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Abstract. We explore Lagrangian perturbation theory (LPT) for biased tracers in the presence
of two fluids, focusing on the case of cold dark matter (CDM) and baryons. The presence
of two fluids induces corrections to the Lagrangian bias expansion and tracer advection, both
of which we formulate as expansions in the three linear modes of the Lagrangian equations
of motion. We compute the linear-order two-fluid corrections in the Zeldovich approximation,
finding that modifications to the bias expansion and tracer advection both enter as percent-
level corrections over a large range of wavenumbers at low redshift and draw parallels with the
Eulerian formalism. We then discuss nonlinear corrections in the two-fluid picture, and calculate
contributions from the relative velocity effect (o v2) at one loop order. Finally, we conduct
an exploratory Fisher analysis to assess the impact of two-fluid corrections on baryon acoustic
oscillations (BAO) measurements, finding that while modest values of the relative bias parameters
can introduce systematic biases in the measured BAO scale of up to 0.5 o, fitting for these effects
as additional parameters increases the error bar by less than 30% across a wide range of bias
values.
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1 Introduction

Observations of the large-scale structure (LSS) of the universe allow us to shed light on areas of
physics ranging from galaxy formation and evolution to fundamental physics. A prime target of
present and future LSS surveys is the measurement of baryon-acoustic oscillations (BAO) — the
imprints of sound waves in the baryon-photon fluid observed in the cosmic microwave background
(CMB) on the observed clustering of galaxies — which can be used as a standard ruler to constrain
the expansion of the universe [1]. Upcoming surveys such as DESI [2], EUCLID [3] and WFIRST
[4] will provide BAO measurements with higher-than-ever precision, and even more futuristic
BAO surveys such as a Stage II 21-cm experiment [5] have been proposed. These next-generation
observational campaigns will require us to model the LSS with unprecedented accuracy, at the
sub-% level.

One area of recent interest in the field of LSS has been in accounting for the effects induced
by the existence of multiple species (cold dark matter, baryons, neutrinos), with similar but
distinct clustering properties, using analytic methods. Studies of the perturbative approach to



structure formation have traditionally grouped all nonrelativistic species into a “total matter”
fluid, whose gravitational collapse is the dominant source of structure on cosmological scales
in the late-time universe, but many authors have recently extended these techniques to include
neutrinos [6-10] and baryons [11-17] in the Eulerian framework of Standard Perturbation Theory
(SPT). In parallel, the response of galaxy and halo formation to the existence of multiple fluid
species has also been subject of extensive investigation [11, 16-22]. Of particular interest are
the present-day imprint of relative perturbations between baryons and dark matter on large
scales which, being seeded in the same epoch and at the same scales as the baryon acoustic
oscillations, has the potential to confound future BAO measurements [11, 22-24]. While these
relative perturbations do not grow significantly in time (and relative velocities in fact decay) and
are thus small compared to the total-matter growing mode at late times, they amount to coherent
supersonic flows post-recombination and could have significant effects on the formation of the
first halos and galaxies [11, 13], which are the progenitors of the objects we observe today.

The goal of this work is to formulate perturbation theory and galaxy bias in the presence of
multiple fluids within the Lagrangian framework, with a particular focus on the two-fluid baryon-
dark matter scenario. Our work is a direct extension of the aforementioned SPT calculations.
While Lagrangian Peturbation Theory (LPT) is order-by-order equivalent to SPT, it seamlessly
allows a consistent treatment of large scales bulk flows, which are responsible for the final shape
and position of the BAO features in the correlation functions or power spectrum [25-31]. The
theory can also be extended to handle density field ‘reconstruction’ [32-36]. These features make
LPT a natural language for investigating possible distortions to the BAO feature.

This paper is organized as follows. In Section 2, we introduce the linear Lagrangian equations
of motion and discuss the role of non-gravitational forces such as Compton drag with the CMB.
Modifications to Lagrangian galaxy bias and advection in the two-fluid limit are then introduced
in Section 3. In Section 4, we employ the results of the preceding two sections and calculate the
lowest-order two-fluid corrections to the galaxy power spectrum in the Zeldovich approximation.
Cross spectra and subtleties in the IR resummation are briefly discussed in Section 4.2. In
Section 5 we take up whether the calculated two-fluid corrections can significantly bias BAO
measurements, arguing that any such biases can be mitigated by simultaneously fitting for these
easily-characterizeable effects. Our conclusions are summarized in Section 6.

2 Linear Equations of Motion in Lagrangian Space

In the Lagrangian picture, fluid dynamics is encoded in the displacements ¥, (q) of fluid elements
of each species, o, originally situated at Lagrangian positions q, such that their Eulerian positions
at conformal time 7 (dT = a~'dt) are given by [28, 37, 38]

Xo(q,7) = q+ ¥, (q, 7). (2.1)

The subscript 0 = {¢,b} denotes the species, either cold dark matter (CDM) or baryons, re-
spectively, whose motion we are tracking. Assuming that initial displacements are infinitesimally
small compared to those at the redshifts of interest, the overdensity, §,, of each species at Eulerian



position x can be solved for via mass conservation

14 0,(x,7) = / B op(x—q—Wy(q, 7)) = / Py (gjr’; la-¥a@an) (99
where dp is the Dirac delta function. Taylor expanding to first order in displacements yields the
familiar result that d,(z) = —V - W,(q), but, as seen in Equation 2.2, one feature of working in
the Lagrangian picture is that the translation into Eulerian quantities, such as the density field,
invariably involves nonlinear combinations of ¥ even when only the linear equations of motion
are considered.

2.1 General Formalism

While CDM particles by assumption experience only the gravitational force, baryons are subject
to non-gravitational effects, such as Compton drag and pressure gradients. These effects can be
summarized in the equations of motion of the fluid elements

U, +HE, = -V, d(q+ ¥,)
‘.I.lb + H‘i’b = —qu)(q + ‘I’b) + Fb(q + ‘I’b), (2.3)

where overdots signify derivatives with respect to 7, H = dlna/dr is the conformal Hubble pa-
rameter, Fy, is the non-gravitational force per unit mass felt by baryons, and & is the gravitational
potential at Eulerian position x satisfying Poisson’s equation

V20(x, ) = ;Qm(r)m(T)am(x,T), (2.4)

where ), is the total matter mass density and d,, is the total matter overdensity (see below).
At the linear level, there is no difference between the Eulerian and Lagrangian positions in the
above equations of motion, and we will neglect this distinction in the rest of this section unless
otherwise stated. Indeed, taking the divergence of Equation 2.3 in the linear limit (z, ~ q)
directly yields the Euler equation when we map overdensities to displacements and velocities to
their derivatives:
05 (%) & =V -Ws(q) , Vo(zs) ¢ Pulq). (2.5)

Note that the first mapping is correct only to linear order, while the second one is exact if the
full x(q) is used. Assuming this translation, the solutions to the Lagrangian equations of motion
as described below are essentially identical to those extracted from Boltzmann codes such as
CAMB [39] or CLASS [40], provided one chooses post-recombination initial conditions for the
Lagrangian displacements.

To solve Equation 2.3 in the linear limit, it is convenient to rewrite the baryonic and CDM
displacements in terms of a mass-weighted matter component (¥,, = w.W. + w,¥;), which
sources the gravitational potential, and a relative component that characterizes the differential
flows between baryons and CDM (¥, = ¥, — ¥,.), where we have defined the mass fractions of
each species, w, = py/pm. These are related to the Eulerian quantities d,, = wydp + wed. and
vy = vy —ve by 0, = =V - W, and v, = ¥,, where a = {m,r}, again at the linear level. The



equations of motion in terms of these components are

U, +HE,, = -V + w,Fy (2.6a)
U, +HE, =F,. (2.6b)

If in addition non-gravitational forces are negligible, the matter and relative components decou-
ple, such that Equation 2.6a can be solved as

¥, (r)=—m;Di(7)+m_D_(r)~ —m; D, (1) |, (2.7)

where D is the usual linear-theory growth factor. In the last step we have neglected the decaying
mode, m_, since it is a tiny fraction of the total displacement at all redshifts of interest. For
non-gravitational forces, like Compton drag or pressure gradients, direct integration of the linear
equations of motion show that the non-gravitational terms make a negligible contribution to the
matter component W,,, such that the transfer function at redshifts below z = 6 agree with the
linear solution in Equation 2.7 to within 0.2%, with even better agreement at the lower redshifts
of interest in this paper. In the above we have included a minus sign for convenience such that
5m,0 =V- m,.

