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Abstract
We show that the fourth order accurate finite difference implementation of continuous
finite element method with tensor product of quadratic polynomial basis is monotone
thus satisfies the discrete maximum principle for solving a scalar variable coefficient
equation −∇ · (a∇u) + cu = f under a suitable mesh constraint.

Mathematics Subject Classification 65N30 · 65N06 · 65N12

1 Introduction

1.1 Monotonicity and discrete maximum principle

Consider a Poisson equation with variable coefficients and Dirichlet boundary condi-
tions on a two dimensional rectangular domain Ω = (0, 1) × (0, 1):

Lu ≡ −∇ · (a∇u) + cu = 0 on Ω,

u = g on ∂Ω,
(1)

where a(x, y) ∈ C1(Ω̄), c(x, y) ∈ C0(Ω̄) with 0 < amin ≤ a(x, y) ≤ amax and
c(x, y) ≥ 0. For a smooth function u ∈ C2(Ω) ∩ C(Ω̄), maximum principle holds
[12]: Lu ≤ 0 in Ω �⇒ maxΩ̄ u ≤ max {0,max∂Ω u} , and in particular,
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Lu = 0 in Ω �⇒ |u(x, y)| ≤ max
∂Ω

|u|, ∀(x, y) ∈ Ω. (2)

For various purposes, it is desired to have numerical schemes to satisfy (2) in the
discrete sense. A linear approximation to L can be represented as a matrix Lh . The
matrix Lh is called monotone if its inverse has nonnegative entries, i.e., L

−1
h ≥ 0. All

matrix inequalities in this paper are entrywise inequalities. One sufficient condition
for the discrete maximum principle is themonotonicity of the scheme, which was also
used to prove convergence of numerical schemes, e.g., [1,4,10,13].

In this paper, we will discuss the monotonicity and discrete maximum principle of
the simplest finite difference implementation of the continuous finite element method
with Q2 basis (i.e., tensor product of quadratic polynomial) for (1), which is a fourth
order accurate scheme [20].

1.2 Second order schemes andM-matrices

The second order centered difference u′′ ≈ ui−1−2ui+ui+1
Δx2

for solving −u′′(x) =
f (x), u(0) = u(1) = 0 results in a tridiagonal (−1, 2,−1) matrix, which is an
M-matrix. Nonsingular M-matrices are inverse-positive matrices and it is the most
convenient tool for constructing inverse-positive matrices. There are many equivalent
definitions or characterizations of M-matrices, see [24]. One convenient characteriza-
tion of nonsingularM-matrices are nonsingularmatriceswith nonpositive off-diagonal
entries and positive diagonal entries, and all row sums are non-negative with at least
one row sum is positive.

The continuous finite element method with piecewise linear basis forms an M-
matrix for the variable coefficient problem (1) on triangular meshes under reasonable
mesh constraints [33]. The M-matrix structure in linear finite element method also
holds for a nonlinear elliptic equation [15]. For solving−Δu = f on regular triangular
meshes, linear finite element method reduces to the 5-point discrete Laplacian. Linear
finite element method or the 5-point discrete Laplacian is the most popular method in
the literature for constructing schemes satisfying a discrete maximum principle and
bound-preserving properties.

Almost all high order accurate schemes result in positive off-diagonal entries in Lh

for solving −Δu = f thus Lh is no longer an M-matrix. The only known exceptions
are the fourth order accurate 9-point discrete Laplacian and the fourth order accurate
compact finite difference scheme.

1.3 Existing high order accurate monotonemethods for two-dimensional
Laplacian

There are at least three kinds of high order accurate schemes which have been proven
to satisfy L−1

h ≥ 0 for the Laplacian operator Lu = −Δu:
1. Both the fourth order accurate 9-point discrete Laplacian scheme [4,6] and the

fourth order accurate compact finite difference scheme [18,19] for −Δu = f
can be written as Su = W f with S being an M-matrix and W ≥ 0, thus L−1

h =
S−1M ≥ 0.
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2. In [5,7], Bramble andHubbard constructed a fourth order accurate finite difference
discrete Laplacian operator for which Lh is not an M-matrix but monotonicity
L−1
h ≥ 0 is ensured through an M-matrix factorization Lh = M1M2, i.e., Lh is a

product of two M-matrices.
3. Finite element method with quadratic polynomial (P2 FEM) basis on a regular

triangularmesh canbe implemented as afinite difference schemedefinedat vertices
and edge centers of triangles [31]. The error estimate of P2 FEM is third order
in L2-norm. The error at at vertices and edge centers are fourth order accurate in
l2-norm due to superconvergence. The stiffness matrix is not an M-matrix but its
monotonicity was proven in [22].

For discrete maximum principle to hold in P2 FEM on a generic triangular mesh,
it was proven in [14] that it is necessary and sufficient to require a very strong mesh
constraint, which essentially gives either regular triangulation or equilateral triangula-
tion. Thus, the discrete maximum principle holds in P2 FEM on a regular triangulation
or an equilateral triangulation. For finite element method with cubic and higher order
polynomials on regular triangular meshes, it was shown that the discrete maximum
principle fails in [28].

1.4 Other known results regarding discrete maximum principle

For one-dimensional Laplacian, discretemaximumprinciplewas proven for arbitrarily
high order finite element method using discrete Green’s function in [30]. The discrete
Green’s function was also used to analyze P1 FEM in two dimensions [11]. Discon-
tinuous coefficients were considered and a nonlinear scheme was constructed in [21].
Piecewise constant coefficient in one dimension was considered in [29]. A numerical
study for high order FEM with very accurate Gauss quadrature in two dimensions
showed that DMP was violated on non-uniform unstructured meshes for variable
coefficients in [23]. A more general operator ∇(a∇u) with matrix coefficients a was
considered for linear FEM in [16]. See [17] for an anisotropic computational example.

1.5 Existing inverse-positive approaches when Lh is not anM-matrix

In this paper, we will focus on the finite difference implementation of continuous finite
elementmethodwith Q2 basis (Q2FEM),whichwill be reviewed inSect. 2. Thematrix
Lh in such a scheme is not an M-matrix due to its off-diagonal positive entries. There
are at least three methods to study whether L−1

h ≥ 0 holds when M-matrix structure
is lost:

1. An M-matrix factorization of the form Lh = M1M2 was shown in [2,7]. In
“Appendix 6”, we will demonstrate an M-matrix factorization for the finite differ-
ence implementation of Q2 FEM solving −Δu = f .

2. Perturbation of M-matrices by positive off-diagonal entries without losing mono-
tonicity was discussed in [3].

3. In [22], Lorenz proposed a sufficient condition for ensuring Lh = M1M2. Lorenz’s
condition will be reviewed in Sect. 3.3.
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The main result of this paper is to prove that L−1
h ≥ 0 and a discrete maximum

principle holds under somemesh constraint in the fourth order accurate finite difference
implementation of Q2 FEM solving (1) by verifying the Lorenz’s condition.

1.6 Extensions to the discrete maximum principle for parabolic equations

Classical solutions to the parabolic equation ut = ∇ · (a∇u) satisfy a maximum
principle [12]. With suitable boundary conditions and initial value u(x, y, 0) such
as periodic or homogeneous Dirichlet boundary conditions and initial minimum
minΩ u(x, y, 0) = 0, the solution to the initial value problem satisfies the follow-
ing maximum principle:

min
(x,y)

u(x, y, 0) ≤ u(x, y, t) ≤ max
(x,y)

u(x, y, 0). (3)

Now consider solving ut = ∇ · (a∇u) with backward Euler time discretization,
then Un+1 satisfies an elliptic equation of the form (1):

− ∇ · (a∇Un+1) + 1

Δt
Un+1 = 1

Δt
Un . (4)

If Sh denotes spatial discretization for −∇ · (a∇u), then the numerical scheme can be
written asUn+1 = (I+Δt Sh)−1Un . Let 1 = [

1 1 · · · 1]T . Then for suitable boundary
conditions usually we have Sh1 = 0 since Sh approximates a differential operator. So
we have (I+Δt Sh)1 = 1 thus (I+Δt Sh)−11 = 1. If we further have themonotonicity
(I + Δt Sh)−1 ≥ 0, then each row of the (I + Δt Sh)−1 has nonnegative entries and
sums to one, thus the discretemaximumprinciple holdsmin j Un

j ≤ Un+1
j ≤ max j Un

j ,
which is a desired and useful property inmany applications. For instance, second order
centered difference or P1 finite element method has been used to construct schemes
satisfying the discrete maximum principle in solving phase field equations [26,27,32].
In the rest of the paper, we will only focus on discussing the Eq. (1), even though all
discussions can be extended to solving the parabolic equation with backward Euler
time discretization.

1.7 Contributions and organization of the paper

To the best of our knowledge, this is the first time that a high order accurate scheme
under suitable mesh constraints is proven to be monotone in the sense L−1

h ≥ 0 for
solving a variable coefficient a(x) in (1) in two dimensions. For simplicity, we only
discuss an uniform mesh in this paper, even though the main results can be extended
to non-uniform meshes. However, an additional mesh constraint is expected for the
discretemaximumprinciple to hold. See such amesh constraint of non-uniformmeshes
for Q1 FEM in [8] and P2 FEM for one-dimensional problem in [30].

This paper is organized as follows. In Sect. 2, we describe the fourth order accurate
finite difference implementation ofC0-Q2 finite elementmethod. In Sect. 3, we review
the sufficient conditions to ensure monotonicity and discrete maximum principle. In
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Sect. 4, we prove that the fourth order accurate finite difference implementation of
C0-Q2 finite element method is monotone under some mesh constraints. Numerical
tests are given in Sect. 5. Concluding remarks are given in Sect. 6.

2 Finite difference implementation of C0-Q2 finite element method

Consider solving the following elliptic equation onΩ = (0, 1)× (0, 1) with Dirichlet
boundary conditions:

Lu ≡ −∇ · (a∇u) + cu = f on Ω,

u = g on ∂Ω.
(5)

Assume there is a function ḡ ∈ H1(Ω) as an extension of g so that ḡ|∂Ω = g. The
variational form of (1) is to find ũ = u − ḡ ∈ H1

0 (Ω) satisfying

A(ũ, v) = ( f , v) − A(ḡ, v), ∀v ∈ H1
0 (Ω), (6)

where A(u, v) = ∫∫
Ω
a∇u · ∇vdxdy + ∫∫

Ω
cuvdxdy, ( f , v) = ∫∫

Ω
f vdxdy.

