arXiv:1907.02330v2 [astro-ph.CO] 13 Nov 2019

PREPARED FOR SUBMISSION TO JCAP

Reconstructing large-scale structure
with neutral hydrogen surveys

Chirag Modi,”’ Martin White,*"“ Anze Slosar,’ Emanuele
Castorina®?

2Department of Physics, University of California, Berkeley, CA 94720
bBerkeley Center for Cosmological Physics, Berkeley, CA 94720
“Department of Astronomy, University of California, Berkeley, CA 94720
4Department of Physics, Brookhaven National Laboratory, Upton, NY 11973

E-mail: modichirag@berkeley.edu, mwhite@berkeley.edu, anze@bnl.gov,
ecastorina@berkeley.edu

Abstract. Upcoming 21-cm intensity surveys will use the hyperfine transition in emission to map
out neutral hydrogen in large volumes of the universe. Unfortunately, large spatial scales are com-
pletely contaminated with spectrally smooth astrophysical foregrounds which are orders of magnitude
brighter than the signal. This contamination also leaks into smaller radial and angular modes to
form a foreground wedge, further limiting the usefulness of 21-cm observations for different science
cases, especially cross-correlations with tracers that have wide kernels in the radial direction. In this
paper, we investigate reconstructing these modes within a forward modeling framework. Starting
with an initial density field, a suitable bias parameterization and non-linear dynamics to model the
observed 21-cm field, our reconstruction proceeds by combining the likelihood of a forward simulation
to match the observations (under given modeling error and a data noise model) with the Gaussian
prior on initial conditions and maximizing the obtained posterior. For redshifts z = 2 and 4, we are
able to reconstruct 21cm field with cross correlation, r. > 0.8 on all scales for both our optimistic
and pessimistic assumptions about foreground contamination and for different levels of thermal noise.
The performance deteriorates slightly at z = 6. The large-scale line-of-sight modes are reconstructed
almost perfectly. We demonstrate how our method also provides a technique for density field recon-
struction for baryon acoustic oscillations, outperforming standard methods on all scales. We also
describe how our reconstructed field can provide superb clustering redshift estimation at high red-
shifts, where it is otherwise extremely difficult to obtain dense spectroscopic samples, as well as open
up a wealth of cross-correlation opportunities with projected fields (e.g. lensing) which are restricted
to modes transverse to the line of sight.
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1 Introduction

The coming decade will see transformative dark energy science done by both ground-based surveys
(DESI [1], LSST [2]) and space-based missions (Euclid [3], WFIRST [4]). We expect that large swaths
of the universe will be sampled to close to the sample variance limit on very large scales using galaxies
as tracers of density field as well as sources used to measure the weak gravitational lensing shear or
cosmic backlights illuminating the cosmic hydrogen for Lyman-« forest studies. At the same time,
these fields will offer a multitude of cross-correlation opportunities, through which more and more
robust science will be derived.

Looking beyond the current decade, several experimental options are being considered that will
allow us to continue on the path of mapping ever increasing volume of the Universe. Photometric
experiments, such as LSST, will likely be systematics limited by the quality of the photometric red-
shifts. Spectroscopic instruments are more attractive, especially using LSST as the targetting survey,
but will require major investments in a dedicated new telescope and more aggressive spectrograph
multiplexing to be truly interesting when compared to DESI. Going at higher redshift, traditional
galaxy spectroscopy in optical becomes ever more difficult, since the sources are sparser, fainter and
further redshifted. On the other hand, turning to radio and relying on the 21-cm signal from neutral



hydrogen could offer a cost-effective way of reaching deep sampling of the universe, especially in the
redshifts range 2 < z < 6, which remains largely unexplored on cosmological scales.

A number of upcoming (CHIME [5], HIRAX [6], Tianlai [7], SKA[8]) or planned (PUMA, the
proposed Stage 11 experiment [9]) interferometric instruments will use the 21-cm signal to probe this
volume of the universe. In the post-reionization era most of the hydrogen in the Universe is ionized,
and the 21-cm signal comes from self-shielded regions largely within halos. Such ‘intensity mapping’
surveys therefore measure the unresolved emission from halos tracing the cosmic web in redshift space.

The 21-cm observations suffer from one fundamental problem, namely that it is completely
insensitive to modes which vary slowly along the line of sight (that is low kj modes), because these
are perfectly degenerate with foregrounds which are orders of magnitude brighter that the signal [10-
13]. This effect alone severely limits the usefulness of 21-cm observations for cross-correlations with
tracers that have wide kernels in the radial directions. This is in particular true for cross-correlations
with the cosmic microwave background (CMB) lensing reconstructions and shear field measured by
the photometric galaxy surveys, such as that coming from LSST. Cross-correlations with CMB would
allow us to use the 21-cm observations and CMB observations in conjunction to put the strongest
limits on modified gravity by measuring growth. Cross-correlations with spectroscopic galaxies would
allow us to characterize the source redshift of galaxy samples used for weak-lensing measurements,
one of the main optical weak lensing systematics. Moreover, the foreground wedge (discussed below)
can render further regions of the k-space impotent for cosmological analysis [10-19]. The foreground
wedge is not as fundamental as the low k| foreground contamination, because it only results as a
consequence of an imperfect instrument calibration rather than being a fundamental astrophysical
bane. Nevertheless, it is a data cut that will likely be necessary at least in the first iterations of data
analysis from the upcoming surveys.

Can this lost information be recovered? The answer is yes, although the extend to which this is
possible depends on both the resolution and noise properties of the instrument. Imagine the following
thought experiment. At infinite resolution in real space (and ignoring the thermal broadening of the
signal for the moment), the underlying radio intensity is composed of individual objects, that appear
as distinct peaks. A high pass filter in k space will not fundamentally alter one’s ability to count these
objects. While the filtering might introduce ‘wings’ in individual profiles, the peaks in the density
fields are still there. In this case, we can recover the lost large-scale modes perfectly. A somewhat
different way to look at the same physics is to realize that the non-linear mode coupling propagates
information from large-scale to small-scale modes, while the initial conditions of the small-scale modes
are forgotten. Since the total number of modes scales as k? 0k, there are always many more small-
scale modes than large-scale modes and in a sense the system is over-constrained if one wants to
recover large-scale modes for which there is no direct measurements. Non-linear evolution erases the
primordial phase information on small scales and encodes the primoridal large-scale field over the
entire k-space volume. So it is clear that the process of backing out the large-scale information from
the small scale is possible, at least in the limit of sufficiently low noise and sufficiently high resolution.

In this paper we approach this problem by means of forward modelling the final density field.
Starting with an initial density field and a suitable bias parameterization, we reformulate the problem
of recovering the large scales as a problem of non-linear inversion. In the past few years, several
reconstruction methods have been developed to solve this [20-25]. The solution of this non-linear
problem is the linear, 3D field that evolves under the given forward model to result in observed final
field. Thus one not only recovers the linear large scales where the information was gone, but also
automatically performs an optimal reconstruction of the linear field on scales where we had non-
linear information to start with. This is often the product that one ultimately desires. It allows not
only optimal BAO measurement for the 21-cm survey, but also increases the scale over which one
can model cross-correlations with other tracers, thus enabling cross-correlations with CMB lensing
reconstruction and photometric galaxy samples.

The full implications of this reconstruction exceed the scope of this paper. Instead we focus on
the basic questions: i) Does the forward modeling approach to reconstruction work at all in the case
where we loose linear modes to foregrounds? ii) What is the complexity of forward model required?
iii) How does the result depend on the noise and angular resolution of the experiment? iv) How does



the performance vary with scale, direction, redshift and real vs. redshift space data? v) What are the
gains one expects for different science objectives such as BAO reconstruction, cross-correlations with
CMB and cross-correlations with different LSS surveys such as LSST.

The outline of the paper is as follows. We begin by discussing the observational constraints
we are likely to face in §2 and the simulation suite we will be using as mock data to demonstrate
our reconstruction algorithm in §3. Next, we review our forward model and the method we use to
reconstruct the field from the observations in §4 (building upon refs. [21, 23]). In §5 we show the
results for our forward model on the ‘observed’ 21-cm data, as well as gauge the performance of our
reconstruction algorithm on different metrics for multiple experimental setups. In §6 we show the
improvements expected by using our reconstructed field for different science objectives such as BAO
reconstruction, photometric redshift estimation and CMB cross correlations. We conclude in §7.

2 Observational constraints

The instruments of interest for this investigation are interferometers measuring the redshifted 21-cm
line. Such instruments work in the Fourier domain with the correlation between every pair of feeds, 4
and j, measuring the Fourier transform of the sky emission times the primary beam at a wavenumber,
k1 = 2mi;;/x(z), set by the spacing of the two feeds in units of the observing wavelength (4;;) [26].
The visibility noise is inversely proportional to the number (density) of such baselines [9, 18, 19, 27—
35]. Where necessary, we take the noise parameters from Refs. [9, 35]. We shall investigate how
our reconstruction depends upon the noise (thermal plus shot noise) and the k-space sampling of the
instrument.