We end this subsection by discussing the full solution of the relative displacement when F, =
Fy(7) is independent of W,.. In this case Equation 2.6b is linear and first order in ¥, and can be
solved as:

,(7) = vio(m) (2) + ! / "dr' a(r)Fy(r) (2.8)

r A2 al. b(7 ),

where we have set the boundary conditions at initial time 7; assuming the non-gravitational
effects encoded in Fj do not turn on until 7 > 7;. Equation 2.8 turns out to be an excellent
approximation for the large-scale Compton drag electrons experience in the reionization era due
to their relative motion with respect to the CMB rest frame, F, = —ncor(py/pp)avy, where op is
the Thompson scattering cross section, p, is the photon energy density and n. the free electron
number density. Eq. (2.8) also applies baryonic pressure forces on small scales F, o« —V§,—
in both cases the total-matter component may be substituted for the baryonic component (i.e.
0p = Op) at the sub-percent level [17]. In the case of the large-scale Compton drag, assuming
Vp >~ Vv, yields

' g aa(m) 1) w(a (1o Pr@) ) (@)D (d) | Crn(7i)
¥r(r) =2 () a(T) " [a /m(a(n)) d1n{ )< (@) pr(a’)> a’? ]D+(Ti) - (29

with f = dD4 /dIn(a) the linear theory growth factor. The Compton drag thus induces a mixing

between the matter and relative components through a numerical prefactor dependent only on
the linear growth factor D, and reionization history via n.. Finally, we can integrate 2.9 to yield

T HodT/
W, (1) =—ry +r_D.(7,7;) + my Dcp(T, 70), D, (1,7;) = () (2.10)
i
where we can identify ¥,(r;) = —r4, a(r)v, = Hor—, and the Compton-drag kernel Dcp

is defined as the conformal time integral of the square-bracketed function in 2.9. The linear
solutions to both the total-matter and relative components are thus wholly specified by the three
modes m; and ri. Jeans instabilities and baryonic pressure forces affect much smaller scales
and won’t be further discussed in the remainder of this work.
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Figure 1. Transfer functions for the relative component from Equation 2.13 at z = 1 (left column) and
z = T (right column). These transfer functions solve Equation 2.8. The top row shows the transfer functions
for V- W, i.e. the relative density. The bottom row shows the transfer functions for V- \ilr, i.e. the relative
velocity divergence. The free-falling (F, = 0) and Compton drag contributions are shown separately, the
effect of Compton drag on the relative velocity is immediately apparent even right after reionization
(zre = 7.90) at z = 7, whereas the relative displacement is dominated by the F, = 0 contribution at all but
the largest scales shown. Unlike the Compton contribution, which is flat at large scales, the primordial
(Fy = 0) contributions fall off as k? towards low wavenumbers, reflecting the origin of relative perturbations
in pre-recombination baryonic pressure forces. At low redshifts, the solutions to the Lagrangian equations
of motion, with initial conditions set at z; = 20, are in excellent quantitative agreement with the results
from CAMB (black dashed lines, barely visible on the plot as they lie below the purple lines).

2.2 Initial conditions and transfer functions

The linear evolution of the density and velocity contrasts can be easily written in terms the CDM
and baryon linear transfer functions (output from, e.g. CAMB) as

Ts, (k) = Ty, (k) = Ts.(k) and Ty, (k) = Ty, (k) — Ty (k) (2.11)

where 6, .(k) = —51,70(19). It is worth noticing that while the velocity field is gauge dependent,
velocity differences are not. The transfer function for V - m is simply the present-day matter
transfer function 7}, and we can furthermore define

Ty, (k) = Ty(k, z) — Te(k, 2;)
T (k) = [(1+ =) Hol (T, (k. 20) = To, (k. 20)). (2.12)



These three functions specify the solution for the ¥,,, ¥,. and \ilr at any z < z;. The choice of z;
is somewhat arbitrary but choosing redshifts before the onset of reionization has the advantage of
separating the effects of gravity from Compton drag. This choice also justifies the normalization
in Eq. (2.12), since r_ is independent of redshift. In the remainder of the paper we assume
Z; = 20.

In addition to the above, we will show below that calculating the power spectrum at some
redshift z in the Lagrangian picture requires linear-theory spectra of the relative displacement
at that redshift, which will typically include corrections from Compton drag. These can be
calculated via Equations 2.7 and 2.8 to give

1v.w, (k, Z) = TV~r+ (]{7) + DT(Z, Z,‘)Tv.,L (k) -+ DCD(Z, ZZ‘)Tv.m+ (k) (2.13)

Sample solutions of the equation of motion in Eq. (2.6) when F}, is given by Compton drag with
the CMB are shown in Figure 1. After reionization most of large scale power in the relative
velocity transfer function, Ty g , is provided by the Compton drag, which in turn affects the
evolution of the relative baryon-dark matter density at large scales (see top panels in Figure 1).
Figure 1 also justifies the approximations we used to compute the drag forces, as one can see by
the excellent agreement with the full CAMB output. Other non-gravitational effects like pressure
terms (Jeans instability) and radiative transfer effects [41-44], can be written in a similar form.

Ratios of the transfer functions to the total matter one are shown in Figure 2. We notice that
the relative density perturbation is much larger than the relative velocity one, by a factor of a
hundred at least, and the two relative components have the same behavior with wave-number &
at small and large scales. Nonetheless r, and r_ have significant differences in shape around the
BAO scales and therefore will have to be treated separately from the point of view of the galaxy
bias expansion.

3 Lagrangian Bias in the Two-Fluid Dynamics

In the Lagrangian approach, galaxy bias is assumed to arise as the response of the overdensity
of galaxies, or the precursors thereof, to the variation of the initial conditions encoded in the
fields {¥,(q)} of the various species, and then transported via advection to their present-day
positions x(g,t) = q+¥4(q,t). Thus, when computing the density of a biased tracer the number-
conservation Equation 2.2 is modified to

14 8, (x,7) = / 0% Fyla) {%,(a)}] 6 [x — q — Ty(q, 7). (3.1)

The standard picture of (local) Lagrangian bias, outlined above, has been developed in the
1-fluid case by many authors, see for example [45-53] and [54] for a recent review on galaxy bias.
In this section our focus will be on extending these arguments to the case of multiple fluids, and
in particular to the two-fluid case. In the presence of two fluids, the form of Equation 3.1 raises
two questions: (1) the form of the response F; and (2) whether biased tracers follow the dark
matter, baryons, or a combination thereof. We address these in turn.
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Figure 2. Relative to total-matter-component transfer function ratios. (Left) Transfer function ratios
between the initial fields m4 and r4 defined at z = 20. The so-normalized constant r,, which roughly
corresponds to the relative overdensity mode, is a percent level contribution relative to the total-matter
growing mode m,. The decaying mode r_, which corresponds roughly to the relative velocity, enters at
significantly below the percent level. Note however that our definition somewhat exaggerates its smallness
by “redshifting” it to z = 0. The equivalent ratio for one percent of the growing mode at z = 3 is plotted
for comparison in black. (Right) Transfer function ratios between the evolved relative and total matter
displacements at redshifts z = 2 — 6. While the relative displacement is a percent level effect at low
redshifts (z = 2), it enters at close to the ten percent level at higher redshifts (z = 16).

