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ABSTRACT
Reconstruction is becoming a crucial procedure of galaxy clustering analysis for future
spectroscopic redshift surveys to obtain subpercent level measurement of the baryon
acoustic oscillation scale. Most reconstruction algorithms rely on an estimation of the
displacement field from the observed galaxy distribution. However, the displacement
reconstruction degrades near the survey boundary due to incomplete data and the
boundary effects extend to ∼ 100 Mpc/h within the interior of the survey volume. We
study the possibility of using radial velocities measured from the cosmic microwave
background observation through the kinematic Sunyaev-Zel’dovich effect to improve
performance near the boundary. We find that the boundary effect can be reduced
to ∼ 30 − 40 Mpc/h with the velocity information from Simons Observatory. This is
especially helpful for dense low redshift surveys where the volume is relatively small
and a large fraction of total volume is affected by the boundary.
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1 INTRODUCTION

Precision measurements of the baryon acoustic oscillations
(BAO) can constrain dark energy models and modified grav-
ity theories on cosmological scales (e.g. Weinberg et al. 2013;
Amendola et al. 2018). Future stage IV galaxy surveys plan
to measure the BAO scale to subpercent precision over a
wide range of redshifts (e.g. DESI Collaboration et al. 2016;
Takada et al. 2014; Laureijs et al. 2011; Amendola et al.
2018; LSST Science Collaboration et al. 2009; Dodelson et al.
2016). However, nonlinear clustering due to gravitational in-
stabilities smears the linear BAO feature in the observed
distribution of galaxies, mostly due to the large-scale bulk
flows (e.g. Eisenstein et al. 2007a), degrading the accuracy
of measured BAO scale. BAO reconstruction has been pro-
posed by Eisenstein et al. (2007b) to reduce the nonlinear
degradation effects by reversing the large-scale shifts and to
recover the linear BAO signal. The standard BAO recon-
struction method has been tested in simulations (e.g. Eisen-
stein et al. 2007b; Seo et al. 2010; Mehta et al. 2011; Tassev
& Zaldarriaga 2012; Burden et al. 2014; Schmittfull et al.
2015), explored for modeling with perturbation theory (e.g.
Padmanabhan et al. 2009; Noh et al. 2009; White 2015; Seo
et al. 2016; Hikage et al. 2017; Chen et al. 2019) and applied
in galaxy clustering analysis, such as SDSS (Padmanabhan
et al. 2012), BOSS (Anderson et al. 2012, 2014; Tojeiro et al.
2014; Beutler et al. 2016; Alam et al. 2017), WiggleZ (Kazin
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et al. 2014; Beutler et al. 2016), SDSS MGS (Ross et al.
2015), and 6dFGS (Carter et al. 2018). Recently, several
nonlinear reconstruction algorithms have been developed to
improve upon the standard method (Zhu et al. 2017; Schmit-
tfull et al. 2017; Shi et al. 2018; Hada & Eisenstein 2018)
and have been applied to simulated halo/galaxy fields (Yu
et al. 2017; Wang & Pen 2019; Birkin et al. 2019; Hada &
Eisenstein 2019). Forward modeling methods have also been
explored (Seljak et al. 2017; Modi et al. 2018; Schmidt et al.
2019; Elsner et al. 2019; Modi et al. 2019).

The key ingredient for reconstruction is an estimate
of the displacement field from the observed galaxy density
field. In standard reconstruction, the estimated displacement
field is used to move galaxies to the initial positions, restor-
ing the linear BAO signal. For most nonlinear reconstruc-
tion algorithms, we directly use the reconstructed nonlinear
displacement to measure the BAO signal (e.g. Zhu et al.
2017; Schmittfull et al. 2017; Shi et al. 2018). The con-
ventional way to estimate the displacement field is first to
embed the survey volume in a periodic box, then smooth
the nonlinear density field using a Gaussian window with
scale ∼ 10 h−1Mpc to suppress small-scale nonlinearities. The
large-scale displacement field is obtained by solving the lin-
earized continuity equation relating density and displace-
ment (e.g. Padmanabhan et al. 2012). This simple displace-
ment estimation method has been shown to be close to opti-
mal for galaxy surveys with low number densities and large
survey volumes like the SDSS BOSS survey (e.g. Vargas-
Magaña et al. 2018). However, the linear operator involved is
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an inverse power of the wavenumber, ∼ k−2, which makes the
reconstruction of the displacement field from the observed
density a nontrivial process near the survey boundary.

The next generation surveys such as DESI-BGS will
have much lower shot noises than the current data. How-
ever, for these dense low redshift galaxy surveys with relative
smaller volumes, the boundary effect will become important
for a large fraction of the total volume and improvements
near the boundary would be highly beneficial if external data
can be used for estimating the displacement.

The peculiar velocities of observed galaxies also pro-
vides a way to infer the displacement field using the same
Wiener filtering process as reconstruction with density fields
(e.g. Zaroubi et al. 1999; Doumler et al. 2013). While the
displacement-density relation is nontrivial (even in the linear
regime) due to the inverse Laplacian k−2, the displacement-
velocity relation is a simple scaling (with a f H) in linear the-
ory. Without measurement errors, and in linear theory, we
can have perfect reconstruction of the displacements near
the survey boundary as long as we know the velocities at
the same position. In the presence of observational noise,
the large-scale correlations of peculiar velocities still allow
us to infer the reconstructed fields from the velocities far
from the boundary. The kinematic Sunyaev-Zeldovich (kSZ)
effect (Sunyaev & Zeldovich 1972, 1980; Vishniac 1987) of-
fers a unique opportunity to measure peculiar velocities at
cosmological distances (e.g. Ho et al. 2009; Shao et al. 2011,
for recent investigations). Several measurements have been
made with Planck (e.g. Planck Collaboration et al. 2016;
Hernández-Monteagudo et al. 2015; Lim et al. 2017; Li et al.
2018; Hill et al. 2016; Ferraro et al. 2016) and ACT data (e.g.
Hand et al. 2012; Schaan et al. 2016; De Bernardis et al.
2017).

