell end, (9d)
R 14u; — 8u: ,
L) = Ui—p —3uj—1 + 1421 Wiyl +Uitd £ %)
4h
For the variable coefficient operator Lu = —(au’)’ + cu, we have
Lr()o =uo =00, Lp(W)u41 =upy1 =01, (10a)

and if x; is a cell center, we have

_ —Q@aj—1 +ajr)ui—1 +4ai—1 + air)u; — (@i—1 + 3ai41)ui1
Ly(@); = 7% + ciu;

= fi; (10b)

and if x; is a cell end, then

Baj—2 —4aj—1 +3a))u; 2 — (4a; 2 + 12a;)u;

[’h(u)i = 8h2
n (ai_o> +4a;_1 + 18a; + 4a; 11 + aj2)u;
8h2
—(12a; +4a;42)uiv1 + Baj+2 — 4a;+1 + 3a;)uio
2 + ciui = fi.
(10¢)

2.2 Two-dimensional case

Consider a uniform grid (x;, y;) for arectangular domain [0, 1] x [0, 1] where x; = ih,

i=01,...,n+landy; = jh, j=0,1,....,.n+ 1, h = nlﬁ,wherenmustbe

odd. Let u;; denote the numerical solution at (x;, y;). Let u denote an abstract vector

consisting of u;; fori, j =1,2,...,n. L_,et u denote an abstract vector consisting of
ujj fori, j =0,1,2,...,n,n+ 1. Let f denote an abstract vector consisting of f;;
fori, j =1,2,...,n and the boundary condition g at the boundary grid points.

The scheme (8) for solving (5) can still be written as Ly (@) = f.
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Fig.2 Three types of interior L4
grid points: red cell center, blue

knots and black edge centers for
a finite element cell (color figure
online) [} ° [ ]

2.2.1 Two-dimensional Laplacian

For the Laplacian Lu = —Au, £, () can be expressed as the following. If (x;, y;) €
052, then

Ly j=uij=gi;j-
If (x;, y;) is an interior grid point and a cell center , £, (0); ; is equal to

—ui—1,j — Wil H AU — Ui — Uil
h2

= fi,j- (11a)

For interior grid points, there are three types: cell center, edge center and knots. See
Fig. 2. If (x;, y;) is an interior grid point and an edge center for an edge parallel to
x-axis, L, (w); ; is equal to

—ui_1,j + 2u,‘,j —Uitl,j n Ui j—2 — Sui’j_l + 14ui,j — 8u,',j+1 +ui j12
h? 4h2

= fij-

(11b)
If (x;, y;) is an interior grid point and an edge center for an edge parallel to y-axis,
Ly (m);, ; is similarly defined as above. If (x;, y;) is an interior grid point and a knot
(xi, ¥j), Lp(0); ; is equal to

wi—2,j — 8ui—1,j + 14ui j — Buit1,j +uita,j
4h?
L Uim2 T Buij—1 + 14ui j —8ui jy1 +uijv2
4h?

= fij- (11c)

If ignoring the denominator 42, then the stencil of the operator £, at interior grid
points can be represented as:

1
1
—1 -2
Cell center—1 4 —1 Knots% -2 7 —24—1‘
-1 -2
1
1

@ Springer



On the monotonicity and discrete maximum principle of the ...

-1
Edge center (edge parallel to y-axis)z—lL -2 12—1 -2 }‘
—1
1
1
-2
: 11
Edge center (edge parallel to x-axis) —1 5 —1
-2
1
4
2.3 Two-dimensional variable coefficient case
For Lu = —V - (aVu) + cu, Ly(0) will have exactly the same stencil size as the

Laplacian case. At boundary points (x;, y;) € 982, L, (1) = f becomes

Lp(); j =ui;=gij- (12a)
If (x;, y;) is an interior grid point and a cell center, £y, (); ; is equal to

—Q@aj-1,j +aiv1,j)ui-1,j +4@i—1,j + aiv1,j)ui j — (@i—1,j +3ai41,j)ui+1,j
42

(12b)

—Q@ajj—1+a;i jyDui j—1 +4a; j—1 +ai jr0uij — (@i j—1 +3a; j+1)ui j+1
42

+ CijUjj.
If (x;, y;) is an interior grid point and a knot, £, (0); ; is equal to

(Bai—,j —4ai—1,j +3a; jJui—z,j — (4ai—2,j + 12a; j)ui—1,;
8h?
(ai—2,j +4ai—1,; + 18a; j + 4aiy1,; + aiv2,j)ui
8h?
—(2a;,; + 4aiq2 juiv1,j + Baiv2,j —4aiv1,j + 3ai j)uit2,j
8h2
(Bai j—2 —4ai j—1 + 3ai j)ui j—2 — (4ai,j—2 + 12a; jui, j—1
8h?
(ai,j—2 +4aij—1 + 18a; j +4ai j41 + ai jy2)ui,j
8h?
—(2a;,j + 4ai j12)ui j+1 + Bai,jv2 — 4aijv1 + 3ai j)ui j+2
8h?

c,-juij.

(12¢)

If (x;, y;) is an interior grid point and an edge center for an edge parallel to y-axis,
Ly (m); ; is equal to
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Baj—a,j —4aj_1,j +3a; jui_2; — (4ai—2 j + 12a; ju;_1 j

8h2
(aj—2,j +4a;_1,; +18a; j +4aj11,j + aiy2, j)u;
+ 2
8h
—(12a;,j +4aj 12, j)uiv1,j + Baiyz,j —4aitv1,j + 3a;, juit2,j
8h?
—QBai j1 +ai jy)ui j—1 + 4 1 Fai jr)ui — (@ -1+ 3a; j 1)U+
4h2
+ cijuij. (12d)

If (x;, y;) is an interior grid point and an edge center for an edge parallel to x-axis,
Ly (m); ; is equal to

Baj,j—2 —4a; j—1 +3a; ju; j—2 — (4a; j—2 + 12a; ju; j1

8h2
n (aj,j—2 +4a; j—1 + 18a; j +4a; j11 +a; j42)u;,j
8h2
—(12a;,j +4a; j12)ui jv1 + Bai jro —4a; jr1 + 3a; jui j12
8h2
—QBai—1,j +aiv1,ui—1,j +4ai—1,j +aiv1, Duij — (@i—1,j +3ai11,j)uiy1,j
442
+ cijuij. (12e)

3 Sufficient conditions for monotonicity and discrete maximum
principle

3.1 Discrete maximum principle

Assume there are N grid points in the domain 2 and N? grid points on 8£2. Define

A finite difference scheme can be written as

N N()
L@y =Y byuj+ Y blul=f, 1<i<N,
j=I j=1

ul =g, 1<i<N”
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The matrix form is

- - . 0 -
st (5 7). o) =)

The discrete maximum principle is
Lp(@); <0,1<i<N = maxu §max{0, m_axu;f’} (13)
1 1

which implies

Ly(8); =0,1<i<N=>|u;| <max|ul|.
1

The following result was proven in [9]:

Theorem 1 A finite difference operator Ly, satisfies the discrete maximum principle
(13) lfL_l > 0 and all row sums oth are non-negative.

Let @ and f be the same vectors as defined in Sect. 2. For the same finite difference
scheme, the matrix form can also be written as

sl

l_,hl_l =

Notice that there exist two permutation matrices Py and P, such that a = Pju and
f= sz Since the matrix vector form of the same scheme is also L@t = f, we obtain
Py Lh P = L - Notice that a permutation matrix P is inverse-positive and the signs

of row sums will not be altered after multiplying P to Lj,. Thus we have.

