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Sirenians share with cetaceans and pinnipeds several convergent traits selected for the
aquatic lifestyle. Living in water poses new challenges not only for locomotion and feeding
but also for combating new pathogens, which may render the immune system one of the
best tools aquatic mammals have for dealing with aquatic microbial threats. So far, only
cetaceans have had their class Il Major Histocompatibility Complex (MHC) organization
characterized, despite the importance of MHC genes for adaptive immune responses.
This study aims to characterize the organization of the marine mammal class Il MHC
using publicly available genomes. We located class Il sequences in the genomes of one
sirenian, four pinnipeds and eight cetaceans using NCBI-BLAST and reannotated the
sequences using local BLAST search with exon and intron libraries. Scaffolds containing
class Il sequences were compared using dotplot analysis and introns were used for
phylogenetic analysis. The manatee class Il region shares overall synteny with other
mammals, however most DR loci were translocated from the canonical location, past
the extended class Il region. Detailed analysis of the genomes of closely related taxa
revealed that this presumed translocation is shared with all other living afrotherians. Other
presumptive chromosome rearrangements in Afrotheria are the deletion of DQ loci in
Afrosoricida and deletion of DP in E. telfairi. Pinnipeds share the main features of dog
MHC: lack of a functional pair of DPA/DPB genes and inverted DRB locus between
DQ and DO subregions. All cetaceans share the Cetartiodactyla inversion separating
class Il genes into two subregions: class lla, with DR and DQ genes, and class llb, with
non-classic genes and a DRB pseudogene. These results point to three distinct and
unheralded class Il MHC structures in marine mammals: one canonical organization but
lacking DP genes in pinnipeds; one bearing an inversion separating lla and llb subregions
lacking DP genes found in cetaceans; and one with a translocation separating the most
diverse class Il gene from the MHC found in afrotherians and presumptive functional DR,
DQ), and DP genes. Future functional research will reveal how these aquatic mammals
cope with pathogen pressures with these divergent MHC organizations.

Keywords: molecular evolution, genomics, marine mammals, manatee, MHC, immunogenetics, pinnipeds,
cetaceans
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INTRODUCTION

The transition from terrestrial to aquatic habitat has occurred in
several terrestrial vertebrate lineages. In mammals, early after the
Cretaceous period, independent ancestral lineages of afrotherian,
cetartiodactyl, and carnivore would begin their path to return
to aquatic environments which would lead to current sirenian,
cetacean, and pinniped species of marine mammals. Those three
lineages have further undergone adaptive radiation and their
descendants are found in both oceanic and freshwater habitats.

The order Sirenia is represented by one species of dugong
(Dugong dugon) and three species of manatees (Trichechus
manatus, T. senegalensis, and T. inunguis), all of them exclusively
herbivorous and whose closest living relatives are the elephants.
The order Cetacea have approximately 89 species divided into
two suborders: Odontoceti (toothed whales) and Mysticeti
(baleen whales), and is closely related to hippopotamuses.
Pinnipedia comprises a carnivore suborder with three families
(Otaridae, Phocidae, and Odobenidae) of around 34 species of
aquatic fin-footed mammals (seal, sea-lions, and walrus), closely
related to bears and musteloids (e.g., raccoons and skunks),
which are still dependent on the land to live, in contrast
to sirenians and cetaceans, which are totally adapted to the
aquatic environment. Aquatic mammals share several convergent
traits selected for fresh water and marine habitats, including
morphologic and genetic traits (1-4).

Living in water poses new challenges not only for locomotion
and feeding but also for combating new pathogens. How the
three major independent aquatic mammal lineages just detailed
dealt with the genetic constraints of their ancestry and to what
extent their recent history in similar habitats led to convergent
evolution in their immune system is not clear. Several marine
mammals lack major predators in the adult phase, so infectious
disease may be an important cause of mortality (5). This may
make the immune system of these aquatic lineages particularly
important for their fitness and fecundity. Compared to their
terrestrial relatives, marine mammals face distinct diversity of
pathogens, disease ecology, and epidemiology (6-8), which may
create distinct selective pressures on immune genetic systems,
including the Major Histocompatibility Complex (MHC).

The MHC encodes many immune (and many non-immune)
genes, canonically divided in class I, II, and III regions in
vertebrates. The class II region includes classical (e.g., DR,
DQ, DP) MHC, non-classical (e.g., DO, DM) MHC, antigen
processing (e.g., TAP, PSMB) and other genes. Classical class II
alpha and beta genes encode a protein heterodimer that presents
antigens for T lymphocytes to detect infections and other danger
signals. Classical MHC genes are highly polymorphic, confer
resistance or susceptibility to diseases, and may be used as genetic
markers for species conservation (9, 10). Several studies have
reported the diversity of class II genes in cetaceans (11-19) and
pinnipeds (5, 20-25). Past evidence also showed that class II
MHC genes may be important genetic markers for survival in
a seal species (5). Despite its proposed importance for marine
mammals, so far only a representative of cetacean has had their
class II MHC organization characterized (26). Therefore, we
aimed to compare the genomic organization and evolution of

the MHC class II region in sirenians, cetaceans, and pinnipeds,
using genome assemblies from representatives of these groups
available in public databases. We also included other mammals
from different eutherian lineages for a better understanding of
the evolution of marine mammals and the eutherian class II
MHC region.