By combining future optical surveys (such as DESI,
DESI Collaboration et al. 2016, Euclid, Amendola et al. 2018
and LSST, LSST Science Collaboration et al. 2009) and Cos-
mic Microwave Background (CMB) experiments (such as the
future Simons Observatory, Ade et al. 2019, and CMB-S4,
Abazajian et al. 2016) the radial peculiar velocities can be
measured with high precision from the kSZ effect imprinted
on the CMB for millions of galaxies and can be used to
constrain cosmological parameters (e.g. Smith et al. 2018;
Münchmeyer et al. 2018; Deutsch et al. 2018; Cayuso et al.
2018; McCarthy & Johnson 2019; Pan & Johnson 2019).

In this paper, we study the effect of the survey boundary
on the estimation of the displacement from the observed
density field and explore the improvement with the inclusion
of velocities from the kSZ effect measurement. We find that
the velocity information can help both low redshift dense
surveys, where the volume is small, and high redshift, low
number density surveys where the estimated displacement
is usually noisy.

In Section 2, we present the formalism of Wiener filter-
ing for reconstructing displacements from density and veloc-
ity fields. Section 3 provides a one-dimensional toy model to
illustrate the boundary effect and the idea of combining den-
sity and velocity to estimate the displacement. In Section 4,
we show the results for the three-dimensional case and esti-
mate the improvements with future large-scale structure and
CMB surveys. We discuss the future prospects and conclude
in Section 5.

2 WIENER FILTER RECONSTRUCTION

The reconstruction of the displacement field can be imple-
mented with the Wiener filtering formalism (e.g. Rybicki &
Press 1992; Zaroubi et al. 1995; Fisher et al. 1995) and has
been applied in the galaxy clustering analysis of the BAO
signal with standard reconstruction by Padmanabhan et al.
(2012), where a constrained realization is used to fill in unob-
served regions. However, for most large volume low number
density surveys such SDSS-BOSS, since the field is noisy and
the boundary effect is small, we usually opt for a simpler and
faster method works as follows:

(i) Embed the survey volume in a larger box and fill the
unobserved region with uniform density distribution.

(ii) Smooth the density with a Gaussian window function
of scale ∼ 10 h−1Mpc to suppress the small-scale nonlineari-
ties and shot noises.

(iii) Compute the displacement field from the smoothed
density field using the linear continuity equation.

This simple method is very fast and is close to optimal for
large volume surveys with low number densities. However,
the drawback of this method is that it does not separate the
signal, the part of density field correlated with the displace-
ment field, and the noise including shot noise and small-scale
stochastic nonlinearities, which are not correlated with the
displacement. The method relies on the Gaussian smoothing
to mitigate both the effects of shot noise and nonlinearities.
Also, using the same Gaussian smoothing for the whole box
assumes the noise is constant well-inside and outside the ob-
served region. In reality, we can think of the noise as being
small in the deep interior of the survey and infinite in the
padding region when we express the problem in a larger en-
closing box. Therefore, the noise properties become highly
anisotropic near the survey boundary, even if the observed
galaxy density is constant in the observed region. In the limit
of an arbitrarily large survey volume the boundary effect is
small and isotropic smoothing suffices.

The Wiener filtering approach provides a way to do dy-
namical reconstruction, i.e., using the observed data which
noisily samples one field (such as the galaxy density field)
to reconstruct another field (such as the displacement or ve-
locity field) which is dynamically related (see e.g. Zaroubi
et al. 1995). In this section, we present the formalism of
Wiener filtering and its application to displacement estima-
tion from density and velocity fields. Our presentation will
largely follow Zaroubi et al. (1995).

We consider a set of observations, d = {di} (i = 1, . . . , M)
sampled at positions xi , which measure an underlying field,
s = {sα} (α = 1, . . . , N),

d = Rs + ε, (1)

where R is an M × N matrix which represents a response
function and ε = {εi} (i = 1, . . . , M) are the statistical errors
of the observations. Assuming such a linear model we can
write the minimum variance, unbiased linear estimator of s,
i.e. sMV, as

sMV = Fd, (2)

where F is an N × M matrix. The filter F can be found by
minimizing the variance of the residual vector r ,

〈r r†〉 = 〈(s − sMV)(s† − sMV†)〉, (3)

MNRAS 000, 1–12 (2020)



Reconstruction with velocities 3

under the constraint that 〈sMV〉 = s, to obtain

F = 〈sd†〉〈dd†〉−1, (4)

which is usually referred as the Wiener filter. The variance
of the residual of the αth degree of freedom of the underlying
field is

〈|rα |2〉 = 〈|sα |2〉 − 〈sαd†〉〈dd†〉−1〈ds∗α〉, (5)

which describes the error of the estimated field sα at posi-
tion xα. Note that the position xα can be a measured point
within the survey volume as well as an unobserved point
outside the survey volume. The Wiener filtering allows us to
extrapolate the reconstructed field into a larger domain not
covered by observed galaxies. The Wiener filter approach is
linear estimation based on the principle of minimum mean
squared error and for Gaussian random fields it coincides
with the maximum posterior Bayesian estimation of the un-
derlying field. Here we only summarize the ingredients of
Wiener filtering used in this paper. For a more detailed de-
scription of the Wiener filtering approach, see Zaroubi et al.
(1995).

In our case, the underlying field s to be reconstructed
is the linear displacement field ψ, with the observed den-
sity field δ̂ and velocity field v̂. The operational procedures
of underlying field reconstruction are first inversion of the
data covariance 〈dd†〉 and then multiplication of the cross-
correlation function 〈sd†〉. For estimating the displacement
field from the density field, we have

ψWF(x) = 〈ψ(x)δ(xi)〉〈δ̂(xi)δ̂(x j )〉−1δ̂(x j ). (6)

Note that the displacement ψ(x) is a vector field. In the one-
dimensional case, a vector has one component and in the
three-dimensional space it has three components (x, y, z). In
the following discussions, we use the indices µ, ν = x, y, z to
denote one component of the vector fields like the displace-
ment and velocity. The variance of the residual for displace-
ment in the µ direction ψµ(x) at position x is given by

〈∆ψ2
µ(x)〉 = 〈ψ2

µ〉−〈ψµ(x)δ(xi)〉〈δ̂(xi)δ̂(x j )〉−1〈δ(x j )ψµ(x)〉, (7)

where ∆ψµ(x) = ψµ(x) − ψWF
µ (x) is the residual of the recon-

structed displacement. We have assumed the noise term ε is
not correlated with the signal and thus does not contribute
to the cross-correlation matrices. Note that the variance of
the residual for ψµ(x) depends on its position x, mostly the
distance to the survey boundary.