Let h be the mesh size of the rectangular mesh and V h
0 ⊆ H1

0 (Ω) be the continuous
finite element space consisting of piecewise Q2 polynomials (i.e., tensor product of
piecewise quadratic polynomials), then themost convenient implementation ofC0-Q2

finite elementmethod is to use 3×3Gauss–Lobatto quadrature rule for all the integrals,
see Fig. 1. Such a numerical scheme can be defined as: find uh ∈ V h

0 satisfying

Ah(uh, vh) = 〈 f , vh〉h − Ah(gI , vh), ∀vh ∈ V h
0 , (7)

whereAh(uh, vh) and 〈 f , vh〉h denote using tensor product of 3-point Gauss–Lobatto
quadrature for integrals A(uh, vh) and ( f , vh) respectively, and gI is the piecewise
Q2 Lagrangian interpolation polynomial at the 3×3 quadrature points shown in Fig. 1
of the following function:

(a) The quadrature points and a FEM
mesh

(b) The corresponding finite differ-
ence grid

Fig. 1 An illustration of Q2 element and the 3 × 3 Gauss–Lobatto quadrature

123



H. Li, X. Zhang

g(x, y) =
{
0, if (x, y) ∈ (0, 1) × (0, 1),

g(x, y), if (x, y) ∈ ∂Ω.

Then ūh = uh + gI is the numerical solution for the problem (5). We emphasize that
(7) is not a straightforward approximation to (6) since ḡ is never used. It was proven
in [20] that the scheme (7) is fourth order accurate if coefficients and exact solutions
are smooth. Notice that ūh satisfies:

Ah(ūh, vh) = 〈 f , vh〉h, ∀vh ∈ V h
0 . (8)

See [20] for the detailed finite difference implementation and proof of fourth order
accuracy for the scheme (7).

2.1 One-dimensional case

Now consider the one-dimensional Dirichlet boundary value problem:

− (au′)′ + cu = f on (0, 1),

u(0) = σ0, u(1) = σ1.

Consider a uniform mesh xi = ih, i = 0, 1, . . . , n + 1, h = 1
n+1 . Assume n is odd

and let M = n+1
2 . Define intervals Ik = [x2k, x2k+2] for k = 0, . . . , M − 1 as a finite

element mesh for P2 basis. Define

V h = {v ∈ C0([0, 1]) : v ∈ P2(Ik), k = 0, . . . , M − 1}.

Let {φi }n+1
i=0 ⊂ V h be a basis for V h so that φi (x j ) = δi j , i, j = 0, 1, . . . , n + 1. Let

u0 = σ0, ui = uh(xi ) and un+1 = σ1, then uh, ūh ∈ V h can be represented as

uh(x) =
n∑

i=1

uiφi (x), ūh(x) =
n+1∑

i=0

uiφi (x).

Let f j = f (x j ), then (8) becomes

〈au′
h, φ

′
i 〉h + 〈cuh, φi 〉h = 〈 f , φi 〉h, i = 1, . . . , n; u0 = σ0, un+1 = σ1,

which are

n+1∑

j=0

u j

(
〈aφ′

j , φ
′
i 〉h + 〈cφ j , φi 〉h

)
=

n+1∑

j=0

f j 〈φ j , φi 〉h, i = 1, . . . , n;

u0 = σ0, un+1 = σ1.
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The matrix form is Sū = M f̄ where

ū = [
u0 u1 u2 · · · un un+1

]T
, f̄ = [

σ0 f1 f2 · · · fn σ1
]T

.

The scheme can be written as Lh(ū) = f̄ . The linear operator Lh has the matrix
representation Lh = M−1S.

For the Laplacian Lu = −u′′, we have

Lh(ū)0 = u0 = σ0, Lh(ū)n+1 = un+1 = σ1, (9a)

if i is odd, i.e., xi is a cell center, (9b)

Lh(ū)i = −ui−1 + 2ui − ui+1

h2
= fi , (9c)

if i is even, i.e., xi is a cell end, (9d)

Lh(ū)i = ui−2 − 8ui−1 + 14ui − 8ui+1 + ui+2

4h2
= fi . (9e)

For the variable coefficient operator Lu = −(au′)′ + cu, we have

Lh(ū)0 = u0 = σ0, Lh(ū)n+1 = un+1 = σ1, (10a)

and if xi is a cell center, we have

Lh(ū)i = −(3ai−1 + ai+1)ui−1 + 4(ai−1 + ai+1)ui − (ai−1 + 3ai+1)ui+1

4h2
+ ciui

= fi ; (10b)

and if xi is a cell end, then

Lh(ū)i = (3ai−2 − 4ai−1 + 3ai )ui−2 − (4ai−2 + 12ai )ui−1

8h2

+ (ai−2 + 4ai−1 + 18ai + 4ai+1 + ai+2)ui
8h2

+ −(12ai + 4ai+2)ui+1 + (3ai+2 − 4ai+1 + 3ai )ui+2

8h2
+ ciui = fi .

(10c)

2.2 Two-dimensional case

Consider a uniform grid (xi , y j ) for a rectangular domain [0, 1]×[0, 1]where xi = ih,
i = 0, 1, . . . , n + 1 and y j = jh, j = 0, 1, . . . , n + 1, h = 1

n+1 , where n must be
odd. Let ui j denote the numerical solution at (xi , y j ). Let u denote an abstract vector
consisting of ui j for i, j = 1, 2, . . . , n. Let ū denote an abstract vector consisting of
ui j for i, j = 0, 1, 2, . . . , n, n + 1. Let f̄ denote an abstract vector consisting of fi j
for i, j = 1, 2, . . . , n and the boundary condition g at the boundary grid points.

The scheme (8) for solving (5) can still be written as Lh(ū) = f̄ .
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Fig. 2 Three types of interior
grid points: red cell center, blue
knots and black edge centers for
a finite element cell (color figure
online)

2.2.1 Two-dimensional Laplacian

For the Laplacian Lu = −Δu, Lh(ū) can be expressed as the following. If (xi , y j ) ∈
∂Ω , then

Lh(ū)i, j = ui, j = gi, j .

If (xi , y j ) is an interior grid point and a cell center , Lh(ū)i, j is equal to

−ui−1, j − ui+1, j + 4ui, j − ui, j+1 − ui+1, j

h2
= fi, j . (11a)

For interior grid points, there are three types: cell center, edge center and knots. See
Fig. 2. If (xi , y j ) is an interior grid point and an edge center for an edge parallel to
x-axis, Lh(ū)i, j is equal to

−ui−1, j + 2ui, j − ui+1, j

h2
+ ui, j−2 − 8ui, j−1 + 14ui, j − 8ui, j+1 + ui, j+2

4h2
= fi, j .

(11b)
If (xi , y j ) is an interior grid point and an edge center for an edge parallel to y-axis,
Lh(ū)i, j is similarly defined as above. If (xi , y j ) is an interior grid point and a knot
(xi , y j ), Lh(ū)i, j is equal to

ui−2, j − 8ui−1, j + 14ui, j − 8ui+1, j + ui+2, j

4h2

+ ui, j−2 − 8ui, j−1 + 14ui, j − 8ui, j+1 + ui, j+2

4h2
= fi, j . (11c)

If ignoring the denominator h2, then the stencil of the operator Lh at interior grid
points can be represented as:

Cell center
−1

−1 4 −1
−1

Knots

1
4−2

1
4 −2 7 −2 1

4−2
1
4

123



On the monotonicity and discrete maximum principle of the…

Edge center (edge parallel to y-axis)
−1

1
4 −2 11

2 −2 1
4−1

Edge center (edge parallel to x-axis)

1
4−2

−1 11
2 −1

−2
1
4

2.3 Two-dimensional variable coefficient case

For Lu = −∇ · (a∇u) + cu, Lh(ū) will have exactly the same stencil size as the
Laplacian case. At boundary points (xi , y j ) ∈ ∂Ω , Lh(ū) = f̄ becomes

Lh(ū)i, j = ui, j = gi, j . (12a)

If (xi , y j ) is an interior grid point and a cell center, Lh(ū)i, j is equal to

−(3ai−1, j + ai+1, j )ui−1, j + 4(ai−1, j + ai+1, j )ui, j − (ai−1, j + 3ai+1, j )ui+1, j

4h2
(12b)

+ −(3ai, j−1 + ai, j+1)ui, j−1 + 4(ai, j−1 + ai, j+1)ui, j − (ai, j−1 + 3ai, j+1)ui, j+1

4h2

+ ci j ui j .

If (xi , y j ) is an interior grid point and a knot, Lh(ū)i, j is equal to

(3ai−2, j − 4ai−1, j + 3ai, j )ui−2, j − (4ai−2, j + 12ai, j )ui−1, j

8h2

+ (ai−2, j + 4ai−1, j + 18ai, j + 4ai+1, j + ai+2, j )ui, j
8h2

+ −(12ai, j + 4ai+2, j )ui+1, j + (3ai+2, j − 4ai+1, j + 3ai, j )ui+2, j

8h2

+ (3ai, j−2 − 4ai, j−1 + 3ai, j )ui, j−2 − (4ai, j−2 + 12ai, j )ui, j−1

8h2

+ (ai, j−2 + 4ai, j−1 + 18ai, j + 4ai, j+1 + ai, j+2)ui, j
8h2

+ −(12ai, j + 4ai, j+2)ui, j+1 + (3ai, j+2 − 4ai, j+1 + 3ai, j )ui, j+2

8h2
+ ci j ui j .

(12c)

If (xi , y j ) is an interior grid point and an edge center for an edge parallel to y-axis,
Lh(ū)i, j is equal to
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(3ai−2, j − 4ai−1, j + 3ai, j )ui−2, j − (4ai−2, j + 12ai, j )ui−1, j

8h2

+ (ai−2, j + 4ai−1, j + 18ai, j + 4ai+1, j + ai+2, j )ui, j
8h2

+ −(12ai, j + 4ai+2, j )ui+1, j + (3ai+2, j − 4ai+1, j + 3ai, j )ui+2, j

8h2

+ −(3ai, j−1 + ai, j+1)ui, j−1 + 4(ai, j−1 + ai, j+1)ui, j − (ai, j−1 + 3ai, j+1)ui, j+1

4h2

+ ci j ui j . (12d)

If (xi , y j ) is an interior grid point and an edge center for an edge parallel to x-axis,
Lh(ū)i, j is equal to

(3ai, j−2 − 4ai, j−1 + 3ai, j )ui, j−2 − (4ai, j−2 + 12ai, j )ui, j−1

8h2

+ (ai, j−2 + 4ai, j−1 + 18ai, j + 4ai, j+1 + ai, j+2)ui, j
8h2

+ −(12ai, j + 4ai, j+2)ui, j+1 + (3ai, j+2 − 4ai, j+1 + 3ai, j )ui, j+2

8h2

+ −(3ai−1, j + ai+1, j )ui−1, j + 4(ai−1, j + ai+1, j )ui, j − (ai−1, j + 3ai+1, j )ui+1, j

4h2

+ ci j ui j . (12e)

3 Sufficient conditions for monotonicity and discrete maximum
principle

3.1 Discrete maximum principle

Assume there are N grid points in the domain Ω and N ∂ grid points on ∂Ω . Define

u = (
u1 u2 · · · uN

)T
, u∂ =

(
u∂
1 u∂

2 · · · u∂
N ∂

)T
,

ũ =
(
u1 u2 · · · uN u∂

1 u∂
2 · · · u∂

N ∂

)T
.