3.1 Bias Expansion

The initial tracer overdensity, Fy[q| {¥,(q)}], is defined to be a functional encoding the physics
of gravitational collapse and galaxy formation at some Lagrangian position q. Since the galaxy
density field is a scalar quantity under rotations, F, will also be a scalar. We will assume this
functional is local, in the sense gravitational collapse depends only on the value of the fields
within a characteristic patch of size Ry, which then flows coherently on large scales with ¥,
[54]. In the fluid limit, these conditions imply that the system is wholly specified — albeit in
some complex, nonlinear way — by the species overdensities, d,(q), velocities, v,(q), and the
gravitational potential', ®(q), at some initial time 7;. The condition that F} is local — or rather,
nonlocal with width Rj, — can be equivalently (but more conveniently) expressed by requiring Fy
depend only on the initial fields and their spatial derivatives, with n*" derivatives suppressed by
n powers of Ry, [54].

In addition to the assumption of locality, the form of Fj is strongly restricted by various
symmetries. General relativity requires that all physical quantities be diffeomorphism invariant,
which in our case reduces to rotational invariance and invariance under generalized Galilean

IThe gravitational potential ®, while not independent of &,,, depends on the total matter density in a very
non-local way. To make our bias expansion local, and be able to truncate the derivative expansion at a reasonable
order, we thus include it as a standalone quantity here.



transformations [55]:
q—q , ¥Y,—-9¥,+n(r) , > —-d—x-(0+Hn) |, (3.2)

where n are time-dependent but spatially constant vector fields.

Rotational invariance simply requires that only contracted scalar quantities enter the bias; the
restrictions placed on the bias expansion by general Galilean invariance are more subtle, and it
is here that the two-fluid case diverges from the single-fluid case. Under this symmetry, densities
remain unchanged— for instance that at first order d,(q) = —V - ¥,(q)— while velocities get
boosted by a spatially constant amount (leaving dv invariant) and the gravitational potential
changes in a spatially linear way (leaving 00® invariant). In the single-fluid regime, where
only one set of densities and velocities exist, this directly implies that velocities can only enter
with at least one spatial derivative, and the gravitational potential can only enter as second
(spatial) derivatives and beyond. The single-fluid overdensity, which is unchanged under the
transformation, can enter at any order.

The presence of two or multiple fluids relaxes some of the above restrictions. In particular,
since all particle velocities are boosted by the same amount (n’) under a Galilean transformation,
the relative velocity v, = v, — v, remains invariant and can thus enter the bias expansion at
zeroth order in derivatives. The total matter velocity, v,,, on the other hand, is boosted and
can thus still only enter at the derivative level. These two quantities form an equivalent basis to
the individual species velocities and there is no loss of generality in defining the bias expansion
in terms of them. We may similarly write terms involving species densities, which can enter
separately, in the total matter and relative density basis. In general relativity the gravitational
potential is unaffected by the number of species as a consequence of the equivalence principle,
i.e. gravitational interactions are universal. The full set of physical fields that can enter Fj in
the two fluid case is then

Fy=Fy[05,Ve,®] = Fy [0, 0r, 0V, vy, 00®, - - -], (3.3)

here the dots stand for highet' derivative ()[)elatms. [o first order in the fields we can therefore
WI‘i'e2
1 6g(q> =1 b15m+ br5r+b09,«+ (3' )

which is similar to the Eulerian linear theory expression in [16]. This is not surprising, since at
first order q ~ x, however we will see below that differential advection can introduce further
terms degenerate with the initial Lagrangian bias terms above, such that the Eulerian relative-
component bias will in general be a combination of these terms.

Finally, since F, is defined as a functional on the initial conditions which can be chosen
to be sufficiently early that they lie deep in the linear-theory regime, its form can be further
simplified and expressed purely in terms of the initial modes m, and ri. In the single fluid
case, this restriction leads to the simplification that all bias terms can be written in terms of
spatial derivatives of the total matter displacement m ~ W,,; this is a direct consequence that,
up to time-dependent constant factors, 6, ~ OW,,, vy ~ ¥, and 00P ~ JW in linear theory.

2A list of bias terms up to second order is given in Appendix B.2.



In the two-fluid case these terms must be supplemented by those involving the relative modes.
Specifically, including the v, dependence requires the inclusion of terms proportional to r_ and
including J, dependence similarly requires terms proportional to V - ry. Equation 3.4 can thus
be re-expressed as:

Fy(a) =b10m + 04V -1 +0_V . -r_+ .. (3.5)

We therefore have a direct correspondence in the bias expansion between the initial modes ex-
pressed in Eulerian and Lagrangian space. Notice that the bias expansion defined above is
complete, in the sense that it contains all possible operators compatible with the symmetries of
the problem. In particular, while r4 are defined at a particular initial redshift z;, in the linear
regime this dependence amounts to a simple linear transformation and can be absorbed into the
definition of the bias parameters (Appendix A).

Finally, an additional complication arises when halo formation is affected by Compton drag.
As pointed out by [17], by picking out the local CMB rest frame such that the drag force o< v}, we
lose the gauge redundancy of Galilean transformations. This will in general produce heretofore
forbidden terms such as those proportional to the matter-component velocity v,,,. However, the
terms thus generated are required by rotational invariance to enter at second order and beyond.
For the remainder of this paper we will thus neglect these contributions, which are subdominant
to the already sub-percent level contributions we study.

Whereas there exists quite a large literature on measuring and predicting, using approximate
physical models, the value of the bias parameters in one-fluid scenarios, less attention has been
devoted to the multi-fluid case. From an effective field theory perspective the dimensionless
parameters should be of order unity, but in reality the actual value of the bias parameters is
tracer-dependent and can be quite a bit larger or smaller. In this work we will assume, unless
otherwise noted, that typical values are given by by ~ 1 and b_ ~ 6.8 derived in [16] using a
spherical collapse model. These numbers are consistent with the non-detection of relative bias
effects in BOSS DR12 by ref. [23], who find e.g. by = —1.0£2.5 to within one sigma when fitting
for by, b— and c_ (Section 4.3) across all redshift bins, with large systematic biases measured in
dark-matter only simulations that had to be subtracted.

3.2 Modifications to Tracer Advection

Once the initial, biased tracer overdensity is set, the overdensity at later times is set by the tracer
“fluid” advecting from initial (Lagrangian) ¢ to final positions ¢+ ¥, along trajectories described
by the tracer equation of motion

U, +HY, = -VO+F,,, (3.6)

where we have included a non-gravitational term, F}, 4, to account for the possibility that tracers
feel non-gravitational forces. Such non-gravitational contributions may arise, for example, from
the Compton drag on the baryonic component of galaxies, or from various galaxy formation
processes. Since such contributions are always local in space and time, we will assume the above
equation satisfies the same symmetries of Eq. (3.2), i.e. the force acting on galaxies depends only
on density fields and velocity gradients.



Equation 3.6 can be solved by subtracting the equation of motion of the total matter dis-
placement (Equation 2.6a) and defining ¥, , = ¥, — ¥,,. Neglecting the baryonic contri-
butions such that the tracers’ dynamics are governed only by gravity, and assuming that the
initial tracer displacements are a weighted average of the baryonic and CDM displacements, i.e.
W, =W, + fg®,;, this immediately yields the time evolution

Uy(7) = W (1) + f4[¥r(7)]cD=0, (3.7)

where the relative displacement is evaluated assuming zero Compton drag. Note that if we
assume that the tracer field is made of objects composed of the same mass fractions of baryons
and CDM as the total matter content of the universe, i.e. with f; = 0, Equation 3.7 reduces to
the trajectory of the matter component. Similarly, objects composed purely of baryons or the
CDM will (at the linear level) follow the baryon or CDM displacements, respectively.

