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Spatiotemporal graph states from a single optical parametric oscillator
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An experimental scheme is proposed for building massively multipartite entangled states using both the spatial
and the frequency modes of an optical parametric oscillator. We provide analytical forms of the entangled states
using the squeezed eigenmodes of Heisenberg equations, also known as the nullifiers of the corresponding graph
state. This scheme can generate, in parallel, several cluster states described by sparsely connected, bicolorable
graphs, usable for one-way quantum computing.
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I. INTRODUCTION

Quantum entanglement is an elementary and key resource
for quantum information and quantum computing [1]. Cluster
states, as two-dimensional (2D) sparse graph states, are of
central importance for one-way quantum computing, be it
over discrete variables [2,3] or continuous variables (CVs)
[4–6]. It is important to note that CV quantum computing [7]
is a valid type of universal quantum computing that features
the same exponential speedup [8,9] as well as a quantum
error correction encoding [10] and a fault tolerance threshold
[11,12].

The experimental generation of photonic CV cluster
states first used “bottom up” quantum-circuit-like approaches
[13], based on the Bloch-Messiah decomposition [14] which
yielded four-mode [15,16] and eight-mode [17] cluster states,
using several optical parametric oscillators (OPOs) and linear
optical transformations. In this approach the number of OPOs
is proportional to the number of entangled modes.

An alternative, “top down” approach was first proposed
in the frequency domain [18,19], then in the time domain
[20,21]. Such an approach requires only one OPO to generate
two-mode squeezed states, also known as Einstein-Podolsky-
Rosen (EPR) pairs, over the OPO’s optical frequency comb
or, alternatively, two frequency-degenerate OPOs to generate
two-mode squeezed states in temporally pulsed modes. The
first proposal featured a square-grid cluster state, universal for
quantum computing, but required a single OPO with a triple
(but demonstrated [22]) nonlinear medium and, in particular, a
complex pump spectrum [23]. Subsequent, simpler proposals
for building cluster states sequentially in the time domain
[20,21] were adapted experimentally in the frequency domain
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to build 15 independent quadripartite square cluster states [24]
and one 60-partite, and two 30-partite, one-dimensional clus-
ter states [25]. Note that, in the latter case, the demonstrated
number of entangled qumodes was not limited by the OPO
phase-matching bandwidth, which extends to ∼104 modes
[26], but by the tunability of the local oscillator laser in the
interferometric squeezing measurements. Another approach
used a synchronously pumped OPO to yield a much broader
qumode frequency spacing, well suited for parallel quantum
processing [27]. In the temporal domain, entangled modes
are obtained sequentially, only two or four at a time but
the resulting polynomial overhead for quantum processing
is offset by scalability, the total number of entangled modes
being limited only by the stability of the experiment. One-
dimensional cluster states were thus generated over 104 [28],
then 106 [29] modes. Recently, large-scale two-dimensional
square-lattice cluster states were generated [30,31].

In this context, an interesting additional degree of freedom
to explore is the transverse spatial one. Continuous-variable
entanglement between two spatial modes was realized within
one beam [32]. Linear cluster states were produced among
different spatial modes and all possible spatial modes of light
were copropagated within one beam [33]. The generation
of a CV dual-rail cluster state based on an optical spatial
mode comb was proposed via a four-wave-mixing process
[34]. Proposals were also made for large-scale CV dual-rail
cluster state generation involving Laguerre-Gaussian (LG)
modes in a large-Fresnel-number degenerate OPO [35], and in
a spatial mode comb pumped by two spatial LG modes [36].
A CV square quadripartite cluster state was experimentally
produced by multiplexing orthogonal spatial modes in a single
optical parametric amplifier (OPA) [37].

In this paper, we consider the process of optical parametric
amplification in a single OPO pumped by two LG modes
and the parallel generation of entangled graph states in both
the frequency and space domains. Laguerre-Gaussian modes,
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FIG. 1. Schematic of experimental setup. the green and red arrows represent pump modes lg0 with the frequency ωp = 2ω ± �, the green
(red) solid or dashed (generate symmetrically) line connect two modes of down-converted process from the same pump.

which carry orbital angle momentum due to the helical phase,
bring about an additional degree of freedom. This paper is
organized as follows: In Sec. II, we describe our system and
solve its Hamiltonian analytically to calculate the resulting
multipartite entanglement using the CV graph state formalism
through the G and A adjacency matrices for the H graph
and canonical graph, respectively [19]. In Sec. III, we give
numerical illustrations of this result for 8 and 60 modes, and
indicate how finite squeezing would affect measurements of
weighted-graph states.