Theorem 2 If L;, is inverse-positive and row sums of Ly, are non-negative, then L},
satisfies the discrete maximum principle (13).

-1 =1 po
(Lh ~L;'B

ice that L, ! =
Notice that L, 0 7

), thus we have.

Theorem3 IfL;' > 0, then L; ' > 0 and thus L," > 0.

Let 1 denote a vector of suitable size with 1 as entries, then for all schemes in
Sect. 2, £,(1) > 0, which implies the row sums of L, are non-negative. Thus from
now on, we only need to discuss the monotonicity of the matrix Lj.

3.2 Characterizations of nonsingular M-matrices

M-matrices belong to the set of Z-matrices which are matrices with nonpositive off-
diagonal entries. Nonsingular M-matrices are always inverse-positive. See [24] for the
definition and various characterization of nonsingular M-matrices. The following is a
convenient sufficient condition to characterize nonsingular M-matrices.
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Theorem 4 For a real square matrix A with positive diagonal entries and non-positive
off-diagonal entries, A is a nonsingular M-matrix if and only if all the row sums of A
are non-negative and at least one row sum is positive.

Proof By condition Cig in [24], A is a nonsingular M-matrix if and only if A 4+ al
is nonsingular for any @ > 0. Since all the row sums of A are non-negative and at
least one row sum is positive, the matrix A is irreducibly diagonally dominant thus
nonsingular, and A + al is strictly diagonally dominant thus nonsingular for any
a > 0. O

Definition 1 Let N' = {1,2,...,n}. For N1, N2 C N/, we say a matrix A of size
n x n connects N7 with N if

Yip e N1, 3i, e N, 3iy, ..., ir—1 €N st ai i 70, k=1,...,r. (14)

If perceiving A as a directed graph adjacency matrix of vertices labeled by N, then
(14) simply means that there exists a directed path from any vertex in N to at least
one vertex in AV>. In particular, if N1 = @, then any matrix A connects N7 with N3.

Given a square matrix A and a column vector X, we define
N(Ax) = {i : (Ax); =0}, NT(Ax) = {i : (Ax); > O}.
By condition L3¢ in [24], we have the following characterization of nonsingular

M-matrices.

Theorem 5 For a real square matrix A with non-positive off-diagonal entries, if there
is a vector X > 0 with Ax > 0 s.t. A connects NO(Ax) with NT(Ax), then A is a
nonsingular M-matrix thus A-l>o.

3.3 Lorenz’s sufficient condition for monotonicity

All results in this subsection were first shown in [22]. For completeness, we include a
detailed proof.

Given a matrix A = [g;;] € R"*", define its diagonal, positive and negative off-
diagonal parts as n x n matrices Ay, Ag, A;‘, AL

aii, if i =j

. Ag=A— Ay,
0, ifiz£j ¢ ¢

(Ap)ij = {

aji, ifajj >0, i#]j _
ADj=1" Y . A=A, — AL
(Ad)ij {0, otherwise. a “ “

Lemma 1 If A is monotone, then for any two matrices B > C, A"lB > A-1C.

Proof For any two column vectors b > ¢, we have

b—c>0=A'b-0¢)>0= A"'b> Ac.
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By considering b and ¢ as column vectors of B and C, we get A™'B > A~!C. O
Lemma 2 If A is an M-matrix, then Ag > A and Al > AJl.

Proof A, > A is trivial. A is monotone, thus
Ag>A=A"A;>A"A=1.
And A;l > 0 implies
ATA > 1= A7 TAA > 1A = A7 > A
O

Theorem 6 If A, < 0 and there exists a nonzero vector € € R" such that € > 0 and
Ae > 0. Moreover, A connects N (Ae) with Nt (Ae). Then the following hold:

- e>0.
—a;; >0,Vi e N.
— AisaM-matrix and A~! > 0.

Proof Assume there is one index i such that ¢; = 0, then

0 < (Ae); = Zaijej <0= (Ade); =0 = Zaijej =0= ajje;j =0, Vj.
J# J#

Thus if ¢;; < 0, then e; = 0, which implies (Ae); = 0 by the same argument as
above. Therefore, A has no off-diagonal nonzero entry a;; such that k € N(Ae)
and [ € N (Ae). In other words, if A represents the graph adjacency matrix for
a directed graph of vertices indexed by 1,2, ..., n, then any edge starting from a
vertex i € NV(Ae) points to vertices in NO(Ae), thus there is no directed path from
i € NYAe) to any vertex in A" (Ae), which contradicts to the assumption that
A connects NV(Ae) with A"t (Ae). With e > 0, the rest is proven by following
Theorem 5. O

Corollary 1 If A is a nonsingular M-matrix, f € R" is a nonzero vector with £ > 0
and A connects NO(f) with N+ (£), then A~'f > 0.

Proof By using e = A~!'f > 0 in Theorem 6, we get A~'f > 0. o

Theorem?7 If A < MMy --- My L where My, ..., My are nonsingular M-matrices
and L, < 0, and there exists a nonzero vector € > 0 such that one of the matri-
ces My, ..., My, L connects N°(Ae) with Nt (Ae). Then A is a product of k + 1
nonsingular M-matrices thus Al >0.

Proof Let M = MM - - - My, then M is monotone. By Lemma 1, we get

M 'A<L, (15)
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thus
M~ 'A), <0. (16)

For each M;,i =1, ..., k, by Lemma 2, we have
M)~ = (Mp) T = M = M, (17)

which implies
M~ 'Ae > cAe, (18)

for some positive number c.

If L connects N°(Ae) with Nt (Ae), then M~—'A also connects N'°(Ae) with
N+ (Ae) because (15) implies that (M ' A);; # O whenever L;; # O for any i # j.
By (18), NT(4e) ¢ NT(M~'Ae) and NO(M~'4e) c N9 (Ae), thus M~ A also
connects NO(M~!'Ae) with NT(M~!Ae). With (16), by Theorem 6, M~'A is a
nonsingular M-matrix thus A is a product of k£ + 1 M-matrices which implies A is
monotone.

If M; connects N0(Ae) with NV (Ae) forsome 1 <i < k.LetM = M, ... M;_;.
Similar to (17) and (18), we get

(M'Y"'Ae > cyAe, >0, (19)
which implies that M; connects NO((M")~! Ae) with N'F (M’)~! Ae). By Corollary 1,
we know Mi_l(M’)_lAe > 0, thus M~ Ae > 0. With (16), through Theorem 6 we

find M ' A is a M-matrix thus A is a product of k 4+ 1 M-matrices which implies A is
monotone. O

Theorem 8 If A, has a decomposition: Ay = A*+ A® = (aizj) + (afj) with A* <0
and A* < 0, such that

Ag + A% is a nonsingular M-matrix, (20a)

n
Al < AZAJIAS or equivalently VYa;j > O withi # j,a;j < Zafkak_klaij, (20b)

k=1
Je € R™"\{0}, e > O with Ae > 0 s.t. A% or A* connects N°(Ae) with N (Ae).
(20c)
Then A is a product of two nonsingular M-matrices thus A~ > 0.
Proof By (20b), we have
A=Ag+ A+ A + A < (Ag+ AU + A7 AY). @D

By (20c¢), either Ay + A or I + A;l A’ connects NV(Ae) with V' (Ae). By applying
Theorem 7 forthecase k =1, M| = Ay + A*and L = I + A;lA“, we get A"l >0.
O
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8 Ce——
. ° ° ° . . .
(a) Grid points. (b) The directed graph.