We can alternatively think of Eq. (3.7) as a bias expansion of the galaxy displacements in terms
of the underlying fields, since ¥,,, and W, are the only two linear operators allowed by symmetries
at lowest order in spatial derivatives. If the tracer flow is purely gravitational, as assumed above,
the equivalence principle further restricts the coefficient of the total matter displacement — which
encapsulates the motion due to the gravitational potential — to be exactly 1 at all times. However,
this restriction can be broken by baryonic contributions (o< Fy, 4) such as the Compton drag. As
seen in the second term on the right hand side of Equation 2.9, the acceleration due to Compton
drag generates displacements proportional to ¥,,; this contribution, on top of the aforementioned
gravitational displacements, can lead to an expansion ¥, = (1 4+ acp) ¥ + fy ¥, + ... for some
nonzero coefficient acp due to Compton drag, where the total-matter coefficient deviates from
unity. Consequences of this modified expansion for the power spectrum are considered at the end
of Section 4.1 and in Figure 6. Other baryonic forces, such as pressure forces at small scales, can
similarly be included as further terms (¥, 3 ¢2V§p) in this expansion.

4 Galaxy Power Spectra in the Zeldovich Approximation

4.1 Analytic Form

From Equation 3.1, the power spectrum at redshifts z for a biased tracer can be computed as

Pog(k,z) = / dPq e’q <Fg[q1]Fg[qg] eik-<wg<ql,z>—wg<qz,z>>> (4.1)

¢=laz—ai|’
where the subscripts denote quantities evaluated at two points separated by ¢ in Lagrangian
space. It is important to note that the bias functions Fy are evaluated in terms of the linear
modes m,,ry defined at the initial redshift z;. In the Zeldovich approximation displacements
are solved to linear order but the full mapping between initial and final times is kept. This
amounts to keeping the displacement correlators exponentiated in what follows [46]. We will
adopt the bias expansion in Equation 3.5. We evaluate integrals involving F, by functional
differentiation in the usual manner [46, 47, 56]: we include a term (e.g. AX) in the exponential
for each argument, X, of F;, and evaluate terms like X™ via 0" /0OA™ of exp[AX].
Under the above assumptions our task reduces to evaluating

eM = (exp (ik - Ag(z) + Ao Om,1 F A1 Vre 1 + A 1Vr 1 + (1 ¢ 2) ) (4.2)

~10 -
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Figure 3. Correlation functions entering the galaxy power spectrum in Eq. (4.7) at z = 1.2. Left panel:
the displacement auto- and cross-correlation functions between the different components. Right panel:
bias-weighted, displacement correlation functions. Correlation functions involving the relative component
exhibit abrupt features around g ~ 102 A~ Mpe, reflecting the baryon acoustic oscillation scale.

with numerical subscripts referring to Lagrangian coordinates, ¢; and ¢o, and

Ag = ‘I’g,l - ‘I’g,Q - ‘I’m,l - ‘Ilm,Q + fg(‘I’r,l - ‘I’r,Q) = Am + ngr (43)

M

The function e can be evaluated using the cumulant theorem as the exponential of the con-

nected components. The Zeldovich approximation assumes linear dynamics, such that only

quadratic terms survive

. 1 2
eM = eXP{ = Ghikj A" — fokiki A" — Egkiijg

+ ik - (()\(Sm,l + )‘5m,2)(Umm + ngrTn)
+ (A1 + A 2) Ut + foUrs) + A1+ A2 2) (U= + foUr-))
+ (Aém,l)\+72 + (1 And 2) ) gémVrJr + (5m> VI‘,) + (5ma 5m)

+ (Vr4,Vry) + (Vry, Vr_) + (Vr_, Vr_)} , (4.4)

where we have defined

A2 = (D2(2)A02)), URE = (MY ra(an), o= (alab(@),  (45)

noting that the A’s carry an implicit redshift dependence while the other fields do not. For the
total-matter component this redshift dependence is a direct growth factor scaling and we will for
convenience take the linear field’s value as evaluated at the observed redshift d,, = — Dy, (2)V-m_..
The paired parentheses denote terms similar to the preceding except with the indicated pair of
variables. For example, in the third line

(5ma VI',) = (>‘6m,1>‘7,2 + (1 A 2)) gﬁmVr, (Q) (4'6)
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and when the elements of a pair are repeated the term should be divided by a symmetry factor
of two.

Figure 3 shows the different correlation functions entering the above calculation. Since the
correlation function of the different displacements fields, A?}’(q), is a tensor, we can decompose
it as A?Jb(q) = Xab(q)éiff + Y%(q)g;4;, and the functions X(g)’s and Y (q)’s are shown in the
left panel of Figure 3. Clearly the galaxy displacements are dominated by the total matter
component, with the relative terms contributing much less than a % to the bulk flows. This fact
will enable us to treat the terms proportional to f, perturbatively, as they will be much smaller
than one for wavenumbers below the nonlinear scale defined by k222 < 1, where the Zeldovich
ran.s. displacement is ¥ o X, (¢ — o0). The same conclusions apply for the bias weighted
displacements U(q)’s, shown on the right hand panels in Figure 3, where U,,(q) > UL (q).

Working to linear order in the power spectrum we then have that the galaxy-galaxy power
spectrum is given by

2
ikq —xkik; AT rm rr
Pyy(k) = /d3q B P L [ L= fokiky AT = hik; AT

+ 2ik - (01U 4 b1 Uy 4+ b_Upn)

+ 2fyik - (01Upm + by Upy +0_U,_)

+ bgn&sm&m + 2bmb+€Vr+§m + Qbmb—€Vr,6m

+ V2 by, v, + 2b4b_Evr,vr + 02 Evr vr + O(PH)|(4.7)

Figure 4 shows the different contributions to the galaxy power spectrum in the Zeldovich ap-
proximation at z = 1.2. The leading corrections to the total-matter power spectrum come at
the roughly percent level from terms in Equation 4.7 linear in ry, i.e. in by and f,. These
contributions are essentially degenerate, with differences due to the dynamical evolution of ¥,
in the f, term, as we will discuss in the next paragraph. Corrections quadratic in r4 or linear in
r_ enter at roughly the same size four orders of magnitude below the total-matter contributions.

An interesting consequence of the advection of biased tracers with |fy| > 0 is the appearance
of relative bias terms even if none were present in the initial Lagrangian bias expansion. To
see this, we can take the low-k limit of Eq. (4.7), neglecting for the moment non-gravitational
contributions to ¥, (q), and obtain up to O(P(k))

Pyg(k, z) =(1 4 b1)* P55, (k)
+ 2(1 + bl)(bJr + fg)PmVr+ (k) + 2(1 + bl)(bf + ngr(Z)) Prvr_ (k)
+ (bg + f9)*Pyr,vrey (k) + (b= + fyDr(2))* Por_vr_ (k)
+2(by + fg)(b— + fyDr(2)) Py, vr_ (k). (4.8)

We immediately recognize the familiar expression for the Eulerian linear bias, bf =1+ b, and
that the relative density and velocity bias terms get renormalized by terms proportional to f,.
To make further contact with the existing literature employing the Eulerian formulation of the
equations of motion [16, 17], we can identify the relative baryon dark-matter density perturbation
0, with the divergence of ry, §, = V-ry, and the relative baryon dark-matter velocity divergence
0, with the divergence of r_, 0, = (1 + z)HoV - r_. This implies that the bias parameters in
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Figure 4. Different contributions to the galaxy power spectrum in the Zeldovich approximation, Eq. (4.7),
at z = 1.2. Terms proportional to byb_, fyb_, and b2 have been omitted as they are two orders of
magnitude smaller than the smallest contributions shown. Many terms, such as those involving f; and
b, are essentially degenerate.

