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ABSTRACT

We describe an algorithm to pick event onsets in noisy records, characterize their error

distributions, and derive confidence intervals on their timing. Our method is based on

an Akaike information criterion that identifies the partition of a time series into a noise

and a signal segment that maximizes the signal-to-noise ratio. The distinctive feature of

our approach lies in the timing uncertainty analysis, and in its application in the time

domain and in the wavelet timescale domain. Our novel data are records collected by

freely floating Mobile Earthquake Recording in Marine Areas by Independent Divers

(MERMAID) instruments, midcolumn hydrophones that report triggered segments of

ocean-acoustic time series.

KEY POINTS

• We develop a method to rapidly assign uncertainty

estimates to wavelet-multiscale arrival-time picks.

• Our algorithm is able to identify and assess the quality

of multiple phase arrivals in noisy seismograms.

• Onset picks and uncertainties made on hydroacoustic

drifter records open up the oceans for global tomography.

Supplemental Material

INTRODUCTION

We wish to pick multiscale seismic arrival times and estimate

their uncertainties in noisy hydroacoustic records. Our

approach to onset detection centers on the evaluation of an

Akaike information criterion (AIC) function at multiple scales

of a wavelet-decomposed time series. In the most general sense,

our procedure identifies the changepoint in the time series

where the discrepancy between the segments to the left (the

“noise”) and the right (the “signal”) is maximized. We present

two changepoint estimates derived from the AIC function, two

methods to estimate their uncertainties, and investigate their

application in both the time and timescale domains.

Laying out preliminaries and developing a simple signal model

in the General Considerations section, we define the AIC in The

AIC section. Next, we formalize a general scheme for uncertainty

analysis in the Formalizing the AIC Timing Uncertainty section.

In the Multiscale Analysis Methodology section, we extend our

procedures to the multiresolution domain via wavelet decompo-

sition of the time series. There, we detail the mapping between

the time and timescale domains and apply it in the Multiscale

Analysis in Practice section to restate our general problem of

changepoint estimation in both domains. By The Data Set sec-

tion, we have exhausted the theory and introduce the Mobile

Earthquake Recording in Marine Areas by Independent Divers

(MERMAID) instrument and its data in preparation to apply

our method in the Application to MERMAID Seismograms sec-

tion. There, we analyze 445 publicly available MERMAID seis-

mograms and use the algorithm we have developed to identify

arrival times and estimate their uncertainties. We use a public

catalog of associated earthquakes to compute their travel-time

residuals with respect to the ak135 velocity model.We summarize

the statistics of the multiscale residuals in the Distribution of

Travel-Time Residuals section and introduce our updated events

catalog in The Updated Events Catalog section, with all identified

seismic phases, travel-time residuals, and timing uncertainties

in the data set. In the supplemental material we remark on the

general utility of our changepoint and uncertainty estimation

procedures beyond the scope of this study.

The catalog available in the supplemental material to this

article provides the foundation for future tomographic studies

that will use MERMAID data. Our uncertainty estimates will

serve as measures for data weighting in the inversion. The soft-

ware developed for this work is freely and publicly available.
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GENERAL CONSIDERATIONS

We begin by posing the task of identifying the signal from

the noise as a problem of statistical inference via likelihood

analysis.

A simple model of noise and signal
To start with a very simple description, we model the seismo-

gram, x�k�, in which k � �1;…;N �, as the concatenation of

two separate and distinct segments joined at sample index k∘.

We label the first segment noise, n�k�, and the second segment

signal, s�k�:

EQ-TARGET;temp:intralink-;df1;53;601x�k� �

�

n�k�; if 1 ≤ k ≤ k∘;
s�k�; if k∘ � 1 ≤ k ≤ N :

�1�

A true seismogram, of course, contains some level of noise

throughout the interval under consideration, although, as a

starting point to describe our automatic arrival identifier, this

simplified model suffices. Our goal is to find k∘, the change-

point, which “best” separates the noise segment from the signal

segment.

We further assume that both the noise and the signal seg-

ments are samples from Gaussian (normal) parent distributions

with different population parameters. Individually, they contain

independently and identically distributed (i.i.d.) data, and they

are mutually uncorrelated. Aware of the oversimplification,

we stick to it for the time being. We formulate the problem

of finding k∘ in the context of maximum-likelihood estimation

(MLE), specifically finding the sample index at which the time

series is split into two segments that are most likely individu-

ally i.i.d.

Labeling the individual sample indexes in the time series as

xi, with i � �1;…;N�, in our description the probability density

of any such individual point is

EQ-TARGET;temp:intralink-;df2;53;302f �xi; μ; σ
2� � �2πσ2�−1=2 exp

�

−�xi − μ�2

2σ2

�

; �2�

the expectation, μ, and variance, σ2, of which will be identified

as μ1, μ2, and σ21, σ
2
2, depending on whether i ≤ k∘ or i > k∘,

respectively. The population parameter sets are θ1 � fμ1; σ
2
1g

(for the noise) and θ2 � fμ2; σ
2
2g (for the signal).