Fig. 3 An illustration of the directed graph described by off-diagonal entries of the matrix in (22): the
domain [0, 1] is discretized by a uniform 5-point grid; the black points are interior grid points and the blue
ones are the boundary grid points. There is a directed path from any interior grid point to at least one of the
boundary points

4 The main result

For a general matrix, conditions (20) in Theorem 8 can be difficult to verify. We will
first derive a simplified version of Theorem 8 then verify it for the schemes in Sect. 2.

4.1 A simplified sufficient condition for monotonicity

We will take advantage of the directed graph described by the 5-point discrete Lapla-
cian, i.e., the second order centered difference scheme, which has similar off-diagonal
negative entry patterns as the schemes in Sect. 2.

For the one-dimensional problem —u” = f,x € (0, 1) with u(0) = u(1), the
scheme can be written as g = oq, u,y] = o7, % = fi,i=1,...,n.
The matrix vector form is K = f where

K=_— . ) ) ; (22)
-1 2 -1
h2

which described the directed graph illustrated in Fig. 3. Let 1 denote a vector of suitable
0, i=1,..., . ..

size with each entry as 1, then (K1); = l " . By Fig. 3, it is easy to
1, i=0,n+1

see that K connects NO(K1) with Nt (K1).

Next we consider the second order accurate 5-point discrete Laplacian scheme for
solving —Au = f on £2 = (0,1) x (0, 1) with homogeneous Dirichlet boundary
conditions:

Uj,j = 0, (xl-,yj) € 082;

—ui—1j — Wil A — Ui — Ui
h2

= fij, (xi,y)) € £2.
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b
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(a) Grid points. (b) The directed graph.

Fig.4 Anillustration of the directed graph described by off-diagonal entries in the 5-point discrete Laplacian
matrix: the domain [0, 1] x [0, 1] is discretized by a uniform 5 x 5 grid; the black points are interior grid
points and the blue ones are the boundary grid points. There is a directed path from any interior grid point
to at least one of the boundary grid points (color figure online)

See Fig. 4 for the directed graph described by its matrix representation. Let K be the
matrix representation of the S-point discrete Laplacian scheme, then

1, if (x;,y;) € 082,
(K1);,; = ! Vi
O, 1f(x,-,yj)€.Q.
By Fig. 4, it is easy to see that K connects V(K1) with N'*(K1).
Let A := L, denote the matrix representation of any scheme in Sect. 2. Then

Cij = 0, if (x;, yj) € f.

Therefore, N T (K1) c Nt (A1) implies N°(A1) c NO(K 1), thus K also connects
NO(A1) with N'F(A1). Notice that indices of nonzero off-diagonal entries in K is
a subset of indices of nonzero entries in A, thus A, also connects A 0(A1) with
NT(A1). So the vector e can be set as 1 in (20c). If assuming c(x, y) > 0, then
A1 > 0 thus the condition (20c) is trivially satisfied.

By Theorem 4, for any decomposition of off-diagonal negative entries A, = A*+
A, Ay + A% is an M-matrix if (A + A®)1 # 0 and (A4 + A%)1 > 0. So Theorem 8
for the schemes (10) and (12) can be simplified as.

Theorem 9 Let A denote the matrix representation of the schemes solving —V -

(@V)u + cu = f in Sect. 2. Assume A; has a decomposition A, = A* 4+ A® with

A* < 0and A* < 0. Then A~" > 0 if the following are satisfied:

1. (Ag+ A1 #0and (Ag + A1 > 0;

2. AF < ATAJAS;

3. Forc(x,y) = 0, either A% or A® has the same sparsity patternas A, . If c(x, y) >
0, then this condition can be removed.
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4.2 One-dimensional Laplacian case

As a demonstration of how to apply Theorem 9, we first consider the scheme (9). Let

A be the matrix representation of the linear operator £, in the scheme (9). Let A, and

A;t be linear operators corresponding to the matrices Ay and Aff respectively.
Consider the following decomposition of A, = A* + A°® with A* = A* = %A;:

A*(@)g = A*(@)o =0, A*(@),41 = A*(@),41 =0,

A*(); = A*(0); = %, if x; is a cell center,
—8ui 1 — 8u:
A*(); = A (w); = %, if x; is an interior cell end.

The operator Ay and A} are given as:

Aq@)o = uo, Ag(@)pq1 = ttny1,

2 .
Ag(); = % if x; is a cell center,
14u;
Ag(); = Wuzl if x; is an interior cell end.

Af(@)o =0, Af@@),41 =0,
Al @@); =0, ifx; isacell center,
Uj—3 + Uiy

A @) = =,

if x; is an interior cell end.

Obviously, A* and A® both have have the same sparsity pattern as A, . It is straight-
forward to verify [.A? + A%](1) is a non-negative nonzero vector. So we only need to
verify A} < AZAJIAs to apply Theorem 9. Since AZAglAs > 0, we only need to
compare nonzero coefficients in A7 (u); and A* (.A;l [AS (ﬁ)]) .

1

When x; is an interior cell end, x;4+ are cell centers, and we have

§ = —Uj_) — U _ 5= thS(ﬁ)i—2
AW = —— 57—, ATA @) = —
o — A A @]y — AL A @)
AEAT LA @), = e -
Ui+ 2ui + Uit
o 4h?

We can verify AZ‘ < AZA;1 A® by comparing only the coefficients of #; 15 in Aj (w);
and A* (AJI[AS (ﬁ)])' because AZAJIAS > 0. By Theorem 9, we get A~ > 0.
1
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4.3 One-dimensional variable coefficient case

As we have seen in the previous discussion, all the operators are either zero or identity
at the boundary points thus do not affect the discussion verifying the condition (20b).
For the sake of simplicity, we only consider the interior grid points for the linear
operators. With the positive and negative parts for a number f defined as:

_MIHS =S

+
f 2 2

the linear operators Ay, A;t are

if x; is a cell center,
_ ai—1 +a;
Ag(@); = <% + Ci) ui;

if x; is an interior cell end,

Ay (i) = ai—3 +4a;—1 + azl+ az+1-i-az+2+ s
8h

if x; is a cell center,

Al m); = 0;

if x; is an interior cell end,
(ai—> — 4aj—1 + 3a;)Tui—2 + GBaiy2 — 4aiy1 + 3a;) Tuiyr

+w) —
Aa (u)l - 8}12

If x; is a cell center,
—Bai—1 + ai+)ui—1 — (@i—1 + 3ai41)ui+1 |

A, (@); = o :

If x; is an interior cell end,
—QBaj—p —4aj—1 +3a;) " ui—
8h?
n —(@aj— + 12a))u;—1 — (12a; +4a;12)uiv1 — Ba; —4ai1 + 3a;42) Uit
8h?2 '

A ) =

We can easily verify that (A; + A%)1 > 0 for the following A%:

if x; is a cell center,
—Bai—1 + air)ui—1 — (@i—1 + 3a;+1)ui1
452 ’

.Az(l_l)i =€
if x; is an interior cell end,
—QBaj_y — dai—1 +3a;) " uj—2 — [4ai—> + 12a; — Bai—p —4a;—1 + 3a;)Tlu;i—
8h2
—[12a; + 4aj42 — Ba; — 4aip1 + 3ai42) T luip1 — Ba; — 4aiq1 + 3ai12) " uiy2
8h2 ’

Afm); =
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where € > 0 is a small number. Moreover, A* has the same sparsity pattern as A, for
any € > 0. For € < 1 we can verify that A* = A — A? <0«
If x; is a cell center,
—Bai—1 + aiy)ui—1 — (ai—1 + 3ai1)Ui+1
4h? ’