[16, 17] associated to the Eulerian fields are béET =by + fy and bET = (1427 Hy Y (b + £, D, (2)).
Note that the referenced overdensities and velocities are those defined at the initial redshift z;
so should not be directly substituted for their Eulerian counterparts; for more details about the
mapping of bias parameters from some initial time z; to Eulerian coordinates see Appendix A.
A final caveat occurs when the non-gravitational forces on the tracer, Fy , are nonzero. The
integrated effect of such forces on W, , must then be accounted for. For example, when dealing
with baryons and dark matter, the effects of Compton drag on large scales are non-negligible.
In this case, since the Compton drag force is proportional to the total-matter displacement, the
two-point functions in Eq. 4.5 involving A" will gain a contribution proportional to A™ (Fig. 5).
Such contributions can be non-negligible at large scales and can dominate in the contributions
to the power spectrum proportional to f; at low wavenumber (Fig. 6). Importantly, terms pro-
portional to by are unaffected since they are related only to the primordial modes ry, breaking
the degeneracy between f; and by. Since the difference between these terms is proportional to
the total-matter component, this difference can alternatively be absorbed into the total-matter
bias by, [17]. Comparisons of these terms with and without Compton drag are shown in Fig-
ure 6. Comparing the f, contribution with and without Compton drag we see, as expected, that
renormalizing the linear total-matter bias by to include a contribution proportional to fyDcp(z)
(purple dotted curve) is sufficient to account for the non-gravitational Compton drag contribu-
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Figure 5. Comparison of two point functions with (red) and without (black) contributions from Compton
drag. While the differences are small (c.f. Fig. 3), they are non-neglible at large scales. The contributions
from r; have been subtracted off for ease of comparison.
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Figure 6. Comparison of terms involving by (blue dashed) and f; with and without Compton drag (red
and black). The two are largely degenerate in the latter case, but with Compton drag the f, terms are
dominated by a contribution proportional to the total-matter power spectrum at large scales, which can
alternatively be renormalized into the matter bias b;, shown separately as a dashed magenta curve. The
left panel shows contributions due to contracting the relative components (f,®, or b4V - my ) with the
total matter displacement W,,, while the right panel shows contractions with the total matter bias byd,,.

tions.

4.2 Cross-Spectra of different tracers and IR Resummation

So far we have dealt only with tracer auto-spectra. The situation for cross-spectra is complicated
by the non-cancellation of the IR-exponent at small separations, q. For two generic fluids, X and
Y, such that ¥xy = W¥,, + fx,y¥,, the cross spectrum will take the form as in Equation 2.2:

ny(k‘) _ /d3q€ik-q€_éki/€j’4§y |: .. } , (49)
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where the exponentiated two-point function AXY is given by

AXY (@) = (WX e) + (@ e)) —2(F0)) ) + (2021 9)) - 29X (@) (0).  (4.10)

and expectation values of point operators are displayed without arguments. Both terms in paren-
theses on the RHS of Equation 4.10 are well-defined and invariant under generalized Galilean
transformations; however the second term vanishes as ¢ — 0 while the first does not®. As first
noted in Ref. [15], this is in contrast to the single-fluid case where A;; had to vanish at small
scales due to Galilean invariance.

In principle, the non-cancellation discussed above will introduce a large scale damping in
the power spectrum at scales proportional to the difference \‘I’X - \IIY|2. However, since ¥X"
are both expected to have the same coefficient in the total-matter component (i.e. unity) this
difference squared will generically be proportional to (fx — fy)?O(®?2), and thus is suppressed by
about four orders of magnitude relative to the Zeldovich displacement, ¥2, at the redshifts with
which we are concerned (z < 10). On the other hand, while differential streaming is expected to
damp cross spectra negligibly even if fx is of order unity, as discussed in the previous section it
will still generate an observable effect degenerate with the relative bias b, .

4.3 Higher Order Bias

Thus far we have not discussed the fact that any perturbative model should be considered an
effective field theory, working up to some scale A [57-59]. This forces us to introduce a set of
counterterms that remove the small scale sensitivities of the perturbative calculations. For in-
stance all the A;;(q) terms contain a zero-lag piece computed at zero separation, i.e. ¢ = 0, where
perturbation theory breaks down. In the single fluid case, this UV-sensitivity is renormalized to
lowest order in the power spectrum by a counterterm csk? Py 4 (k) [29, 60], where the free parame-
ter ¢s has to be matched to simulations or data. The same structure of the counterterms appears
in the two fluid scenario: for instance, the Af};’(q) required to calculate auto and cross spectra fea-
ture the same UV-sensitive contributions as ¢ — 0, requiring one value of ¢? for each species. In
principle, terms in the equations of motion due to the relative component will add additional UV
sensitivities to our predictions; in practice, however, such contributions are subdominant in the
dynamics of the relative component and negligible for the total-matter component (Appendix B).
To the extent that these contributions can be ignored, then, the two-fluid equations of motion can
be renormalized identically to the single fluid case with one set of counterterms for each species
or tracer. As counterterms have minor impact on BAO scales, and are anyway fitted to the data
in both the single and multiple fluid cases, we do not include them in the Fisher calculation in
the next section.

We have equally refrained from discussing bias beyond linear order. As in the equations of
motion, contributions beyond first order in the linear power spectrum proportional only to the
total-matter component can be added consistently as in the single-fluid case, and we will ignore
small nonlinear contributions proportional to one or more powers of the relative component?.

3A similar non-cancellation occurs in the modeling of BAO reconstruction, where the cross-term between the
‘displaced’ and ‘shifted’ fields exhibits the same behavior [33, 35].

4 A proper accounting of such terms would in addition require solving the relative-component equations of motion
to beyond linear order, which is beyond our present scope.
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However, one exception must be made: operators involving the relative-velocity between the
baryon and dark matter squared, which, despite being at second order in the relative component,
can be non-negligible due to their distinct dimensional scaling [11, 16, 18, 22]. Such contributions
were the focus of the first studies of bias [11, 18, 22] in the two-fluid picture, and we will show
how their calculation fits naturally into the Lagrangian framework. For a discussion of other
second order bias operators see Appendix B.2.

At second order in the bias expansion we can write

2 2
viy(q) — Vv r_
F,[¥,,, ¥,|q] D b,o2 [ve(q) . ()" _ byo2. (2‘1) =c_[r_(q)? (4.11)
O-vr 0r_
where Jgr is the 1-point variance of the relative velocities and 02 = (1+2)72H 2012%. As several

authors [11, 16] have pointed out, baryon-dark matter relative velocities can be quite large at the
time when the first halos and galaxies form, which could result in a large value of b, for their late
time descendants. The value of bvagr can be as large as 0.01, which will make this contribution at
second order in the power spectrum larger than the b_ terms, even on linear scales. It is however
worth remembering that a value of bvagr ~ 107° is also plausible, which would substantially
reduce the importance of this contribution.

To consistently compute the power spectrum contributions due to c— ~ b,2 we must go beyond
the Zeldovich approximation. Up to 1-loop in Lagrangian perturbation theory we have to compute
4 new terms to properly include the new bias parameter c_. Beyond these, terms proportional
to ¢® can be safely neglected as they are O(P%ﬁ ). For the same reason we drop all the terms
proportional to bic_, as well as contributions of the relative component to the equations of
motion. This leaves us with contributions proportional to c_, bjc_, bac_, and b2c_.

The first of these, proportional to ¢_, contains a 1-loop contribution and is given by

1

y . . mm 1
(k) > e / d3q el o hiki AT (2ikiui(q) - ikz-ij;’,;—Ag;;), (4.12)

where we have defined A72” = (A, ; (r—2 —r—1);) and the 1-loop contribution from the second-

order Lagrangian displacement ¥ enters as

o) = (A2 ) =i [ 55 Qi ko (113)

) 271'2

The kernel @Q,2 is derived in Appendix C.