II. PHYSICAL SYSTEM AND ANALYTIC SOLUTIONS

In our system, a nonlinear crystal is placed in a self-
imaging or large-Fresnel-number cavity, which can be simul-
taneously resonant for many transverse modes [38], and its
transverse eigenmodes are the complete set of LG modes;
longitudinal eigenmodes are spaced by the free spectral range
(FSR). This specially designed cavity can guarantee simulta-
neous and sustainable nonlinear interaction and resonance of
all the down-converted modes [39]. As is shown in Fig. 1,
the system is pumped by two spatial LG modes lg0 with
frequencies ωp = 2ω ± �, where � is the FSR, and μ =
± j in the lgμ mode denotes the orbital angular momentum
(OAM) mode number. Here j = 0 for the pump field and j =
1, 2, 3, . . . , m for the corresponding down-converted fields.
The nonlinear crystal in the cavity is a type-I phase-matching
crystal whose second-order nonlinear coefficient is ξ . The
two pump fields of frequency ωp can be down-converted
into signal and idler fields of frequencies ωs,i = ω ± n�, n =
0, 1, 2 . . .. The nonlinear interaction must satisfy energy con-
servation (ωp = ωs + ωi), phase matching ( �kp = �ks + �ki), and
orbital angular momentum conservation (μp = 0 = μs + μi).
Each pair of modes connected by a red or green line are from
the same optical down-conversion process and can form a
high-connected entanglement state of optical frequency and
spatial modes.

The interaction Hamiltonian of the system is

H = ih̄ξ

n∑
i=−n

m∑
j=1

{G(−i,± j),(−1+i,∓ j)b̂−1,0â†
−i,± j â

†
−1+i,∓ j

+ G(i,± j),(1−i,∓ j)b̂1,0â†
i,± j â

†
1−i,∓ j} + H.c., (1)

where the G matrix element is 1 when the parametric process
exists and 0 otherwise. b̂1,0 and b̂−1,0 denote the annihilation
operators of the two pump modes with frequency 2ω ± �,
respectively, their first and second index corresponding to the
frequency and OAM number, respectively. The pump b̂−1,0

can thus produce â−i,± j and â−1+i,∓ j by the down-conversion
process, and the pump b̂1,0 can produce âi,± j and â1−i,∓ j .

Note that the spatial and spectral properties of the eigen-
modes are reasonably independent, the Gouy phase being
the same for spatial modes of same order in the absence of
dispersion.

Here, we only consider the first order LG modes, j = 1,
μ = ±1, in the down-conversion modes; similar reasoning
can be used when considering higher-order modes j > 1. The
physical system and corresponding H graph are shown in
Fig. 2. In Fig. 2(a), certain upper modes of lg1 and certain
lower modes of lg−1 are connected by the red (green) lines,
and the cross point of all red (green) lines corresponds to the
red (green) pump. In Fig. 2(b), one can see the relation and

FIG. 2. (a) Physical picture of the mode entanglement with dif-
ferent pumps. Down-converted modes ( j = 1 only) from each pump
are connected with red and green arrows. (b) H graph.
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structure of the down-converted fields clearly. Actually, the
symmetric cluster state array can be produced simultaneously,
as shown by the dashed line in Fig. 1. For convenience, we
rename these modes from 1 to N = 2n (we always consider a
even number of modes). According to the interaction Hamil-
tonian and the renamed modes, the G matrix can be written as

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

· · ·

0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 1
0 0 0 0 1 0 1 0
0 0 0 0 1 1 0 0
0 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
1 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0

· · ·

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2)

for any N-mode state. This matrix can be seen as the adja-
cency matrix of the H (Hamiltonian) graph, which is bipartite,
or bicolorable, meaning that all qumodes are distributed into
two sets with no two qumodes in either set interacting with
each other. It should also be noted that Eq. (2) assumes
that the phase-matching bandwidth of the OPO has a flat-
top shape and “turns off” sharply between the last mode in
the considered set and its neighbor. In practice, while the
former was experimentally demonstrated in periodically poled
KTiOPO4 (PPKTP) [25,26], the latter is, however, not doable
and the coupling to wing modes will necessarily be tapering.
However, such boundary imperfections can be considered
confined to their location, the boundary, if the canonical
graph (see below) is sparse, i.e., local, enough. (In the case
of complete graphs, i.e., Greenberger-Horne-Zeilinger states,
this can be more of a problem.)