A finite difference scheme can be written as

Lh(ũ)i =
N∑

j=1

bi j u j +
N ∂∑

j=1

b∂
i j u

∂
j = fi , 1 ≤ i ≤ N ,

u∂
i = gi , 1 ≤ i ≤ N ∂ .
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The matrix form is

L̃h ũ = f̃, L̃h =
(
Lh B∂

0 I

)
, ũ =

(
u
u∂

)
, f̃ =

(
f
g

)
.

The discrete maximum principle is

Lh(ũ)i ≤ 0, 1 ≤ i ≤ N �⇒ max
i

ui ≤ max

{
0,max

i
u∂
i

}
(13)

which implies

Lh(ũ)i = 0, 1 ≤ i ≤ N �⇒ |ui | ≤ max
i

|u∂
i |.

The following result was proven in [9]:

Theorem 1 A finite difference operator Lh satisfies the discrete maximum principle
(13) if L̃−1

h ≥ 0 and all row sums of L̃h are non-negative.

Let ū and f̄ be the same vectors as defined in Sect. 2. For the same finite difference
scheme, the matrix form can also be written as

L̄h ū = f̄ .

Notice that there exist two permutation matrices P1 and P2 such that ū = P1ũ and
f̄ = P2 f̃ . Since the matrix vector form of the same scheme is also L̃h ũ = f̃ , we obtain
P−1
2 L̄h P1 = L̃h . Notice that a permutation matrix P is inverse-positive and the signs

of row sums will not be altered after multiplying P to L̃h . Thus we have.

Theorem 2 If L̄h is inverse-positive and row sums of L̄h are non-negative, then Lh

satisfies the discrete maximum principle (13).

Notice that L̃−1
h =

(
L−1
h −L−1

h B∂

0 I

)
, thus we have.

Theorem 3 If L̄−1
h ≥ 0, then L̃−1

h ≥ 0 and thus L−1
h ≥ 0.

Let 1 denote a vector of suitable size with 1 as entries, then for all schemes in
Sect. 2, Lh(1) ≥ 0, which implies the row sums of L̄h are non-negative. Thus from
now on, we only need to discuss the monotonicity of the matrix L̄h .

3.2 Characterizations of nonsingular M-matrices

M-matrices belong to the set of Z-matrices which are matrices with nonpositive off-
diagonal entries. Nonsingular M-matrices are always inverse-positive. See [24] for the
definition and various characterization of nonsingular M-matrices. The following is a
convenient sufficient condition to characterize nonsingular M-matrices.
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Theorem 4 For a real square matrix A with positive diagonal entries and non-positive
off-diagonal entries, A is a nonsingular M-matrix if and only if all the row sums of A
are non-negative and at least one row sum is positive.

Proof By condition C10 in [24], A is a nonsingular M-matrix if and only if A + aI
is nonsingular for any a ≥ 0. Since all the row sums of A are non-negative and at
least one row sum is positive, the matrix A is irreducibly diagonally dominant thus
nonsingular, and A + aI is strictly diagonally dominant thus nonsingular for any
a > 0. ��
Definition 1 Let N = {1, 2, . . . , n}. For N1,N2 ⊂ N , we say a matrix A of size
n × n connects N1 with N2 if

∀i0 ∈ N1, ∃ir ∈ N2, ∃i1, . . . , ir−1 ∈ N s.t. aik−1ik �= 0, k = 1, . . . , r . (14)

If perceiving A as a directed graph adjacency matrix of vertices labeled by N , then
(14) simply means that there exists a directed path from any vertex in N1 to at least
one vertex in N2. In particular, if N1 = ∅, then any matrix A connects N1 with N2.

Given a square matrix A and a column vector x, we define

N 0(Ax) = {i : (Ax)i = 0}, N+(Ax) = {i : (Ax)i > 0}.

By condition L36 in [24], we have the following characterization of nonsingular
M-matrices.

Theorem 5 For a real square matrix A with non-positive off-diagonal entries, if there
is a vector x > 0 with Ax ≥ 0 s.t. A connects N 0(Ax) with N+(Ax), then A is a
nonsingular M-matrix thus A−1 ≥ 0.

3.3 Lorenz’s sufficient condition for monotonicity

All results in this subsection were first shown in [22]. For completeness, we include a
detailed proof.

Given a matrix A = [ai j ] ∈ Rn×n , define its diagonal, positive and negative off-
diagonal parts as n × n matrices Ad , Aa , A+

a , A
−
a :

(Ad)i j =
{
aii , if i = j

0, if i �= j
, Aa = A − Ad ,

(A+
a )i j =

{
ai j , if ai j > 0, i �= j

0, otherwise.
, A−

a = Aa − A+
a .

Lemma 1 If A is monotone, then for any two matrices B ≥ C, A−1B ≥ A−1C.

Proof For any two column vectors b ≥ c, we have

b − c ≥ 0 ⇒ A−1(b − c) ≥ 0 ⇒ A−1b ≥ Ac.
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By considering b and c as column vectors of B and C , we get A−1B ≥ A−1C . ��
Lemma 2 If A is an M-matrix, then Ad ≥ A and A−1 ≥ A−1

d .

Proof Ad ≥ A is trivial. A is monotone, thus

Ad ≥ A ⇒ A−1Ad ≥ A−1A = I .

And A−1
d ≥ 0 implies

A−1Ad ≥ I ⇒ A−1Ad A
−1
d ≥ I A−1

d ⇒ A−1 ≥ A−1
d .

��
Theorem 6 If Aa ≤ 0 and there exists a nonzero vector e ∈ Rn such that e ≥ 0 and
Ae ≥ 0. Moreover, A connects N 0(Ae) with N+(Ae). Then the following hold:

– e > 0.
– aii > 0, ∀i ∈ N.
– A is a M-matrix and A−1 ≥ 0.

Proof Assume there is one index i such that ei = 0, then

0 ≤ (Ae)i =
∑

j �=i

ai j e j ≤ 0 ⇒ (Ae)i = 0 ⇒
∑

j �=i

ai j e j = 0 ⇒ ai j e j = 0, ∀ j .

Thus if ai j < 0, then e j = 0, which implies (Ae) j = 0 by the same argument as
above. Therefore, A has no off-diagonal nonzero entry akl such that k ∈ N 0(Ae)
and l ∈ N+(Ae). In other words, if A represents the graph adjacency matrix for
a directed graph of vertices indexed by 1, 2, . . . , n, then any edge starting from a
vertex i ∈ N 0(Ae) points to vertices in N 0(Ae), thus there is no directed path from
i ∈ N 0(Ae) to any vertex in N+(Ae), which contradicts to the assumption that
A connects N 0(Ae) with N+(Ae). With e > 0, the rest is proven by following
Theorem 5. ��
Corollary 1 If A is a nonsingular M-matrix, f ∈ Rn is a nonzero vector with f ≥ 0
and A connects N 0(f) with N+(f), then A−1f > 0.

Proof By using e = A−1f ≥ 0 in Theorem 6, we get A−1f > 0. ��
Theorem 7 If A ≤ M1M2 · · · MkL where M1, . . . , Mk are nonsingular M-matrices
and La ≤ 0, and there exists a nonzero vector e ≥ 0 such that one of the matri-
ces M1, . . . , Mk, L connects N 0(Ae) with N+(Ae). Then A is a product of k + 1
nonsingular M-matrices thus A−1 ≥ 0.

Proof Let M = M1M2 · · · Mk , then M is monotone. By Lemma 1, we get

M−1A ≤ L, (15)
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thus
(M−1A)a ≤ 0. (16)

For each Mi , i = 1, . . . , k, by Lemma 2, we have

(Mi )
−1 ≥ ((Mi )d)

−1 ⇒ M−1 ≥ (Mk)
−1
d · · · (M1)

−1
d , (17)

which implies
M−1Ae ≥ cAe, (18)

for some positive number c.
If L connects N 0(Ae) with N+(Ae), then M−1A also connects N 0(Ae) with

N+(Ae) because (15) implies that (M−1A)i j �= 0 whenever Li j �= 0 for any i �= j .
By (18), N+(Ae) ⊂ N+(M−1Ae) and N 0(M−1Ae) ⊂ N 0(Ae), thus M−1A also
connects N 0(M−1Ae) with N+(M−1Ae). With (16), by Theorem 6, M−1A is a
nonsingular M-matrix thus A is a product of k + 1 M-matrices which implies A is
monotone.

If Mi connectsN 0(Ae)withN+(Ae) for some 1 ≤ i ≤ k. Let M ′ = M1 . . . Mi−1.
Similar to (17) and (18), we get

(M ′)−1Ae ≥ c2Ae, c2 > 0, (19)

which implies thatMi connectsN 0((M ′)−1Ae)withN+((M ′)−1Ae). ByCorollary 1,
we know M−1

i (M ′)−1Ae > 0, thus M−1Ae > 0. With (16), through Theorem 6 we
find M−1A is a M-matrix thus A is a product of k + 1 M-matrices which implies A is
monotone. ��
Theorem 8 If A−

a has a decomposition: A−
a = Az + As = (azi j ) + (asi j ) with As ≤ 0

and Az ≤ 0, such that

Ad + Az is a nonsingular M-matrix, (20a)

A+
a ≤ Az A−1

d As or equivalently ∀ai j > 0 with i �= j, ai j ≤
n∑

k=1

azika
−1
kk a

s
k j , (20b)

∃e ∈ Rn\{0}, e ≥ 0 with Ae ≥ 0 s.t. Az or As connects N 0(Ae) with N+(Ae).
(20c)

Then A is a product of two nonsingular M-matrices thus A−1 ≥ 0.