MATERIALS AND METHODS

MHC Class Il Genes Identification

and Reannotation

The marine mammals investigated in this research were: the
sirenian Florida manatee (Trichechus manatus latirostris); the
cetaceans minke whale (Balaenoptera acutorostrata scammoni),
sperm whale (Physeter catodon), baiji (Lipotes vexillifer), beluga
whale (Delphinapterus leucas), finless porpoise (Neophocaena
asiaeorientalis), bottlenose dolphin (Tursiops truncatus), Pacific
white-sided dolphin (Lagenorhynchus obliquens), and killer whale
(Orcinus orca); and the pinnipeds walrus (Odobenus rosmarus),
Northern fur seal (Callorhinus ursinus), Hawaiian monk seal
(Neomonachus schauinslandi), and Weddell seal (Leptonychotes
wedelli). We included in the analysis other mammals as
outgroups and representatives of other major eutherian branches.
A summary of the assembly reports from each analyzed species is
provided in Supplementary File S1.

Preliminary search on the NCBI database identified annotated
MHC class II genes in the genomes of cetaceans, afrotherians,
and pinnipeds. All predicted mRNA gene sequences were
aligned to their human homologs. We selected presumptive well-
annotated classical genes based on the presence of full-length
sequences, presence of all exons, and no evidence of pseudogene
misidentification (presence of stop codons and lack of homology
in any exons). Those predicted genes and their human homologs
were used to perform megablast and discontiguous megablast
searches in the genomes of marine mammals and other mammals
representative of the main eutherian branches. Gene references
used were: DMA, NM_006120.3; DMB, NM_002118.4; DOA,
NM_002119.3; DOB, NM_002120.3; DRA, NM_019111.4 and
XM_007951302.1; DRB, NM_002124.3 and XM_003423461.2;
DPA, NM_001242525.1 and XM_006882197.1; DPB,
NM_002121.5 and XM_012559980.1; DQA, NM_002122.3
and XM_003421050.1; DQB, NM_001243961.1.

We checked all predicted class II gene and pseudogene
sequences for proper annotation using Geneious 9 (27).
MAFFT (28) alignments with the predicted coding sequence
were used to check for missing or poorly annotated exons.
We constructed local BLAST libraries containing exons
and introns for each gene and performed blast on scaffolds
containing class II sequences. Nomenclature used for class
IT genes of non-model species included a prefix formed by
the first two letters of the genus and species (i.e., Loxodonta
africana, Loaf; Trichechus manatus, Trma; Orycteropus afer,
Oraf; Elephantulus edwardii, Eled; Chrysochloris asiatica,
Chas; Echinops telfairi, Ecte; Dasypus novemcintus, Dano;
B. acutorostrata, Baac; D. leucas; Dele; L. vexillifer, Live; N.
asiaeorientalis, Neas; O. orca, Oror; L. obliquidens, Laob;
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T. truncates, Tutr; P. catodon, Phca; C. ursinus, Caur; N.
schauinslandi, Nesc; L. weddelli, Lewe; O. rosmarus, Odro;
Pteropus alecto, Ptal; Equus caballus, Eqca) (29, 30); BoLA, DLA,
H2 and HLA were used for bovine, dog, mouse and human
genes, respectively.

Predicted coding sequences with no stop codons or frameshift
mutations were presumed to be functional and annotated
as genes (including incomplete coding sequence due to
assembly gaps); sequences with at least one stop codon or
frameshift mutations were annotated as pseudogenes. Thus,
for clarity, in this manuscript “locus/loci” will be used
when broadly referring to sequences from a gene family,
including both presumed genes and pseudogenes; “gene” will
be used when referring only to presumed functional sequences;
and “pseudogene” will be used for presumed non-functional

sequences. New annotations and reannotation CDS, as well as
the summary of the loci used in this study are provided here as
Supplementary Files §2,S3.

Comparative Genomics Analysis

To construct dot plot graphs, the manatee, Northern fur seal and
sperm whale were chosen as representatives of the main marine
mammal branches. Scaffolds containing class II genes were first
submitted to RepeatMasker (31) and resulting masking files were
used along with sequence and gene annotations on PipMaker
(32). For the manatee, scaffolds covering the class I MHC region
were concatenated. Part of the annotations and sequences from
the extended class Il region were removed to provide a better view
of the identity of key regions.