The remaining terms do not contain loop contributions and follow straightforwardly from
evaluating the second and third cumulants in Eq. (4.1) within the Zeldovich approximation.
These are those proportional to the first order bias:

P,y(k) D 2ik; bic_ / d3qea g akib AT AT (q) U™ (q) (4.14)

second order bias:

Pyg(k) > 2bac- / dBg e AT () U (g), (4.15)
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Figure 7. Contributions to the Zeldovich galaxy power spectrum from relative velocity bias at second
order. All biases are set to unity except for c¢_, which is set such that bvagr = 0.01—in this case, the
contributions from b,2 are seen to be quite comparable to those from by, and moreover exhibit BAO
“wiggles” far more prominently than does the regular ZA contribution.

and shear

; _lp. . Amm s— s—
P,y (k) D 4bgac_ / dPqe™ e ML W (q) Wik (a), (4.16)

where we have defined the 2-point functions U™™ = (r_(¢)0m(0)) = U™ and W7, (q) =
(si(q)r— 1(0)). Details of the above calculation can be found in Appendix C.

The contributions proportional to c_ and their comparison with the 1-piece in Eq. (4.7) and
with the b+ ones computed in the previous section is shown in Fig 7 for z = 1.2, assuming bvag2 =
0.01. The c_ terms are indeed larger than the b_ terms on most scales, but still subdominant
compared to the by terms. Notably, the c_ terms feature significantly larger oscillatory features
than contributions from b4, with minima that differ from maxima by more than an order of
magnitude.

5 Degeneracies and bias to BAO

Baryon acoustic oscillations (BAO) in the photon-baryon fluid before combination imprint a
characteristic clustering scale in the distribution of galaxies that can be used as a standard ruler
to constrain the cosmic expansion history [61]. In general this method is regarded as highly robust
as it probes very large scales which are largely unaffected by astrophysical processes. However,
relative component contributions to the two-point function also occur on very large scales and
their oscillatory features, although arising from the same physical process of the standard BAO
features in the matter density power spectrum, could bias our estimates of the distance scale if not
properly taken into account [22-24]. Indeed, as shown in the left panel of Fig. 8, all the relative
component contributions we have considered show distinct features around the BAO peak.

The extent to which contributions from the relative component can contaminate measurements
of the BAO scale can be estimated using the Fisher matrix formalism [62]. The galaxy overdensity
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Figure 8. (Left) Contributions to the z = 1.2 correlation frunction from the various relative component
biases, multiplied by constant factors for ease of comparison. All contributions have prominent features
at the BAO scale, reflecting their origin in early-universe acoustic oscillations. (Right) Derivatives of the
power spectrum with respect to these parameters and the BAO scale parameter « at z = 1.2, with b,,, = 0.5,
by =02, by =1,b_ =7and c_o2 = 0.01. Despite the fact that all these templates feature prominent

oscillations, they nonetheless possess distinct scale dependence. Note that some of the derivatives have
been multiplied by powers of ten for ease of comparison.

has a covariance that is diagonal in Fourier space and given by the power spectrum plus shot
noise, Py, = Pyy(k) + 7% for the parameters {6;}, the Fisher matrix is given by

Bk 10InPyy(k) 01n P,y (k)
Fii = Vi + 99 99 1
i = Vob / (2m)3 2 86 a0; (5:1)

where Vs is the observed volume. For simplicity we neglect redshift space distortions and focus
only on the isotropic BAO signal, though we will comment on how our Lagrangian analysis can be
naturally extended to redshift space in the final paragraph. We model the power spectrum using
the two-fluid Zeldovich terms derived above and include matter contributions up to one loop
(see e.g. [52]), including contributions from the quadratic Lagrangian bias by. We consider only
scales between kmin = 1072 hMpc™! and kpax = 0.25 hMpc™!, and fiducial value of b; = 0.53
and by = 0.2. The number density of galaxies is 7 = 4.2 x 10~* h3Mpc™ and we assume
V = 5h73 Gpc3. These numbers are chosen to be similar to what galaxy surveys like DESI [2]
or Euclid [3] are expected to measure, and in particular are based off the expected DESI ELG
population at z = 1.25 in a bin of width Az = 0.1 and 14,000 square degrees of observation.

To quantify the potential impact of the relative component on standard BAO analyses, we will
compare two models of the power spectrum within the Fisher formalism: the “correct” model My,
which is a function of all total-matter and relative component biases, and the nested “standard”
model My, wherein the relative component biases are set to zero (i.e. by, c— = 0). The observed
power spectrum is in addition a function of the BAO scaling parameter « such that

k
Pyg(k, 2,0, M) = Ofgpgg (a’Z’M> . (5.2)
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Figure 9. (Top) Best fit power spectra using the total-matter-component-only model, My, for a universe
where b, = 5 with varying maximum fitted wave numbers kp.y. (Bottom) Residuals of the above fits,
compared to expected errors (Alnk = 0.06), shaded in gray. Fitting over too narrow a range (kmax =
0.1 hMpc 1) results in a highly biased phase, while fits using larger wave number ranges covering more
than one BAO wiggle are essentially in phase. The remaining oscillating residuals significantly exceed the
expected error and are due to lack-of-fit for the oscillations in the relative component.

The derivative of the baseline galaxy power spectrum with respect to the parameters is shown
in Figure 8. These templates all show oscillatory features of roughly the same frequency as the
BAO scale but exhibit distinguishable scale dependence. For reference, applying Eq. (5.1) returns
sub-% error on the BAO scale, with o, = 0.9%, for the standard analysis using M.

We can now compute the systematic shifts in « that would be incurred by neglecting the
relative component, i.e. by fitting to M. For convenience, we will split the parameters in M7 into
0 = (¢a, o), where ¢, with Latin indices are the BAO scale and total-matter parameters and 1),
with Greek indices are the relative component biases, such that My is given by 6 = (¢4, 9, = 0).
In this language the shift in « and b; due to using the standard model can be calculated to first
order as [63]

600 = —(Fo) - Gpo0ths, a,b=a,b;, 0 =by,c_. (5.3)

Here Fy and G are respectively diagonal and off-diagonal blocks of the full Fisher matrix F =
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Figure 10. (Top Left) Shift in measured « when neglecting relative component biases as a function by
in the absence of ¢_. While b_ contributes negligibly, b, = 5 produces a shift up to a 0.4%. (Top Right)
Ratio of error bars in  when marginalizing over b1 vs. when they are kept fixed at zero, such that the
best-fit value of « is biased in the latter case. In the latter case the forecast takes into account the shift
away from the true value due to incorrect model assumptions. (Bottom Row) Same as the above, but with
c_ added as a nonzero parameter in M;. We have set the true b_ = 0 for convenience but marginalize

over it to calculate uncertainties. While even c_o2 = 0.01 contributes only a tenth of a percent to

the shift in «, the error bars are inflated relative to the top row by up to twenty percent. We assume
kmax = 0.25 hMpc_1 throughout.

F(0y) calculated at the best fit parameters 6y for the full model My, such that Fy 45 = Fyp and
Gpo = Fpy, and 09 is the deviation of ¢ in the standard cold dark matter only model My from
Ml, i.e. 51ﬁ = —1/)0.

As a simple first example, we consider a toy-model Universe in which the only relative con-
tribution is b4. Figure 9 compares the “true” power spectrum, Pj(k), assuming by = 5, with
best fits to the power spectrum in a dark matter only universe Py(k), described by the model
parameters My, where the values of «, b1, ba are shifted from their true values according to Equa-
tion 5.3. Different values of the maximum wave number ky.x included in the Fisher calculation

—90 —



102 1 — M3by,b_,c_ 102 - — M3b,,b_,c_
—— M3b, — M3c_
é’ 101_
S
S
100 4 100 4
0 1 2 3 4 5 1073 1072

Figure 11. Constraints on b4 and c_ in our fiducial setup if only each respective parameter can be varied
(black), and if all relative parameters are simultaneously marginalized over (red). Notably, when the full
model is taken into account detecting the relative velocity effect (¢_) will require up to ten times more
signal to noise.