Proof By (20b), we have

A = Ad + Az + As + A+
a ≤ (Ad + Az)(I + A−1

d As). (21)

By (20c), either Ad + Az or I + A−1
d As connectsN 0(Ae) withN+(Ae). By applying

Theorem 7 for the case k = 1, M1 = Ad + Az and L = I + A−1
d As , we get A−1 ≥ 0.

��
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(a) Grid points. (b) The directed graph.

Fig. 3 An illustration of the directed graph described by off-diagonal entries of the matrix in (22): the
domain [0, 1] is discretized by a uniform 5-point grid; the black points are interior grid points and the blue
ones are the boundary grid points. There is a directed path from any interior grid point to at least one of the
boundary points

4 Themain result

For a general matrix, conditions (20) in Theorem 8 can be difficult to verify. We will
first derive a simplified version of Theorem 8 then verify it for the schemes in Sect. 2.

4.1 A simplified sufficient condition for monotonicity

We will take advantage of the directed graph described by the 5-point discrete Lapla-
cian, i.e., the second order centered difference scheme, which has similar off-diagonal
negative entry patterns as the schemes in Sect. 2.

For the one-dimensional problem −u′′ = f , x ∈ (0, 1) with u(0) = u(1), the
scheme can be written as u0 = σ0, un+1 = σ1,

−ui−1+2ui−ui+1
h2

= fi , i = 1, . . . , n.

The matrix vector form is K ū = f̄ where

K = 1

h2

⎛

⎜⎜⎜
⎜⎜⎜⎜
⎝

h2

− 1 2 − 1
− 1 2 − 1

. . .
. . .

. . .

− 1 2 − 1
h2

⎞

⎟⎟⎟
⎟⎟⎟⎟
⎠

, (22)

which described the directed graph illustrated in Fig. 3. Let 1 denote a vector of suitable

size with each entry as 1, then (K1)i =
{
0, i = 1, . . . , n

1, i = 0, n + 1
. By Fig. 3, it is easy to

see that K connects N 0(K1) with N+(K1).
Next we consider the second order accurate 5-point discrete Laplacian scheme for

solving −Δu = f on Ω = (0, 1) × (0, 1) with homogeneous Dirichlet boundary
conditions:

ui, j = 0, (xi , y j ) ∈ ∂Ω;
−ui−1, j − ui+1, j + 4ui, j − ui, j+1 − ui+1, j

h2
= fi j , (xi , y j ) ∈ Ω.

123



H. Li, X. Zhang

(a) Grid points. (b) The directed graph.

Fig. 4 An illustration of the directed graph described by off-diagonal entries in the 5-point discrete Laplacian
matrix: the domain [0, 1] × [0, 1] is discretized by a uniform 5 × 5 grid; the black points are interior grid
points and the blue ones are the boundary grid points. There is a directed path from any interior grid point
to at least one of the boundary grid points (color figure online)

See Fig. 4 for the directed graph described by its matrix representation. Let K be the
matrix representation of the 5-point discrete Laplacian scheme, then

(K1)i, j =
{
1, if (xi , y j ) ∈ ∂Ω,

0, if (xi , y j ) ∈ Ω.

By Fig. 4, it is easy to see that K connects N 0(K1) with N+(K1).
Let A := L̄h denote the matrix representation of any scheme in Sect. 2. Then

(A1)i, j =
{
1, if (xi , y j ) ∈ ∂Ω,

ci j ≥ 0, if (xi , y j ) ∈ Ω.

Therefore, N+(K1) ⊂ N+(A1) implies N 0(A1) ⊂ N 0(K1), thus K also connects
N 0(A1) with N+(A1). Notice that indices of nonzero off-diagonal entries in K is
a subset of indices of nonzero entries in A−

a , thus A−
a also connects N 0(A1) with

N+(A1). So the vector e can be set as 1 in (20c). If assuming c(x, y) > 0, then
A1 > 0 thus the condition (20c) is trivially satisfied.

By Theorem 4, for any decomposition of off-diagonal negative entries A−
a = Az +

As , Ad + Az is an M-matrix if (Ad + Az)1 �= 0 and (Ad + Az)1 ≥ 0. So Theorem 8
for the schemes (10) and (12) can be simplified as.

Theorem 9 Let A denote the matrix representation of the schemes solving −∇ ·
(a∇)u + cu = f in Sect. 2. Assume A−

a has a decomposition A−
a = Az + As with

As ≤ 0 and Az ≤ 0. Then A−1 ≥ 0 if the following are satisfied:

1. (Ad + Az)1 �= 0 and (Ad + Az)1 ≥ 0;
2. A+

a ≤ Az A−1
d As;

3. For c(x, y) ≥ 0, either Az or As has the same sparsity pattern as A−
a . If c(x, y) >

0, then this condition can be removed.
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4.2 One-dimensional Laplacian case

As a demonstration of how to apply Theorem 9, we first consider the scheme (9). Let
A be the matrix representation of the linear operator Lh in the scheme (9). LetAd and
A±

a be linear operators corresponding to the matrices Ad and A±
a respectively.

Consider the following decomposition of A−
a = Az + As with Az = As = 1

2A−
a :

Az(ū)0 = As(ū)0 = 0, Az(ū)n+1 = As(ū)n+1 = 0,

Az(ū)i = As(ū)i = −ui−1 − ui+1

2h2
, if xi is a cell center,

Az(ū)i = As(ū)i = −8ui−1 − 8ui+1

8h2
, if xi is an interior cell end.

The operator Ad and A+
a are given as:

Ad(ū)0 = u0, Ad(ū)n+1 = un+1,

Ad(ū)i = 2ui
h2

, if xi is a cell center,

Ad(ū)i = 14ui
4h2

, if xi is an interior cell end.

A+
a (ū)0 = 0, A+

a (ū)n+1 = 0,

A+
a (ū)i = 0, if xi is a cell center,

A+
a (ū)i = ui−2 + ui+2

4h2
, if xi is an interior cell end.

Obviously, Az and As both have have the same sparsity pattern as A−
a . It is straight-

forward to verify [Ad +Az](1) is a non-negative nonzero vector. So we only need to
verify A+

a ≤ Az A−1
d As to apply Theorem 9. Since Az A−1

d As ≥ 0, we only need to

compare nonzero coefficients in A+
a (ū)i and Az

(
A−1

d [As(ū)]
)

i
.

When xi is an interior cell end, xi±1 are cell centers, and we have

As(ū)i−1 = −ui−2 − ui
2h2

, A−1
d [As(ū)]i−1 = h2As(ū)i−2

2
,

Az(A−1
d [As(ū)])i = −A−1

d [−As(ū)]i−1 − A−1
d [As(ū)]i+1

h2

= ui−2 + 2ui + ui+2

4h2
.

We can verify A+
a ≤ Az A−1

d As by comparing only the coefficients of ui±2 inA+
a (ū)i

and Az
(
A−1

d [As(ū)]
)

i
because Az A−1

d As ≥ 0. By Theorem 9, we get A−1 ≥ 0.
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4.3 One-dimensional variable coefficient case

As we have seen in the previous discussion, all the operators are either zero or identity
at the boundary points thus do not affect the discussion verifying the condition (20b).
For the sake of simplicity, we only consider the interior grid points for the linear
operators. With the positive and negative parts for a number f defined as:

f + = | f | + f

2
, f − = | f | − f

2
,

the linear operators Ad , A±
a are

if xi is a cell center,

Ad(ū)i =
(
ai−1 + ai+1

h2
+ ci

)
ui ;

if xi is an interior cell end,

Ad(ū)i =
(
ai−2 + 4ai−1 + 18ai + 4ai+1 + ai+2

8h2
+ ci

)
ui .

if xi is a cell center,

A+
a (ū)i = 0;

if xi is an interior cell end,

A+
a (ū)i = (3ai−2 − 4ai−1 + 3ai )+ui−2 + (3ai+2 − 4ai+1 + 3ai )+ui+2

8h2
.

If xi is a cell center,

A−
a (ū)i = −(3ai−1 + ai+1)ui−1 − (ai−1 + 3ai+1)ui+1

4h2
;

If xi is an interior cell end,

A−
a (ū)i = −(3ai−2 − 4ai−1 + 3ai )−ui−2

8h2

+ −(4ai−2 + 12ai )ui−1 − (12ai + 4ai+2)ui+1 − (3ai − 4ai+1 + 3ai+2)
−ui+2

8h2
.

We can easily verify that (Ad + Az)1 ≥ 0 for the following Az :

if xi is a cell center,

Az(ū)i = ε
−(3ai−1 + ai+1)ui−1 − (ai−1 + 3ai+1)ui+1

4h2
,

if xi is an interior cell end,

Az(ū)i = −(3ai−2 − 4ai−1 + 3ai )−ui−2 − [4ai−2 + 12ai − (3ai−2 − 4ai−1 + 3ai )+]ui−1

8h2

+ −[12ai + 4ai+2 − (3ai − 4ai+1 + 3ai+2)
+]ui+1 − (3ai − 4ai+1 + 3ai+2)

−ui+2

8h2
,
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where ε > 0 is a small number. Moreover, Az has the same sparsity pattern as A−
a for

any ε > 0. For ε < 1 we can verify that As = A−
a − Az ≤ 0:

If xi is a cell center,

As(ū)i = (1 − ε)
−(3ai−1 + ai+1)ui−1 − (ai−1 + 3ai+1)ui+1

4h2
,

If xi is an interior cell end,

As(ū)i = −(3ai−2 − 4ai−1 + 3ai )+ui−1 − (3ai − 4ai+1 + 3ai+2)
+ui+1

8h2
.

Nowwe only need to compare nonzero coefficients inA+
a (ū)i andAz

(
A−1

d [As(ū)]
)

i
for xi being an interior cell end. When xi is an interior cell end, xi±1 are cell centers,
and we have

As(ū)i−1 = (1 − ε)
−(3ai−2 + ai )ui−2 − (ai−2 + 3ai )ui

4h2
,

As(ū)i−2 = −(3ai−4 − 4ai−3 + 3ai−2)
+ui−3 − (3ai−2 − 4ai−1 + 3ai )+ui−1

8h2
,

A−1
d [As(ū)]i−1 = h2As(ū)i−1

(ai−2 + ai + h2ci−1)

= (1 − ε)
−(3ai−2 + ai )ui−2 − (ai−2 + 3ai )ui

4(ai−2 + ai + h2ci−1)
.