TABLE 1 | Number? of MHC class Il genes and pseudogenes in each marine mammal scaffolds.
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aThe number of presumptive functional genes are outside of brackets, and number of pseudogenes (\s) between brackets.
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FIGURE 1 | Dot plot analyses of (A) Trichechus manatus, (B) Callorhinus ursinus, and (C) Physeter catodon scaffolds containing MHC class Il genes, compared to
the same region of the human genome. Human gene annotations are shown on the top of the graphs. For clarity purposes, extended class Il region was reduced to
include only key regions containing class Il sequences; dashed lines on the annotation represent gaps. T. manatus sequences were in different scaffolds and were
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Phylogenetic Analysis

We constructed phylogenetic trees using the exons and introns
from classical MHC class II genes and pseudogenes (when they
could be accurately determined). We chose to use only loci
located in scaffolds that allowed us to determine their location.
Introns were separately aligned using MAFFT online service (33)
and the alignments cleaned in GBlocks (34) under default settings
and allowing gaps in all sequences. Intron alignments were then
concatenated for the rest of the analysis. Exons were also aligned
using MAFFT. Best-fit partition scheme and corresponding
nucleotide substitution model was checked on PartitionFinder
(35); each intron was discriminated for the search of all possible
partition schemes and each codon position was treated as a
partition. Maximum likelihood trees were constructed in CIPRES
(36) using RAXML (37), with 1,000 bootstrap iterations. All
phylogenetic tests were performed in triplicate. Trees were
constructed on iTOL (38). Exon phylogenies did not change the
main conclusions of this study, therefore we present only intron
phylogenies since they are more comprehensive.

RESULTS

The Marine Mammal Genomes and Class Il
MHC Synteny

All' marine mammal genomes in our analysis were
de movo assembled wusing varying assembly methods
(Supplementary File S1). The manatee genome was made
using Illumina Hi-seq technology with a 150x coverage; pinniped
genomes were also made using Illumina reads with coverage
ranging from 27.44x to 200x; and cetacean genomes were
made using Illumina or BGISEQ-500 technology, with coverage
ranging from 35.68x to 248x (Supplementary File S1).

The manatee class II sequences were distributed over eight
scaffolds, while other marine mammals had their class II MHC
distributed on 1-3 scaffolds (Table 1). Overall, we were able
to locate one copy of each non-classical gene in all marine

mammals, whereas the classical genes varied across taxa. MHC
class II genes showed conservation in sequence length and
number of exons when compared to human homologs, although
many entries were only partial due to gaps in the genome or
difficulty in determining exon boundaries.

We chose a representative of each marine mammal lineage to
construct dot plot graphs against the human MHC. The manatee
class II region maintain the overall synteny compared to human,
but all DRB loci are located after the extended class II region
(Figure 1A). The Northern fur seal class II region also have
the main features of the human MHC class II organization;
however it lacks conservation in the DP subregion and possesses
an inverted DRB pseudogene between its DQ and DO subregions
(Figure 1B). The sperm whale class II region is divided in two
subregions due to an inversion separating the DR and DQ genes
from the non-classic genes (Figure 1C); the cetacean also lacks
identity in the DP subregion and possesses a DRB pseudogene
between DOB and GCLC (Figure 1C).

Main Features of the Marine Mammal MHC

Class Il Region

Due to the fragmentation of the manatee class II region in
distinct scaffolds, we turned our attention to other afrotherians
to understand their organization. The genomes investigated
here were all sequenced and assembled by the Broad Institute.
L. africana was the first sequenced afrotherian genome,
assembled with Sanger reads; other afrotherian genomes were
sequenced by NGS Illumina Hi-seq technology. All genomes
were de novo assembled, with coverage ranging from 44x to 150x
for the Illumina assembled genomes (Supplementary File S1). C.
asiatica and E. edwardii have all class II loci in the same scaffold,
evidence that class II sequences lie in the same chromosome.
All analyzed afrotherian share the presumptive translocation of
DR loci (Figure 2); this translocation was not found in other
boreoeutherian or xenarthran genomes analyzed here (data not
shown). Other presumptive chromosomal rearrangements were
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FIGURE 2 | Model of afrotherian class Il MHC evolution. On the top of image, the afrotherian phylogeny and divergence time (Ma, million years before present)
proposed by Springer et al. (39) and presumptive evolutionary events leading to current afrotherian MHC structure. On the left the human class Il MHC region is
depicted as an outgroup and model of the mammalian genome organization. Dashed lines represent regions of the scaffolds excluded for clarity purposes, which are
not to scale. Arrows represent genes and pseudogenes (shown as “p” in the end of the gene’s name). Only informative scaffolds of the MHC structure are displayed.
In color, a schematic view of class Il loci helps to understand the evolution of class Il loci (DR —red; DQ—purple; DP—green; DO/TAP/PSMB/DM —yellow).
TAP/PSMB represents TAP1, TAP2, PSMB8, PSMB9.

the deletion of DQ in the ancestor of Afrosoricida (i.e., C. asiatica  annotated as such. Most cetaceans have only one pair of DQ

and E. telfairi) and deletion of DP in E. telfairi (Figure 2).

The pinniped class II region has the same composition found
in the dog DLA (Figure 3). Like the Northern fur seal, walrus
and Weddell seal also possess DRB loci between DOB and DQB.
Pinniped genomes have varied numbers of DR loci but a single
pair of presumed DQ genes. Most DP loci seem to be pseudogenes

in pinnipeds (Figure 3).