A'@); = (1 —€)
If x; is an interior cell end,

—Baj—> —4ai—1 + 3a;))Yui—1 — Ba; — 4aj41 + 3ai12) T uiq
842 '

A(m); =

Now we only need to compare nonzero coefficients in A (); and A? (A;l [AS (ﬁ)])

1
for x; being an interior cell end. When x; is an interior cell end, x;+; are cell centers,

and we have
—QBaj—2 +aju; > — (ai—2 + 3a;)u;
4h2 ’
—(3ai—4 — 4ai—3 + 3a;—2)Tui—3 — Baj—» —4aj—1 + 3a;)) uj_
8h? ’

A@)i—1 = (1—¢)

A (@) =

h* AY (@)1
(ai—2 + a;i + h%ci—1)
—Baj—2 +a)uj—p — (a;—2 + 3a;)u;
4(aj—> + a; + h%ci—1) '

A A @)]m =

=({-e

It suffices to focus on the coefficient of u;_» in A? (Ag?1 [A%(@)]); and the discussion
for the coefficient of u; 7 is similar. Notice that A;l [A* (w)]; 2 will contribute nothing
to the coefficient of u;_5. So the coefficient of u;_» in A? (.A;1 [AS(m)]); is

(3aj—2 +ai)(4ai—2 + 12a; — Bai—p — 4ai—1 + 3a;)")

1 —
(1= 32h*(ai— + a; + h?ci—1)

Thus to ensure A} < A*A; A%, itsuffices to have the following holds for any interior
cell end x;:

(1—o (3ai—» + ai)(4ai—» + 12a; — Baj—» — 4ai—1 + 3a;)*)
32h(aj—2 + a;j + h*ci—y)
- (3ai—» —4aj—1 + 3a;)*
- 8h? ’

Equivalently, we need the following inequality holds for any cell center x;:

(1o Bai—1 +air)(@ai—1 + 12ai11 — Bai—1 — 4a; +3ai1) ™)
32h*(aj—1 + ai+1 + h%c;)
_ Baii —4ai +3aip )"
- 8h? )

(23)
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Notice that € can be any fixed number in [0, 1) so that A; + A is an M-matrix and
A® < 0. And € must be strictly positive so that A* has the same sparsity pattern as
A . Thus if there is one fixed € € (0, 1) so that (23) holds for any cell center x;, then
by Theorem 9, A~! > 0. A sufficient condition for (23) to hold for any cell center x;
with some fixed € € (0, 1) is to have the following inequality for any cell center x;:

(3ai—1 + ai+1)(dai—1 + 12a;41 — Bai—1 — 4a; + 3ai+1)")
32h%(a;j—1 + ai+1 + h%c;)
(Bai—1 —4a; + 3ai41)t
> .
8h2

(24)

If 3a;_1 — 4a; 4+ 3a;+1 < 0, then (24) holds trivially. We only need to discuss the
case 3a;_1 — 4a; + 3a;+1 > 0, for which (24) becomes

Bai—1 +aii1)(@i—1 +4a; +9a;41) > 4ai—1 +aj41 +h*c;)Bai—1 — 4a; +3a;41).
(25)
So we have proven the first result for the variable coefficient case:
Theorem 10 For the scheme (10) solving —(au')’ + cu = f with a(x) > 0 and
c(x) > 0, its matrix representation A = Ly, satisfies A~ > 0 if (25) holds for any
cell center x;.

The constraint (25) will be satisfied for small enough £. The proof of the following
two theorems are included in the “Appendix 6”.

Theorem 11 For the scheme (10) solving —(au’) + cu = f with a(x) > 0 and
c(x) > 0on auniform mesh, its matrix representation A = Ly, satisfies A" > 0 ifany
of the following constraints is satisfied for each finite element cell I; = [xj—1, xij+1]-

— There exists some ). € (13—3, 1) such that

2 13(1 — A) ming, a%(x) , maxrer, la'(x)| V39 —
¢ < , - <
! 6maxy, a(x) — 4 miny; a(x) minyey; a(x) 6

~ hmaxy, la' ()| + e (1 - 3 ey g mi )

3 maxp; a(x) 3 maxp, a(x) *

max,ey, |a’ (x) _
— Ifc(x) = 0, then we only need h minZ;Ja(x)' < ‘/% 3.
— Ifa(x) = a > 0, then we only need h*c; < 5a.

Theorem 12 For the scheme (10) solving —(au')’ + cu = f with a(x) > 0 and
c(x) > 0, its matrix representation A = Ly, satisfies A~ > 0 if the following mesh
constraint is achieved for all cell centers x;:

3 74
n? <—c,' +  max a”(x)) <5 min{a;_1, a;, aj+1}. (26a)

2 XE(Xj—1,%i+1)
If a(x) is a concave function, then (26a) can be replaced by

h*c; < 3min{ai_1, ai, air1). (26b)
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Remark 1 For solving heat equation with backward Euler time discretization (4), the
mesh constraints in Theorems 11 and 12 imply that a lower bound for % is a sufficient
condition for ensuring monotonicity. Numerical tests suggest that a lower bound on
% is also a necessary condition, see Sect. 5. A lower bound constraint on the time
step is common for high order accurate spatial discretizations with backward Euler to
satisfy monotonicity, e.g., [25].

4.4 Two-dimensional variable coefficient case

Next we apply Theorem 9 to the scheme (12). The splitting A, = A* + A’ is quite
similar to one-dimensional case due to its stencil pattern.

Let A := L;, be the matrix representation of the linear operator £, in the scheme
(12). We only consider interior grid points since £, is identity operator on boundary
points which do not affect applying Theorem 9. We first have

if x;; is a cell center,

_ ai—1,j +ai+1,j +aij—1 +ai j+1

Aq(@);; = ( L : th ot a +Cij> uij;
if x;; is an edge center for an edge parallel to y-axis,
Aq(@);;

(@i—2,j +4a;_1,j + 18a;; +4a;y1,j + aiy2,j) +8(a;i, j—1 + a; j+1) .
= > +cij | uij;

8h

if x;; is an edge center for an edge parallel to x-axis,
Aq(@);j

(@i, j—2 +4a; j—1 + 18a;; +4a; j+1 + ai j+2) + 8(ai—1,; + @i+1,;) )
= Sh2 +cij | uij;

if x;; is a knot,

_ ai_ A+4a._ +18a+4a i a; .
-Ad(u)ij =( i—2,j i—1,j ;j i+1,j i+2,j
8h
aj,j—2 +4a; j1 + 18a;; +4a; j11+a;
+ ( i,j—2 i,j—1 8h;} i,j+1 l,j+2) +Cij> .