Radio foregrounds, primarily free-free and synchrotron emission from the Galaxy and unresolved
point sources, are several orders of magnitude brighter than the signal of interest and present a major
problem for 21-cm measurements [10, 12, 36]. However, due to their emission mechanisms, they are
intrinsically very spectrally smooth and this is the property that allows them to be separated from
the signal of interest which varies along the line of sight due to variation in underlying cosmic density
field along the line of sight. This separation naturally becomes increasingly difficult as we seek to
recover very low kj modes, i.e. modes close to transverse to the line of sight. The precise value below
which recovery becomes impossible is currently unknown (see Refs. [10-13] for a range of opinions).
To be conservative, we will assume that we lose all the modes below k) = 0.03 hMpc ™!, however we
will also study how sensitive are our results to this cut-off value.

In addition to low kj, non-idealities in the instrument lead to leakage of foreground information
into higher & modes. This arises because, for a single baseline, a monochromatic source (i.e. a bright
foreground) at non-zero path-length difference is perfectly degenerate with signal at zero path-length
difference (i.e. zenith for transiting arrays) but appropriately non-flat spectrum, such as that arising
from 21-cm fluctuations. This is usually phrased in terms of a foreground “wedge” which renders
modes with low k|/k, unusable [10-19]. Due to the variation of Hubble parameter with redshift the
wedge becomes progressively larger at higher redshift. Information in this wedge is not irretrievably
lost, because using multiple baselines can break the degeneracy, but it requires progressively better
phase calibration the deeper into the wedge one pushes. The better the instrument can be calibrated
and characterized the smaller the impact of the wedge. The most pessimistic wedge assumption is
that all sources to the horizon contribute to the contamination — will we not consider this case as it
makes a 21-cm survey largely ineffective for large-scale structure. The most optimistic assumption
is that the wedge has been subtracted perfectly. We regard this as unrealistic. A middle-of-the-road
assumption is that the wedge matters to an angle measured by primary field of view. We take our
‘optimistic’ choice to be the ‘primary beam’ wedge defined as 6,, = 1.22)\/2D., where D, is the
effective diameter of the dish after factoring in the aperture efficiency (1, = 0.7) and the factor
of two in the denominator gives an approximate conversion between the first null of the Airy disk
and its full Width at half maximum (FWHM). We shall contrast this with the ‘pessimistic’ case
0., = 3 x 1.22)\/2D..

Fig. 1 shows this information in graphical form, following refs. [35, 37]. The color scale shows the
fraction of the total power which is signal, as a function of k£, and k). The modes lost to foregrounds
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Figure 1: The fraction of the total power that is signal, S/(S+ N), vs. k1 and k for a 5yr PUMA-
like survey at z = 2 (left), 4 (middle) and 6 (right). The dotted and dashed lines in each panel show
a pessimistic and optimistic forecast for the foreground wedge (see text). The loss of low k; modes,
most visible at z = 2, is due to the constraint that dishes must be further apart than their diameters,
leading to a minimum baseline length.

in the wedge are illustrated by the gray dashed (optimistic) and dotted (pessimistic) lines. Modes
below and to the right of these lines would be contaminated by foregrounds. In addition we expect to
lose modes with k| < kl‘lnin where k:“lni“ =0.01—0.1 A Mpc™'. At z = 2 and low k the signal dominates,
at intermediate k the shot-noise starts to become important and at high k) the thermal noise from

the instrument dominates.

3 Data: Hidden Valley simulations

To test the efficacy of our method we make use of the Hidden Valley! simulations [37], a set of
trillion-particle N-body simulations in gigaparsec volumes aimed at intensity mapping science. Our
workhorse simulation will be HV10240/R, which evolved 102403 particles in a periodic, 1024 h~'Mpc
box from Gaussian initial conditions using a particle-mesh code [38] with a 20480? force mesh. At this
resolution, one is able to resolve halos down to M ~ 10° h=!Mg, which host the majority (> 95%)
of the cosmological HI signal, while the volume allows robust measurement of observables such as
baryon acoustic oscillations.

The halos in the simulation were assigned neutral hydrogen with a semi-analytic recipe, outlined
in more detail in ref. [37]. We make use of their fiducial model, ‘Model A’, at z = 2, 4 and z = 6.
Briefly, this model populates halos with centrals and satellites following a halo occupation description
and these galaxies are then assigned HI mass following a Mj — My relation. Our mock HI data
lives in redshift space and captures the small scale non-linear redshift space distortion effects due
to satellite motion. We also caution the reader that while we have made use of a particular semi-
analytic model, the manner in which HI traces the matter field at high z is currently poorly constrained
observationally. While our model is consistent with our best current knowledge, the particular values
of various modeling parameters we have assumed may not be correct. However as long as this field
can be modeled with a flexible bias framework and the scatter between the HI mass and halo mass
(or underlying dark matter density) is similar to other tracers, such as stellar mass, we believe our
qualitative results do not depend critically upon these details.

For our analysis, we will use two Cartesian meshes (discussed further in Section 4.4) with 256 and
512 cells along each dimension, which have resolutions of 4 and 2 h~!Mpc respectively. To generate
the HI data, we desposit the galaxies, weighted by their HI mass, on these meshes with a cloud-
in-cloud (CIC) interpolation scheme and then estimate the HI overdensity field (dy) in the usual
way. Similarly, to generate the final, Eulerian matter field at the redshifts of interest, we use a 4%

Thttp://cyril.astro.berkeley.edu/Hidden Valley



subsampled snapshot of the particle positions and paint them with the same CIC scheme (and equal
weights per particle). The initial, Lagrangian field (d1), is generated on the meshes using the same
initial seed (hence same initial conditions) as the simulation itself.

Once we generate the ‘clean HI data’ on a mesh we need to simulate the foreground wedge and
thermal noise to construct a mock observed data for the purpose of reconstruction. To include the
foreground wedge, w, we simply omit from our calculations all of the modes that are within the
wedge, i.e. below a certain cut-off & /k_, as shown in Fig. 1. We simulate thermal noise by drawing a
zero-mean, Gaussian realization, n(k), from the 2D thermal noise power spectrum, Py, (k, ). Then,
we corrupt the ‘clean’ data by adding this noise realization and use it as the ‘observed’ data for
reconstruction

O (k) = dmi(k) + n(k) (3.1)

4 Reconstruction Method

There have been many approaches to determining the density field from noisy or incomplete observa-
tions in cosmology, from early work like refs. [39—43] through ref. [44] and references therein. Forward
model reconstructions similar to our approach have also been developed previously and applied in
other contexts [20, 45-49]. Other authors have also investigated how one could reconstruct the long-
wavelength modes which are lost to foregrounds in intensity mapping [50, 51]. Ref. [50], in particular,
investigates a very similar problem with a related approach.

Our method to reconstruct the long-wavelength modes puts in practice the intuition developed
in the introduction, that the non-linear evolution of matter under gravity propagates information
from large scales in the initial conditions to the small scales in the final matter field. We reconstruct
the initial density field by optimizing its posterior, conditioned on the observed data (HI density in
k-space), assuming Gaussian initial conditions. Evolving this initial field allows us to reconstruct the
observed data on all scales, thus reconstructing the sought-after long wavelength modes. To solve
the problem of reconstruction of initial conditions, we follow the approach developed by refs. [21, 23].
In this first application of the method we will hold the cosmology fixed, though in future one could
imagine jointly fitting the cosmology and the long wavelength modes. Varying cosmology and hence
the prior power spectrum is especially important when quantifying uncertainities on the reconstructed
fields but that is beyond the scope of this work and we defer it for future.

In this section, we begin by outlining our forward model with the focus on the bias model. Next,
we use this forward model to setup the likelihood function for reconstruction and modify it to account
for the additional noise and foreground wedge present in the observed data. Lastly, we also outline
annealing schemes that we develop to assist convergence of our algorithm and hence improve our
reconstructions.

4.1 Forward Model

To use the framework of refs. [21, 23], we require a forward model [F(s)] to connect the observed data
(d) with the Gaussian initial conditions (ICs; s) in a differentiable manner. This forward model is
typically composed of two parts - non-linear dynamics to evolve dark-matter field from the Gaussian
ICs to the Eulerian space and a mapping from the underlying matter field to the observed tracers i.e. a
bias model. We try two different models to shift the particles from Lagrangian space to their Eulerian
space: a simple Zeldovich displacement [52] and full N-body evolution [38], albeit at relatively low
resolution.

For the mapping from the matter field to the tracers we use a Lagrangian bias model (as for
example in refs. [25, 53-58]) including terms up to quadratic order. At this order, the Lagrangian fields
are 01,(q), 62(q) and s%(q) = > i s7;(q) the scalar shear field where s7;(q) = (9;0;02—[1/3]6))é1(q)
—we discuss derivative bias below. We use these fields from the ICs of the simulation itself (as described
in Section 3), but evolved to z = 0 using linear theory (due to this evolution, care must be taken
in interpreting our bias parameters). Since §7(q) and s?(q) are correlated, we define a new field



g7(q) = 0%2(q) — s*(q) which does not correlate with 62 (q) on large scales and use this instead of
shear field. In addition, we subtract the zero-lag terms to make these fields have zero mean.