All cetaceans share with terrestrial Cetartiodactyla the
inversion separating class II genes in two subregions: Ila,
including DR and DQ loci; and IIb, including non-classic genes

genes, whereas no DQ loci was found in the minke whale genome.
Like cattle, cetaceans seem to have lost DP loci altogether, with
only remnants of a DPB pseudogene found in the minke whale
class IIb region. No DY loci was found in any cetacean (Figure 4).

Non-classical Class Il and Antigen
Processing Genes

Overall, non-classical genes were already annotated in the
genomes analyzed here, but some entries needed a refined
prediction of exon boundaries. The gene content and

(Figure 4). Cetaceans have one DRA gene and up to three
DRB loci in class IIa and a presumed DRB pseudogene next
to DOB on class IIb region. Despite lying in the same location
occupied by DYB and DSB in cattle, those sequences share a
higher homology with DRB exons and introns and therefore were

organization across marine mammals is highly conserved,
as found in other mammals. Notably, D. leucas and E. telfairi
DOB had to be separated from the TAP2 gene annotations.
L. vexillifer and C. asiatica DOB have a stop codon at exon
5, therefore were annotated as presumed pseudogene despite
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FIGURE 3 | Model of pinniped class I MHC evolution. On the top of image,
the pinniped phylogeny and divergence time (Ma, million years before present)
proposed by Nyakatura and Bininda-Emonds (40). On the left, dog class |l
MHC region is depicted as an outgroup and model of the Carnivora genome
organization. Arrows represent genes and pseudogenes (shown as “p” in the
end of the gene’s name). Only informative scaffolds of the MHC structure are
displayed. In color, a schematic view of class Il loci helps to understand the
evolution of class Il loci (DR—red; DQ—purple; DP—green;
DO/TAP/PSMB/DM —yellow). TAP/PSMB represents TAP1, TAP2, PSMBS,
PSMBS.

being the only predicted DOB locus in their genomes. Protein
alignments showed conservation of exon sizes, with most
differences related to missing exons due to gaps in assembly
(Supplementary Files S4-S7).

Classical Class Il Genes

DR Loci

Most DR loci had to be reannotated, especially the small
exons 5 and 6 from DRB. Protein alignments of DR genes
are provided in Supplementary Files S8, S9. In the three orders
of marine mammals we were able to find DRA and DRB
genes, despite manatee having most of its sequences outside
the canonical class II region. The translocation of DR loci in
Afrotheria split sequences into four subregions (Figure 2): within
the canonical class II region (not translocated, “nt”), between
C6orf106 and SNRPC (translocation 1, “tr1”; ~2.3 Mb distant
from nt), between TULPI and FKBP5 (tr2; mean ~3.2 Mb distant

from nt), and between CLPS and LHFPL5 (tr3; mean ~3.9Mb
distant from nt). The manatee has presumptive functional DRA
and DRB genes at the nt and tr2 region, respectively, this
DRB gene has a 16 codon gap in exon 3 but was considered
a functional gene since no stop codons were found. The DR
subregion in manatee have several assembly gaps, which hinders
a clearer definition of number of genes. Trl was only found in
Paenungulata (i.e., L. africana and T. manatus). All afrotherians
seem to have lost functional DRB from nt, whereas E. edwardii
lack all DR loci in the region (Figure 2). Afrotherian species seem
to maintain only one subregion with presumed functional DRB
genes, either tr2 (Paenungulata, O. afer, and Afrosoricida) or tr3
(E. edwardii).

Pinnipeds possess DRB and DRA loci; walrus have an in
tandem duplication of DR loci in the nt. The only DRA locus
from Hawaiian monk seal has a 1-bp deletion in exon 2
leading to several stop codons, and therefore was annotated as a
pseudogene. However, this species has a presumptive functional
DRB gene. Pinnipeds (except the Hawaiian monk seal) also share
with dog a DRB locus between DQB and DOB (termed “nt2”
region) that seems to be functional in walrus and Weddell seal
(Figure 3).

Cetaceans have one bona fide DRA gene and one to three
DRB loci (Figure 4). The cetaceans and cattle share a one codon
deletion on the first exon of DRA genes (Supplementary File S8).
The cetacean DRB pseudogene in the class IIb region lies in a
location similar to DSB in cattle (Figure 4). The position and
direction of class ITb DRB pseudogenes are compatible to that of
nt2 DRB in the non-inverted class II region of other mammals.

DRA phylogenies formed well-supported clusters separating
Carnivora, Cetartiodactyla and Afrotheria loci (Figure 5A). The
afrotherian translocated loci from different locations did not
form a well-supported cluster on the phylogenies; overall, DR
loci grouped by species and not by genomic position on the
phylogenetic trees. The only evidence of orthology from different
afrotherian species occurred in the Paenungulata DRA nt genes
(Figure 5). Carnivora formed 2 well-supported clusters in DRB
phylogeny separating nt from nt2 sequences, although horse nt2
loci did not cluster with the Carnivora nt2 loci (Figure 5B).
Similarly, cetacean IIb loci formed a well-supported cluster apart
from nt2 loci from horse and carnivores (Figure 5B). Cetacean
ITa loci formed two clusters separating most DRB pseudogenes
from the genes, and therefore the ancestor of cetaceans probably
had one DRB gene and one pseudogene.