The spectrum of this graph can be derived analytically (see
the Appendix for details). The eigenvalues of G are

λk = ±2

∣∣∣∣cos
kπ

2n + 1

∣∣∣∣, (3)

where k = 1, 2, 3, . . . , n. Because there are n eigenvalues
with each sign, the solutions of the Heisenberg equations
are n amplitude-quadrature squeezed and n phase-quadrature
squeezed eigenmodes, of squeezing factor exp(λkξ t ), t being
the Hamiltonian interaction time (or cavity lifetime in this
simplified model).

For pure two-mode squeezing Hamiltonians such as that
of Eq. (1), the multipartite state resulting from the quantum
evolution can always be expressed as a cluster state [19].
This means that the N eigenmodes always have the following
quantum standard deviation:

�[ �P(t ) − A �Q(t )] ∝ e−ξ t , (4)

where �P(t ) = [P1(t ), . . . , PN (t )]T , �Q(t ) = [Q1(t ), . . . ,
QN (t )]T , Pj = (a j − a†

j )/(i
√

2), Qj = (a j + a†
j )/

√
2, and

A is the adjacency matrix of the canonical cluster graph,
which is the CV equivalent [4] of a qubit cluster state [2]. In
order to determine the corresponding cluster state, we need
to derive this adjacency matrix. This can be done analytically

FIG. 3. The two possible H graphs for an eight-mode state.

(see the Appendix for details), yielding

A =
(

0 ST BT SJ

JST BS 0

)
, (5)

where J is the antidiagonal identity matrix, S is a permutation
matrix, and B is constructed from the eigenvectors of G. The
matrices B in (5) are derived explicitly in the Appendix, with
the result

Bi j = (−1)i+ j+n

1 + 2n

[
1

cos
( (i− j)π

1+2n

) + 1

cos
( (i+ j−1)π

1+2n

)
]
. (6)

The matrices S and J have the matrix elements Si j = δ j,2i−1 +
δ j,2i−2n−2 and Ji j = δi,n− j+1.

The form (5) of A shows that the resulting cluster graph is
bicolorable.

III. ILLUSTRATIVE EXAMPLES

In this section, we give numerical examples of the obtained
graph states for two different scales.

A. Small scale

The possible H graphs for an eight-mode state are shown in
Fig. 3, with each vertex corresponding to a different qumode.
Red and green lines correspond to different pumps.

It is interesting to note that both these graphs have the same
linear chain structure, i.e., that G is a Hankel-like, and even
centrosymmetric, matrix. As shown in the previous section,
the canonical (e.g., cluster) graph state is obtained from its
adjacency matrix A, calculated from Eq. (5) and also using
the method outlined in Ref. [19], and displayed in Fig. 4(a).
This matrix corresponds, in general, to a weighted complete
bicolorable graph, drawn in Fig. 4(b).

B. Large scale

In order to gain perspective on the overall structure—
if any—of the graph state, we now expand to an arbitrary
larger, yet computable, number of modes, e.g., 60 modes.
Note that the maximum mode number depends on the ratio
of the phase-matching spectral bandwidth with the FSR. The
phase-matching bandwidth in PPKTP can be very large, on the
order of 10 THz for some interactions with a 532-nm pump
wavelength, as was calculated and measured in Ref. [26].
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FIG. 4. (a) A matrix and (b) corresponding canonical graph for
an eight-mode state.