Then, to generate our model field as a combination of these Lagrangian fields, we use the approach
developed by ref. [25], which is itself an implementation of the ideas of ref. [54] (e.g. Eq. 8) and
its extensions [57]. Specifically we match the model with the observations at the level of the field
instead of only matching the two-point functions. We use the 5123 particle mesh for these fields,
with particle/mesh spacing 2 h~*Mpc for our box of 1024 h=!Mpc (and no further smoothing). Each
particle is ‘shifted’ to its Eulerian position, x, with the non-linear dynamics of choice and then binned
onto the grid with cloud-in-cloud (CIC) interpolation and weight

weight = 1+ b10.(q) + b2(67 (q) — (02())) + by (92.(q) — (9(a))) (4.1)

Note the contributions of d;,, 6% and g2 assigned to each particle are based on its initial location (q).
This procedure is equivalent to building separate fields with each particle weighted by 1, &1, 4% and
gr, and then taking the linear combination of those fields after shifting, which is how the model was
actually implemented. Thus our modeled tracer field is:

Stir (%) = 027(%) + 01615, (%) + badis21 (%) + bydpg, (%) (4.2)

where djyy1(x) refers to the field generated by shifting the particles weighted with ‘W field.

To fit for the bias parameters, we minimize the mean square model error between the data
and the model fields which is equivalent to minimizing the error power spectrum of the residuals,
r(k) = 6%y (k) — dur(k), in Fourier space:

1

. |2
Nmodes (k)

Pers() = > |8t (k) — dm(k)

K, k| ~k

(4.3)

where the sum is over half of the k plane since §*(k) = §(—k) for the Fourier transform of a real field,
and the ‘data’ correspond to our ‘clean’ field with no noise at this stage.

In principle the bias parameters can be made scale dependent, b(k), and treated as transfer func-
tions [25]. To get these transfer functions, we simply minimize Eq. 4.3 for every k-bin independently.
However we will find that the best-fit parameters are scale independent to a very good degree (see
below). Thus to minimize the number of fitted parameters we use scalar bias parameters and fit for
them by minimizing the error power spectrum only on large scales, k < 0.3k Mpc™'. We will show
below that the fit is quite insensitive to this k-range (chosen reasonably) used for fitting the bias
parameters.

Traditionally, bias parameters are defined such that the bias model field matches the observations
in real space. However the observations of 21-cm surveys are done in redshift space. To model these
observations, we ‘shift’ the Lagrangian field directly into redshift space and minimize the error power
spectrum (Eq. 4.3) directly in redshift space instead of real space.

Finally, we shall assume throughout that the cosmological parameters will be well known, and
in fact use the values assumed in the simulation. In principle one could iterate over cosmological
parameters, but the 21-cm data themselves (and external data) will provide us with extremely tight
constraints on cosmological parameters even before reconstruction [9].

4.2 Reconstruction

Once the bias parameters are fixed the procedure above provides a differentiable ‘forward model’,
F(s)(= 8%;(x)), from the Gaussian initial conditions (s(k)) to the observations, d(k) = é/(k). To
reconstruct the initial conditions we need a likelihood model for the data. Since the error power
spectrum was minimized to fit for the model bias parameters, it measures the remaining disagreement
between the observations and our model and hence provides a natural likelihood function. When using
this form of likelihood, we have made the assumption that the residuals in Fourier space between our
model and data are drawn from a diagonal Gaussian in the Fourier space with variance given by
error power spectrum. The diagonal assumption is valid due to the translational invariance of both



the data and the model. The Gaussian assumption is motivated on large scales by the fact that the
dynamics are linear, and on small scales by central limit theorem when averaged over large number of
modes on these scales. Moreover, while this likelihood might not be completely accurate or optimal
on all scales, it does provide us well motivated and simple (negative) loss function, maximizing which
should reconstruct the data. This is sufficient for our purpose here, where we are only interested in a
point estimate of the reconstructed field. Thus we can write down the negative log-likelihood:

Lo 1 |6t (k) — omr(k)[?
£ 2X ; Nmodes(k) k|kz~k Perr(k ( 4)

where the sum is over half of the k plane since §*(k) = §(—k) for the Fourier transform of a real
field. This is combined with the prior over the initial modes, which are assumed to be Gaussian and
uncorrelated in the Fourier space. Hence the negative log-likelihood for the Gaussian prior can be
combined with the negative log-likelihood of the data to get the posterior

1 0k (k) = S () * | [s(k))[?
P= Z Nodes (k) Z ( Hl Pe”(kHI + Pok) ) (4.5)
k K, |k|~k

where P; is the initial prior power spectrum. To reconstruct the initial modes s, we minimize this
posterior with respect to them using L-BFGS? [59], as in refs. [21, 23], to get a maximum-a-posteriori
(MAP) estimate.

We note that while, in principle, one would measure the (modeling) error power spectrum as an
average of different simulations, due to the computational requirements inherent in simulating the HI
field we are forced to use the same single simulation to fit for the bias parameters and measure error
spectra, and then use it as mock data for reconstruction. This could potentially lead to overfitting,
improving the reconstruction by underestimating the error spectra and ignoring cosmic variance. To
check this, we estimate the error power spectra for modeling the halo mass field on a set of (cheaper)
simulations with smaller boxes and poorer resolution, where the problem of cosmic variance if anything
should be worse. We find that using the bias parameters fit for a one simulation and estimating the
error spectra on other simulations, the error power spectrum varies. However its ratio with the error
power spectrum for the ‘fit’ simulation is not consistently greater than 1, as one would have expected
in case of overfitting but has a distribution around 1 on all scales of interest. Hence while one would
need to quantify the distribution of this error spectra to get uncertainties on the reconstructed field,
we do not find any evidence that using the same simulation as mock data and to estimate error spectra
leads to any overfitting or an artificially good reconstruction.

4.3 Noise

So far we have ignored the presence of noise and the foreground wedge in our data. While shot noise
is included automatically if we use the HI realization in the simulations, we must handle foregrounds
explicitly. Due to the foreground wedge, w, we loose all the information in the modes below a certain
cut-off kj/k1, as shown in Fig. 1. To take this into account in our reconstruction, we simply drop
these modes from our likelihood term.

In addition to the wedge, 21-cm surveys also suffer from thermal noise that dominates on small
scales and has angular dependence with respect to the line of sight. As outlined previously in Eq. 3.1,
this is incorporated by drawing a Gaussian noise realization, n(k), with zero mean and noise power
spectrum, Py, (k, 1) that is then used to added to our simulated data (dpr) to generate our mock data
0fyr- Including both effects our final posterior is :

_ 1 |01 (k) — S ()| [s(%))|
Py = Xk: (Y k,g;;@ Pth) T 2 B (4.6)
k&w

2https://en.wikipedia.org/wiki/Limited-memory _BFGS



The error power spectrum, Pe,,, is now a combination of the modeling error (as before) and the noise
power spectrum. This changes the amplitude of Pe,,, especially on small scales, and also introduces an
angular dependence. We have indicated this by the additional x4 dependence in P, in the likelihood
term of P,,. Note the data automatically include shot-noise, since we have a single realization of the
halo field in the simulation.

4.4 Annealing

Reconstructing the initial modes by minimizing Eq. 4.5 is an optimization problem in a high dimen-
sional space with both the number of underlying features (initial modes) and the number of data
points (grid cells) being in millions. Despite using gradient and approximate Hessian information,
it is a hard problem to solve. Since we are aware of the underlying physics driving our model, as
well as its performance, we use our domain knowledge to assist the convergence of the optimizer by
modifying the loss function over iterations rather than simply brute-forcing the optimization with the
vanilla loss function. A more detailed discussion on these schemes is provided in refs. [21, 23, 60].
Here we briefly summarize the two annealing schemes that we use to improve our performance

o Residual smoothing : Both the dynamics and the bias model are more linear on large scales
than smaller scales. Hence the posterior surface is more convex on these scales and convergence
is easier. However since the number of modes scales as k3, the large scale modes are a small
fraction of the total and are harder for the optimizer to reconstruct in practice. To mitigate this
we smooth the residual term of the loss function on small scales with a Gaussian kernel. Thus
on these scales, the prior pulls down the small scale power to zero and we force the optimizer
to get the large scales correct first.

e Upsampling: To minimize the cost of reconstruction, we begin our optimization on a low-
resolution grid and reconstruct all the modes following the residual smoothing. Upon conver-
gence, we upsample the converged initial field to a higher resolution grid and paint our HI data
on this grid as well. Since the higher resolution has information to smaller scales, this allows
us to leverage these scales to improve our reconstruction. Further, since the largest scales have
already converged on the lower resolution, they remain mostly unchanged and we do not need
to repeat the residual smoothing on all the scales for this higher resolution.

5 Results

We present the results for our reconstruction in the section. Our primary metrics to gauge the
performance of our model as well as reconstruction are the cross correlation function, r..(k), and
transfer function, Ty (k), defined as

. ny(k) . Py(k)
SV v A P o0

and the error power spectrum, P, defined in Eq. 4.3. These metrics will always be defined between
either the model or the reconstructed fields as Y and the corresponding true field as X unless explicitly
specified otherwise.