DQ Loci

The marine mammals have a similar DQ subregion, with at least
a pair of DQA and DQB functional genes annotated in most
species analyzed here. The manatee genome has one DQA gene
and four DQB loci, although only one seems to be functional.
Most afrotherians also have a single DQA gene, while the number
of DQB loci varied across taxa. The only species analyzed with
multiple presumptive functional DQB genes is L. africana. We
could not find any DQ loci in the genome of C. asiatica and E.
telfairi. Pinnipeds and cetaceans have a pair of DQA and DQB
genes, however, no DQ loci was located in the minke whale
genome, possibly due to the abundance of assembly gaps in
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FIGURE 4 | Model of cetacean class Il MHC evolution. On the top of image, the Cetartiodactyla phylogeny and divergence time (Ma, million years before present)
proposed by Zurano et al. (41). On the left, cattle class I MHC region is depicted as an outgroup and model of the terrestrial Cetartiodactyla genome organization.
Dashed lines represent regions of the scaffolds excluded for clarity purposes, which are not to scale. Arrows represent genes and pseudogenes (shown as “p” in the
end of the gene’s name). Only informative scaffolds of the MHC structure are displayed. In color, a schematic view of class Il loci helps to understand the evolution of
class Il loci (DR—red; DQ—purple; DP—green; DY —light green; DO/TAP/PSMB/DM —yellow). TAP/PSMB represents TAP1, TAP2, PSMBS8, PSMB9.

the DQ subregion. DQ genes maintained overall conservation
of exon length, with differences only in exon 1 of DQB
(Supplementary Files S10, S11). Most manatee loci clustered
with elephant sequences in the phylogenies (Figure 6), but one
manatee DQB pseudogene clustered with P. alecto pseudogene,
suggesting this pseudogene was present in the ancestor of
eutherians (Figure 6B). Carnivora and Cetartiodactyla DQA and
DQB genes clustered inside their groups; cetacean DQA is
orthologous to BoLA-DQA2 (Figure 6A).

DP Loci

We reannotated most DP loci, mainly due to difficulty in
assigning exon 1 for DPA and exon 5 for DPB. Most
DPA loci were annotated with a small exon 1, because the
start codon seemed to have mutated (coding for a valine
instead of methionine). Protein alignments are provided in
Supplementary Files S12, S13. Among the marine mammals,
the only species with a pair of presumptive functional DPA and

DPB genes is the manatee (Supplementary File S3, Table 1); the
manatee possesses three DPA and four DPB loci, but only two
DPA and one DPB are presumptive genes. Inside Afrotheria, O.
afer possesses four in tandem duplications of the DP loci, while
E. telfairi lost all DP loci (Figure 2). Most pinniped’s DP loci are
pseudogenes, except one DPB gene in Weddell seal and one DPA
in Northern fur seal (Figure 3); Caur-DPA lacks homology in the
end of exon 4 and Lewe-DPB is a partial sequence including only
exons three and four. Cetaceans lack DP loci altogether, with the
exception of a remnant of a DPB pseudogene (homology only to
the exon 3) found in minke whale (Figure 4).

Four DPA genes (three from O. afer and one from E.
edwardii) and two pseudogenes (one from O. afer and one
from L. africana) possess a distinctive three codon insertion
in exon 3, which may be evidence of an ancestral form of
DPA in the afrotherian lineage (Supplementary Files S3, S12).
However, sequences with this insertion did not form a well-
supported cluster in the phylogenies (Figure 6C). DPA showed
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FIGURE 5 | Maximum likelihood phylogenetic trees of DR MHC class Il genes and pseudogenes. (A) DRA introns 1, 2, and 3 phylogeny; (B) DRB introns 1, 2, 3, 4,
and 5 phylogeny. On the sequence positions: “nt” refers to not translocated; in blue, "nt2" refers to genes between DQ and DO, and lIb to genes located on class llb
region in Cetartiodactyla, in blue; “tr1” refers to translocated between C6orf106 and SNRPC; “tr2” between TULP1 and FKBP5, in red; “tr3” between CLPS and
LHFPLS, in orange; “p” refers to pseudogenes. Black and red circles indicates >80 and >95% support values, respectively. L. africana, Loaf; T. manatus, Trma; O.
afer, Oraf; El edwardii, Eled; C. asiatica, Chas; E. telfairi, Ecte; D. novemcintus, Dano; B. acutorostrata, Baac; D. leucas; Dele; L. vexillifer, Live; N. asiaeorientalis,
Neas; O. orca, Oror; L. obliquidens, Laob; T. truncates, Tutr; P catodon, Phca; C. ursinus, Caur; N. schauinslandi, Nesc; L. weddelli, Lewe; O. rosmarus, Odro; P.
alecto, Ptal; E. caballus, Eqca; B. taurus, BoLA; H. sapiens, HLA; M. musculus, H2; C. I. familiaris, DLA.