1 we find a significant departure in phase

are shown with different lines. For ky.x = 0.1 A Mpc™
between the two models, compared to higher limiting wavenumbers, as evident from the phase of
the residual in the bottom panel. Beyond kmyax = 0.15 h Mpc ™! there are sufficient BAO wiggles
that the phase of the residuals are essentially locked. We caution that the same exercise repeated
with both matter and relative terms in the Zeldovich approximation can lead to wide swings in
the BAO scale da as a function of kpyax. This can be understood as follows: at k& = 0.1 hMpc_l,
by contributes both oscillatory behavior and a broadband shape identical to the total matter
component. The latter is essentially an amplitude change and can be roughly cancelled by a
shift db,,,, which it is thus fixed independently of k.. This then requires da to shift with Kkpax
as more oscillations are included until the oscillations in r; relative to my are damped at large
k (Figure 2). This broadband effect is ameliorated by including nonlinear terms for BAO mea-
surements, but the partial degeneracy of b with the power spectrum amplitude likely implies
that ignoring two-fluid effects may affect measurement of the amplitude of the power spectrum
(though this effect will also be partially mitigated by redshift-space distortions).

The same formalism can be applied to more realistic bias models. In the upper left panel of
Figure 10 we consider the case when the observed power spectrum contains nonzero values b
and c_ = 0, and forecast the shifts in a due to the wrong assumption of by = 0. Due to the
small size of the b_ contributions (see Figure 4), we expect shifts in BAO inferred distances to be
dominated by b4, and this is indeed what we find, contours of constant d« are almost independent
of b_ even when [b_| = 10. On the other hand, we see that values of by ~ 5 shift the measured
a by up to 0.4%, close to half of the error on « expected when using M.

However, the physics behind the relative components is quite well understood and can be
easily included in Fisher forecasts or power spectrum analyses. Indeed, as seen in Figure 8, the
templates for the various relative biases and « have distinct shape and could be distinguishable
depending on the noise level of the measurements. The upper right plot in Figure 10 shows the

— 21 —



increase in o, induced by marginalizing over b4 in universes where b1 and b, are not necessarily
nonzero °. The total loss of constraining power is modest, with less than 10% worse error bars
even after marginalizing over two extra parameters. In both the computations of the shifts in «
and the increase of o(«), the volume of the survey does not enter, and the final results depend
only on the shot noise levels.

In the lower set of plots in Figure 8, we repeat the same exercise described above including c¢_
as an extra free parameter. Since b_ is irrelevant for the final results we set it to zero (but still
marginalized over it). We find that by and c_ are anti-correlated, with larger shifts compared
to the by case, but da/a < 0.5% in all cases. Marginalizing over the extra parameter c_ results
in a 20-30% increase in o(c«v), which is still benign for BAO constraints. Our results therefore
advocate for the implementation of relative component biases, at least of b4 and c_, in standard
BAO data analysis of the galaxy power spectrum or correlation function.

Finally, in Figure 11 we investigate the detectability of the two-fluid effects in the same setup.
On their own, both by and ¢_ become 1o detectable at the upper end of our explored parameter
ranges, shown as the red lines in Figure 11. However, once all three relative bias parameters
are marginalized over, the black set of curves in Figure 11, neither will be detectable within our
fiducial volumes, with c_ in particular at 0.1c, well out of reach even if all the DESI redshift bins
are combined.

6 Conclusions

The large scale structure of the universe, whose formation is dominated by the dynamics of
gravitational collapse, is one of the premier probes into fundamental physics. At subleading
order, the presence of multiple particle species, broadly categorized into cold dark matter, baryons
and neutrinos, with distinct properties beyond their shared gravitational attraction, can present
additional features in this structure, which will become increasingly important as future surveys
push to higher precision. In particular, relative perturbations between baryons and cold dark
matter are prominent at the same scale as baryon acoustic oscillations and have the potential to
cause systematic biases in future BAO measurements.

In this paper, we develop the Lagrangian formalism to calculate the clustering of biased tracers
in the presence of multiple fluids, focusing specifically on the two-fluid scenario with dark matter
and baryons. The Eulerian description of two-fluid dynamics has been studied extensively in the
past and we make contact with previous work as appropriate throughout the text. LPT includes
an automatic resummation over long-wavelength bulk flows and is thus able to accurately capture
the shape of BAO features for biased tracers. In addition, LPT naturally maps bias terms from
their initial Lagrangian positions to advected Eulerian positions, in contrast to Eulerian theory
in which advective terms must be put in by hand, thereby simplifying the treatment of bias as
responses to linear initial perturbations.

The presence of two fluids introduces terms beyond those encountered in traditional single
fluid cosmological perturbation theory, with modifications in both the bias expansion and tracer
advection. In the former, the generalized Galilean invariance that restricted the bias to contain

5The nonzero b+,» produce shifts in the measured «,b,, when using My, which must be taken account when
computing o,. To first order, the shifted Fisher matrix is given by Fp.
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only second derivatives of the gravitational potential in the single fluid case, allows terms includ-
ing relative overdensities and velocities between different species. In the latter, initial relative
displacements between various species are preserved under free fall and present an additional
source of bias. Large scale non-gravitational forces such as Compton drag induced by the CMB
can introduce additional corrections. We formulate modifications to tracer bias and advection
in terms of three initial modes, constants of motion in the linear equations of motion, which
roughly correspond to the initial total-matter displacement field and the relative displacement
and velocity fields between dark matter and baryons.

We explicitly calculate the galaxy auto-power spectrum in the Zeldovich approximation within
this formalism. Cross correlations between the relative modes introduce eight terms linear in
the power spectrum—however, those quadratic in the relative component are suppressed by
four orders of magnitude relative to the single fluid terms at low redshifts relevant for the next
generation of galaxy surveys. Comparing to the Eulerian result explicitly to first order in the
power spectrum, we find that the Eulerian relative component bias corresponds to linear mixtures
of the Lagrangian bias, with modifications to the tracer advection entering both the Eulerian
relative overdensity bias and the Eulerian relative velocity divergence bias. We then take up the
calculation of cross spectra, finding a large scale damping due to an IR noncancellation in the
relative component that is nonetheless negligibly small on perturbative scales. We also briefly
discuss higher order corrections to the equations of motion in the presence of two fluids from
an effective theory point of view, and perform an example one loop calculation for the relative
velocity effect (o< v2).

We conduct an exploratory analysis into whether two-fluid effects can cause systematic biases
in measurements of the BAO scale. Taking the example of DESI ELGs at z = 1.25, we show
that while ignoring two-fluid effects can lead to systematic shifts in the measured BAO scale as
large as half a sigma, properly marginalizing over these effects induces less than ten percent loss
in precision for a wide range of bias values. Since the scale dependence of the underlying physics
is well understood, these results advocate for including two-fluid terms at linear order in future
analyses. The dominant relative bias term (o b1 ) does not fall quadratically with the growth
factor like the total-matter contributions, and we therefore expect the relative bias signal as a
fraction of total power to scale with redshift as Djrl (z) and become proportionally more significant
for surveys (such as the proposed Stage II 21-cm survey [5]) at higher redshifts. Studies of more
highly biased tracers such as DESI quasars [2], for which the total-matter contributions are
correspondingly larger, will on the other hand be less influenced by the relative bias for similar
reasons.