It suffices to focus on the coefficient of ui−2 in Az(A−1
d [As(ū)])i and the discussion

for the coefficient of ui+2 is similar.Notice thatA−1
d [As(ū)]i−2 will contribute nothing

to the coefficient of ui−2. So the coefficient of ui−2 in Az(A−1
d [As(ū)])i is

(1 − ε)
(3ai−2 + ai )(4ai−2 + 12ai − (3ai−2 − 4ai−1 + 3ai )+)

32h2(ai−2 + ai + h2ci−1)
.

Thus to ensure A+
a ≤ Az A−

d As , it suffices to have the following holds for any interior
cell end xi :

(1 − ε)
(3ai−2 + ai )(4ai−2 + 12ai − (3ai−2 − 4ai−1 + 3ai )+)

32h2(ai−2 + ai + h2ci−1)

≥ (3ai−2 − 4ai−1 + 3ai )+

8h2
.

Equivalently, we need the following inequality holds for any cell center xi :

(1 − ε)
(3ai−1 + ai+1)(4ai−1 + 12ai+1 − (3ai−1 − 4ai + 3ai+1)

+)

32h2(ai−1 + ai+1 + h2ci )

≥ (3ai−1 − 4ai + 3ai+1)
+

8h2
. (23)
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Notice that ε can be any fixed number in [0, 1) so that Ad + Az is an M-matrix and
As ≤ 0. And ε must be strictly positive so that Az has the same sparsity pattern as
A−
a . Thus if there is one fixed ε ∈ (0, 1) so that (23) holds for any cell center xi , then

by Theorem 9, A−1 ≥ 0. A sufficient condition for (23) to hold for any cell center xi
with some fixed ε ∈ (0, 1) is to have the following inequality for any cell center xi :

(3ai−1 + ai+1)(4ai−1 + 12ai+1 − (3ai−1 − 4ai + 3ai+1)
+)

32h2(ai−1 + ai+1 + h2ci )

>
(3ai−1 − 4ai + 3ai+1)

+

8h2
. (24)

If 3ai−1 − 4ai + 3ai+1 ≤ 0, then (24) holds trivially. We only need to discuss the
case 3ai−1 − 4ai + 3ai+1 > 0, for which (24) becomes

(3ai−1 + ai+1)(ai−1 + 4ai + 9ai+1) > 4(ai−1 + ai+1 + h2ci )(3ai−1 − 4ai + 3ai+1).

(25)
So we have proven the first result for the variable coefficient case:

Theorem 10 For the scheme (10) solving −(au′)′ + cu = f with a(x) > 0 and
c(x) ≥ 0, its matrix representation A = L̄h satisfies A−1 ≥ 0 if (25) holds for any
cell center xi .

The constraint (25) will be satisfied for small enough h. The proof of the following
two theorems are included in the “Appendix 6”.

Theorem 11 For the scheme (10) solving −(au′)′ + cu = f with a(x) > 0 and
c(x) ≥ 0 on a uniformmesh, its matrix representation A = L̄h satisfies A−1 ≥ 0 if any
of the following constraints is satisfied for each finite element cell Ii = [xi−1, xi+1]:
– There exists some λ ∈ ( 3

13 , 1) such that

h2ci <
13(1 − λ)minIi a

2(x)

6maxIi a(x) − 4minIi a(x)
, h

maxx∈Ii
∣∣a′(x)

∣∣

minx∈Ii a(x)
<

√
39λ − 3

6
.

– 2hmaxIi |a′(x)| + h2ci
(
1 − 2

3
minIi a(x)
maxIi a(x)

)
< 5

3
minIi a

2(x)
maxIi a(x) .

– If c(x) ≡ 0, then we only need h
maxx∈Ii |a′(x)|
minx∈Ii a(x) <

√
39−3
6 .

– If a(x) ≡ a > 0, then we only need h2ci < 5a.

Theorem 12 For the scheme (10) solving −(au′)′ + cu = f with a(x) > 0 and
c(x) ≥ 0, its matrix representation A = L̄h satisfies A−1 ≥ 0 if the following mesh
constraint is achieved for all cell centers xi :

h2
(
3

2
ci + max

x∈(xi−1,xi+1)
a′′(x)

)
<

74

45
min{ai−1, ai , ai+1}. (26a)

If a(x) is a concave function, then (26a) can be replaced by

h2ci < 3min{ai−1, ai , ai+1}. (26b)
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Remark 1 For solving heat equation with backward Euler time discretization (4), the
mesh constraints in Theorems 11 and 12 imply that a lower bound for Δt

h2
is a sufficient

condition for ensuring monotonicity. Numerical tests suggest that a lower bound on
Δt
h2

is also a necessary condition, see Sect. 5. A lower bound constraint on the time
step is common for high order accurate spatial discretizations with backward Euler to
satisfy monotonicity, e.g., [25].

4.4 Two-dimensional variable coefficient case

Next we apply Theorem 9 to the scheme (12). The splitting A−
a = Az + As is quite

similar to one-dimensional case due to its stencil pattern.
Let A := L̄h be the matrix representation of the linear operator Lh in the scheme

(12). We only consider interior grid points since Lh is identity operator on boundary
points which do not affect applying Theorem 9. We first have

if xi j is a cell center,

Ad(ū)i j =
(
ai−1, j + ai+1, j + ai, j−1 + ai, j+1

h2
+ ci j

)
ui j ;

if xi j is an edge center for an edge parallel to y-axis,

Ad(ū)i j

=
(

(ai−2, j + 4ai−1, j + 18ai j + 4ai+1, j + ai+2, j ) + 8(ai, j−1 + ai, j+1)

8h2
+ ci j

)
ui j ;

if xi j is an edge center for an edge parallel to x-axis,

Ad(ū)i j

=
(

(ai, j−2 + 4ai, j−1 + 18ai j + 4ai, j+1 + ai, j+2) + 8(ai−1, j + ai+1, j )

8h2
+ ci j

)
ui j ;

if xi j is a knot,

Ad(ū)i j =
(
ai−2, j + 4ai−1, j + 18ai j + 4ai+1, j + ai+2, j

8h2

+ (ai, j−2 + 4ai, j−1 + 18ai j + 4ai, j+1 + ai, j+2)

8h2
+ ci j

)
ui j .

For the operator A+
a , it is given as

if xi j is a cell center,A+
a (ū)i j = 0;

if xi j is an edge center for an edge parallel to y-axis,

A+
a (ū)i j

= (3ai−2, j − 4ai−1, j + 3ai, j )+ui−2, j + (3ai+2, j − 4ai+1, j + 3ai, j )+ui+2, j

8h2
;

if xi j is an edge center for an edge parallel to x-axis,

A+
a (ū)i j
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= (3ai, j−2 − 4ai, j−1 + 3ai, j )+ui, j−2 + (3ai, j+2 − 4ai, j+1 + 3ai, j )+ui, j+2

8h2
;

if xi j is a knot,

A+
a (ū)i j

= (3ai−2, j − 4ai−1, j + 3ai, j )+ui−2, j + (3ai+2, j − 4ai+1, j + 3ai, j )+ui+2, j

8h2

+ (3ai, j−2 − 4ai, j−1 + 3ai, j )+ui, j−2 + (3ai, j+2 − 4ai, j+1 + 3ai, j )+ui, j+2

8h2
.

Let ε ∈ (0, 1) be a fixed number. We consider the following Az ≤ 0 so that
(Ad + Az)1 ≥ 0:

if xi j is a cell center,Az(ū)i j = −ε
(3ai−1, j + ai+1, j )ui−1, j

4h2

− ε
(ai−1, j + 3ai+1, j )ui+1, j + (3ai, j−1 + ai, j+1)ui, j−1 + (ai, j−1 + 3ai, j+1)ui, j+1

4h2
;

if xi j is an edge center for an edge parallel to y-axis,

Az(ū)i j

= −(3ai−2, j − 4ai−1, j + 3ai, j )−ui−2, j − [4ai−2, j + 12ai, j − (3ai−2, j − 4ai−1, j + 3ai, j )+]ui−1, j

8h2

+ −[12ai, j + 4ai+2, j − (3ai+2, j − 4ai+1, j + 3ai, j )+]ui+1, j − (3ai+2, j − 4ai+1, j + 3ai, j )−ui+2, j

8h2

+ ε
−(3ai, j−1 + ai, j+1)ui, j−1 − (ai, j−1 + 3ai, j+1)ui, j+1

4h2
;

if xi j is an edge center for an edge parallel to x-axis,

Az(ū)i j

= −(3ai, j−2 − 4ai, j−1 + 3ai, j )−ui, j−2 − [4ai, j−2 + 12ai, j − (3ai, j−2 − 4ai, j−1 + 3ai, j )+]ui, j−1

8h2

+ −[12ai, j + 4ai, j+2 − (3ai, j+2 − 4ai, j+1 + 3ai, j )+]ui, j+1 − (3ai, j+2 − 4ai, j+1 + 3ai, j )−ui, j+2

8h2

+ ε
−(3ai−1, j + ai+1, j )ui−1, j − (ai−1, j + 3ai+1, j )ui+1, j

4h2
;

if xi j is a knot,

Az(ū)i j

= −(3ai−2, j − 4ai−1, j + 3ai, j )−ui−2, j − [4ai−2, j + 12ai, j − (3ai−2, j − 4ai−1, j + 3ai, j )+]ui−1, j

8h2

+ −[12ai, j + 4ai+2, j − (3ai+2, j − 4ai+1, j + 3ai, j )+]ui+1, j − (3ai+2, j − 4ai+1, j + 3ai, j )−ui+2, j

8h2

+ −(3ai, j−2 − 4ai, j−1 + 3ai, j )−ui, j−2 − [4ai, j−2 + 12ai, j − (3ai, j−2 − 4ai, j−1 + 3ai, j )+]ui, j−1

8h2

+ −[12ai, j + 4ai, j+2 − (3ai, j+2 − 4ai, j+1 + 3ai, j )+]ui, j+1 − (3ai, j+2 − 4ai, j+1 + 3ai, j )−ui, j+2

8h2
;
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Then As = A−
a − Az is given as:

if xi is a cell center,As(ū)i j

= −(1 − ε)
(3ai−1, j + ai+1, j )ui−1, j + (ai−1, j + 3ai+1, j )ui+1, j

4h2

− (1 − ε)
(3ai, j−1 + ai, j+1)ui, j−1 + (ai, j−1 + 3ai, j+1)ui, j+1

4h2
;

if xi j is an edge center for an edge parallel to y-axis,As(ū)i j

= −(3ai−2, j − 4ai−1, j + 3ai, j )+ui−1, j − (3ai+2, j − 4ai+1, j + 3ai, j )+ui+1, j

8h2

+ (1 − ε)
−(3ai, j−1 + ai, j+1)ui, j−1 − (ai, j−1 + 3ai, j+1)ui, j+1

4h2
;

if xi j is an edge center for an edge parallel to x-axis,As(ū)i j

= −(3ai, j−2 − 4ai, j−1 + 3ai, j )+ui, j−1 − (3ai, j+2 − 4ai, j+1 + 3ai, j )+ui, j+1

8h2

+ (1 − ε)
−(3ai−1, j + ai+1, j )ui−1, j − (ai−1, j + 3ai+1, j )ui+1, j

4h2
;

if xi j is a knot,As(ū)i j

= −(3ai−2, j − 4ai−1, j + 3ai, j )+ui−1, j − (3ai+2, j − 4ai+1, j + 3ai, j )+ui+1, j

8h2

+ −(3ai, j−2 − 4ai, j−1 + 3ai, j )+ui, j−1 − (3ai, j+2 − 4ai, j+1 + 3ai, j )+ui, j+1

8h2
;

For the positive off-diagonal entries, A+
a (ū)i j is nonzero only for xi j being an

edge center or a cell center. Thus to verify A+
a ≤ Az A−1

d As , it suffices to compare

Az
[
A−1

d (As(ū))
]

i j
with A+

a (ū)i j for xi j being an edge center or a cell center.