For the operator A, it is given as

if x;; is a cell center, A} (0);; = 0;

if x;; is an edge center for an edge parallel to y-axis,

At ()

_ Baiaj—4ai—1j+3a; ) uioj + Baivaj —4aiv1j +3a; ) uiva
B 8h?2 ’
if x;; is an edge center for an edge parallel to x-axis,

Af @)
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’

_ Bai,j—2 —4ai j—1 +3ai ) ui i + Bai jr2 — 4ai j11 +3ai ) ui j12

8h?
if x;; is a knot,
At ();;
_ Baj—,j —4ai-1,j + 3ai, i) ui—2j + Bajya,j — 4ai1,j +3ai ) Tuito |
B 8h?2
(Bai,j—2 — 4ai j—1 + 3ai j) Tui j—2 + Bai jy2 — 4ai j+1 + 3ai ) ui j42
8h? '

Let € € (0,1) be a fixed number. We consider the following A* < 0 so that
(Ag+ AH1 > 0:

. . o 3aj—1,j + aiy1,j)ui—1,j
if x;; 1sace11center,./4”(u),>j:—e( iLJ 4}:;1’1)’ Lj

B

e (@i—1,j +3aiv1,j)uir1,j + Bai j—1 +ai jrD)ui j—1 + (@i j—1 + 3a; j+1)Ui j+1
4h2

if x;; is an edge center for an edge parallel to y-axis,

A% (W)
_ —Bai—,j —4ai—1,j +3a;, ;) ui—,j — [4ai—2,j + 12a; j — Bai—,j — 4ai—1,j + 3ai, ) ui-1,j
- 8h?
—[12a;,j +4ai42,j — Gaiyo,j — 4aiv1,j +3ai, )  luivrj — Gaivaj — daiv1,j +3aij) Uit
8h2
te —QBai j—1 +ai j4)ui j—1 — (@i j—1 +3a;i j+ Ui j+1 :

4?2

if x;; is an edge center for an edge parallel to x-axis,

A (W)
_ —Gaija —4a; j1 4 3ai ) wi j—2 — [4a; j_2 +12a; j — Bai j—2 — 4a; j—1 +3a; ) lui j1
- 8h2
—[12a; j + 4a; j12 — Bai j+2 — 4a; j+1 + 3ai ) ui j+1 — Bai j+2 — 4a; j+1 + 3ai j) i j42
8h?
te —Bai—1j +ait1, ) ui—1; — (@i—1j +3ai41,))uit1,j
4n? ’
if x;; is a knot,
A* ()
_ —=Bai—nj —4ai-1j +3a; ) ui-2; — [4ai-2 j + 12a; j — Baj—,j —4ai—1j +3a; ) lui—1
- 8h?2
—[12a; j +4ai12,; — Baiza,; — 4ait1,j +3ai ) uipr,j — Baiga,j — 4ai+1,j + 3ai ;) " uiva,j
8h?
—3aj,j—2 —4aj j—1 +3a; j) " ui j— — [4a; j—2 + 12a; j — Ba; j—> — 4a; j—1 + 3a; ) ui j—1
8h2
—[12a; j +4a; j12 — Bai jy2 — 4ai jr1 + 3ai, ) i o1 — Baijyo — 4ai jr1 4 3ai, ;) ui jio
8h2 ’
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Then A® = A, — A% is given as:

if x; is a cell center, A° (),

Baj-1,j +aiv1,)ui-1,j + (@i—1,j +3ai41,j)uiy1,j

=-(1-9 4n?
Cd—e (Ba; j—1 +ai j+Dui j—1 + (@i j—1 +3a; j+1)u; j+1
4n? ’

if x;; is an edge center for an edge parallel to y-axis, A° (@),
_ —QBai—a; —4ai1j+3a; )Yui1; — Baira; —4aiyrj +3a; DVuig
B 8h?
—QBai j—1+ai j+)ui j—1 — (@i j—1 +3ai j+Dui j41
4h2 ’

+ (1 —e€)

if x;; is an edge center for an edge parallel to x-axis, A* (@),
_ —QBaj j2 —4ai j-1 + 3ai, ) ui j—1 — (Bai,j12 — 4a; j+1 +3a;i ) ui j1
8h?
—@Bai-1,j +aiv1,))ui-1,j — (@i—1j +3ai+1,j)ui+1,j
4h? '

+ -9
if x;; is a knot, A° ();;
_ —QBaj—2,j —4aj—1; + 3ai,j)+ui—1,j — (Bajt2,j —4aiy1j + 3ai,j)+ui+l,j
- 8h?
—QBaij—2 —4a; j1 +3a; ) ui o1 — Baj jro —4ai ji1 +3a; ) ui i1
8h2 ’

For the positive off-diagonal entries, A (@1);; is nonzero only for x;; being an
edge center or a cell center. Thus to verify A} < AZAgle, it suffices to compare

A* [.A;] (A* (ﬁ))]ij with A;L (w);; for x;; being an edge center or a cell center.
If x;; is an edge center for an edge parallel to y-axis, then x;+1, ; are cell centers.
Since everything here has a symmetric structure, we only need to compare the coef-

ficients of u;_» ; in A° [A,;l (AS (ﬁ))]” and A} (1), and the comparison for the
ij
coefficients of u; 17 ; will be similar.

(Bai—2,j + aij)ui—2,j + (ai—2,j + 3a; j)u; ;
4h2
Baj—1,j—1+ai—1 jyDui—1,j—1 + (@i—1,j—1 + 31 j+DUi—1,j+1
442 ’
(Bai—a,j +aijui-2,j + (ai-2,j + 3aij)ui,;
4aj—2,j + aij + ai—1,j+1 + ai—1,j—1 + h%ci—1,j)
Bai—1j—1+ai—1 j+0)ui—1,j—1+ (@i—1,j—1 + 31, j+1)Ui—1,j+1
4aj—2,j + aij +ai—1,j41 +ai—1,j—1 +h%ci1,j) '

A)—1j=—(1—¢e)

—(I-9

AJMAS@)]im1j =~ —e€)

—(=9
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Since the coefficient of u; 5 ; in Af ();j is Baj—z,j —4a;—1,; + 3a,~j)+/(8h2), we
only need to discuss the case 3a;_> j — 4a;_1,; + 3a;j > 0, for which the coefficient

of uj_s j in A [.A;l (AS (ﬁ))] ~ becomes
ij
aj—2,j +4a;_1,j +9a;; (1 —-e)(Baj—2,j + aij)
8h? 4(ai—n,j + aij + ai—1,j41 + ai—1,j—1 + h%ci—1,j)

To ensure the coefficientof u; _» ; in A* [.A;l (A° (ﬁ))] ~isno less than the coefficient
ij
of ui—p j in Af (0);;, we need

(I —e€)(ai—2,j +4ai_1,j +9a;j)Bai_2,; + aij) - 3a;_,j —4ai_1,j + 3aij
32h2(ai—2,j + aij + ai—1,j41 + ai—1j—1 + h%ci—1j) ~ 8h? '

Similar to the one-dimensional case, it suffices to require

(@j—2,j +4ai—1j +9ai;)(3a;—2,; + aij)
4aj—2,j + aij +ai—1,j+1 +ai—1,j—1 + h%ci—1,j)

> 361,'72,]' — 4a,-,],j + 3a,-j.

Equivalently, we need the following inequality holds for any cell center x;;:

(@i—1,j +4a; j +9a;y1,)Baj—1,j +ait1,;)
Aaj—1,j +aiy1,j +aijr1+a;i j +hzci’j)

> 3a;_1,j —4a; j +3a;y1,j. (27a)

Notice that (27a) was derived for comparing .A* [A;l (AS (ﬁ))] and A} (0);; for x;;
ij

being an edge center of an edge parallel to y-axis. If x;; is an edge center of an edge

parallel to x-axis, then we can derive a similar constraint:

(aij—1+4aij +9ai j+1)Bai j-1 + ai j4+1)
4(ai j—1 +ai jr1 + ai1,j +ai1,j +h%ci )

> 3a; j—1 —4a;,j +3a; j+1. (27b)

If x;; is a knot, then x;+; ; are edge centers for an edge parallel to x-axis. Since
everything here has a symmetric structure, we only need to compare the coefficients
ofuj_o jin A* [A;l (A’ (ﬁ))] _and A (w);;, and the comparison for the coefficients

ij
of ujyo j, ui j—2 and u; j4o will be similar.
—Bai—2j +aj jui-2; — (@i—2; +3a; ju; ;
4h2
—Baj—1,j—2 —4ai—1,j—1 + 3ai—1,)) Y ui—1,j—1 — Bai—1,j+2 — 4ai—1,j+1 + 3ai—1, ) Tui—1 j11
8h?2