While the Lagrangian picture is a natural playground for their study, in this paper we have
opted not to study redshift space distortions (RSD). We note, however, that of the two relative
components, ry is dominant but stationary while r_ is so small as to be essentially negligible—
two-fluid impacts should thus have a relatively small impact on RSD. However, as noted in the
previous section, since the dominant relative component contribution b4 is somewhat degenerate
with the overall power spectrum amplitude, it is possible that two-fluid effects could hinder the
accuracy of fog measurements beyond the percent level. We will return to this issue in future
work.
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A Redshift dependence and size of the of bias parameters

The bias expansion in Equation 3.5 has an implicit dependence on the initial redshift z; that
must be taken into account to reach consistent conclusions. Since the initial conditions mix
at most linearly, no information can be lost by choosing one initial time 7; over another; for
example, the sensitivity of halos to the relative velocity divergence after reionization, which
contains a contribution from the total matter overdensity (Eq. 2.9), can be directly accounted
for by calibrating the bias parameter for J,, at an earlier redshift.

As a simple example we consider the redshift dependence of the relative components in the
sourceless (F, = 0) case. If we set our initial time at 7/ instead of 7; we will get

v, (1) = ( —ry +r_D,(7, T,)) +r_D,(1,7) = -1/, + 1D, (7, 7). (A.1)
Re-expanding Fj at 7] thus yields
Fy(q) = bibpm + 1,V - (m - r_DT(T;,TZ-)) FU Vot (A.2)

Since b’ and b apply to the same field configurations at different times, they must yield the same
initial overdensity F, — this requirement can be satisfied by enforcing the differential equations
db db_ b
— -0, —=—_" (A.3)
dr dr  a(7)
Intriguingly, the presence of a relative overdensity bias can “generate” a relative velocity bias
at later times. This can be understood as follows: the relative overdensity at late times is a
linear combination of the relative overdensity and velocities at earlier times. Similar, though
more complicated, versions of this relation hold when Fp & m, in which case mixing of all three
initial fields must be taken into account.

B Beyond Linear Order

B.1 Equations of motions

In this appendix we derive the equations of motion beyond linear order in the two-fluid scenario,
and show that the nonlinear contribution of r4 to the total-matter component are quadrati-
cally suppressed, and that the nonlinear relative component is always sourced by at least one
component of r4.
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The Lagrangian equations of motion at higher order can be found by taking the real-space
divergence of both equations in 2.3. To do so we make use of the identities

a a  —
Lt = |G| =T (B.1)
0x*1-10V; 1
oV = 20 [+ w7, B.2
Ve -V [aq Lj 0q; [0 + Z’j] Vi (B2)

where the negative powers in the second line denote matrix inverses, to account for the coordinate
transformations between Lagrangian coordinates ¢ and the fluid trajectories for each species
1% = ¢+ W% as well as the standard matrix identities (I + A)~! =T — A+ A% — A3 + O(A*) and
det(I + A) = 1+ Tr[A] + 3(Tr[A]* — Tr[A4?]) + O(A43). We will neglect the effects of Compton
drag, which affects the relative displacement at a few percent level even at late times and on
linear scales and thus enter into our final power spectra at the same order of magnitude as the
relative component squared, and assume potential flow.

The above equations imply that the Lagrangian equations of motion for the fluid displacements
of a species a at n** order takes the generic form

n—1 ''n
D‘I,Z(Z,n) _ Z plan—m) gy (am) + %%29771 Z Wy (j; 1)(a ’ )7 (B.3)

m=1 a’

where the superscript (a,n) denotes the species and order of each term, the derivative operator
D is defined such that DX = X” +H X', and the F(@")’s are kernels composed of displacements
of the species a at order n and below. Switching to the total matter and relative components,

we have
n—1 )
(m’”) = — , (a/;n—m) (a’,m) § 2 / J -1 (a’yn)
Dw!" Zwa ;F DR 4 23 Qmea ( Z ) (B.4)
n—1 n—1
D\IJEZ”) — _< Z F(C,Tb—m)D\I,(C,m) _ Z F(b’n_m)D\Il(b’m)> ‘ (B5)
m=1 m=1

We can derive some elementary properties of these equations without solving for their particular
forms using symmetry arguments. Noting that the RHS of B.4 is symmetric under species
index exchange (b <> ¢) while B.5 is antisymmetric, we can conclude that (1) the first relative
contribution to the total matter EOM at each order must be of order O(r2), and all subsequent
contributions suppressed by further even powers of the linear relative component and (2) the
relative component is always sourced by at least one power of r, since the total matter component
is even under this swap while the relative component is even. Note that (1) implies that the
dynamics of the total-matter displacement are affected by the relative component only at the
percent-of-a-percent level, and (2) implies that the nonlinear relative displacement is never less
suppressed in r4+ than the linear solution.. A similar result occurs in Eulerian theory, as described
in [15].
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For completeness, the explicit second and third order equations of motion for the relative
component are, up to first order in the linear relative perturbation
(r2) _ gD (m,1)
D =W DV
(r3) _ gD (m,2) (m,1) (r,2) (r,2) (m,1)
D =W, DV + W D 7 + 5T D

(r,1) 7, (m,1) m,1) o (r,1) (m,1)
- (wlet el el peln Y, (B.6)

( .

.]7 ,L?

which are in-line with the symmetry arguments outlined above. The equations of motion for
the total matter component at second and third order can be similarly verified to be simply the
equations of motion in the one-fluid case to this order in the relative component.

B.2 Biasing at second order

Below we list all contributions to the bias expansion up to second order in the initial fields
omitting derivative corrections:

Fy = b16pm + bs, 0y + by, 0,

1
+ 5525727Z + bs25455i5 + bs,,5,0m0r + 05,0, 0mbr 4 by,.05,, (V)i Oi0m + bs900; (V) j5i;
+ by2vi+ .. (B.7)

In the main body of this paper we consider relative bias terms up to first order in the power
spectrum, since even these represent only percent level effects, with the exception of the relative
velocity effect o< vZ, which has a distinct scaling. As noted in the text, we note that the presence
of Compton drag can introduce additional terms due to loss of gauge redundancy; we refer readers
to the extensive discussion in [17].

C Relative Velocity Bias Terms

In this appendix we provide details for the contributions of the relative velocity bias b,2 at
O(P?) to the galaxy power spectrum. These contributions require the calculation of two new 2-
point functions, the one-loop correlation between matter displacements and the squared relative
velocity, and the correlation function between the shear field s;; and the relative velocity. We
describe these in turn.

The second order solution to the total-matter displacement (correct up to first order in the
relative component) is given by

(2) _13iki d3p (k—p)‘P 2
@ (k) = 2752 | @n)p { - ( % pllp| > } 6m.,0(P) Om,0(k — p), (C.1)

and more simply the “normalized” relative velocity at first order is given by

—ik;
k2

roi(k) = —= (V) (k). (C.2)
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From this we can calculate the two-point function

3 Bk =ik d®

- Ce=iet) Ty

Ps,vr_(p)Ps,,ve_(k—p), (C.3)
which can be simplified to give
@) ()2 [ PR
(¥ (q)v;0(0)) = ¢ 2n) € Qu2(k), (C.4)

where the kernel is defined as

Q,2(k) = 3/0°° dr Py (kr) /1 dor (2=n(=2") p 4 AT ). (C5)

7 42 (1412 = 2r2)?

Next, the shear-velocity correlation function VVZE is given in Fourier space by

. . 3k iva [ Kikjkr 1 kg el 1 —
Wi (@) ZZ/ @2 ¢ q< pi 30y | Pm=(R) = Wi (a) — 505U (). (C.6)

where in the last equality we have split VVZSJE into a totally-symmetric piece and a familiar piece
proportional to U™~. The former can be decomposed into scalar components
Vie(@) = A(@) Gidjdr + B(q) (didk + Gi0ki + Grdij), (C.7)

with the scalar components defined as spherical Bessel transformations:

Ay = [ B8 jstka) P (k) (©3)
B = [ 5 5 (1) + ds(h)) P () (©9)
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