To gain some intuition for these functions it may be helpful to recall the results for the linear
case. For Gaussian signal, s, with covariance S, and Gaussian noise, n, with covariance N and a data
vector d = s+n, the posterior is given by P(s|d) « P(d|s)P(s) which is the product of two Gaussians.
The MAP solution is given by the well-known Wiener filter® [61]

§=S(S+N)'d=wd . (5.2)

For stationary problems both S and N are diagonal in Fourier space. In this simple case r..(k) =
Ty(k) = W'/2. In the limit of very small noise, Py/Ps < 1, the measurements are a faithtful

3https://en.wikipedia.org/wiki/Wiener filter



Model A Model B
by ba by Ty (k) b1 by by Ty (k)
0.528 0.006 -0.023 0.98 —0.197 k2 0.55 -0.025 -0.012 0.97 —0.222k2
0.434 0.046 -0.011 0.993 —0.110%k% || 0.446 0.102 -0.012 0.99 —0.151 k2
0.399 0.094 -0.009 0.995—0.112k% || 0.378 0.16 -0.011 0.984 — 0.187 k2

S = NN

Table 1: The best-fit bias parameters (and transfer function) to the HiddenValley simulation HI fields
for models A and B of ref. [37] at z = 2, 4 and 6. The bias parameters are defined on a 2 h~!Mpc
grid (see text).

representation of the true field and W?2 = r.. = Tf ~ 1. In the limit of very large noise, Py /Ps > 1,
the filter becomes prior dominated and the most-likely value of s is zero. In this limit W2 = r.. =
Tf — 0.

In our case, there is a non-linear transformation at the heart of the model, i.e. d = F(s) + n.
Therefore the Wiener filter is no longer the solution, but much of the same intuition applies. In
particular r.. measures how faithfully the reconstructed map describes the input map, up to rescalings
of the output map amplitude. The transfer function, on the other hand, tells us about the amplitude
of the output map as a function of scale, with » Ty = Pxy /Px.

5.1 Bias model

We begin by evaluating the performance of our bias model using the known initial conditions in the
simulation and the aforementioned three metrics, and compare the error power spectrum with the
HI-mass-weighted shot noise. The statistics for the best fit to the HI field at z = 2 are shown in Fig. 2.
Though not shown in this figure, the results for z = 4 and 6 are very similar. Fig. 2 compares three
different bias models: two Lagrangian bias models (as described in §4.1), with Zeldovich dynamics
and PM dynamics? respectively, as well as an Eulerian bias model where the three bias parameters
are defined with respect to the fields generated from the Eulerian matter field smoothed at 3 A~ 'Mpc
with a Gaussian smoothing kernel. In addition, we show the simple case of linear Eulerian bias (b%)
to contrast with our other biasing schemes.

Firstly, comparing the Eulerian and Lagrangian bias models, we find that Lagrangian bias out-
performs Eulerian bias at the level of cross-correlation and transfer function on all scales. Lagrangian
bias models also lead to quite scale independent error power spectra and much lower noise than the
Poisson shot-noise level, while this is not the case for Eulerian models. This implies that we can do
analysis with higher fidelity than one would expect from the simplest Poisson prediction and are able
to access information to smaller scales. This is in general agreement with the findings of ref. [25] for
halos at different number densities and weightings. Note that while the linear-Eulerian model is a sub-
set of the quadratic-Eulerian model, it performs worse at the level of cross-correlation. This is because
the metric for fitting bias parameters is minimizing the noise power spectrum up to k ~ 0.3 h Mpc ™"
where the quadratic Eulerian model is better than the linear bias model.

Amongst Lagrangian bias models we find that the Zeldovich displacements perform better in
terms of the cross correlation and the transfer function with our observed HI data field and resolution
than the PM dynamics. One can increase the accuracy of the PM displacements by instead increasing
the number of time steps or using force resolution B = 2 for the PM simulations and we find that
this improves the model slightly over ZA but makes the modeling much more expensive. Moreover,
the difference between the performance of the two dynamics also depends on the resolution of the
meshes used to do simulations. Currently, we are modeling the data from a much higher resolution
simulation (204803 force mesh) with a quite ‘low’ resolution (256* or 5122 mesh) PM or ZA dynamics
so its not obvious how they should compare, but we do find the performance of PM improving as we
increase the resolution of models as might be expected.

4Here, our PM dynamics corresponds to a FastPM simulation on a 5123 grid with 5 time steps and force resolution
B =1, i.e. a 5123 mesh for the force computation. For comparison, the HI data was generated on a 102403 grid with
40 steps to z = 2 and force resolution B = 2.
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Figure 2: Comparison of different bias models through the real-space cross-correlation (top left) and
transfer function (top right) at z = 2. Blue and orange lines correspond to the Lagrangian bias model
with Zeldovich and N-body dynamics respectively. The green line corresponds to an Eulerian bias
model through quadratic order, while the dashed red line is a simple linear bias model in Eulerian
space. In both cases the Eulerian fields are smoothed with a Gaussian kernel of 3h~'Mpc. The
vertical dashed-black line corresponds to the kpax upto which the the error is minimized. (Bottom
left) Comparison of different bias models at the level of the error power spectrum. The dashed black
line is the ‘Poisson’ shot noise for the HI-mass-weighted field. (Bottom right) The scale dependence
of the bias parameters for the Lagrangian bias model with Zeldovich dynamics. The dashed lines
correspond to our default assumption: the scale-independent fits to k < 0.3 hMpc™' data.

Another way to improve the bias model is to add a term corresponding to b%, which comes with
k? dependence motivated by peaks bias as well as effective field theory counter-terms. We find that
adding such a term does not change the two models at the level of cross-correlation, but significantly
improves the PM model over ZA at the level of the transfer function. Going one step further, one
can also make the bias parameters scale dependent and use them as transfer functions. To assess
the scale dependence of the bias parameters, in the lower-right panel of Fig. 2 we also show the
scale dependent bias parameters for the Zeldovich bias model which are fit for by minimizing the
error power spectrum independently for every k-bin. The best-fit bias parameters still do not have
any significant scale dependence up to intermediate scales. As mentioned in previous section, this
explains why we find that the fit of bias parameters is quite insensitive to the k—range used for fitting
the bias model, as long as we do not fit up to highly non-linear scales.

Given the differences in performance of ZA and PM dynamics, how scale-dependent the biases
are on the small scales that begin to get increasingly noise dominated in the data and the cost of
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Figure 3: Ratio of signal to total signal and noise in our HI data at different redshifts as a function
of scale and angle (u bins) for the three different thermal noise cases considered for reconstruction.
Here we have neglected any loss of modes due to foregrounds.

the ZA vs. PM forward models, we find the performance of a scale-independent bias model with ZA
dynamics to be sufficient for reconstruction. Henceforth, we present results for the reconstruction
with this model. However we suspect that it would be worth studying the performance of different
bias models in more detail. Our comparison is also likely to change for different number densities
and weightings (such as position, mass, HI mass etc.) of the biased tracers. We leave such a detailed
study to future work.

5.2 Reconstruction
5.2.1 Configurations

In this section, we show the results for the reconstruction of the initial and HI field. We do recon-
struction on our 1024 h~'Mpc box at redshifts z = 2, 4 and 6. The line of sight is always assumed
to be along the z-axis. Unless otherwise specified, we will show the reconstruction for our fiducial
setup which is reconstruction in redshift space, with thermal noise corresponding to 5 years with a
half-filled array, kﬁnin = 0.03hMpc~! and an optimistic foreground wedge (6, = 5°, 15° and 26° at
z =2, 4 and 6). To gauge the impact of our assumptions regarding this fiducial setup, we will show
comparisons with other setups which include a pessimistic foreground wedge (dashed) corresponding
to 0, = 15°, 38° and 55° at z = 2, 4 and 6 respectively, and different thermal noise configurations
corresponding to a full-filled array (optimistic case) and a quarter filled array (pessimistic case).

To gain some intuition about how these noise configurations compare with the signal, we also
show the ratio of signal to signal plus noise in Fig. 3 as a function of scale and angle for different
redshifts. Since the impact of the foreground wedge is binary with respect to scale and angle, we have
ignored the loss of modes due to it in plotting Fig. 3. However to emphasize how severe the loss of
information due to the wedge is, at redshift z = 2, 4 and 6 we completely loose 21(7)%, 60(21)% and
88(40)% of the modes due to the pessimistic (optimistic) foreground wedge. When we include the
thermal noise, even in the fiducial case, a further 30(43)%, 24(51)% and 9(37)% of the modes outside
the wedge become noise dominated. Thus we preface our results by re-iterating that reconstructing
the large-scale modes is a non-trivial problem in these situations.

5.2.2 Annealing: Implementation

To implement our annealing scheme we begin with a 2563 mesh and anneal by smoothing the loss-
function at smoothing scales corresponding to 4, 2, 1, 0.5 and 0 cells. For the given resolution, this
roughly corresponds to k ~ 0.2, 0.4, 0.8 and 1.6 A Mpc™!. Thus even in the case of largest smoothing,
we still have enough small scale modes outside the wedge to inform reconstruction. We find that the
statistics of interest stop changing roughly after ~ 100 iterations, thus we do this many iterations for
every step of annealing before declaring it ‘converged’. After converging on this mesh, we upsample
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Figure 4: Different projections for the true HI field, data corrupted with thermal noise and a
foreground wedge and our reconstructed HI field at redshift = = 4 for our fiducial thermal noise
corresponding to 5 years of observing with a half-filled array but for a pessimistic wedge (k” =
0.03hMpc™!, 6, = 38°). Different rows show 20 h~'Mpec thick slices when projected along the axis
specified by the y-axis label. The horizontal and vertical image dimensions correspond to 200 h~'Mpc
and correspond to direction specified by arrows on top left for every row. The line of sight of the data
is along the Z axis. We use a log-scale color scheme and the color-scale is same for all the panels in
the same row.

our reconstructed initial field to a 5123 grid and repeat our reconstruction exercise starting from this
point while comparing to data now painted on this higher resolution grid. At this stage, we do residual
smoothing only corresponding to 1 and 0 cells, 100 iterations each.