A*(@);—1,j = (1 —¢)

AA @)
—aj—2,j +a;i jui—2,j — (ai—2,j + 3a; j)u; j

=(-e
$(@i—1,j—2 +4ai—1 i1 + 18a;_1j +4ai—1 j+1 + ai1,j2) + 4ai—2,j +ai ;) +4hcioy

—Baj_1,j—2 —4ai—1j—1 4+ 3ai—1, ) ui—1 j—1 — Bai—1,j42 — 4ai—1,j1 +3ai—1 ) w1 j1
(@i—1,j—2 +4ai1j—1 + 18a;_1; +4ai_1 j11 +ai—1,j+2) + 8(ai—2,j + ai j) + 8h%ci 1,
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For the same reason as above we still only consider the case where 3a; > j —4a;_1 j +
3a;j > 0. So the coefficient of u; 5 ; in A° [.A;l (A (ﬁ))]_‘ is
ij

1 (I —€)(aj—a,j +4ai—1,j +9a;))Bai—2,j +a;j)
4h? (aj—1,j—2 +4ai—1,j—1 + 18ai_1j +4ai_1 j+1 +ai—1,j+2) + 8(ai—2,j +ai j) + 8ci—1,jh?

To ensure the coefficient of u; _» ; in A* [A;l (A* (ﬁ))] _isnoless than the coefficient
ij
of uj—» j in Af ();;, we only need
2(ai—2,j +4a;—1,j +9a;;)(Ba;—2,; + a; j)
(@i—1,j—2 +4ai_1j—1 +18a;_1j +4a;i_1 j41 + ai—1,j42) + 8(ai—2,j +ai j) + 8c¢i1,jh?
> 3a;2,j —4a;1,j + 3a;j.

Equivalently, we need the following inequality holds for any edge center x;; for an
edge parallel to x-axis:

2(aj—1,j +4a; j +9ai11,;)(Bai-1,j +aiy1,5)
(ai j—2 +4a; j—1 +18a; j +4a; j41 +a; j42) +8(ai—1 j + ait1,j) + 8ci jh?
> 3a,-,1,j —4a,-,j —|—3ai+1,]~. (28a)

We also need the following inequality holds for any edge center x;; for an edge parallel
to y-axis:

2(a;,j—1 +4a; j +9a; j+1)Ba; j—1 +ai j—1)
(ai—a,j +4ai—1,j +18a; j + 4aiy1,j + aiy2,j) + 8(ai, j—1 + ai j+1) + 8¢;, jh>
> 3a;,j—1 —4a; j +3a; j+1. (28b)

We have similar result to the one-dimensional case as following:

Theorem 13 For the scheme (12) solving —V - (aVu) 4+ cu = f with a(x) > 0 and
c(x) > 0, its matrix representation A = Ly, satisfies A~ > 0 if (27) holds for any
cell center x;j, (28a) holds for x;; being any edge center of an edge parallel to x-axis
and (28b) holds for x;; being any edge center of an edge parallel to y-axis.

The constraints (27), (28a) and (28b) can be satisfied for small /.

Theorem 14 For the scheme (12) solving —V (a(x)Vu) + cu = f with a(x) > 0 and
c(x) > 0, its matrix representation A = Ly, satisfies A~ > 0 if the following mesh
constraint is achieved for all edge centers x;;:

49 8
mlljna(x) > a1 n}’z:xa(x) + ol (3 n}ixa(x) - 2n}iijna(x)) hZC[j,

where J;j is the union of two finite element cells: if x;; is an edge center of an edge
parallel to x-axis, then Jij = [x;—1, Xi+1] X [yj—2, yj+2]; if xij is an edge center of
an edge parallel to y-axis, then Jij = [xj_2, Xi42] X [yj—1, ¥j+1]
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Theorem 15 For the scheme (12) solving =V - (aVu) + cu = f with a(x) > 0 and
c(x) > 0 on a uniform mesh, its matrix representation A = Ly, satisfies A~' > 0 if
any of the following mesh constraints is satisfied for any edge center x;;:

— There exists some )\ € (%, 1) such that

2 61(1 — 1) miny,; a*(x) maxyeyij [Va(x)l /122 — 742
cij < : ) p < :
Y7 8 (3maxy, a(x) — 2miny, a(x)) Minyey, a(x) 28

miny;, . a(x) miny; . a?(x)
_ %hmaxhi IVa(x)|+2h2cl~j <1 o miny, a(x ) inj, a”(x

) maxy, ; a(x) maxy,; a(x) *

xeJ;;i | Va(x)l /
— Ifc(x) = 0, then we only need h <l "L 1222§7“/§.

minyey;; a(x)

— Ifa(x) =a > 0, then we only need h2c,-j < %a.

Here the definition of J;; is the same as in Theorem 14.

The proof of Theorem 14 is included in the “Appendix 6”. The proof of Theorem 15
is very similar to the proof of Theorem 11 thus omitted. Since the two-dimensional
case is more complicated, it does not seem possible to derive a similar mesh constraint
involving second order derivatives of a(x, y) as in Theorem 12. For instance, by
Theorem 12, if a(x) > 0 is concave and c(x) = 0, then the one-dimensional scheme
(10) satisfies I:;l > ( without any mesh constraint. For the two-dimensional scheme
(12), even if assuming a(x, y) > 01is concave and c(x, y) = 0, constraints (27), (28a)
and (28b) are not all satisfied for any #.

5 Numerical tests

In this section we show some numerical tests of scheme (12) on an uniform rectangular
mesh and verify the inverse non-negativity of £;. See [20] for numerical tests on the
fourth order accuracy of this scheme. In order to minimize round-off errors, we redefine
(12a) to its equivalent expression L, (0); ; = hlzu,', j = hlzg,-, j so that all nonzero
entries in Lj, have similar magnitudes. By Theorem 3, we have L;l > 0 whenever
E;l > 0. Even though L;l > 0 is not sufficient to ensure the discrete maximum
principle, in practice only L;l is used directly thus its positivity is also important.
We first consider the following equation with purely Dirichlet conditions:

—V.-(@Vu)+cu=f onl0,1] x [0, 2] (29)

where c(x) = 10 and a(x, y) = 1 4 d cos(x) cos(wry) withd = 0.5, 0.9, and 0.99.

The smallest entries in L;l and L;l are listed in Table 1, in which — 10718 should be
regarded as the numerical zero. As we can see, L;l > (0 and L;l > ( are achieved
when 4 is small enough.