If xi j is an edge center for an edge parallel to y-axis, then xi±1, j are cell centers.
Since everything here has a symmetric structure, we only need to compare the coef-

ficients of ui−2, j in Az
[
A−1

d (As(ū))
]

i j
and A+

a (ū)i j , and the comparison for the

coefficients of ui+2, j will be similar.

As(ū)i−1, j = −(1 − ε)
(3ai−2, j + ai j )ui−2, j + (ai−2, j + 3ai, j )ui, j

4h2

− (1 − ε)
(3ai−1, j−1 + ai−1, j+1)ui−1, j−1 + (ai−1, j−1 + 3ai−1, j+1)ui−1, j+1

4h2
,

A−1
d [As(ū)]i−1, j = −(1 − ε)

(3ai−2, j + ai j )ui−2, j + (ai−2, j + 3ai j )ui, j
4(ai−2, j + ai j + ai−1, j+1 + ai−1, j−1 + h2ci−1, j )

− (1 − ε)
(3ai−1, j−1 + ai−1, j+1)ui−1, j−1 + (ai−1, j−1 + 3ai−1, j+1)ui−1, j+1

4(ai−2, j + ai j + ai−1, j+1 + ai−1, j−1 + h2ci−1, j )
.
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Since the coefficient of ui−2, j inA+
a (ū)i j is (3ai−2, j −4ai−1, j +3ai j )+/(8h2), we

only need to discuss the case 3ai−2, j − 4ai−1, j + 3ai j > 0, for which the coefficient

of ui−2, j in Az
[
A−1

d (As(ū))
]

i j
becomes

ai−2, j + 4ai−1, j + 9ai j
8h2

(1 − ε)(3ai−2, j + ai j )

4(ai−2, j + ai j + ai−1, j+1 + ai−1, j−1 + h2ci−1, j )
.

To ensure the coefficient of ui−2, j inAz
[
A−1

d (As(ū))
]

i j
is no less than the coefficient

of ui−2, j in A+
a (ū)i j , we need

(1 − ε)(ai−2, j + 4ai−1, j + 9ai j )(3ai−2, j + ai j )

32h2(ai−2, j + ai j + ai−1, j+1 + ai−1, j−1 + h2ci−1, j )
≥ 3ai−2, j − 4ai−1, j + 3ai j

8h2
.

Similar to the one-dimensional case, it suffices to require

(ai−2, j + 4ai−1, j + 9ai j )(3ai−2, j + ai j )

4(ai−2, j + ai j + ai−1, j+1 + ai−1, j−1 + h2ci−1, j )
> 3ai−2, j − 4ai−1, j + 3ai j .

Equivalently, we need the following inequality holds for any cell center xi j :

(ai−1, j + 4ai, j + 9ai+1, j )(3ai−1, j + ai+1, j )

4(ai−1, j + ai+1, j + ai, j+1 + ai, j−1 + h2ci, j )
> 3ai−1, j − 4ai, j + 3ai+1, j . (27a)

Notice that (27a) was derived for comparingAz
[
A−1

d (As(ū))
]

i j
andA+

a (ū)i j for xi j

being an edge center of an edge parallel to y-axis. If xi j is an edge center of an edge
parallel to x-axis, then we can derive a similar constraint:

(ai, j−1 + 4ai, j + 9ai, j+1)(3ai, j−1 + ai, j+1)

4(ai, j−1 + ai, j+1 + ai+1, j + ai−1, j + h2ci, j )
> 3ai, j−1 − 4ai, j + 3ai, j+1. (27b)

If xi j is a knot, then xi±1, j are edge centers for an edge parallel to x-axis. Since
everything here has a symmetric structure, we only need to compare the coefficients

of ui−2, j inAz
[
A−1

d (As(ū))
]

i j
andA+

a (ū)i j , and the comparison for the coefficients

of ui+2, j , ui, j−2 and ui, j+2 will be similar.

As(ū)i−1, j = (1 − ε)
−(3ai−2, j + ai, j )ui−2, j − (ai−2, j + 3ai, j )ui, j

4h2

+ −(3ai−1, j−2 − 4ai−1, j−1 + 3ai−1, j )
+ui−1, j−1 − (3ai−1, j+2 − 4ai−1, j+1 + 3ai−1, j )

+ui−1, j+1

8h2

A−1
d [As(ū)]i−1, j

= (1 − ε)
−(3ai−2, j + ai, j )ui−2, j − (ai−2, j + 3ai, j )ui, j

1
2 (ai−1, j−2 + 4ai−1, j−1 + 18ai−1, j + 4ai−1, j+1 + ai−1, j+2) + 4(ai−2, j + ai, j ) + 4h2ci−1, j

+ −(3ai−1, j−2 − 4ai−1, j−1 + 3ai−1, j )
+ui−1, j−1 − (3ai−1, j+2 − 4ai−1, j+1 + 3ai−1, j )

+ui−1, j+1

(ai−1, j−2 + 4ai−1, j−1 + 18ai−1, j + 4ai−1, j+1 + ai−1, j+2) + 8(ai−2, j + ai, j ) + 8h2ci−1, j
.
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For the same reason as above we still only consider the case where 3ai−2, j −4ai−1, j +
3ai j > 0. So the coefficient of ui−2, j in Az

[
A−1

d (As(ū))
]

i j
is

1

4h2
(1 − ε)(ai−2, j + 4ai−1, j + 9ai j )(3ai−2, j + ai, j )

(ai−1, j−2 + 4ai−1, j−1 + 18ai−1, j + 4ai−1, j+1 + ai−1, j+2) + 8(ai−2, j + ai, j ) + 8ci−1, j h2
.

To ensure the coefficient of ui−2, j inAz
[
A−1

d (As(ū))
]

i j
is no less than the coefficient

of ui−2, j in A+
a (ū)i j , we only need

2(ai−2, j + 4ai−1, j + 9ai j )(3ai−2, j + ai, j )

(ai−1, j−2 + 4ai−1, j−1 + 18ai−1, j + 4ai−1, j+1 + ai−1, j+2) + 8(ai−2, j + ai, j ) + 8ci−1, j h2

> 3ai−2, j − 4ai−1, j + 3ai j .

Equivalently, we need the following inequality holds for any edge center xi j for an
edge parallel to x-axis:

2(ai−1, j + 4ai, j + 9ai+1, j )(3ai−1, j + ai+1, j )

(ai, j−2 + 4ai, j−1 + 18ai, j + 4ai, j+1 + ai, j+2) + 8(ai−1, j + ai+1, j ) + 8ci, j h2

> 3ai−1, j − 4ai, j + 3ai+1, j . (28a)

We also need the following inequality holds for any edge center xi j for an edge parallel
to y-axis:

2(ai, j−1 + 4ai, j + 9ai, j+1)(3ai, j−1 + ai, j−1)

(ai−2, j + 4ai−1, j + 18ai, j + 4ai+1, j + ai+2, j ) + 8(ai, j−1 + ai, j+1) + 8ci, j h2

> 3ai, j−1 − 4ai, j + 3ai, j+1. (28b)

We have similar result to the one-dimensional case as following:

Theorem 13 For the scheme (12) solving −∇ · (a∇u) + cu = f with a(x) > 0 and
c(x) ≥ 0, its matrix representation A = L̄h satisfies A−1 ≥ 0 if (27) holds for any
cell center xi j , (28a) holds for xi j being any edge center of an edge parallel to x-axis
and (28b) holds for xi j being any edge center of an edge parallel to y-axis.

The constraints (27), (28a) and (28b) can be satisfied for small h.

Theorem 14 For the scheme (12) solving −∇(a(x)∇u) + cu = f with a(x) > 0 and
c(x) ≥ 0, its matrix representation A = L̄h satisfies A−1 ≥ 0 if the following mesh
constraint is achieved for all edge centers xi j :

min
Ji j

a(x)2 >
49

61
max
Ji j

a(x)2 + 8

61

(
3max

Ji j
a(x) − 2min

Ji j
a(x)

)
h2ci j ,

where Ji j is the union of two finite element cells: if xi j is an edge center of an edge
parallel to x-axis, then Ji j = [xi−1, xi+1] × [y j−2, y j+2]; if xi j is an edge center of
an edge parallel to y-axis, then Ji j = [xi−2, xi+2] × [y j−1, y j+1].
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Theorem 15 For the scheme (12) solving −∇ · (a∇u) + cu = f with a(x) > 0 and
c(x) ≥ 0 on a uniform mesh, its matrix representation A = L̄h satisfies A−1 ≥ 0 if
any of the following mesh constraints is satisfied for any edge center xi j :

– There exists some λ ∈ ( 4961 , 1) such that

h2ci j <
61(1 − λ)minJi j a

2(x)

8
(
3maxJi j a(x) − 2minJi j a(x)

) , h
maxx∈J i j |∇a(x)|
minx∈Ji j a(x)

<

√
122λ − 7

√
2

28
.

– 49
√
2

3 hmaxJi j |∇a(x)| + 2h2ci j

(
1 − 2

3

minJi j a(x)

maxJi j a(x)

)
<

minJi j a
2(x)

maxJi j a(x) .

– If c(x) ≡ 0, then we only need h
maxx∈Ji j |∇a(x)|
minx∈Ji j a(x) <

√
122−7

√
2

28 .