We have tried other annealing methods, such as different smoothing scales and other upsampling
schemes. In addition, to study convergence, we have also let the optimizer run for longer, increasing
the number of iterations. We find that none of these choices have a significant impact, and while
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running more iterations can improve results marginally, our aforementioned implementation provides
a good balance between computational cost and performance for this work. Moreover, given the
heuristic nature of our annealing scheme, its not obvious if we will converge to a unique solution. To
study this, we run simulations with different initial conditions and find that the reconstructed fields
are correlated well enough, and hence identical, on the scales of interest here. We establish both of
these quantitatively in appendix A.

5.2.3 Reconstructed field : Visual

Before gauging our reconstruction quantitatively, we also first visually see the impact of noise and
reconstruction at the level of the field to develop some intuition. Fig. 4 shows different projections of
the true HI field, as well as the data which is now corrupted with thermal noise in addition to the
foreground wedge and our reconstructed HI field for our fiducial thermal noise corresponding to 5
years of observing with a half-filled array but for a pessimistic wedge (k; = 0.03 hMpc™!, 6, = 38°)
at z = 4. The line of sight direction is Z. As expected from Fig. 3, where the signal is close to zero
on small scales, the data is heavily corrupted with small scale noise and the noise is higher when
we take the sum over the transverse direction than when along the line of sight. In fact, visually,
one can only faintly distinguish the biggest structure peaks in the corrupted data from noise and its
impressive how well we are able to reconstruct smaller structures in the HI field despite this. Due
to the foreground wedge, the structures seem to be stretched in the transverse direction in the data.
This can also be seen by comparing first two rows with the last, where structures are more isotropic
since the stretching is the same in both transverse directions. For the reconstructed field we have
visibly reduced this stretching by reconstructing modes in the wedge. Overall the reconstructed field
is smoother than the input data, since we do not fully reconstruct the small-scale modes.

5.2.4 Reconstructed field : Two point function

Next, to quantitatively see how the foreground wedge and thermal noise combined affects our data,
we estimate the cross-correlation and transfer function of this noisy input data with the true HI field.
This is shown in Fig. 5 for z = 2, 4 and 6 as thin lines. In addition to our fiducial setup, we also
consider other configurations for the wedge and thermal noise as outlined at the beginning of this
section. This figure contrasts with Fig. 3 since there we neglected the loss of modes due to foreground
wedge and only focused on thermal noise. For the combined noisy data, the transfer function with
respect to the true HI field is zero on the largest scales (k < 0.03hMpc™!) since these modes are
completely lost to the foregrounds and we have no information on these scales. On intermediate
scales, the cross correlation and transfer function increase but are still well below unity since some
modes are still lost to the wedge in every k—bin, and as per our expectations, this loss is greater
in the pessimistic wedge case. On the smallest scales, the transfer function exceeds one since these
modes are dominated by thermal noise. However the cross-correlation on these scales drops rapidly
since this noise is uncorrelated to the data and contains no information.

For comparison, we show as thick lines in Fig. 5 the cross-correlation and transfer function of the
reconstructed HI field with true HI field. This highlights how our reconstruction helps in recovering
the information lost due to foregrounds and thermal noise. The gains in cross-correlation coefficient
over noisy data are quite impressive, reaching ~ 0.8, 0.9, 0.96 for the optimistic wedge on the largest
scales for z = 2, 4 and 6 respectively where we have access to no modes in the data. The modes in
this regime are constructed only out of mode coupling due to no-linear evolution. On intermediate
scales, where the data have the most information, the cross correlation reaches 1 for all redshifts
while it drops again (to below 0.8) on the smallest scales which are thermal noise dominated. A
similar trend is observed in the transfer function, where we recover ~ 40, 50 and 60% of the largest
scales lost completely to the foregrounds for z = 2, 4 and 6 respectively. We recover more power as
we move to smaller scales, with the transfer function reaching close to unity on intermediate scales
k ~ 0.1 hMpc~! before starting to decrease at the smallest, noise dominated scales.

Reconstruction is slightly worse in the case of pessimistic wedge, with higher redshifts paying
a higher penalty simply due to the larger difference in the two configurations. However the cross-
correlation is still ~ 80% at z = 6 on the largest scales, even in the most pessimistic setup. While
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Figure 5: We show the cross-correlation (left) and transfer function (right) of the reconstructed HI
field at z = 2, 4 and 6 for three different thermal noise levels as well as two wedge configurations
(optimistic and pessimistic; see text for more details). For comparison, we also show these quantities
for the noisy and masked data which was used as the input for reconstruction with light colors.

the foreground wedge affects reconstruction on all scales, thermal noise does not affect reconstruction

on the large scales. On small scales, reconstruction is slightly worse with increasing noise, again
penalizing higher redshifts more than lower redshifts.

With our procedure, along with reconstructing the observed data, we also reconstruct the ini-
tial and final matter field. Its instructive to see how close are these to the true fields since they
have different science applications. The initial (Lagrangian) field can be used to reconstruct Baryon
Acoustic Oscillations (BAOs), while the final matter field across redshifts has applications in CMB
and weak lensing science. Here we briefly look at the recovery of these fields. In Fig. 6, we show the
cross-correlation and transfer function of the reconstructed initial matter, final matter and HI field
for our fiducial setup at z = 4. As for the HI data field, the cross correlation and transfer function
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Figure 6: The cross-correlation (left) and transfer function (right) at z = 4 for the reconstructed
initial matter, final matter and HI field with their corresponding true fields. We have assumed 5 years
of observing with a half-filled array, ﬁ“i“ = 0.03hMpc™! and 6, = 15°. The dashed lines are for

reconstruction on the fiducial 2563 mesh while the solid lines are reconstruction after upsampling to
a 5123 mesh, which leads to significant gains.

increases as we go from large to intermediate scales since the large scales are completely absent in
the data due to foreground wedge. Since the information moves from larger scales to small scales
during non-linear evolution, the cross correlation of the reconstructed final-matter and HI field are
much better on smaller scales than the initial field. While the transfer function for initial and HI field
drops on small scales due to thermal noise, that of final matter field increases over 1. This is simply
because our dynamic model for reconstruction is the Zeldovich approximation while the true data was
generated by particle-mesh simulations.

In Fig. 6 we also show how upsampling improves the performance of reconstruction. The dashed
lines show the reconstruction on the fiducial 2563 grid, without any upsampling, while the solid lines
show the results when continuing reconstruction after upsampling the reconstructed field to a 5123
mesh. Since the higher resolution allows us to push to smaller scales it increases the number of modes
not dominated by thermal noise while also recovering some of the signal that was earlier lost due to
grid-smoothing on these scales. We find large gains in our reconstruction for all three fields. While
we have not pushed to even higher resolution due to CPU limitations, we suspect it would yield
diminishing returns since the smaller scales are dominated by thermal noise.

5.2.5 Impact of “Ini“

While changing the thermal noise and wedge configurations, we have so far kept the kﬂ“in fixed at
kh“i“ =0.03hMpc~t. In Fig. 7, we show how the reconstruction performs for different values of klflni“
and compare it to the hypothetical case where we loose no modes to foregrounds. Again, we consider
our fiducial setup at z = 4 with optimistic wedge (6, = 15°) and thermal noise corresponding to 5
years of observing with a half-filled array without upsampling annealing. Reconstruction on all scales
is slightly worse than the case when we loose no modes to the foregrounds, but not by much. We

find that for a given wedge, small scales are quite insensitive to the k‘rlni“ threshold. On large scales,
reconstruction gets progressively worse to smaller k as we increase “Ini“. However even for the most
pessimistic case, k;ﬁ“in = 0.05 h Mpc™!, the cross correlation is better than 0.8 on the largest scales.
Furthermore upsampling annealing would improve the reconstruction on all scales.
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Figure 7: The cross-correlation (left) and transfer function (right) at z = 4 with an optimistic wedge
(0, = 15°) and fiducial thermal noise (corresponding to 5 years of observing with a half-filled array)
for different klr‘“in (in h Mpcfl), without upsampling. For comparison, we also show the case where we
do not lose any modes to foregrounds (i.e. no wedge and k‘rlnin = 0) but have the same fiducial thermal
noise (dashed line). We have checked that as the thermal noise is reduced the cross correlation moves

closer to 1 as expected.

5.2.6 Real vs. redshift space

Its also instructive to compare reconstruction in real and redshift space, since this gives us access to
new signal (through the velocity field) but it is often the case that one loses power in Fourier modes
in the radial direction. However for the 21-cm signal finger-of-god effects are subdominant and most
of the redshift space signal can be modeled with perturbation theory [37, 62]. As a result, we find
that doing reconstruction from the redshift space data improves our results over real space data. We
show this in Fig. 8 where we compare the statistics for reconstruction in real space (dashed) and
redshift space (solid) for z = 2, 4 and 6. We model the redshift space data by moving the Lagrangian
fields to Eulerian space with Zeldovich dynamics, as before, and then using the Zeldovich velocity
component along the line of sight. The velocity field information residing in the anisotropic clustering
provides additional information which improves our performance in redshift space over real space.
The gains are largest at z = 6 and decrease with decreasing redshift. This is likely because we model
only the linear dynamics while non-linear RSD, as well as the finger-of-god effects, increase at lower
redshifts. Using higher order perturbation theory, or the particle mesh dynamics, should improve the
performance at lower z.