Next we consider (12) solving (29) with ¢(x, y) = 0 and g;; being random uni-
formly distributed random numbers in the interval (d, d + 1). Notice that the larger d
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Table 1 Minimum of entries in Z;l and Lh_1 for Poisson equation (29) with smooth coefficients

Finite element mesh d = 0.5 d=09 d=0.99

51 -1 71 -1 s -1

L, L, Ly L, Ly, Ly,
2 x4 —7.32E—18 7.48E—06 —3.90E—04 6.37E—06 —7.41E—04 6.14E—06
4x8 —1.31E—18 1.23E—07 —4.02E—19 9.95E—08 —1.65E—04 9.44E—08
8 x 16 —3.96E—19 191E-09 —491E—19 1.52E—09 —1.77E—05 1.44E—09
16 x 32 —1.92E—19 2.98E—11 —7.60E—19 2.35E—11 —1.06E—18 2.22E—11
Table 2 Minimum of all entries of Z;l and L;l for a(x, y) being random coefficients
Finite element mesh d = 0.1 d=1 d =10

r—1 —1 r—1 —1 r—1 —1

Ly Ly Ly Ly Ly Ly
2 x4 —1.00E—-03 6.60E—05 —8.15E—18 4.73E—05 —1.98E—16 6.74E—06
4x8 —2.14E—04 3.22E—06 —3.46E—18 9.95E—-07 —5.10E—17 1.35E-07
8 x 16 —6.73E—05 2.88E—08 —5.24E—19 1.65E—08 —1.81E—17 2.21E—09
16 x 32 —2.34E-05 3.61E—10 —9.01E—19 2.02E—10 —8.37E—18 3.56E—11

Table 3 Minimum of all entries of l_,gl and L,:l for solving heat equation with backward Euler

Finite element mesh At = % At = % At = %

I P L' L;!
2 x4 0 7.95E—06 0 3.21E-07 —9.14E-05 —5.34E-07
4x8 0 1.01E—-09 0 1.93E—13 —2.28E—05 — 1.00E-07
8 x 16 0 7.74E—17 0 2.58E—-25 —5.71E-06 —2.51E-08
16 x 32 0 2.63E—-30 0 2.73E—48 — 1.43E—-06 —6.27E—-09
. max,-j{a,-j} . _ max,-j{a,-j} ﬂ —1 >
is, the smaller ming {ai] is. Whend = 10, we have ming i) 9 thus L, " > Oand

Z;l > 0 are guaranteed by Theorem 14. In Table 2 we can see that the upper bound
max;;{a;;}
min;;{a;;}
in Theorem 14 may not be sharp since we still have the positivity when d = 1. We
have tested d = 0.3 many times and never observed negative entries in L;l and L,;l.

Last we consider solving the heat equation u; = Au on [0, 1] x [0, 2] with back-

ward Euler time discretization —Au"+! + %u”“ = Z—n[, corresponding to (29) with
At

T is a sufficient condition to ensure

on is indeed a necessary condition to have Z;l > (0, even though constraints

2
>§,

I:,:l > O and L;l > 0. In Table 3, we can see that it is necessary to have a lower bound

. At At 2
constraint on w7 but 2> 5

a(x,y)=1landc = ﬁ. By Theorem 15

is not sharp at all. In Fig. 5, we can see the minimum

of entries in E;l and L;l decreases for smaller %. The lower bound to ensure the

At
hZ

_ 1
— 3.6

inverse non-negativity of li,;l and L;l seems to be near
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(a) Minimum of entries in E;l (b) Minimum of entries in L,:l

Fig.5 Minimum of all entries of I:;l and Lh_] on 16 x 32 mesh with different time steps

6 Concluding remarks

In this paper we have proven that the simplest fourth order accurate finite difference
implementation of C°-Q? finite element method is monotone thus satisfies a discrete
maximum principle for solving a variable coefficient problem —V - (a(x, y)Vu) +
c(x, y)u = f under some suitable mesh constraints. The main results in this paper can
be used to construct high order spatial discretization preserving positivity or maximum
principle for solving time-dependent diffusion problems implicitly by backward Euler

time discretization.

Appendix A: M-matrix factorization for discrete Laplacian

The matrix form of (9) can be written as h]—zl_,hﬁ = f. As an example, if there are seven
interior grid points in the mesh for (0, 1), then the matrix I:h is given by

1
-1 2 -1
1 7 1
i —2 5 -2 3
“1 2 -1
Ly = i -2 3 -2 1
1 2 -1
1 7 1
i —2 3 -2 3
1 2 -1
1
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The matrix Ly, can be written as a product of two nonsingular M-matrices L, =M M,
where

1
1
1 1
-3 1 -3
1
M = -3 1 -3 ,
1
1 1
-3 1 -3
1
1
1
-1 2 -1
3 3
-3 3 -3
~1 2 -1
- 3 -3
-1 2 -1
3 3
-3 3 -3
-1 2 -1

Such a factorization is not unique and it does not seem to have further physical or
geometrical meanings.

For the scheme (11), we can find two linear operators A; and A; are with their
matrix representations A and A being nonsingular M-matrices, such that £, (@) =
Az (A1 ().

Definition of .4, is given as

At boundary points:

vi,j = A1 j = uij = gij.-

At interior knots:

vij = A1 j = u; ;.
j j j

At interior cell center:

_ 1 1 1
vij = Ar@ij = 2ui = guie1 T M T M-t T

At interior edge center (an edge parallel to x-axis):

_ 4 1
vi,j = A1), ; = Tglim1 T gL T gt
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— At interior edge center (an edge parallel to y-axis):

4 1

UL T UL

v =A@ =—— 3

Ui j—1+
61,]1

Definition of A5 is given as:

— At boundary points:
Ao(V)ij = vi ;.
— At an interior knot:

_ 3 3 3
Ar(V)ij = —SVi-Lj + 30 — Svig1,j — Vi1 +3v;j — Vi1

2

— At an interior cell center:

_ 3 3 3 3
A2 (V)i j =20 — gUi—1j T gVitlj T Vi1~ gUij+l
1 1 1 1
- gvi—l,j—H - gvi+1,j+1 - gvi—l,j—l - gvi+1,j+1-

— At an interior edge center (an edge parallel to x-axis):

_ 7 15 7
Ary(V);j = — 11 + 2 Vi T g Vit T Vil T Vil

3 3
16 Vi—1,j—1 — 16vl+1 Jj—1
3 3 1 1

- Evi—l,j-i-] - Evi+1,j+1 - 3_2vi—l,j+2 - 3_2Ui+1,j+2
1 1

- 3—2Ui—1,j—2 - 3—20i+1,j—2-

— At an interior edge center (an edge parallel to y-axis):

15 7

A2(Wij = = Jevi-1 F VL T it T Vil T Vie
3 3
16 Vi—1,j—1 — 16Ut 1,j+1
3 3 1 1
- Eviﬂ,j—l 16U1+1 j+l— 32vl+2j 1 — 32Uz+2 j+l1
1 1
~ 3 Vi-2-1 T gy V-2l

It is straightforward to verify that £, (a) = A>(V) where v = A (u). Obviously,
matrices of A; and A; have positive diagonal entries and nonpositive off-diagonal
entries. Moreover, A;(1) > 0 and A>(1) > 0 thus A and A, satisfy the row sum
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conditions in Theorem 4. So A; and A, are both nonsingular M-matrices and the
matrix representation of £y is A2 Aj. However, this kind of M-matrix factorization
cannot be extended to the variable coefficient case.