For a typical FSR on the order of 1 GHz, this can yield
∼104 qumodes. Figure 5 displays the A matrix for 60 modes.
Besides its aforementioned bipartite structure, A also has
a skew-symmetric structure that clearly mirrors that of G,
Eq. (2) [40]. Although A is nominally a complete bicolorable
graph (i.e., nodes 1–30 are not linked to one another but
are all linked to all of the nodes 31–60), it is also strongly
weighted, as the absolute values of the nonzero A matrix
elements range from orders 10−4 to 1. A natural question
is then to ask what is the physical significance, and even
the relevance, of these very weak edges. An intuitive answer
to this question is to examine the edge weight relative to
the available squeezing [41]: in a nutshell, it is well known
that the edge between two qumodes describes their quantum
correlations, as evidenced by the formal equivalence between
a two-mode cluster state and a two-mode squeezed state [21].
The squeezing parameter ξ t used in experimentally realizing
cluster entanglement then naturally serves as the noise floor
for observing quantum correlations between modes and a rule
of thumb is that an edge of weight ε, i.e., an element of A of
value ε, will only be relevant if the squeezing is large enough,
i.e., if ε � exp(−2ξ t ); otherwise the quantum correlations
due to the edge of weight ε will be buried in the squeezed
quantum noise, therefore unobservable and, for all intents and
purposes, nonexistent.

FIG. 5. The A matrix for 60 modes.

FIG. 6. Graph states obtained from A with increasing squeezing,
by neglecting A elements below threshold. (a) Threshold range 0.55–
0.23 (squeezing range −2.6 to −6.4 dB); (b) threshold range 0.22–
0.19 (squeezing range −6.6 to −7.2 dB); (c) threshold range 0.18–
0.15 (squeezing range −7.4 to −8.2 dB).

With this criterion in mind, we examine matrix A again
after rounding down all elements below a certain threshold
to zero, the thresholds being chosen to correspond to real-
istic values of squeezing: Figure 6 displays the results of
such “graph pruning” for three different, contiguous threshold
ranges. Because the graphs are regular, save for local imper-
fections at the boundaries (chains’ ends), we only displayed
central sections to clearly highlight changes in graph valence
and structure. It is remarkable that the lowest squeezing
amounts already yield a 1D cluster wire spanning all qumodes
in the considered set, a universal structure for single-qumode
quantum processing. As the squeezing increases, the graphs
gain “width” while retaining the 1D structure of the main two
skew diagonals of the A matrix, becoming a ladder structure
then a spiraling wire overlapping with three parallel wires.
Note the current record of optical squeezing is −15 dB [42].
Being a cluster state, the graph can be “trimmed” to a desired
shape by measuring out the unwanted vertices [2,3]. More-
over, such structures have been shown to enable additional
quantum processing options, also decided by measurements,
and feedforward within the model of one-way quantum com-
puting [43,44].

IV. CONCLUSION

We have shown that a single OPO specifically engineered
to add spatial degrees of freedom to the usual frequency
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ones of its resonant modes, can generate, in one fell swoop,
sophisticated large-scale multipartite cluster states. We have
derived analytic solutions for the state and have examined the
physical significance of the edge weighting of the generated
graph state, in terms of the available experimental squeezing.
Three essential points should be noted:

(i) These graphs being cluster states, they can be shaped
and trimmed by measurements of undesired connected ver-
tices.

(ii) Measurements and feedforward can also be used in a
more elaborate manner, by taking advantage of the additional
graph edge structure on a 1D or 2D backbone for implement-
ing additional, arbitrary quantum operations [43,44].

(iii) Such cluster states can also be produced in parallel,
by use of higher-order spatial modes lg±2,lg±3, . . .. Although
the effective coupling strength ξ will initially be expected
to be smaller for these modes due to the smaller overlap
between the pump, signal, and idler modes [35,36], ξ can
be effectively enhanced by introducing a specially designed
nonlinear crystal structure for matching the property of LG
modes and the structured transverse mode of pump [45].
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APPENDIX: ANALYTICAL EXPRESSIONS OF THE
A AND G MATRICES

Here we provide the details on how we obtain the eigen-
values and eigenvectors of the G matrix and the analytical
expression of the A matrix.

1. Eigenvalues and eigenvectors of the G matrix

Let us write the 2n × 2n G matrix, Eq. (2), as

G =
(

0 Q
QT 0

)
, (A1)

where

Q =

⎛
⎜⎜⎜⎝

. . . 0 0 1 0
0 0 . . . 0 1
0 1 . . . . . . 0
1 0 1 0 0
1 1 0 0 . . .

⎞
⎟⎟⎟⎠. (A2)

Let M = QQT . Note that G2 has the form

G2 =
(

QQT 0
0 QT Q

)
=

(
M 0
0 JMJ

)
, (A3)

where J is the antidiagonal identity matrix, Ji j = δi,n− j+1.
Here

M =

⎛
⎜⎜⎜⎜⎜⎝

1 0 1 0 . . . 0
0 2 0 1 0 . . .