– If a(x) ≡ a > 0, then we only need h2ci j < 3
2a.

Here the definition of Ji j is the same as in Theorem 14.

The proof of Theorem 14 is included in the “Appendix 6”. The proof of Theorem 15
is very similar to the proof of Theorem 11 thus omitted. Since the two-dimensional
case is more complicated, it does not seem possible to derive a similar mesh constraint
involving second order derivatives of a(x, y) as in Theorem 12. For instance, by
Theorem 12, if a(x) > 0 is concave and c(x) ≡ 0, then the one-dimensional scheme
(10) satisfies L̄−1

h ≥ 0 without any mesh constraint. For the two-dimensional scheme
(12), even if assuming a(x, y) > 0 is concave and c(x, y) ≡ 0, constraints (27), (28a)
and (28b) are not all satisfied for any h.

5 Numerical tests

In this sectionwe show some numerical tests of scheme (12) on an uniform rectangular
mesh and verify the inverse non-negativity of Lh . See [20] for numerical tests on the
fourth order accuracy of this scheme. In order tominimize round-off errors,we redefine
(12a) to its equivalent expression Lh(ū)i, j = 1

h2
ui, j = 1

h2
gi, j so that all nonzero

entries in L̄h have similar magnitudes. By Theorem 3, we have L−1
h ≥ 0 whenever

L̄−1
h ≥ 0. Even though L−1

h ≥ 0 is not sufficient to ensure the discrete maximum
principle, in practice only L−1

h is used directly thus its positivity is also important.
We first consider the following equation with purely Dirichlet conditions:

− ∇ · (a∇u) + cu = f on [0, 1] × [0, 2] (29)

where c(x) ≡ 10 and a(x, y) = 1 + d cos(πx) cos(π y) with d = 0.5, 0.9, and 0.99.
The smallest entries in L−1

h and L̄−1
h are listed in Table 1, in which −10−18 should be

regarded as the numerical zero. As we can see, L−1
h ≥ 0 and L̄−1

h ≥ 0 are achieved
when h is small enough.

Next we consider (12) solving (29) with c(x, y) ≡ 0 and ai j being random uni-
formly distributed random numbers in the interval (d, d + 1). Notice that the larger d
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Table 1 Minimum of entries in L̄−1
h and L−1

h for Poisson equation (29) with smooth coefficients

Finite element mesh d = 0.5 d = 0.9 d = 0.99

L̄−1
h L−1

h L̄−1
h L−1

h L̄−1
h L−1

h

2 × 4 − 7.32E−18 7.48E−06 − 3.90E−04 6.37E−06 − 7.41E−04 6.14E−06

4 × 8 − 1.31E−18 1.23E−07 − 4.02E−19 9.95E−08 − 1.65E−04 9.44E−08

8 × 16 − 3.96E−19 1.91E−09 − 4.91E−19 1.52E−09 − 1.77E−05 1.44E−09

16 × 32 − 1.92E−19 2.98E−11 − 7.60E−19 2.35E−11 − 1.06E−18 2.22E−11

Table 2 Minimum of all entries of L̄−1
h and L−1

h for a(x, y) being random coefficients

Finite element mesh d = 0.1 d = 1 d = 10

L̄−1
h L−1

h L̄−1
h L−1

h L̄−1
h L−1

h

2 × 4 − 1.00E − 03 6.60E−05 − 8.15E−18 4.73E−05 − 1.98E−16 6.74E−06

4 × 8 − 2.14E−04 3.22E−06 − 3.46E−18 9.95E−07 − 5.10E−17 1.35E−07

8 × 16 − 6.73E−05 2.88E−08 − 5.24E−19 1.65E−08 − 1.81E−17 2.21E−09

16 × 32 − 2.34E−05 3.61E−10 − 9.01E−19 2.02E−10 − 8.37E−18 3.56E−11

Table 3 Minimum of all entries of L̄−1
h and L−1

h for solving heat equation with backward Euler

Finite element mesh Δt = 3h2
2 Δt = h2

2 Δt = h2
4

L̄−1
h L−1

h L̄−1
h L−1

h L̄−1
h L−1

h

2 × 4 0 7.95E−06 0 3.21E−07 − 9.14E−05 − 5.34E−07

4 × 8 0 1.01E−09 0 1.93E−13 − 2.28E−05 − 1.00E−07

8 × 16 0 7.74E−17 0 2.58E−25 − 5.71E−06 − 2.51E−08

16 × 32 0 2.63E−30 0 2.73E−48 − 1.43E−06 − 6.27E−09

is, the smaller
maxi j {ai j }
mini j {ai j } is.When d = 10, we have

maxi j {ai j }
mini j {ai j } <

√
61
49 , thus L

−1
h ≥ 0 and

L̄−1
h ≥ 0 are guaranteed by Theorem 14. In Table 2 we can see that the upper bound

on
maxi j {ai j }
mini j {ai j } is indeed a necessary condition to have L̄

−1
h ≥ 0, even though constraints

in Theorem 14 may not be sharp since we still have the positivity when d = 1. We
have tested d = 0.3 many times and never observed negative entries in L̄−1

h and L−1
h .

Last we consider solving the heat equation ut = Δu on [0, 1] × [0, 2] with back-
ward Euler time discretization −Δun+1 + 1

Δt u
n+1 = un

Δt , corresponding to (29) with
a(x, y) ≡ 1 and c = 1

Δt . By Theorem 15, Δt
h2

> 2
3 , is a sufficient condition to ensure

L̄−1
h ≥ 0 and L−1

h ≥ 0. In Table 3, we can see that it is necessary to have a lower bound
constraint on Δt

h2
but Δt

h2
> 2

3 is not sharp at all. In Fig. 5, we can see the minimum

of entries in L̄−1
h and L−1

h decreases for smaller Δt
h2
. The lower bound to ensure the

inverse non-negativity of L̄−1
h and L−1

h seems to be near Δt
h2

= 1
3.6 .

123



H. Li, X. Zhang

0.1 0.2 0.3 0.4 0.5 0.6 0.7

dt/h 2

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

m
in
im

um
×10-6

L̄−1
h

0.1 0.2 0.3 0.4 0.5 0.6 0.7

dt/h 2

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

m
in
im

um

×10-7

(a) Minimum of entries in (b)Minimum of entries in L−1
h

Fig. 5 Minimum of all entries of L̄−1
h and L−1

h on 16 × 32 mesh with different time steps

6 Concluding remarks

In this paper we have proven that the simplest fourth order accurate finite difference
implementation of C0-Q2 finite element method is monotone thus satisfies a discrete
maximum principle for solving a variable coefficient problem −∇ · (a(x, y)∇u) +
c(x, y)u = f under some suitable mesh constraints. The main results in this paper can
be used to construct high order spatial discretization preserving positivity ormaximum
principle for solving time-dependent diffusion problems implicitly by backward Euler
time discretization.

Appendix A: M-matrix factorization for discrete Laplacian

The matrix form of (9) can be written as 1
h2
L̄h ū = f̄ . As an example, if there are seven

interior grid points in the mesh for (0, 1), then the matrix L̄h is given by

L̄h =

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

1
− 1 2 − 1
1
4 − 2 7

2 − 2 1
4− 1 2 − 1

1
4 − 2 7

2 − 2 1
4− 1 2 − 1

1
4 − 2 7

2 − 2 1
4− 1 2 − 1
1

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠
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Thematrix L̄h can bewritten as a product of two nonsingularM-matrices L̄h = M1M2
where

M1 =

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

1
1

− 1
4 1 − 1

4
1

− 1
4 1 − 1

4
1

− 1
4 1 − 1

4
1

1

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

,

M2 =

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜
⎝

1
− 1 2 − 1

− 3
2 3 − 3

2− 1 2 − 1
− 3

2 3 − 3
2− 1 2 − 1

− 3
2 3 − 3

2− 1 2 − 1
1

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟
⎠

.

Such a factorization is not unique and it does not seem to have further physical or
geometrical meanings.

For the scheme (11), we can find two linear operators A1 and A2 are with their
matrix representations A1 and A2 being nonsingular M-matrices, such that Lh(ū) =
A2(A1(ū)).

Definition of A1 is given as

– At boundary points:

vi, j = A1(ū)i, j = ui, j := gi j .

– At interior knots:
vi, j = A1(ū)i, j = ui, j .

– At interior cell center:

vi, j = A1(ū)i, j = 2ui, j − 1

4
ui−1, j − 1

4
ui+1, j − 1

4
ui, j−1 − 1

4
ui, j+1.

– At interior edge center (an edge parallel to x-axis):

vi, j = A1(ū)i, j = −1

6
ui−1, j + 4

3
ui, j − 1

6
ui+1, j .
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– At interior edge center (an edge parallel to y-axis):

vi, j = A1(ū)i, j = −1

6
ui, j−1 + 4

3
ui, j − 1

6
ui, j+1.

Definition of A2 is given as:

– At boundary points:

A2(v̄)i, j = vi, j .

– At an interior knot:

A2(v̄)i, j = −3

2
vi−1, j + 3vi, j − 3

2
vi+1, j − 3

2
vi, j−1 + 3vi, j − 3

2
vi, j+1

– At an interior cell center:

A2(v̄)i, j = 2vi, j − 3

8
vi−1, j − 3

8
vi+1, j − 3

8
vi, j−1 − 3

8
vi, j+1

− 1

8
vi−1, j+1 − 1

8
vi+1, j+1 − 1

8
vi−1, j−1 − 1

8
vi+1, j+1.

– At an interior edge center (an edge parallel to x-axis):

A2(v̄)i, j = − 7

16
vi−1, j + 15

4
vi, j − 7

16
vi+1, j − vi, j+1 − vi, j−1

− 3

16
vi−1, j−1 − 3

16
vi+1, j−1

− 3

16
vi−1, j+1 − 3

16
vi+1, j+1 − 1

32
vi−1, j+2 − 1

32
vi+1, j+2

− 1

32
vi−1, j−2 − 1

32
vi+1, j−2.

– At an interior edge center (an edge parallel to y-axis):

A2(v̄)i, j = − 7

16
vi, j−1 + 15

4
vi, j − 7

16
vi, j+1 − vi+1, j − vi−1, j

− 3

16
vi−1, j−1 − 3

16
vi−1, j+1

− 3

16
vi+1, j−1 − 3

16
vi+1, j+1 − 1

32
vi+2, j−1 − 1

32
vi+2, j+1

− 1

32
vi−2, j−1 − 1

32
vi−2, j+1.