When we instead use the velocity field for reconstruc-
tion, we have

ψWF(x) = 〈ψ(x)vν(xi)〉〈v̂ν(xi)v̂ν(x j )〉−1v̂ν(x j ). (8)

Similarly, the uncertainties of the reconstructed displace-
ment ψµ(x) is

〈∆ψ2
µ(x)〉 = 〈ψ2

µ〉− 〈ψµ(x)vν(xi)〉〈v̂ν(xi)v̂ν(x j )〉−1〈vν(x j )ψµ(x)〉,
(9)

where the ψµ and vν can be in the same direction or dif-
ferent directions. When µ = ν, we are considering the re-
construction of displacement in the same direction as the
observed velocity. Therefore, from the observed velocities,
e.g. the radial velocities from the kSZ effect measurement,
we can infer the the displacement in the line of sight direc-
tion. However, the correlation between the displacement and

velocity in different directions µ , ν still allows us to recon-
struct the transverse displacements which are perpendicular
to the line-of-sight direction from the radial velocity, though
with larger errors due to the weaker correlation.

We can also combine the observations of the density and
velocity fields for reconstructing the displacement field as

ψWF =
(
〈ψδ〉 〈ψvµ〉

)
Ĉ−1

(
δ̂

v̂µ

)
, (10)

where the 2M × 2M covariance matrix is

Ĉ =
(
〈δ̂δ̂〉 〈δvµ〉
〈vµδ〉 〈v̂µ v̂µ〉

)
. (11)

The uncertainties of the reconstructed field is

〈∆ψ2
µ〉 = 〈ψ2

µ〉 −
(
〈ψµδ〉 〈ψµvν〉

)
Ĉ−1

(
〈δψµ〉
〈vνψµ〉

)
. (12)

We expect that the improvement from including the velocity
field will depend on the relative noise of the measured den-
sity and velocity fields and the distance to the boundary. To
explore the boundary effects on the displacement estimation,
the above equations have to be computed in configuration
space instead of Fourier space. While the computation in
Fourier space is fast, it requires homogeneity and isotropy
of the underlying field and shot noise which are not satisfied
with the real observed galaxy density especially for small
volume surveys.

In the next section, we begin with a toy model in one-
dimension to illustrate the effect of survey boundary on
the reconstruction and the idea of combining density and
velocity. The dimensionality of the one-dimensional prob-
lem allows us to invert the covariance matrix directly us-
ing Cholesky decomposition. In three dimensions we need
to invert a matrix with dimensions M ∼ O(107). We use the
preconditioned conjugate gradient method to perform the
inverse (see e.g. Shewchuk 1994; Padmanabhan et al. 2003,
2012).

3 THE 1D TOY MODEL

The dynamical reconstruction including the reconstruction
of the underlying density field from the observed radial pecu-
liar velocities or using the observed density field to construct
the displacement and velocity fields relies on a theoretical
model which relates the two different fields. The continuity
equation describes the relation between velocity and density.
The linearized continuity equation is given by

Ûδ + ∇ · v = 0, (13)

where the dot denotes partial derivative with respect to con-
formal time. In Fourier space, we have

v(k) = ika f H
k2 δ(k), (14)

where we have assumed potential flow and linear perturba-
tion theory. The linear displacement under the Zel’dovich
approximation is given by

δ + ∇ · ψ = 0, (15)

and in Fourier space we have

ψ(k) = ik
k2 δ(k). (16)
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The linear operator involved above is an inverse power of
the wavenumber k−2 and can be thought as an integration
of the density field over the surrounding region. This makes
the displacement-from-density reconstruction depend non-
locally on the observed density field, while the velocity-to-
density process involves only a differential operator which is
local and therefore only depends on the local values of the
observed velocity field. However, the velocity-displacement
relation is quite simple in linear theory,

v = a f Hψ, (17)

where the two quantities are related by a coefficient which
depends on the fiducial background cosmology.

In one dimension, the displacement only has one compo-
nent ψ. The lower dimensionality allows us to get an intuitive
picture of the problem (McQuinn & White 2016). In the fol-
lowing discussion, we consider the reconstruction problem in
one dimension and assume the reflection symmetry for the
power spectrum in the 1D space, i.e., P1D(k) = P1D(−k). We
consider the displacement power spectrum

Pψ(k) = A exp(−k2R2/2), (18)

where A is the normalization factor and R = 50 Mpc/h is the
correlation length of the displacement, roughly correspond-
ing to the correlation length of the velocity/displacement
fields in three dimensions in a cosmology with up-to-date
cosmological parameters. The variance of the displacement
in the 1D is given by

〈ψ(x)ψ(x)〉 =
∫ ∞

0

dk
π

Pψ(k). (19)

We normalize the power spectrum by choosing the variance
of the displacement equal to the 3D case, i.e.,

A
√

2πR
' 100 (Mpc/h)2 ⇒ A ' 1.2530 × 104 (Mpc/h)3.

(20)

The corresponding density power spectrum is given by

Pδ(k) = k2Pψ(k). (21)

and note that the observed density power spectrum also in-
cludes shot noise. In the 1D case, the correlation function
can be computed by

ξ(r) =
∫ +∞
−∞

dk
2π

P1D(k) exp (ikr), (22)

where P1D(k) is the power spectrum in the 1D space. The
displacement correlation function is given by

〈ψ(x1)ψ(x2)〉 =
A
√

2πR
exp

[
−(x1 − x2)2

2R2

]
. (23)

The density-displacement cross correlation function is

〈δ(x1)ψ(x2)〉 =
A
√

2πR
exp

[
−(x1 − x2)2

2R2

]
x1 − x2

R2 , (24)

and we also have the displacement-density cross-correlation
function

〈ψ(x1)δ(x2)〉 =
A
√

2πR
exp

[
−(x1 − x2)2

2R2

]
x2 − x1

R2 , (25)

Finally, the density correlation function is

〈δ(x1)δ(x2)〉 =
A
√

2πR
exp

[
−(x1 − x2)2

2R2

]
1 − (x1 − x2)2/R2

R2 .