HLA DRBS 3127 nt
—E HLADRB1 3123 nt
HLA DRB3 3125 nt
—————Dano DRB LOC101437751 nt
Eled DRBp newlocus3 tr3
Eled DRBp newlocus1 tr3
Eled DRB LOC102854615 tr3
Eled DRB LOC102854204 tr3
Eled DRB LOC102852968 tr3
Eled DRB LOC102853800 tr3

[—|Oraf DRBp newlocus1 nt
Chas DRBp newlocus2 tr2
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Chas DRBp LOC102832089 tr3
Ecte DRB nt
Loaf DRBp LOC 42tr2
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DLA DRBp 474863 nt2
Caur DRBp LOC112816097 nt2
Odro DRB LOC101370728 nt2
Lewe DRB LOC102748173 nt2
DLA DRB 474860 nt
Lewe DRB LOC102741082 nt
Nesc DRB LOC110586717 nt
Odro DRB LOC101379947 nt
Caur DRB LOC112816038 nt
Odro DRBp LOC101380246 nt
[ Ptal DRB LOC102884055 nt
Ptal DRBp LOC102880737 llex
Eqca DRB 100052364 nt2
Eqca DRBp LOC100060697 nt2
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Ecte DRB newlocus2 tr2
Eqca DRB 100052310 nt2
Eqca DRB 100052006 nt
BoLA DRB 529009 lla
Baac DRBp LOC103012913 Iib
Live DRBp LOC103083419 IlIb
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Laob DRBp LOC113630960 IIb
Oror DRBp LOC101288124 Iib
Dele DRBp LOC111178663 Iib
4 Neas DRBp newlocus1 lib
Phca DRBp LOC102974191 IIb
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Baac DRBp LOC103002985 lla
Neas DRB LOC112406848 lla
Laob DRB LOC113631214 lla
Oror DRB LOC101276823 lla
Tutr DRB LOC101336370 lla
Live DRB LOC103087297 lla
Dele DRB LOC111178928 lla
BoLA DRB2 538700 lla
BoLA DRB3 282530 lla
Live DRBp LOC103085996 lla
Dele DRB LOC111178929 lla
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Laob DRBp newlocus1 lla
Neas DRBp LOC112406851 lla
Baac DRB LOC103007535 lla
Phca DRB LOC102978546 lla
Live DRBp LOC103087452 lla

signs of orthology in Paenungulata; DPB pseudogenes showed
signs of orthology between Paenungulata and O. afer (Figure 6).
The ancestor of eutherians seems to have had two in tandem
duplications of DP loci, one with functional genes and the
other with pseudogenes; the manatee has loci from both clusters
(Figure 6). Most Carnivora loci grouped inside pseudogene
clusters; the presence of Caur-DPA and Lewe-DPB inside this
cluster of Carnivora pseudogenes suggests both may not be
functional (Figure 6).

DISCUSSION

Here we report the organization of the marine mammal class
IT MHC and the first model for the evolution of this region in
afrotherians, sirenians and pinnipeds, including species from the
families Otaridae, Phocidae, and Odobenidae. We also expanded
the number of class II MHC organization reports in cetaceans,
including species from Mysticeti and Odontoceti lineages. We
found that the manatee MHC includes the main classical
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FIGURE 6 | Maximum likelihood phylogenetic trees of DQ and DP MHC class Il genes and pseudogenes. (A) DQA introns 1, 2, and 3 phylogeny; (B) DQB introns 1,
2, 3, 4, and 5 phylogeny; (C) DPA introns 1, 2, and 3 phylogeny; (D) DPB introns 1, 2, 3, and 4 phylogeny. In (C), sequences with a 3-codon insertion on exon 3 are in
green. “p” refers to pseudogenes. Black and red circles indicates >80 and >95% support values, respectively. L. africana, Loaf; T. manatus, Trma; O. afer, Oraf; El
edwardii, Eled; C. asiatica, Chas; E. telfairi, Ecte; D. novemcintus, Dano; B. acutorostrata, Baac; D. leucas; Dele; L. vexillifer, Live; N. asiaeorientalis, Neas; O. orca,
Qror; L. obliquidens, Laob; T. truncates, Tutr; P catodon, Phca; C. ursinus, Caur; N. schauinslandi, Nesc; L. weddelli, Lewe; O. rosmarus, Odro; R, alecto, Ptal; E.
caballus, Eqca; B. taurus, BolLA; H. sapiens, HLA; M. musculus, H2; C. I. familiaris, DLA.

mammalian class II genes while most DR loci were translocated—
a feature manatee shares with the other afrotherians analyzed
here. Both pinnipeds and cetaceans have presumptive functional
DQ and DR genes, probably lost functional DP genes, and have
one DRB locus lying next to DOB. These findings fill a gap in
the study of marine mammal immunogenetics and eutherian
MHC evolution, providing evidence of new chromosomal
rearrangements events that led to changes in the organization of
the mammalian MHC.