1 0 2 0 . . . 0
0 1 0 . . . 0 1
. . . 0 . . . 0 2 1
0 . . . 0 1 1 2

⎞
⎟⎟⎟⎟⎟⎠. (A4)

It is possible to transform M into a tridiagonal matrix M ′ by a
permutation of the indices, getting

SMST ≡ M ′ =

⎛
⎜⎜⎜⎜⎜⎝

1 1 0 0 0 . . .

1 2 1 0 0 0
0 1 2 . . . 0 0
0 0 . . . . . . 1 0
0 0 0 1 2 1
. . . 0 0 0 1 2

⎞
⎟⎟⎟⎟⎟⎠, (A5)

where the permutation matrix S is defined by

(ST �α) j =
{
αi j = 2i − 1
αn−i+1 j = 2i

. (A6)

As an example, for n = 6, the S matrix has the form

S =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0
0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠. (A7)

The matrix M ′ is a simple tridiagonal matrix that has known
eigenvalues and eigenvectors [46]:

(vk ) j = 2√
2n + 1

sin
k(2 j − 1)π

2n + 1
, (A8)

λ2
k = 4 cos2 kπ

2n + 1
. (A9)

Since the eigenvalues of M and JMJ are the same as of M ′’s,
we conclude that the eigenvalues of G2 are λ2

k , with a double
degeneracy, and for the matrix G the eigenvalues are

λk = ±2

∣∣∣∣cos
kπ

2n + 1

∣∣∣∣. (A10)

We note that

[G,J ] = 0, (A11)

J =
(

0 J
J 0

)
, (A12)

and therefore the eigenvectors of G can be chosen as eigen-
vectors of J as well, i.e., either symmetric or antisymmetric
around the middle. We find that the symmetric eigenvectors
are given by

Vk,sym =
(

ST vk

JST vk

)
(A13)

with eigenvalues (−1)kλk and the antisymmetric ones are

Vk,asym =
(

ST vk

−JST vk

)
(A14)

with eigenvalue (−1)k+1λk .
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2. Construction of the A matrix

The A matrix is obtained as follows [19]. First, diagonalize
G and separate into positive and negative blocks:

G = V DV T , D =

⎛
⎜⎜⎜⎜⎜⎝

λ1 0 0 0 . . . . . .

0 . . . 0 0 . . . . . .

0 0 λn 0 0 0
0 0 0 −λ1 0 0
. . . . . . 0 0 . . . 0
. . . . . . 0 0 0 −λn

⎞
⎟⎟⎟⎟⎟⎠.

Then

A =
(

0 A0

AT
0 0

)
,

where

A0 = −V12(V22)−1 ; V =
(

V11 V12

V21 V22

)
.

Fortunately, in our case, V has a simple form that allows the
inversion of the relevant block.

To construct V we use the eigenvectors (A13) and (A14)
as column vectors, which will automatically yield a diago-
nalization of G. It is only left to order them so that the first
columns correspond to positive eigenvalues and the second
half of columns correspond to negative eigenvalues. To sep-
arate between positive and negative eigenvectors, we choose
the ordering V1,asym,V2,sym,V3,asym, . . ..

Concretely, let

V11 = ST (v1, v2, . . . , vn) (A15)

Then our final form is of the form

V = 1√
2

(
V11 V11

JV11L −JV11L

)
, (A16)

where L = diagonal(−1, 1,−1, 1, . . .) chooses the signs of
the second half of columns in V to correspond to the order of
asymmetric, symmetric, asymmetric, symmetric, . . . specified
above.

The block V22 = −JV11L is clearly an orthogonal matrix,
and we wind up with

A0 = −V12(V22)−1 = V11LV T
11J = ST BT SJ, (A17)

where B is built from the eigenvectors (A8):

Bi j = −4

1 + 2n

n∑
k=1

(−1)k sin
k(2i − 1)π

2n + 1
sin

k(2 j − 1)π

2n + 1

(A18)

= (−1)i+ j+n

1 + 2n

[
1

cos
( (i− j)π

1+2n

) + 1

cos
( (i+ j−1)π

1+2n

)
]
, (A19)

where i = 1, 2 . . . , n; j = 1, 2, . . . , n. Finally, the A matrix is
Eq. (A20):

A =
(

0 ST BT SJ
JST BS 0

)
. (A20)
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