(26)

The data covariance matrix includes both the density cor-
relation and shot noise,

〈δ̂(xi)δ̂(xj )〉 = 〈δ(xi)δ(xj )〉 +
δD(xi − xj )

n̄(xi)
, (27)

where δD(x) is the Dirac delta function.
For reconstruction with densities, we have the residual

variance of the displacement

〈∆ψ2(r)〉 = 〈ψ2(r)〉 − 〈ψ(r)δ(ri)〉〈δ̂(ri)δ̂(rj )〉−1〈δ(rj )ψ(r)〉. (28)

Consider the ideal case where the survey boundary does not
affect the reconstruction, for example in a region well inside
the survey volume or using data from N-body simulations
with periodic boundary conditions. The residual variance
should not depend on the position vector r. In the case of
periodic boundary conditions, we can transform the fields
to Fourier space. The data covariance for the density field
is simply Pδ(k) + 1/n̄ and the density-displacement cross-
correlation is just the cross power spectrum, Pδψ(k). We have

〈δ̂(ri)δ̂(rj )〉−1 =

∫
dk
2π

1
(Pδ(k) + 1/n̄ exp[ik(ri − rj )], (29)

and 〈δ̂(ri)δ̂(rk )〉〈δ̂(rk )δ̂(rj )〉−1 = Ii j , where I is the identity
matrix. In Fourier space we have the relation

〈∆ψ2(r)〉 =
∫ ∞

0

dk
π

Pψ(k) −
∫ ∞

0

dk
π

Pψ(k)
Pδ(k)

Pδ(k) + 1/n̄ , (30)

where we have assumed the density and displacement are
fully correlated. When the number density is infinite, i.e.,
the measurement noise vanishes (1/n̄ = 0) the residual vari-
ance is zero, which means we have a perfect measurement
of the displacement field. Note that this is under the as-
sumption of linear theory. When the measurement noise is
nonzero, we will have a nonzero reconstruction error. With
higher number density, and thus lower 1/n̄, we have a better
reconstruction of the displacement field.

However, for a general point r, we can not simplify the
covariance matrix inversion of equation (28) as an integral
in equation (30) since the covariance is no longer diagonal.
We consider the density field observed in a 1D box of length
L and the densities outside are not measured. For a point at
r = L/2, the reconstruction error is given by equation (30)
for large L. When r = 0, we can only infer the displacement
from the densities on the right hand of this point, while for
r = L/2 we can use the density data from both sides. For
reconstruction with lower noise, we expect that the residual
variance is roughly twice as large at the boundary r = 0 or
L compared to r = L/2,

〈∆ψ2(r)〉 ≈ 2
∫ ∞

0

dk
π

Pψ(k)
1/n̄

Pδ(k) + 1/n̄ , (31)

since we only have half the data points to reconstruct the
displacement. When the noise is very large, the residual vari-
ance is dominated by the cosmic variance everywhere, both
inside and outside the box, thus we are not reconstructing
anything from the observation.
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Figure 1. The density power spectrum in 1D space and the shot
noise power, 1/n̄, for n̄ = 1, 10, 102, 103 h Mpc−1, respectively.

In the numerical calculation, we take the box size L =
1.2×104 Mpc/h sampled on a regular grid of N = 2048 points.
We have tested that the results converge with this config-
uration and the points inside the 1D box converge to the
variance computed in Fourier space given by equation (30).
In Figure 1, we show the density power spectrum given
in equation (21) and shot noise power for n̄ = 1, 10, 102,
103 h Mpc−1, respectively. The observed density covariance
can be directly computed by equation (27), with the den-
sity correlation function given by Eq. (26). The inversion
of a covariance matrix of size N2 ∼ 106 can be achieved
through Cholesky decomposition. In Figure 2, we plot the
residual variance 〈∆ψ2(r)〉 of the displacement field from re-
construction as a function of the distance to the boundary
for different shot noises. The dashed line shows the residual
variance computed in Fourier space by equation (30), where
the reconstruction error only arises from the measurement
noise instead of the boundary effect. We see that for points
within the survey, i.e., r � 0, the variance converges to the
Fourier space result and does not depend on the position r.
For a point near the survey boundary, r ∼ 0, the underly-
ing field and noise are no longer homogeneous or isotropic.
The residual variance calculated by equation (28) depends
on the distance to the boundary and is quite different from
equation (30). We see that the residual variance is about
twice as large at the boundary for the lower noise cases as
expected. When r � 0, the residual variance is basically the
cosmic variance as we have no data to infer the displacement
at those positions.

If we can also measure the velocities at the same posi-
tions where we have measured the densities, we can use the
velocity information to reconstruct the displacement field.
In linear theory, the two fields are related by the factor a f H
and the velocity power spectrum is

Pv(k) = (a f H)2Pψ(k). (32)

We have the velocity-displacement correlation function

〈v(x)ψ(x + r)〉 = a f H
A
√

2πR
exp

(
−r2

2R2

)
, (33)

250 0 250 500 750 1000 1250 1500
r [Mpc/h]

0

20

40

60

80

100

2 (
r)

[(M
pc

/h
)2 ]

n = 1 hMpc 1

n = 10 hMpc 1

n = 102 hMpc 1

n = 103 hMpc 1

Figure 2. The residual variance 〈∆ψ2(r)〉 for the reconstructed
displacement with different density noises in the 1D space. The

dotted lines show the ideal cases where residual variance only

arises from the shot noise. In the low noise limit, the variance at
r = 0 is roughly twice compared to the ideal case.

and the velocity correlation function is given by

〈v(x)v(x + r)〉 = (a f H)2 A
√

2πR
exp

(
−r2

2R2

)
. (34)

The observed velocity covariance matrix includes both the
signal and the measurement noise,

〈v̂(xi)v̂(xj )〉 = 〈v(xi)v(xj )〉 + Nv(xi)δD(xi − xj ), (35)

where Nv(xi) = 〈ε2
i 〉 is the variance of the galaxy velocity

errors. Here, we assume the errors of different data points
are statistically independent. Similarly, for reconstruction
with the velocities, we have the residual variance

〈∆ψ2(x)〉 = 〈ψ2〉 − 〈ψ(x)v(xi)〉〈v̂(xi)v̂(xj )〉−1〈v(xj )ψ(x)〉. (36)

When the covariance is diagonal in Fourier space, we have

〈∆ψ2(r)〉 =
∫ ∞

0

dk
π

Pψ(k) −
∫ ∞

0

dk
π

Pψ(k)
Pv(k)

Pv(k) + Nv
, (37)

where we have assumed the velocity and displacement are
fully correlated.