Appendix B

Proof of Theorem 11 If ¢(x) = 0, then (25) reduces to
(28a;_1 + 20a;+1)a; + 4ajy+1ai—1 > 9“1'271 + 3ai2+].
A convenient sufficient condition is to require
52min{a? |, a?, ai2+1} > 12max{a? |, a?, aiz_H},
which is equivalent to

max{a; 1, a;, aj11} 13

min{a;_1, a;, aj+1} 3

Leta(x!) = max{a;_1, a;, aj+1} and a(x?) = min{a;_1, a;, aj+1}. Then the inequal-
ity above is equivalent to

a(xh) —a(x?) V39 -3
a(x?) = 3 ’

By the Mean Value Theorem, there is some & € (x;_1, xj+1) such thata(x!) —a(xz) =
a'(&)(x? — x1). Since |x% — x| < 2h, we have

la(x!) —a(x>)| < max |’ (x)| 2h.
XE(X,‘_l,xH_l)

Thus a sufficient condition is to require

hmaXxE(Xi—lﬂxH']) ia/(x)| < \/@_ 3

MiNye(y x4 4(X) 6

For ¢(x) > 0, (25) reduces to
(28a;_1 + 20a; 1 1)a; + 4a;11a;i—1 > 9a? | + 3al-2+1 + 4h*c;Bai—1 — 4a; + 3ait1),

for which a sufficient condition is

13 mlin az(x) > 3mlax az(x) + h%¢; (6 mlaxa(x) — 4mlin a(x)) . (30)

i
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One sufficient condition for (30) is to have

Jr e (0, 1), hzci(6m1axa(x) — 4rr}in a(x)) <13(1 =) rr}in a’(x),

i

3 mlax az(x) <13\ mlin az(x).

i i

By similar discussions above, a sufficient condition for 3 max;, a’(x) < 13Amin I
a?(x) is to have A > 13—3 and

maxyej, a/(x)| V391 =3
< )
minyey; a(x) 6

The inequality (30) is also equivalent to

10rr}in az(x) >3 (mlax az(x) — mlin az(x)> + hzc,- (6 mlax a(x) — 4mIin a(x)) .

i i i i i

Let az(xl) = maxy, az(x) and a2(x2) = miny, az(x), then by the Mean Value Theo-
rem on the function a2 (x), there is some & € (x;_, Xi+1) such that

a’(xh) —a®(x") = 2a(E)d ) (x' — x?) < 4h max a(x) max ld’ (x)].
So it suffices to have

10 H}in az(x) > 12h m]axa(x) rnlax la’ (x)| + h’c; (6 m[axa(x) — 4rn[ina(x)) ,

i i i i i

which can be simplified to

2 miny, 5 mins. a2
2hmlax|a/(x)|+h2ci (1 _M> miny, a*(x)

3 max;, a(x) 3 maxy, a(x)

Ifa(x) = a > 0, it is straightforward to verify that (25) is equivalent to ic; < S5a. O

Proof of Theorem 12 For a smooth coefficient a(x), by Taylor’s Theorem,

a(x +h) = a(x) + ha' (x) + %hza”(gl), £ € [x, x + h),

1
a(x —h) = a(x) —ha'(x) + sh*a" (&), & € lx —h,x]
With the Intermediate Value Theorem for a”(x), we get

1
a(x) = E[a(x +h) +alx—h)—h*d"E)], £€(&,&)Clx—h, x+h).
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Thus we can rewrite a; as a; = %(a,-_l +ai+1 — d,-hz) where

ai—1 +aj41 — 2a;

di = /’l2

=a"(&), forsomeé € (xj_1, xit1).

If c(x) = 0, then (25) reduces to (28a;_1 + 20a;+1)a; +4ai+1ai—1 > 9‘11 1+ 3al+1.
Introducing an arbitrary number A € (0, 2], it is equivalent to

4aip1ai—1 + (4 = 20)a; (Tai—1 + Sai11) + 22a;(Tai—y + Sait1) > 9ai_; + 3a},
(121 + Haiyrai1 + @ = 20a; (Tai-1 + 5ai11) + (Th — 9a; | + (5h — a7
> Ah2d;(Tai—1 + 5ai41),

4 50 —3)0% + (124 +4)0 + (TA —9 ;
4 g I HADADOL TRy din
A A0 +T7) a—1
., ai + 569 +1(1 5 h*d
- 57 7 . —Z Na > Ny
Iy ai 250 +7) ai—1 51 ai+1 i

Notice that 35 +79 —%. By taking % < A <2, it suffices to require

9 4 3
<1 7A>a,1+(——2> +(1_§>ai+l>h2di, 31

as a sufficient condition of the above inequalities. If a(x) is a concave function, then it
satisfies a(x;) = a(*=F%=1) > La(x;_1) + Ja(x;4+1), which implies ;| + a;41 —
2a; < 0, thus (31) holds trivially. Otherwise, (31) holds for A = % if the following
mesh constraint is satisfied:

2 " 74 .
h max a (x) < —minf{a;_1, a;j, aj+1}-
XE(Xi—1,Xi41) 45

If c(x) > 0, for any A € (0, 2], (25) is equivalent to

(120 + Dair1ai—1 + (4 — 20)a; (Tai—1 + Sai11) + (Th — 9af_| + (5 — 3al,,

> Ahzdi (Tai—1 + Sai+1) + 4h2c,- (@i_1 +aip + 2dih2). (32)
If assuming d;h? < f5 minfa; 1. a;. ai11}, thend h? < kiai—1 + Aaaj41 for any two
positive numbers A], )\.2 satisfying A1 + Ap = 45. In particular, for A1 = ggg, we get
dih® < 223611 1+ 108a1+1’ which implies

119
ai—1 + aip1 + 2dih? < 70(7611'—1 + 5ai+1).
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By replacing a; _1 + a; ;1 + 2d; h* by the inequality above in (32), we get a sufficient
condition for (32) as following:

(122 + Dair1ai—1 + (4 — 22)a;(Tai—1 + 5ai41) + (T — 9ai_; + (5r — 3)ai, |

119
> Ah2di(Tai—1 + 5ai+1) + 4h2cl-ﬁ<7ai71 +5a;41). (33)

Similar to the derivation of (31), we can derive a sufficient condition of (33) as

2 17 74 .
h“ | 1.5¢; + max a (x) ] < Em1n{ai,1,ai,ai+1}.

XEXi—1,Xi+1)

If d; < 0, then a sufficient condition for (32) is

(122 4+ 4aip1ai-1 + (4 = 20)a;(Tai -1 + S5ai11) + (T — 9aj_| + 5k — 3)ai,,

aj—1 + ajy1
> 4h’¢;,

from which we can derive a sufficient condition as

5
4h’c; < (Th — Nai_1 + (5 — §x> ai + (51 — a1,

for which a sufficient condition by setting A = 2 is hzc,- < 3min{a;_1, a;,aj+1}. O

Proof of Theorem 14 Since (27a) and (28a) are equivalent to

4(Ta;j—1,j + Sa;y1,j)aij +4a; 1, jai+1,; + 16a;;(a; j—1 + a; j+1)
> 9%‘271,,' + 3ai2+1,j +12(ai—1,j + aiv1,))(ai j—1 + ai j+1) +4Gai—1,;

— 4aij + 3aiy1,j)hcij
and

8ai—1,jai+1,j +2aijai—1,j + 4aij(ai j—2 +4a; j—1 + 18a; j +4a; j+1 + ai j4+2)

2 2

> 18ai_1’j + 6ai+1’j

+ lajjai1,; +3(ai-1,j +aiv1,j) (@i j—2 +4a; j—1 +4a; j+1 +ai j1+2)
JAi+1,j j IACH

+8Q3a;j—1,; — 4a;j + 3ai+1,j)hzcij'

A sufficient condition is to require

2
7 nllin a(x)2 >5 n}ax a()c)2 + 3 (3 n}ax a(x) —2 nllin a(x)) hzcij 34)
ij ij ij ij
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for all cell centers x;; of cell I;; = [x;—1, Xj+1] X [¥i—1, ¥i+1], and the following mesh
constraints for all edge centers x;;:

61 mina(x)* > 49 rr}axa(x)z +8 (3 max a(x) — 2rrjlina(x)> h2cij, (35)

i 1 i i

where we J;; is the union of two cells: if x;; is an edge center of an edge parallel to
x-axis, then J;; = I; j_1 UI; jy1;if x;; is an edge center of an edge parallel to y-axis,
then J;; = I; 1 j U I;11,;. Notice that (35) implies (34), thus it suffices to have (35)
only. O
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