5.2.7 Angular cross-correlation

Given that the line of sight and transverse modes are differently affected by foreground wedge, thermal
noise and redshift space distortions, we conclude this section by looking at the cross-correlation
coefficient for the reconstructed data as a function of p. This is shown in Fig. 9 for our fiducial
thermal noise model (after annealing). We recover the largest scales almost perfectly, even though
we do not have any modes along the line of sight in the data. On the other hand small scale modes
along the line of sight are significantly better reconstructed than the transverse modes. We find that
the reconstruction of line-of-sight modes is less sensitive to the loss of modes in the foreground wedge
than transverse modes. However in all cases the better foregrounds are controlled, and the smaller
the wedge can be made, the better reconstruction proceeds.
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Figure 8: We show the cross-correlation (left) and transfer function (right) of the reconstructed HI
field at z = 2, 4 and 6 for the fiducial noise setup and optimisitic wedge in real and redshift space.
The additional information available in the redshift-space field enhances the recovery of the signal.
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Figure 9: We show the cross-correlation of the reconstructed HI field with the corresponding true
field as a function of the angle p with the line of sight in different &k bins for fiducial thermal noise and
two wedge configurations (with corresponding fiwedge shown as thin vertical lines) at z = 2, 4 and 6.
All the modes are reconstructed well along the line of sight, while the large scales are reconstructed
better than small scales in the transverse direction.

6 Implications
Our ability to reconstruct long wavelength modes of the HI field has several implications, and we

explore some of them here. The first two subsections discuss cross-correlation opportunities afforded
by reconstruction while the last describes the improvement in BAO distance measures.
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The utility of large 21-cm intensity mapping arrays is the highest in the high redshift regime,
where there is a lot of cosmic volume to be explored and which is the most difficult to be accessed
using other methods. While there are some fields that will cross-correlate straight-forwardly with the
21-cm data, notably the Lyman-« forest and sparse galaxy and quasars samples which entail true
three-dimensional correlations, any field that is projected in radial direction occupies the region of
the Fourier space that is the most contaminated with the foregrounds. This technique allows us to
re-enable these cross-correlations and thus significantly broadens the appeal of high-redshift 21-cm
experimentation. We discuss two important examples below.

The first question that needs to addressed is whether it is preferable to cross-correlate with the
reconstructed HI field or the evolved matter field or even the linear field. While there are some
arguments against, we opted to use the reconstructed HI field, which we refer to simply as the
“reconstructed” field. Most importantly, on scales where data are available, this field will resemble
the measured data regardless of modeling imperfections. In particular, Figure 7 show that the HI
field has a higher cross-correlation coefficient than the initial field, indicating that the modeling is
imperfect but nevertheless sufficiently flexible to account for these deficiencies.

Finally we note that low-k modes are extremely important in the quest for Primordial Non
Gaussianities (PNG), with constraints on PNG from 21 cm survey severely hampered by the loss of
long wavelength modes due to foregrounds [9]. PNG of the local-type would benefit enormously from
reconstruction, which appears to be most robust way to recover the true signal at large scales free of
residual foregrounds [63, 64]. The equilateral and squeezed triangle configurations could potentially
also benefit, because their sensitivity is normally limited by non-linear gravitational evolution that
produces similarly shaped bispectra. We intend to return to this specific case in future work.

6.1 Redshift distribution reconstruction

A common problem facing future photometric surveys is to determine the redshift distribution of the
objects, many of which may be too faint or too numerous to obtain redshifts of directly [65]. One
approach is to use ‘clustering redshifts’, wherein the photometric sample is cross-correlated with a
spectroscopic sample in order to determine dN/dz of the former [66-70].

One difficulty with this approach for intensity mapping surveys is that, for broad dN/dz, the
photometric sample only probes k| =~ 0. In linear theory the cross-correlation between a high-pass
filtered 21-cm field and the photometric sample is highly suppressed. Translating a redshift uncertainty
of §z into a comoving distance uncertainty of o, = cdz/H(z), to probe k| = 0.03 hMpc ™! requires
0z/(1 4+ z) < 0.01 —0.015 at 2z = 2 — 6. Such photo-z precision is in principle achievable, given
enough filters, but primarily at lower redshift and for brighter galaxies [71, 72]. The more common
assumption of 6z/(1 + z) = 0.05 corresponds to

1+Z>_1/2 (6.1)

oy ~ 120 h™Mpc (

for 2 < z < 6. Modes with k) = 0.03hMpc™! are almost entirely unconstrained by such measure-
ments.

To be more quantitative we note that such a photometric redshift uncertainty would smooth
the galaxy field in the redshift direction. At very low k, and for the purposes of exploration, we can
assume scale-independent linear bias so that on large scales we have

Sphoto (K, 1) = (by + fu?) Do (k) +noise , Dk, p) = exp[—k2u2oi/2] (6.2)
where 6m(E) is the matter overdensity and D encompasses the effect of photometric redshift uncer-

tainty which we have approximated as Gaussian. Similarly, for the true HI field, assuming scale
independent bias on these scales,

Sur(k, p) = (b + f1°) 6m (K) + noise (6.3)
Using Eq. 5.1 the cross-power spectrum with d,.. is then given by
by + f1?
Pl t) = (recpnoro) = 21 Dk, o) vl )Ty 1) Pras (k. ) (6.4)

bur + fu?
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Figure 10: We show the effective cross-correlation (p?, left) as well as the variance of the cross-
spectra (right) of the reconstructed HI field (fiducial setup) with the photometric field at z = 4 and
number density 7 ~ 10~2%( hMpc™')3, for different p-bins. The solid lines show the measurement
from the simulations while the dashed lines are theoretical predicition based on Eq. 6.7. The dotted
lines on the left show the photometric damping kernel of Eq. 6.2 while on the right they show the
variance for the input HI data with thermal noise and wedge (see text for discussion).

At high redshift both the galaxies and HI are highly biased and we are interested in u =~ 0 modes
so the first factor becomes b, /by which simply rescales the amplitude of Ty. Eq. 6.4 shows why we
need to reconstruct the low k modes in order to achieve a significant signal in cross-correlation: D
highly damps the signal at high k) and without reconstruction rTy — 0 at low k.

For Gaussian fields the variance of the cross-correlation is Var [0 Py ] = N;;des (Pi + PphotoPreC)
where Nyodes 18 the number of independent modes in the bin and P, = T]?PH 1 is the reconstructed
auto-spectra of HI field along with the reconstruction noise. Additionally, the auto-spectrum Pphoto
includes a contribution from the noise auto-spectrum, which we assume to be shot-noise: #~'. In this
limit )

2
Pphoto = (bp + fﬂ2) DQPm + % (65)
where P, is the matter power spectra. Thus,

Var[Py|

—pr = Nioges (L4 072) (6.6)

where ) s
9 P 5 byD by

_ = 6.7
r PphotoPrec 1+ bZ%ID2 nP,, ( )

quantifies the effective signal and plays the role of the more familiar nP that frequently appears in
power spectrum errors [73]. An important caveat here is that to estimate p as a function of p, the
correct way is to integrate over the u-bin, and not simply to estimate it at the bin-center. Since the
photometric damping kernel scales as 2, estimating at the bin center causes over damping and the
impact is especially severe for the smallest ¢ bin as modes with p — 0 should effectively be undamped.

For clustering redshifts with dense spectroscopic samples most of the weight comes from trans-
verse modes near the non-linear scale. For example, the optimal quadratic estimator for dN/dz ([70];
§5.1) weights Py (kL, k| ~ 0) with P@})to(k 1,0) which typically peaks at several Mpc scales. Simi-
larly the estimator of ref. [69] has weights proportional to Jy(kr) integrated between i, and rmax.
Taking i, to be large enough that 1-halo terms are small leads to similar scales being important.
As shown in Fig. 9 the transverse modes at intermediate scales are quite well reconstructed by our
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procedure, suggesting that 21-cm experiments would provide highly constraining clustering redshifts
even for very high z populations.

As an example to show how well we are able to cross-correlate photometric surveys with the
reconstructed HI field, we consider a strawman survey at redshift z a2 4, as outlined in ref. [74], that
detects Lyman break galaxies (LBG) with the g-band dropout technique. Based on Table 5 of ref. [74]
we take i =~ 10725(hMpc ™) and b ~ 3.2. Given these numbers, we show how the p? as well as
noise-to-signal ratiofrom for the cross-spectra as function of scales and angles in Fig. 10. The solid
lines are the estimates from the simulations while the dashed lines are the ‘theoretical’ predictions. To
generate the photometric data in the simulation, we simply select the heaviest halos up to the given
number density. To implement photometric uncertainties, we smooth the data with the Gaussian
kernel of Eq. 6.2. An alternate way to implement photometric redshifts would be to scatter the
positions of halos along the line of sight with standard deviation given by Eq. 6.1, and we find that
this leads to similar results for scales where Var[P.]/P2 < 1, but becomes noisier on smaller scales.
Thus here, we stick with the smoothing implementation. Given a photometric field, we then estimate
its auto-spectra (with shot-noise ) and cross-spectra with the reconstructed HI field in u-bins and use
Eq. 6.7 to estimate p and correspondingly the variance. Similarly, to get the ‘theoretical’ prediction,
we linearly interpolate the estimated r. for every k-bin as function of u and then integrate the last
term of Eq. 6.7 in every p-bin.