Figure 3 shows the velocity power spectrum and noise
power spectra Nv/(a f H)2 = 10, 102, 103, 104 (Mpc/h)3. In
Fig. 4, we show the residual displacement errors for recon-
struction from velocities as a function of the distance to
the boundary. We find that for reconstruction with smaller
noise levels, the residual variance is almost unaffected by
the boundary. This is because of the linear relation between
displacement and velocity; a noiseless measurement of the
velocity at r can give a perfect estimation of the displace-
ment at the same position. For higher noise cases the resid-
ual variance becomes larger near the boundary but the scales
affected are still much smaller than for the densities.

We can combine the density and velocity measurements
for estimating the displacement field. The uncertainties of
the reconstructed field are given by

〈∆ψ2
µ〉 = 〈ψ2

µ〉 −
(
〈ψδ〉 〈ψv〉

)
Ĉ−1

(
〈δψ〉
〈vψ〉

)
, (38)
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Figure 3. The velocity power spectrum for the 1D toy model and
velocity noise level Nv/(af H)2 = 10, 102, 103, 104 (Mpc/h)3.
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Figure 4. The residual variance 〈∆ψ2(r)〉 for the reconstructed

displacement with different velocity noises in the 1D space. The
dotted lines show the ideal case where residual variance only arises

from the observational errors. In contrast to reconstruction from

densities the variance is not affected much by the boundary.

where the covariance matrix

Ĉ =
(
〈δ̂δ̂〉 〈δv〉
〈vδ〉 〈v̂v̂〉

)
. (39)

When the blocks of the covariance are diagonal in Fourier
space, the covariance matrix can be inverted blockwise and
we have

〈∆ψ2(r)〉 =
∫ ∞

0

dk
π

Pψ(k) −
∫ ∞

0

dk
π

PψPδ
Pδ̂ − PδPv/Pv̂

−
2PψPvPδ

Pδ̂(Pv̂ − PvPδ/Pδ̂)
+

PψPv

Pv̂ − PvPδ/Pδ̂
, (40)

where Pδ̂ = Pδ + 1/n̄ and Pv̂ = Pv + Nv . When the veloc-
ity noise is infinite, Nv → ∞, the above equation reduces
to equation (30), i.e. the velocity does not help with the
reconstruction. The improvement by including the velocity
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combined Nv/(afH)2 = 103 (Mpc/h)3

Figure 5. The residual variance 〈∆ψ2(r)〉 for the reconstructed
displacement with densities and velocities. Even when the veloc-

ity estimate is noisy, combining with the velocity measurement

can still improve the performance. As the velocity measurement
improves we can reduce the residual error near the boundary sig-

nificantly.

Table 1. The residual variance computed by equation (40) for

different density and velocity noises, with the unit (Mpc/h)2.

Nv/(af H)2 [(Mpc/h)3] 103 104 ∞

n̄ = 10hMpc−1 4.33 11.27 17.15

n̄ = 0hMpc−1 13.38 55.34 100

information depends on the relative noise level of the mea-
sured density and velocity fields.

Fig. 5 shows the results for reconstruction with both
the density and velocity fields. The dotted horizontal lines
show the results computed using equation (40) and Table 1
summarizes the numbers. We find that even a noisy velocity
measurement can still improve the estimation of the dis-
placement field, reducing the variance by ∼ 30%. The resid-
ual variance at the boundary is also reduced to the value
inside the box when we use only the densities. When we
have a better measurement of the velocity, comparable to
the density field in the sense of the similar displacement
residual variance, the estimation of the displacement field
can be improved significantly. We notice that the residual
variance with both velocity and density fields is better than
a naive inverse sum of two independent pieces of informa-
tion because of the correlation between density and velocity
fields.

4 THE THREE-DIMENSIONAL SITUATION

In this section we consider the reconstruction problem in 3D
space. It is straight forward to generalize the above results
to the three dimensions. The relations are similar to the 1D
results, except that the vector field in 3D space has three
degrees of freedom. From the linear continuity equation, we
have the theoretical model relating the density and displace-
ment or velocity fields. We have the density-displacement
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cross correlation function

〈δ(x j )ψµ(x)〉 =
∫

d3k
(2π)3

−ikµ
k2 Pδ(k) exp (ik · (x j − x)), (41)

and the matter density correlation function is given by

〈δ(xi)δ(x j )〉 =
∫

d3k
(2π)3

Pδ(k) exp (ik · (xi − x j )). (42)

Note that the data covariance includes a shot noise contri-
bution

〈δ̂(xi)δ̂(x j )〉 = 〈δ(xi)δ(x j )〉 +
δD(xi − x j )

n̄(xi)
. (43)

Fig. 6 shows the linear matter power spectrum in the 3D
ΛCDM cosmology at redshift z = 0, computed using the
linear Boltzmann code CLASS (Blas et al. 2011). We also plot
the shot noise levels for n̄ = 10−3 and 10−4 (Mpc/h)−3, roughly
corresponding to the SDSS main sample and eBOSS number
densities. The shot noise dominates over the signal at k '
0.1, 0.4 h Mpc−1 for these two number densities, respectively.

To compute the the residual variance in three dimen-
sional Universe, we consider a box of side length 500 Mpc/h
on a uniform grid with N3 = 2563 points. Given any posi-
tion x, we can compute the density-displacement cross cor-
relation between x and the data point xi (i = 1, . . . , N3).
For fixed x, the cross correlation 〈δ(x j )ψµ(x)〉 can be viewed

as a vector in N3 = 5123 dimensions. The data covariance
〈δ̂(xi)δ̂(x j )〉 can be calculated between these N3 data points,

which is a N3 × N3 matrix. Note that the data points xi
(i = 1, . . . , N3) are within the cubic box while x can be any
position in the space. We want to apply the inverse covari-
ance matrix 〈δ̂(xi)δ̂(x j )〉−1 to the cross correlation vector
〈δ(x j )ψµ(x)〉. The direct operation is very expensive and

prohibitive for data with dimensions N3 ∼ 107. Therefore,
we instead solve the linear algebra problem Ax = b with
the fast approximation method. We use the preconditioned
conjugate gradient method to compute the matrix inversion
operation on the cross correlation vector (see e.g. Shewchuk
1994; Padmanabhan et al. 2003, 2012). We take the precon-
ditioner M as the Fourier transform of 1/Pδ̂ and the itera-
tion converges in O(5) steps with the termination criterion
rT M−1r/bT M−1b < 10−6, where r = b − Ax is the residual
vector. In our example, both the density and velocity noises
are constant in the observed region and the only irregular-
ities arise from the survey boundary where the noises are
infinite outside the survey volume.