The afrotherian MHC 1is poorly studied as a whole—to
our knowledge, the only reports on afrotherian MHC are two
studies on the DQA polymorphisms in elephant and wooly
mammoth (42, 43). Based on genomic resources analyzed
here, the manatees share with other afrotherians a unique
DR translocation separating it from the core class II region.
Despite manatee genes being distributed over four main scaffolds,
all class II MHC sequences, including translocated DR loci,
presumably lie on the same chromosome, based on other

afrotherian class II regions and data from chromosome painting
in manatee (44). The similarity between the manatee and
elephant class II organization suggests that elephant may serve
as a model for understanding the manatee MHC function.
Antigen presentation in manatee presumably uses DR, DQ,
and DP, with evidence of DQ duplications. Future research
addressing the expression and polymorphism of class II genes
in both species is needed. Afrotherians also have other unique
features: a three-codon insertion on exon 3 in some of the
DPA loci and deletion of DQ and DP loci during Afrosoricida
(tenrec and golden mole) evolution. It is important to notice
that tenrec (E. telfairi) seem to have one of the simplest
mammalian MHC class II regions. We found three DRA genes
and only one DRB gene on the tenrec assembly (Figure 2;
Supplementary File $3), which may represent a mammalian
“minimal essential” MHC class II, like in chickens—with
only two classical class II genes, coding the alpha and beta
peptides (45).
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Despite several reports on class II gene polymorphisms in
pinnipeds, to our knowledge this is the first analysis of MHC
structure in this clade. The class I MHC of pinnipeds is similar
to the DLA organization (46). The lack of a pair of presumed
functional DPA and DPB genes in pinnipeds suggests their MHC
may function similarly to cetaceans—using primarily DR and
DQ molecules—and may provide opportunities to investigate
convergence in class II evolution in both clades. Most pinnipeds
also have an inverted DRB locus between DQB and DOB, which
is not only present in carnivores such as dogs (46) and cats (47)
but also in horses (48). This inversion event is thought to have
occurred in the ancestor of Laurasitheria (48) and this DRB may
be functional in walrus and Weddell seal.

Despite several studies focused on class II gene polymorphism
in cetaceans, their MHC structure was only recently characterized
(26). Most cetaceans analyzed here and the previously reported
Yangtze finless porpoise MHC (26) have one DRA and two
DRB loci in class ITa, a DRB pseudogene in class IIb, a single
DQ pair, and lack DP and DY genes. On the other hand,
cattle have DYA, DYB, DSB, and duplicated DQ genes; therefore
using cattle as a model for cetacean immunogenetics should be
cautionary until further characterization of expression and MHC
haplotype variation in cetaceans. Notably, the only Mpysticeti
species analyzed here lacks DQ loci in its assembly, probably due
to the large assembly gaps in this region, since there are reports
of DQ polymorphisms in baleen whales (16, 19).

The difficulties of assembling the MHC region is widely
known, due to extensive variation in gene sequence and
haplotype composition of multigene families. However, due
to increasing availability of good non-model species genomes,
researchers have started using publicly available genomes to
analyze the MHC region (49-56). Despite the challenges, to our
knowledge, there are no reports that such difficulties resulted
in artifactual chromosomal rearrangements of MHC loci, such
as the translocations seen in Afrotheria. This mutation event is
supported by the fact that two different sequencing technologies
(long-reads from Sanger and short-reads from Illumina) and
two different de novo assembly algorithms [ARACHNE and
ALLSPATH (57, 58)] resulted in the same translocated subregions
across the afrotherian genomes. Thus, if the translocation was
an assembly artifact, the same misassembly would have to be
repeated six times independently with datasets from different
species, generated with different sequencing methodologies and
different assembly algorithms. It is important to note that
no other mammals analyzed here or elsewhere had similar
events. The MHC organization of the other analyzed marine
mammals were highly consistent with the organization of
their eutherian lineages. Similarly, the deletion of DQ in
Afrosoricida is supported by the evolutionary relationship of C.
asiatica and E. telfairi—a deletion shared by two independent
assemblies of animals from the same lineage and by the
overall reduction in MHC size in the species scaffolds especially
in the DQ/DP subregion. Another way to provide physical
evidence for the translocation or deletion would be to use
fluorescent in situ hybridization or sequence BAC libraries
containing MHC genes, which was beyond the scope of the
present study.

The DR phylogenies clustered sequences by species, although
we expected that all translocated loci across afrotherians would
form a well-supported cluster in the phylogenies, separated
from non-translocated sequences. DRB loci in the nt2-IIb region
and DPA with a three-codon insertion also did not cluster in
the phylogenies. Previous research, using class II MHC genes
from laurasitherians, also had similar results (48). Orthologous
relationships were particularly observed inside Cetacea and
Carnivora in which species diverged < 60 Ma (40, 41). A better
resolution of orthology among translocated loci would probably
be achieved using less divergent taxa, since the clades analyzed
here diverged early in afrotherian evolution. For instance, one
of the closest pair of species studied here is the African elephant
and the Florida manatee, with estimates of 70~65 million years
of divergence (39, 59). The non-translocated DRA from manatee
indeed clustered with the non-translocated elephant homolog,
but the lack of other sequences (i.e., translocated Trma-DRA
and non-translocated Trma-DRB) presently hinders a more
comprehensive analysis.