For the reconstructed HI field, we find in Fig. 10 that the signal to noise in both, the predicted
and measured cross-spectra for the smallest p-bin is of the order 10 on all scales while reaching ~ 100
on the intermediate scales that are reconstructed the best. For higher u-bins, the signal to noise is
still of the order ~ 10 on the largest scales but it deteriorates rapidly due to the photometric damping
kernel. For comparison, we also the show as dotted lines the signal to noise for the cross-spectra with
the input noisy HI data (with the wedge and the thermal noise) and see that it does not achieve 1 on
any scales. This clearly demonstrates the gains made by using reconstructed HI field for estimating
photometric redshifts by measuring clustering.

6.2 Cross-correlation with CMB weak lensing

In CMB lensing we are attempting to cross-correlate our HI with the reconstructed convergence field,
K, given by

xe (1 Ho\? .
k(0) = / dx Wi(x)dm(x,0) with W, = 30m1 +2) <0> x(2)(xs —x) (6.8)
0 2 c Xs
with xs ~ x(z = 1150). Lensing kernel varies very slowly in radial direction and hence it will

be insensitive to parallel wavenumbers larger than k|| ~ 10~3h Mpc~!. Therefore, the suppression is
even more strong than in the case of photometric redshifts and cross-correlation is completely hopeless
unless one recovers the k) ~ 0 modes.

When cross-correlating with a tomograpic bin of reconstructed 21-cm density, the angular cross
power spectrum is given by

Fmax cdz
)y = / WWK(Z) (2, k1 (2), k= 0)Ty(2, k1 (2), k| = 0)bu1(2) Prum (k1 (2),2)  (6.9)

where transverse wavenumber is evaluated at k; = ¢/x(z) and we have neglected any magnification
bias. For slices that are thin Ax < x (but thick enough so that the Limber approximation is valid)
this simplifies to

cAz

S =WebrTi———Punm 1
C[ W, r fXQH(Z) (6 0)
Similarly, the HI auto power is given by
Az
cHl =225 _p 6.11
4 f X2H<Z) ( )
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while the k autospectrum remains an integral over the line of sight. As before, the noise Var[C/‘] =
N L (G2 + CFrCHYy o 12 assuming the second term dominates. The amount of signal-to-noise
available for extraction is thus proportional to r. Our method thus allows us to reconstruct over 80%
of all signal available (at a fixed noise of CMB map) compared to none in case of using the pure

foreground cleaned 21-cm signal.

6.3 BAO reconstruction

A major goal of high z, 21-cm cosmology is the measurement of distances using the baryon acoustic
oscillation (BAO) method [75]. In ref. [37] we found that future interferometers would be able to make
high-precision measurements of the BAO scale out to z >~ 6 with scale-dependent biasing and redshift-
space distortions having only a small effect on the signal. Non-linear structure formation damps the
BAO peaks and reduces the signal-to-noise ratio for measuring the acoustic scale [53, 56, 76-82]. Since
the non-linear scale shifts to smaller scales at high-redshifts, this damping is modest. We find that
only the fourth BAO peak is slightly damped (compared to linear theory) at z = 2 and no damping
is visible at z = 6.

Galaxy surveys which measure BAO typically apply a process known as reconstruction [83, 84] to
their data in order to restore some of the signal lost to non-linear evolution (e.g. see refs. [85-87] and
references therein). It is known that the absence of low k| modes and the presence of the foreground
wedge make reconstruction much less effective [18], though some of the lost signal can be recovered
with other surveys [19]. Our approach provides another route to BAO reconstruction [23], so it is
interesting to ask how the performance of the algorithm compares to standard reconstruction and
how it is impacted by loss of data due to foregrounds. For standard reconstruction, we will follow the
algorithm outlined in ref. [18]. This differs slightly from the traditional reconstruction using galaxies
in that one removes the modes lost in the wedge to estimate Zeldovich displacements and instead of
point objects like galaxies, one shifts the HI fields using this displacement. Since BAO reconstruction
is most effective at z = 2, we focus our attention on this case — which is also the epoch at which our
knowledge of the manner in which HI inhabits halos is most secure. At this redshift an instrument
like PUMA is shot-noise limited.

To gauge how well are we able to recover the BAO signal we closely follow ref. [23] which in turn
builds upon refs. [81, 88]. Specifically we employ a simple Fisher analysis to estimate the uncertainty
in locating the BAO features which allow us to measure the sound horizon at the drag epoch, sg. This
parameter is only sensitive to the BAO component of the power spectrum, which is damped due to Silk
damping and non-linear evolution. The information lost in the latter is recovered with reconstruction
and we quantify its success by measuring the linear information in the reconstructed field, §,. This is
done by estimating its projection onto the linear field, &), in the form of the ‘propagator’

<5r61in> Tch

G ) = ) (6.12)

where b is the bias of the field and r. and T are the corresponding cross correlation and transfer
function of the reconstructed field with the linear field. Thus, the linear ‘signal’ in the field is
S = b’G?Pjs, while under the Gaussian assumption of fields, the total variance is given by the
square of the power spectra of the field itself. As a result, the total signal to noise for the linear
information is: .
E — @ = p2 (6.13)
N (676,) ¢
We compare the performance of the two methods in Fig. 11 where we show the cross-correlation
of the two reconstructed fields with the true linear field for different redshifts and wedge configu-
rations. Since the comparison for other noise levels is qualitatively similar, we show only the case
of fiducial setup corresponding to 5 years of observation with half-filled array. Overall, our method
outperforms standard reconstruction significantly, with higher cross-correlation on all scales and ex-
tending to smaller scales. More importantly, as shown in the second column of Fig. 11, standard
reconstruction fails to reconstruct modes inside the foreground region while our method is able to
do so. These modes provide complementary information to the line of sight modes, constraining
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Figure 11: We show the cross-correlation of the reconstructed initial/linear field with the true
Lagrangian field for our method of reconstruction (iterative, top row) and standard reconstruction
(bottom row) for the three redshifts and two wedge configurations (solid and dashed) and fiducial
thermal noise setup corresponding to 5 years with half-filled array. The first column is the cross
correlation monopole while the second and third column show the cross correlation in bins nearly
perpendicular to and along the line of sight respectively.

the angular diameter distance while line of sight modes constrain H(z). Thus, unlike the standard
method, our reconstruction should be able to constrain the angular diameter distance as well as
improve measures of the Hubble parameter.

To be more quantitative, we can use the Fisher formalism to estimate the error on sy as (for a
derivation, see refs. [81, 88])

2 k 4 4 1.4

max (k¥

Fins, = <8—0> = VsurveyA(%/ r2ap LG expl (k;) ] (6.14)
OTso Kmin [Plin(k)/POQ]

where we have integrated over the angles assuming isotropy, Viurvey is the survey volume, Ay =
0.4529 for WMAP1 cosmology, ¥, ~ 7.76 h~!Mpc is the Silk damping scale and Py is the linear
power spectrum at k = 0.2hMpc~'. While the nature of this calculation is rather crude, our aim
here is to not do any accurate Fisher forecast for measuring BAO, but simply to broadly compare
our reconstruction with the standard reconstruction under a sensible metric and to that end this
procedure should suffice. To be more yet conservative, instead of quoting the relative Fisher errors
individually, we estimate the ratio of predicted errors for the two methods. We find that for the BAO
peak, sg, under the fiducial thermal noise setup, our reconstruction reduces errors over the standard
method by a factor of ~ 2 (2) and ~ 2.8 (3.5) for optimistic (pessimistic) wedge at z = 2 and 6.
The conclusions remain relatively unchanged for other thermal noise configurations. While this is
for angular averaged BAO, as mentioned previously, we expect gains to be comparable for Hubble
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parameter and larger for angular diameter distance. We leave a more accurate calculation for future
work.

7 Conclusions

In this paper, we have applied recently developed field reconstruction methods to the case of future
21-cm cosmology experiments. In many respects this is an optimal target for such methods. First,
we are dealing with continuous fields which are naturally more suited for these methods, since the
problem of the non-analytical object creation does not apply. In galaxy clustering, while its possible
to circumvent the discreteness of the data by averaging in pixels that are sufficiently big that the
galaxy counts in cells become effectively continuous, it leads to information loss. However, for 21-cm
intensity mapping experiment, the finite resolution of the experiment naturally leads to a continuous
version of the problem. We simply do not have information of scales that are small enough to even
contemplate separating individual objects, even though the signal is dominated by them.

Second, the 21-cm intensity field is dominated by numerous contributions from relatively low mass
dark matter halos [37, 62, 89], which are well described by a low-order bias expansion to relatively high
wavenumbers. This allows us to start from the underlying dark matter field and model the observed
data at the field level more simply and accurately than for discrete and more biased tracers such as
galaxies. Third, we are missing some regions of k-space (~ 20(7) — 80(40)% of the modes for our
pessimistic (optimistic) case) but, on the other hand, measuring a very large number of modes over
other regions of k-space. As we have demonstrated, the measured modes and the couplings introduced
by non-linear evolution more than make up for the missing ones.