The vector field has three components (x, y, z) in 3D
space. We make the plane-parallel approximation and, with-
out loss of generality, consider the line-of-sight direction to
be z. Our focus will be on the radial displacement, ψz . Using
the linear power spectrum in our fiducial ΛCDM cosmology
the 1D rms displacement is 〈ψ2

z 〉 = 34.89 (Mpc/h)2. The re-
construction error for ψz is different when ψz is perpendic-
ular to the boundary or parallel to the boundary. We com-
pute the residual displacement variance for x = (L/2, y, L/2)
and x = (L/2, L/2, z). In the former configuration the dis-
placement vector is parallel to the boundary where y is the
distance to the x − z plane and in the latter configuration
the displacement is perpendicular to the boundary where
z is the distance to the x − y plane. Fig. 7 shows the re-
sults for different shot noise levels for the two configura-
tions. The effects of boundary extend to ∼ 100 Mpc/h in the

10 3 10 2 10 1 100

k [h/Mpc]
101

102

103

104

105

P(
k)

[(M
pc

/h
)3 ]

P (k)

Figure 6. The matter power spectrum in the ΛCDM cosmology.
The dotted line shows the shot noise levels for number densities

n̄ = 10−3 and 10−4 (Mpc/h)−3. The dashed line shows the velocity

noise level in the radial direction, i.e. k = k ẑ, k2/(af H)2Nv =

k2×106, k2×107 (Mpc/h)5, which roughly correspond to combining

galaxy surveys with number density n̄ = 10−3 and 10−4 (Mpc/h)−3

with a Simons Observatory-like CMB experiment, respectively.

survey volume. For the higher number density, the resid-
ual variance is increased by 33% and 15% at y = 20 Mpc/h
and 40 Mpc/h, for the case where the displacement vector
is parallel to the boundary. When the displacement is per-
pendicular to the survey boundary the effect is more impor-
tant, with the residual variance increased by 70% and 33%
at z = 20 Mpc/h and 40 Mpc/h, respectively. The boundary
effects are less prominent when the shot noise is high; for
n̄ = 10−4 (h/Mpc)−3 the increase of the residual variance is
11% and 5% for y = 20 Mpc/h and 40 Mpc/h, and 23% and
12% at z = 20 Mpc/h and 40 Mpc/h, respectively.

The SDSS main sample survey observed galaxies to red-
shift z ∼ 0.2, i.e. comoving distance ∼ 500 Mpc/h. The bound-
ary effect degrades the reconstruction performance for re-
gions with r . 40 Mpc/h. From the above estimation, about
one third of the total volume is affected by the boundary.
For future low redshift dense surveys like DESI BGS, with
higher number density, we expect that the boundary effects
will be more important and the velocities from other probes
like the kSZ effect can help the reconstruction. For high red-
shift surveys like SDSS BOSS, DESI LRG and ELG surveys,
the boundary effects are less prominent due to the larger
volumes and lower number densities. However, the recon-
structed displacement is usually noisy due to the high shot
noise, so velocity information can still improve reconstruc-
tion by reducing the reconstruction errors.

In this paper, we consider velocity information from the
kSZ tomography (Smith et al. 2018), where the larger-scale
radial velocity can be obtained by cross-correlating CMB
observations and galaxy surveys. In linear theory, the radial
velocity is related to the matter density as

vz (k) =
ikz
k2 a f Hδ(k). (44)

The radial velocity inferred from the kSZ effect can be con-
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Figure 7. The residual variance 〈∆ψ2
z (r)〉 for the reconstructed

displacement from densities in the 3D space. The residual variance

depends on the distance to survey boundary and on whether the

line-of-sight direction is perpendicular to or parallel to the bound-
ary. We show results for n̄ = 10−3h3 Mpc−3 and n̄ = 10−4h3 Mpc−3.

verted into a reconstruction of the matter density field

δ̂(k) = (ikz )−1k2/(a f H)v̂z (k). (45)

Since the reconstruction noise Nvz (k) approaches a constant
on large scales (Smith et al. 2018), the reconstruction noise
of the density field is

Nδ(k) = k−2
z k4/(a f H)2Nvz . (46)

In Fig. 6, we plot the density noise Nδ(k) for the wave vector
k in the z direction, i.e. k = k ẑ, and Nδ(k) = k2/(a f H)2Nvz =

k2 × 106, k2 × 107 (Mpc/h)5. Following Smith et al. (2018);
Münchmeyer et al. (2018), these velocity reconstruction
noise levels correspond roughly to what can be achieved with
a CMB experiment with white noise of 6 µK-arcmin and a
1.5 arcmin beam, together with a number density of n̄ = 10−3

and 10−4 (h/Mpc)3, respectively. The density modes can be
measured better with the kSZ effect than the galaxy surveys
on large scales as the noise scales as k2 and approaches zero
for k → 0.

In three dimensions, the velocity-displacement cross
correlation has the form

〈vµ(x j )ψµ(x)〉 =
∫

d3k
(2π)3

a f Hk2
µ

k4 Pδ(k) exp (ik · (x j − x)), (47)

and the velocity correlation function is

〈vµ(xi)vµ(x j )〉 =
∫

d3k
(2π)3

(a f Hkµ)2

k4 Pδ(k) exp (ik · (xi − x j )).

(48)

The data covariance also includes the measurement noise

〈v̂µ(xi)v̂µ(x j )〉 = 〈vµ(xi)vµ(x j )〉 + Nvµ (xi)δD(xi − x j ), (49)

where the velocity noise Nvµ (xi) is independent since CMB
noise is uncorrelated from one galaxy to the next.