In a simplistic scenario of the ancestral Afrotheria MHC,
the translocated loci would diverge, and a phylogenetic analysis
would separate loci from both regions (Figure 7A). However,
in a realistic scenario, birth-and-death evolution (see below),
natural selection, occasional gene conversion-like events and
recombination may blur the evolutionary relationship among
loci (Figure 7B). Those evolutionary processes may result in no
true orthologs for MHC genes between distantly related taxa
(60, 61). Similar processes may also explain why nt2 DRB loci
and DPA loci with a three-codon insertion did not form a well-
supported group in the phylogeny (since it is unlikely that both
are cases of homoplasy).

The birth-and-death model of evolution for gene families—
in which duplication, deletion and pseudogenization of genes
lead to expansion and contraction of gene families (61)—affects
both MHC class I and II genes but is more pronounced in
the former, which usually results in lack of orthology when
comparing animals from different families/orders (60). It has
been proposed that the class I region evolves faster in eutherians
due to its separation from the antigen processing genes (62); in
addition, teleost classical class II genes are separated from the
rest of the MHC and evolve similarly to eutherian class I genes
(62). The variation in the number of DR loci in the afrotherian
translocated regions suggests that the separation of DR loci from
the class II region may have allowed genes to evolve faster, which
could account for the loss of orthology seen in the phylogenies.
Even though the translocation separated two DR subregions,
the coded proteins still must form a functional heterodimeric
class II protein that can interact with the TCR/CD4 complex of
T lymphocytes. Thus, alpha and beta DR genes may coevolve
and converge irrespective of their position in the genome, which
again may impact phylogenies.

The clustering of genes related to antigen processing and
presentation in the MHC and their conserved organization in
eutherians is thought to be of functional importance (63). In
mammals, early evidence of disruption in this organization was
found in ruminants, in which an inversion split their class II
region into two subregions (64, 65), an event now known to
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FIGURE 7 | Two scenarios for ancestral MHC class Il region evolution and impact on phylogenetic analysis. (A) A simple model with only two paralogs separated by a
translocation event. (B) A complex model with in tandem duplication of two loci separated by a translocation event. In the first scenario, translocated genes from
current species would cluster together in the phylogeny, while in the second scenario a birth-and-death model of evolution, including gene conversion-like events and
differential loss of tandemly duplicated loci, results in no true orthologs across distantly related taxa. Selection acting on both translocated and non-translocated
regions can also blur the phylogenetic signal in both scenarios both for exonic and intronic sequences.

have taken place in the Cetartiodactyla ancestor (26). Since then,  in progress for some lineages and genes (73-78)—in the three
other studies revealed additional events disrupting this seemingly = marine mammal lineages. Direct sequencing and transcriptomic
conserved organization: an inversion on distal class I region  data will help clarify which sequences are functional, the degree
and loss of functional DQ and DP in felines (66); loss of DR of polymorphisms and any functional specialization of duplicated
in mole rats (67); disruption of the MHC organization and  or translocated loci. Future research may use data provided here
pseudoautosomal localization in monotremes (68); and several  to carefully design amplification schemes that target canonical,
rearrangements in class I and II regions in wallaby (69). Those  translocated, inverted or IIb DRB loci.
reports, including ours, provide opportunities to investigate how Taken together, our results indicate a unique class II MHC
the MHC function evolves in different genomic landscapes and  architecture in each major marine mammal lineage. The evidence
may challenge the functional importance of conserving the MHC ~ presented here also shows a sequential loss of two classical
organization (70). We also note that no afrotherian or xenarthran  class II genes during Afrosoricida evolution, which may have
mammals had their entire MHC organization characterized, resulted in the simplification of the class II region in E. telfairi,
therefore our results show that the separation of class I and class ~ with only one classical class II protein encoded. Those results
II genes took place in the ancestor of all living eutherians after ~ point to the separation of MHC class I and II regions in the
the split with marsupials [~170 million years ago (59, 71)], as  ancestor of all living eutherians and reiterates the challenges to
suggested by Belov et al. (72). uncovering evolutionary relationships between MHC genes in
The comparative study of the MHC in marine mammals may  distantly-related taxa. The occurrence of rearrangements in the
address how each lineage dealt with unique pathogen pressures ~ mammalian MHC suggests this highly conserved system may be
in marine environments with the proposed distinct MHC class ~ more malleable than once thought.
II genomic organization: the sirenians, with three classical gene
families and the presumptive afrotherian translocated DR loci;
the pinnipeds, with two classical gene families and inverted AUTHOR CONTRIBUTIONS
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