Our method proceeds by maximizing the posterior for the initial conditions, which is constructed
by combining a Gaussian prior on the initial field with the likelihood of a forward model matching the
observations. In our case the observations are the mock, redshift space gy in k-space, as would be
measured by a 21-cm interferometric survey. The forward model consists of a quadratic, Lagrangian
bias scheme paired with non-linear dynamics which can be either perturbative dynamics or a particle
mesh simulation. We find that simple Zeldovich dynamics for such a model do a good job of fitting
our mock data, with errors well below the shot noise level in the field (Fig. 2).

For 2 < z < 6 we are able to recover modes down to k ~ 10~2hMpc ™! with cross-correlation
coefficients larger than 0.8 for both optimistic and pessimistic assumptions about foreground con-
tamination (Fig. 5). Our reconstruction is relatively insensitive to loss of line-of-sight modes, up to

min

i =0.05 hMpc~ ', but more sensitive to missing modes in the ‘wedge’ (§2) as shown in Fig. 7. For

our fiducial thermal noise assumptions we recover the k ~ 102 h Mpc ™! modes with cross-correlation

coeffecient greater than 0.9 in all directions and the line of sight modes almost perfectly, even though
we do not have any of these modes in the data. On the other hand small scale modes along the
line of sight are significantly better reconstructed than the transverse modes. Thus as shown in Fig.
9, we find that the reconstruction of line-of-sight modes is less sensitive to the loss of modes in the
foreground wedge than transverse modes. However in all cases the better foregrounds are controlled,
and the smaller the wedge can be made, the better reconstruction proceeds. At z ~ 2 our reconstruc-
tions are relatively insensitive to thermal noise over the range we have tested. However at higher z
increasingly noisy data leads to steadily lower cross-correlation coefficient, as shown in Fig. 5.

Our method also provides a technique for density field reconstruction for baryon acoustic oscil-
lations (BAO) [23]. It is known that the absence of low kj modes and the presence of the foreground
wedge make reconstruction much less effective [18], though some of the lost signal can be recovered
with other surveys [19]. By constraining the reconstructed initial field, as well as the evolved HI
field, we can use the measured modes to ‘undo’ some of the non-linear evolution and increase the
signal-to-noise ratio on the acoustic peaks (see §6.3). In particular, we find that while the standard
methods of reconstruction recover almost no modes in the foreground wedge, our method reconstructs
modes with cross correlation better than 80%. This can lead to improvements of a factor of 2-3 in
isotropic BAO analysis and more in transverse directions. We note that these gains over standard
methods are significantly larger than in the case of galaxy surveys since the standard reconstructions
is already quite efficient for the latter [18, 22, 23].
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We have focused primarily on the reconstruction technique in this paper, but the ability to recon-
struct low k modes opens up many scientific opportunities. We described (§6) how 21-cm fluctuations
could provide superb clustering redshift estimation at high z, where it is otherwise extremely difficult
to obtain dense spectroscopic samples (Fig. 10). This could be extremely important for high z sam-
ples coming from LSST, Euclid and WFIRST. The recovery of low k| modes also opens up a wealth
of cross-correlation opportunities with projected fields (e.g. lensing) which are restricted to modes
transverse to the line of sight. The measurement of long wavelength fluctuations should also enhance
the mapping of the cosmic web at these redshifts, helping to find protoclusters or voids for example
[33].

In this work we have assumed that we measure the 21-cm field in an unperturbed redshift-space
field. In practice, what we observe is the field that has been displaced on large scales by the effect
of weak gravitational lensing by the intervening matter along the line of sight. It is clear that the
two effects must be degenerate at some level. A location of a given halo in observed redshift-space is
obtained by adding the effect of the Lagrangian displacement from the proto-halo region and the effect
of weak-lensing by the lower-redshift structures. The latter can be replaced, at least approximately, by
a distribution of matter whose Lagrangian displacement absorbs both effects. However, the degeneracy
is not perfect. In particular, weak lensing effect is almost exclusively limited to moving the structures
in transverse direction by a displacement field that changes slowly with distance. These issues have
been studied in the context of traditional lensing estimators in ref. [90], which find encouraging
results. Similar lessons should apply to our method, which should, if anything, perform better since
it naturally extracts more signal. We leave this for future investigation.

For the purpose of reconstruction, we have assumed a fixed cosmology and fixed bias parameters.
Ideally, one would like to estimate the model and cosmological parameters at the same time as
reconstructing linear field. The impact of keeping these parameters fixed at their fiducial values varies
with the science objective, for instance it will differently affect BAO reconstruction vs. photometric
redshift estimation. In some cases, since the non-linear dynamics of our forward model are quite
cheap, one can imagine doing this reconstruction recursively, updating model parameters if they vary
significantly. A detailed analysis of this is beyond the scope of current work and we leave this for the
future. For completeness, we point out that some recent papers (e.g. ref. [91]) have explored ways of
taking into account the model and cosmology parameters simultaneously for other biased tracers.

We have also made simplifying assumptions to generate our observed mock data to test the
reconstruction algorithm. Since HI assignment to halos is still poorly understood, we have assumed a
simple semi-analytic model. We have neglected any effect of UV background fluctuations [37, 92] or
assembly bias [62] on HI distribution in halos and galaxies. However a flexible bias model, and our
forward modeling framework, should be able to include these. In the same vein, it’s worth exploring
the impact of stochasticity (scatter) between HI mass and dark matter mass on reconstruction since
it adds noise on all scales. However we leave it for future work when the required observations can
calibrate the amplitude of the effect.

The success of a quadratic, Lagrangian bias model plus perturbative dynamics (Eq. 4.2) in
describing the HI field also motivates a new route for making mock catalogs. As we have demonstrated
(Fig. 2) our forward model using a function of the linear density and shear field to weight particles
which are moved using Zeldovich dynamics (or 2" order perturbation theory) generates a good
realization of an HI field in redshift space. The agreement can be improved even further by dividing
by the transfer function at the field level. Since the initial grid can be relatively coarse (Mpc scale),
very large volumes are achievable with reasonable computing resources. To the HI field generated
in this manner one can add light-cone effects, foregrounds, ultra-violet background fluctuations, etc.
While it is beyond the scope of our paper, our results also suggest that such mock catalogs could
be used in the modeling of reionization (see also ref. [93]) where the dynamics should be even more
linear. To our model of the HI could be added a simple model for ionization fluctuations (e.g. those
developed in ref. [94] or similar). The model already predicts the velocity field, so the redshift-space
clustering of HI on the lightcone or statistics like the kinetic Sunyaev-Zeldovich effect (kSZ; [95]) can
be forecast (e.g. ref. [96]).

While we have proceeded numerically in this paper, Fig. 2 shows that a Lagrangian bias model
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Figure 12: We show the cross-correlation of the reconstructed data HI field with the true field for
different cases. Left: We show reconstructions for different initial conditions (different seed) and show
that in both the cases, the reconstructed fields are very well correlated with each other (dashed green),
as well as true field (solids). Right: we compare our fiducial annealing scheme (100 iterations) with
another reconstruction where we reconstruct for twice the number of steps (200 iterations) and find
the improvements to be marginal, as well as the two reconstructed fields correlated well with each
other.

with Zeldovich dynamics does quite a good job of describing the low & modes of the HI field. This
suggests it may be possible to develop a fully analytic understanding of our reconstruction process,
and the statistics that are being used for clustering redshifts or lensing cross-correlations. In principle
the analytic models could be extended to reionization and kSZ. We defer development of such models
to future work.
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A Validating annealing

Here we show the results of simulations to validate our annealing scheme and convergence of our
method.

Our annealing scheme involves smoothing the residual mesh on different (decreasing) smoothing
scales over iterations to reconstruct large scales before smaller scales. The specific choice of smoothing
scales does not result in any noticeable difference at the end of convergence as long as we use multiple
smoothing scales, starting from large (> 10 hMpc_l) scales. However at every step, we do only 100
iterations, which is motivated by that we do not see the large scales changing significantly. To confirm
this, we do a run by increasing the number of iterations and letting the optimizer run for longer. For
every annealing step in this case, we do 200 iterations instead of 100. The result, in terms of cross
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correlation with the true HI field, is shown in 12 and compared with the fiducial 100 iterations. The
changes in the cross correlation are primarily on the largest and smallest scales, but less than 3% for
scales k < 0.8 hMpc™'. Since this marginal change comes at the cost of doubling the computational
cost of the reconstruction, for this work we find that our current annealing scheme provides a good
balance between the cost and performance but note that the results can further be improved with
more computation.

Given the heuristic nature of our annealing scheme, we also validate our convergence to a ‘correct’
solution by running multiple reconstructions starting with different initial conditions. We verify that
for all these cases, the differences in the reconstructed fields are small. One example is show in Fig.
12, left plot, for our fiducial seed (for which we show all the results in the text) and a new seed.
Both the reconstructed fields are well correlated on all scales of interest with each other (r. > 0.98
for k <1 hMpcfl) and have indistinguishable cross-correlation with the true data field, except on
the small scales k& < 1hMpc~'. While this does not guarantee the uniqueness of our solution, a
detailed convergence analysis will have to go go hand-in-hand with the uncertainty analysis of the
reconstructed field, which is beyond the scope of this work.
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