Fig. 8 shows the residual variance of reconstruction with
only velocities for different noise levels with two configu-
rations. The salient feature is that the boundary effects
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Figure 8. The residual variance 〈∆ψ2
z (r)〉 for the reconstructed

displacement from velocities in the 3D case. The reconstruction is

less susceptible to the boundary. The velocity measurement noises

are Nv/(af H)2 = 106 (Mpc/h)5 and Nv/(af H)2 = 107 (Mpc/h)5.

are limited to the region with r < 40 Mpc/h. The residual
variance is increased by only 20% even at the boundary
r = 0 Mpc/h for Nv/(a f H)2 = 106 (Mpc/h)5. For the higher
velocity noise, the increase of the residual variance is about
10% for points right on the boundary r = 0 Mpc/h. We find
that both configurations r = y and r = z show similar be-
haviours when approaching r = 0 Mpc/h, while for recon-
struction with densities different configurations have very
different features near the boundary. This is because the ra-
dial velocity and displacement are related by a simple linear
relation determined by the value of a f H. Therefore, whether
the velocity and displacement vectors are perpendicular or
parallel to the boundary does not affect the reconstruction
results much. Notice the errors on reconstruction with ve-
locities are often larger than reconstruction with the den-
sity field. The boundary effect is more prominent than for
the 1D results shown in Fig. 4. This is because the recon-
structed displacement field is the Wiener filtered velocity
field, which involves nearby velocity measurements. With-
out measurement noise, we can have perfect displacement
reconstruction from velocities near the boundary as we see
in the 1D results. When the noise is large, the reconstruction
also depends on the boundary since the Wiener filtering in-
fers the displacement from the measured velocities near this
position.

The correlation between the radial velocity and veloc-
ities in other directions allows us to reconstruct ψx and ψy
from the observation of the radial velocity vz . The velocity-
displacement cross correlation is then

〈vµ(x j )ψν(x)〉 =
∫

d3k
(2π)3

a f Hkµkν
k4 Pδ(k) exp (ik · (x j − x)).

(50)

Fig. 9 shows the residual variance 〈∆ψ2
x(r)〉 for reconstruc-

tion of ψx from the radial velocity vz . The results are much
more noisy than reconstruction in the same direction, i.e.
ψz from vz . The residual variance is higher than the lat-
ter by 6.53 (Mpc/h)2 and 9.70 (Mpc/h)2 for the high and low
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Figure 9. The residual variance 〈∆ψ2
x (r)〉 for reconstructing

ψx from vz . The reconstruction is more noisy than reconstruc-

tion in the same direction. The velocity measurement noises are

Nv/(af H)2 = 106 (Mpc/h)5 and Nv/(af H)2 = 107 (Mpc/h)5.

noises, respectively. This is due to the correlation between
vector fields in different directions is generally weaker than
in the same direction. For the higher velocity noise, the in-
crease of residual variance at r = 0 Mpc/h is less than 7%.
When the velocity noise is smaller, the variance for ψx in
the x-direction is higher by 18% at r = 0 Mpc/h, while in
the other two directions it is only 8%. To obtain a reliable
estimate of the displacement in other directions, we need
a better measurement of the radial velocities, although the
boundary effect is small.

Fig. 10 shows the results by combining both fields with
the density noise n̄ = 10−3 (Mpc/h)−3 and velocity noise
Nv/(a f H)2 = 106 (Mpc/h)5. We see that the velocity field
is noisy and the residual variance is about two times larger
than using the density information only. Although within
the survey volume the improvement is marginal, the residual
variance near the survey boundary is reduced significantly
by including the velocity information and the boundary ef-
fects are reduced to r < 25 Mpc/h from r < 100 Mpc/h.

Fig. 11 shows the residual variance for ψx using the ra-
dial information vz . Note that for the velocity in x-direction,
the r = y and r = z curves overlap due to the azimuthal
symmetry in the x-direction. The improvement within the
survey also saturates since the weaker correlation between
the vector fields in different directions leads to a noisy re-
construction of ψx , but the velocity information still helps
reconstruction near the boundary, reducing the boundary
effects to r ∼ 50 Mpc/h.

Fig. 12 and Fig. 13 show the results for the combina-
tion of fields with the density noise n̄ = 10−4 (Mpc/h)3 and
velocity noise Nv/(a f H)2 = 107 (Mpc/h)5. The residual vari-
ance for ψz is already reduced by 11% even within the survey
volume and the residual variance near the boundary is also
reduced substantially near the survey boundary. Within the
range r > 15 Mpc/h, the residual variance is always smaller
than the value within the survey when using densities only.
When reconstructing ψx from vz , the improvement satu-
rates within the volume. However, we still get improvement
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Figure 10. The residual variance 〈∆ψ2
z (r)〉 for n̄ = 10−3 (Mpc/h)−3

and Nv/(af H)2 = 106 (Mpc/h)5. The improvement within the sur-

vey volume is marginal, but the residual variance near the survey

boundary is reduced significantly by including the velocity in-
formation and the boundary effects are reduced substantially to

r < 25 Mpc/h from r < 100 Mpc/h with only densities.
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Figure 11. The residual variance 〈∆ψ2
x (r)〉 for n̄ = 10−3 (Mpc/h)−3

and Nv/(af H)2 = 106 (Mpc/h)5. The improvement within the sur-

vey volume saturates, but the residual variance near the survey
boundary is still reduced by including the velocity information

and the boundary effects are reduced to r ∼ 50 Mpc/h.

near the boundary and the effects of boundary is reduces to
r < 50 Mpc/h.