It is straightforward to verify that Lh(ū) = A2(v̄) where v̄ = A1(ū). Obviously,
matrices of A1 and A2 have positive diagonal entries and nonpositive off-diagonal
entries. Moreover, A1(1) ≥ 0 and A2(1) ≥ 0 thus A1 and A2 satisfy the row sum
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conditions in Theorem 4. So A1 and A2 are both nonsingular M-matrices and the
matrix representation of Lh is A2A1. However, this kind of M-matrix factorization
cannot be extended to the variable coefficient case.

Appendix B

Proof of Theorem 11 If c(x) ≡ 0, then (25) reduces to

(28ai−1 + 20ai+1)ai + 4ai+1ai−1 > 9a2i−1 + 3a2i+1.

A convenient sufficient condition is to require

52min{a2i−1, a
2
i , a

2
i+1} > 12max{a2i−1, a

2
i , a

2
i+1},

which is equivalent to

max{ai−1, ai , ai+1}
min{ai−1, ai , ai+1} <

√
13

3
.

Let a(x1) = max{ai−1, ai , ai+1} and a(x2) = min{ai−1, ai , ai+1}. Then the inequal-
ity above is equivalent to

a(x1) − a(x2)

a(x2)
<

√
39 − 3

3
.

By theMeanValue Theorem, there is some ξ ∈ (xi−1, xi+1) such that a(x1)−a(x2) =
a′(ξ)(x2 − x1). Since |x2 − x1| ≤ 2h, we have

|a(x1) − a(x2)| ≤ max
x∈(xi−1,xi+1)

∣∣a′(x)
∣∣ 2h.

Thus a sufficient condition is to require

h
maxx∈(xi−1,xi+1)

∣∣a′(x)
∣∣

minx∈(xi−1,xi+1) a(x)
<

√
39 − 3

6
.

For c(x) ≥ 0, (25) reduces to

(28ai−1 + 20ai+1)ai + 4ai+1ai−1 > 9a2i−1 + 3a2i+1 + 4h2ci (3ai−1 − 4ai + 3ai+1),

for which a sufficient condition is

13min
Ii

a2(x) > 3max
Ii

a2(x) + h2ci

(
6max

Ii
a(x) − 4min

Ii
a(x)

)
. (30)
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One sufficient condition for (30) is to have

∃λ ∈ (0, 1), h2ci (6max
Ii

a(x) − 4min
Ii

a(x)) <13(1 − λ)min
Ii

a2(x),

3max
Ii

a2(x) <13λmin
Ii

a2(x).

By similar discussions above, a sufficient condition for 3maxIi a
2(x) < 13λminIi

a2(x) is to have λ > 3
13 and

h
maxx∈Ii

∣∣a′(x)
∣∣

minx∈Ii a(x)
<

√
39λ − 3

6
.

The inequality (30) is also equivalent to

10min
Ii

a2(x) > 3

(
max
Ii

a2(x) − min
Ii

a2(x)

)
+ h2ci

(
6max

Ii
a(x) − 4min

Ii
a(x)

)
.

Let a2(x1) = maxIi a
2(x) and a2(x2) = minIi a

2(x), then by the Mean Value Theo-
rem on the function a2(x), there is some ξ ∈ (xi−1, xi+1) such that

a2(x1) − a2(x1) = 2a(ξ)a′(ξ)(x1 − x2) ≤ 4hmax
Ii

a(x)max
Ii

|a′(x)|.

So it suffices to have

10min
Ii

a2(x) > 12hmax
Ii

a(x)max
Ii

|a′(x)| + h2ci

(
6max

Ii
a(x) − 4min

Ii
a(x)

)
,

which can be simplified to

2hmax
Ii

|a′(x)| + h2ci

(
1 − 2

3

minIi a(x)

maxIi a(x)

)
<

5

3

minIi a
2(x)

maxIi a(x)
.

If a(x) ≡ a > 0, it is straightforward to verify that (25) is equivalent to hci < 5a. ��
Proof of Theorem 12 For a smooth coefficient a(x), by Taylor’s Theorem,

a(x + h) = a(x) + ha′(x) + 1

2
h2a′′(ξ1), ξ1 ∈ [x, x + h],

a(x − h) = a(x) − ha′(x) + 1

2
h2a′′(ξ2), ξ2 ∈ [x − h, x].

With the Intermediate Value Theorem for a′′(x), we get

a(x) = 1

2
[a(x + h) + a(x − h) − h2a′′(ξ)], ξ ∈ (ξ2, ξ1) ⊂ [x − h, x + h].
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Thus we can rewrite ai as ai = 1
2 (ai−1 + ai+1 − di h2) where

di := ai−1 + ai+1 − 2ai
h2

= a′′(ξ), for some ξ ∈ (xi−1, xi+1).

If c(x) ≡ 0, then (25) reduces to (28ai−1 + 20ai+1)ai + 4ai+1ai−1 > 9a2i−1 + 3a2i+1.

Introducing an arbitrary number λ ∈ (0, 2], it is equivalent to

4ai+1ai−1 + (4 − 2λ)ai (7ai−1 + 5ai+1) + 2λai (7ai−1 + 5ai+1) > 9a2i−1 + 3a2i+1,

(12λ + 4)ai+1ai−1 + (4 − 2λ)ai (7ai−1 + 5ai+1) + (7λ − 9)a2i−1 + (5λ − 3)a2i+1

> λh2di (7ai−1 + 5ai+1),
(
4

λ
− 2

)
ai + ai−1

(5λ − 3)θ2 + (12λ + 4)θ + (7λ − 9)

λ(5θ + 7)
> h2di , θ = ai+1

ai−1
,

(
4

λ
− 2

)
ai +

(
41
5 θ − 9

λ(5θ + 7)
+ 1

)

ai−1 +
(
1 − 3

5λ

)
ai+1 > h2di .

Notice that
41
5 θ−9
5θ+7 > − 9

7 . By taking 9
7 ≤ λ ≤ 2, it suffices to require

(
1 − 9

7λ

)
ai−1 +

(
4

λ
− 2

)
ai +

(
1 − 3

5λ

)
ai+1 > h2di , (31)

as a sufficient condition of the above inequalities. If a(x) is a concave function, then it
satisfies a(xi ) = a(

xi−1+xi−1
2 ) ≥ 1

2a(xi−1) + 1
2a(xi+1), which implies ai−1 + ai+1 −

2ai ≤ 0, thus (31) holds trivially. Otherwise, (31) holds for λ = 9
7 if the following

mesh constraint is satisfied:

h2 max
x∈(xi−1,xi+1)

a′′(x) <
74

45
min{ai−1, ai , ai+1}.

If c(x) ≥ 0, for any λ ∈ (0, 2], (25) is equivalent to

(12λ + 4)ai+1ai−1 + (4 − 2λ)ai (7ai−1 + 5ai+1) + (7λ − 9)a2i−1 + (5λ − 3)a2i+1

> λh2di (7ai−1 + 5ai+1) + 4h2ci (ai−1 + ai+1 + 2di h
2). (32)

If assuming di h2 ≤ 74
45 min{ai−1, ai , ai+1}, then di h2 ≤ λ1ai−1 +λ2ai+1 for any two

positive numbers λ1, λ2 satisfying λ1 + λ2 = 74
45 . In particular, for λ1 = 563

540 , we get
di h2 ≤ 563

540ai−1 + 65
108ai+1, which implies

ai−1 + ai+1 + 2di h
2 ≤ 119

270
(7ai−1 + 5ai+1).
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By replacing ai−1 + ai+1 + 2di h2 by the inequality above in (32), we get a sufficient
condition for (32) as following:

(12λ + 4)ai+1ai−1 + (4 − 2λ)ai (7ai−1 + 5ai+1) + (7λ − 9)a2i−1 + (5λ − 3)a2i+1

> λh2di (7ai−1 + 5ai+1) + 4h2ci
119

270
(7ai−1 + 5ai+1). (33)

Similar to the derivation of (31), we can derive a sufficient condition of (33) as

h2
(
1.5ci + max

x∈(xi−1,xi+1)
a′′(x)

)
<

74

45
min{ai−1, ai , ai+1}.

If di ≤ 0, then a sufficient condition for (32) is

(12λ + 4)ai+1ai−1 + (4 − 2λ)ai (7ai−1 + 5ai+1) + (7λ − 9)a2i−1 + (5λ − 3)a2i+1

ai−1 + ai+1

> 4h2ci ,

from which we can derive a sufficient condition as

4h2ci < (7λ − 9)ai−1 +
(
5 − 5

2
λ

)
ai + (5λ − 3)ai+1,

for which a sufficient condition by setting λ = 2 is h2ci < 3min{ai−1, ai , ai+1}. ��
Proof of Theorem 14 Since (27a) and (28a) are equivalent to

4(7ai−1, j + 5ai+1, j )ai j + 4ai−1, j ai+1, j + 16ai j (ai, j−1 + ai, j+1)

> 9a2i−1, j + 3a2i+1, j + 12(ai−1, j + ai+1, j )(ai, j−1 + ai, j+1) + 4(3ai−1, j

− 4ai j + 3ai+1, j )h
2ci j

and

8ai−1, j ai+1, j + 2ai j ai−1, j + 4ai j (ai, j−2 + 4ai, j−1 + 18ai, j + 4ai, j+1 + ai, j+2)

> 18a2i−1, j + 6a2i+1, j

+ 14ai j ai+1, j + 3(ai−1, j + ai+1, j )(ai, j−2 + 4ai, j−1 + 4ai, j+1 + ai, j+2)

+ 8(3ai−1, j − 4ai j + 3ai+1, j )h
2ci j .

A sufficient condition is to require

7min
Ii j

a(x)2 > 5max
Ii j

a(x)2 + 2

3

(
3max

Ii j
a(x) − 2min

Ii j
a(x)

)
h2ci j (34)
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for all cell centers xi j of cell Ii j = [xi−1, xi+1]×[yi−1, yi+1], and the following mesh
constraints for all edge centers xi j :

61min
Ji j

a(x)2 > 49max
Ji j

a(x)2 + 8

(
3max

Ji j
a(x) − 2min

Ji j
a(x)

)
h2ci j , (35)

where we Ji j is the union of two cells: if xi j is an edge center of an edge parallel to
x-axis, then Ji j = Ii, j−1 ∪ Ii, j+1; if xi j is an edge center of an edge parallel to y-axis,
then Ji j = Ii−1, j ∪ Ii+1, j . Notice that (35) implies (34), thus it suffices to have (35)
only. ��
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