Fig. 14 shows the averaged residual variance for three
displacement components in different directions ψx, ψy, ψz ,

〈∆ψ2
avg(r)〉 =

〈∆ψ2
x(r)〉 + 〈∆ψ2

y(r)〉 + 〈∆ψ2
z (r)〉

3
, (51)

where r = x, y, z denotes the different configurations to the
boundary. This quantifies the overall performance by includ-
ing velocities in the reconstruction. Note that Nv/(a f H)2 =
107 (Mpc/h)5 and 106 (Mpc/h)5 are roughly the velocity
field noises we can obtain by cross correlating the DESI
ELG/LRG survey with effective number density b2n̄ ∼
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Figure 12. The residual variance 〈∆ψ2
z (r)〉 for n̄ = 10−4 (Mpc/h)−3

and Nv/(af H)2 = 107 (Mpc/h)5. The residual variance is reduced

by 11% within the survey volume by including velocities and the

boundary effects are limited to r ∼ 15 Mpc/h from r < 100 Mpc/h
with only densities.
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Figure 13. The residual variance 〈∆ψ2
x (r)〉 for n̄ = 10−4 (Mpc/h)−3

and Nv/(af H)2 = 107 (Mpc/h)5. The improvement within the sur-

vey volume saturates, but the residual variance near the survey
boundary is still reduced by including the velocity information

and the boundary effects are reduced to r < 50 Mpc/h.

10−4 (h/Mpc)3 and SDSS-MGS with b2n̄ ∼ 10−3 (h/Mpc)3
with the CMB observations from the Simons Observatory
(Ade et al. 2019). We find that the boundary effects are
reduced from r . 100 Mpc/h to r . 30 Mpc/h and r .
40 Mpc/h, respectively. This is helpful especially for low
redshift high number density surveys like SDSS-MGS and
DESI-BGS, where at low redshift the volume is relatively
small and a large fraction of the total volume is affected by
the boundaries, degrading the performance of reconstruction
and thus the BAO measurements. Although the velocity field
measurement are often noisy compared to the density field
within the interior of the survey, near the boundary it can
substantially improve the reconstruction performance. Note
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Figure 14. The averaged residual variance 〈∆ψ2
avg(r)〉 for three

displacement components ψx, ψy and ψz , which quantifies the

overall performance. The boundary effects are reduced from r .
100 Mpc/h to r . 30 Mpc/h and r . 40 Mpc/h, respectively, with
the velocity information from Simons Observatory.

that with the CMB-S4 observations (Abazajian et al. 2016),
the kSZ measurement with lower noise can further improve
the reconstruction performance.

5 DISCUSSION AND CONCLUSION

We have investigated the problem of reconstructing displace-
ments for positions near the survey boundary and within
the interior of the survey volume. In the former case, the
performance degrades because of incomplete data near the
boundary and this boundary effect extends to ∼ 100 Mpc/h.
In the computation of residual variances, we have used the
Wiener filtering formalism and assumed the linear theory,
i.e. the Zeldovich approximation. For standard reconstruc-
tion (Eisenstein et al. 2007b), the recovered linear BAO sig-
nal is directly related to the quality of the reconstructed
Zeldovich displacement (see e.g. Padmanabhan et al. 2009;
Noh et al. 2009; White 2015; Cohn et al. 2016; Seo et al.
2016; Chen et al. 2019). While for nonlinear reconstruction
algorithms (e.g. Zhu et al. 2017; Schmittfull et al. 2017; Shi
et al. 2018; Hada & Eisenstein 2018), solving the large-scale
displacement is the first step in reconstruction, which cap-
tures the dominant part of linear BAO signal and is most
sensitive to the survey boundary. The following steps re-
construct the small-scale scale displacement to recover the
linear signal in the nonlinear regime. The power of displace-
ment on small scales is much smaller than on large scales
with smaller correlation length and thus not affected by the
boundary much. Therefore, the results presented in this pa-
per captures the essence of Lagrangian reconstruction algo-
rithm and the conclusion should be general for most current
reconstruction methods.

We have assumed that the density and displacement
are fully correlated, which is only valid in the linear theory.
Small-scale stochasticities which are not correlated with the
displacement can be thought of as additional noise in the
density and velocity fields. In this sense the effect of imper-
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fect correlation can be thought as increasing the noise power
on small scales.

We have used an isotropic linear power spectrum for
the theoretical model when compute the correlation matri-
ces, which is a simplified approximation for realistic galaxy
density fields. Since the power spectra of displacement and
velocity fields peaks on quite large scales, the linear part
contributes most to the total rms displacement and velocity
(see e.g. Padmanabhan et al. 2009; White 2015, for more
discussions). The real galaxy distribution also exhibits the
anisotropic clustering due to the redshift space distortions.
In particular, the Fingers of God effect which causes the loss
of information in the radial direction should be suppressed
with anisotropic filtering (see e.g. Cohn et al. 2016; Hada
& Eisenstein 2018). These more detailed effects need to be
quantified using simulations and simulated mocks which we
plan to investigate in the future.

We find that if radial velocity information is available,
it helps the reconstruction of the radial displacement signif-
icantly, while the displacements in the orthogonal directions
still benefit from the radial velocity information due to the
correlation between different directions. With the CMB ob-
servations from Simons Observatory, the radial velocity mea-
sured with the kSZ effect can reduce the effects of boundary
to r . 30 Mpc/h and r . 40 Mpc/h, for effective number den-
sities of DESI LRG/ELG like survey b2n̄ ∼ 10−4 (h/Mpc)3
and SDSS-MGS with b2n̄ ∼ 10−3 (h/Mpc)3. The performance
can be further improved with CMB-S4. The velocities can
also be included in the forward modeling methods in the
optimization process and further augment the the results.
We therefore expect the joint analysis of large-scale struc-
ture and CMB surveys can substantially improve the mea-
surement of the BAO scale and thus constrain cosmological
models.
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RAS, 430, 888

Eisenstein D. J., Seo H.-J., White M., 2007a, ApJ, 664, 660

Eisenstein D. J., Seo H.-J., Sirko E., Spergel D. N., 2007b, ApJ,

664, 675

Elsner F., Schmidt F., Jasche J., Lavaux G., Nguyen N.-M., 2019,
arXiv e-prints, p. arXiv:1906.07143

Ferraro S., Hill J. C., Battaglia N., Liu J., Spergel D. N., 2016,

Phys. Rev. D, 94, 123526

Fisher K. B., Lahav O., Hoffman Y., Lynden-Bell D., Zaroubi S.,

1995, MNRAS, 272, 885

Hada R., Eisenstein D. J., 2018, MNRAS, 478, 1866

Hada R., Eisenstein D. J., 2019, MNRAS, 482, 5685

Hand N., et al., 2012, Physical Review Letters, 109, 041101

Hernández-Monteagudo C., Ma Y.-Z., Kitaura F. S., Wang W.,
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