The likelihood of an initial portion of the time series

x1;…; xk, in which k � �1;…;N �, being derived from the noise

parent distribution is

EQ-TARGET;temp:intralink-;df3;53;155L1�μ1; σ
2
1; x1;…; xk� �

Y

k

i�1

f �xi; μ1; σ
2
1�

� �2πσ21�
−k
2 exp

�

−

P

k
i�1�xi − μ1�

2

2σ21

�

; �3�

and the log-likelihood function is

EQ-TARGET;temp:intralink-;df4;320;744ℓ1�θ1; x1;…; xk� � −

1

2
�k ln�2π� � k ln�σ21�

�
1

σ21

X

k

i�1

�xi − μ1�
2�: �4�

The maximum-likelihood estimate (MLE), θ̂1 � fμ̂1; σ̂
2
1g, solves

EQ-TARGET;temp:intralink-;df5;320;666

∂ℓ1�θ̂1; x1;…; xk�

∂θ1
� 0; �5�

which takes the well-known form

EQ-TARGET;temp:intralink-;df6;320;600μ̂1 �
1

k

X

k

i�1

xi; �6�

EQ-TARGET;temp:intralink-;df7;320;546σ̂21 �
1

k

X

k

i�1

�xi − μ̂1�
2: �7�

Substituting the expressions (6) and (7) into equation (4) yields

EQ-TARGET;temp:intralink-;df8;320;470ℓ1�θ̂1; x1;…; xk� � −

k

2
�ln�2π� � ln�σ̂21� � 1�: �8�

Similarly, the likelihood of the remaining portion of the time

series xk�1;…; xN , in which k � �1;…;N �, being drawn from

the signal parent distribution is

EQ-TARGET;temp:intralink-;df9;320;379L2�μ2; σ
2
2; xk�1;…; xN� �

Y

N

i�k�1

f �xi; μ2; σ
2
2�

� �2πσ22�
−�N−k�

2 exp

�

−

P

N
i�k�1�xi − μ2�

2

2σ22

�

;

�9�

and its log-likelihood function is

EQ-TARGET;temp:intralink-;df10;320;276

ℓ2�θ2; xk�1;…; xN� � −

1

2
��N − k� ln�2π� � �N − k� ln�σ22�

�
1

σ22

X

N

i�k�1

�xi − μ2�
2�: �10�

The equivalents to equations (6) and (7) are the elements of θ̂2:

EQ-TARGET;temp:intralink-;df11;320;171μ̂2 �
1

�N − k�

X

N

i�k�1

xi; �11�

EQ-TARGET;temp:intralink-;df12;320;118σ̂22 �
1

�N − k�

X

N

i�k�1

�xi − μ̂2�
2; �12�

and substitution of equations (11) and (12) into (10) yields
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EQ-TARGET;temp:intralink-;df13;41;348ℓ2�θ̂2; xk�1;…; xN� � −

�N − k�

2
�ln�2π� � ln�σ̂22� � 1�: �13�

The sum of the logarithmic likelihoods (4) and (10) is

EQ-TARGET;temp:intralink-;df14;41;302ℓ�Θ; x; k� � ℓ1�θ1; x1;…; xk� � ℓ2�θ2; xk�1;…; xN�; �14�

denoting Θ � fθ1; θ2g � fμ1; σ
2
1; μ2; σ

2
2g. Likewise, we sum the

evaluated log likelihoods in equations (8) and (13) to

EQ-TARGET;temp:intralink-;df15;41;238ℓ�Θ̂; x; k� � ℓ1�θ̂1; x1;…; xk� � ℓ2�θ̂2; xk�1;…; xN�

� −

1

2
�k ln�σ̂21� � �N − k� ln�σ̂22� � C�; �15�

in which Θ̂�fθ̂1; θ̂2g�fμ̂1;σ̂
2
1;μ̂2;σ̂

2
2g, and C�N�ln�2π��1�.

Maximum-likelihood changepoint estimation
In Figure 1, we inspect the behavior of the log likelihoods

(4), (10), and (14) evaluated at different parameter values

Θ � fθ1; θ2g, for synthetically generated data sets x � fx1;…;

xk∘ ; xk∘�1;…; xNg, in other words, for x � fn; sg drawn from

known Gaussian parent distributions N �Θ∘� with specific true

population parameters Θ∘ � fθ1∘ ; θ2∘g. In this figure, we hold

k � k∘ fixed and consider it to be known. Similarly, we fix

the expectations to zero. Figure 1d contains one such realization,

color-coded blue for the noise segment and red for the signal seg-

ment. In the same colors, Figure 1b and 1c show their log like-

lihoods ℓ1�θ1; x1;…; xk∘� and ℓ2�θ2; xk∘�1;…; xN�, respectively,

(a) (b) (c)

(d)

Figure 1. Maximum-likelihood estimation (MLE) of the sample variance of syn-
thetic realizations of time series x�k� � n�k� � s�k� that follow the simple
model in equation (1), assuming uncorrelated Gaussian distributions with a
different variance for each segment. (a) 25 examples of the sum of the log
likelihoods ℓ � ℓ1 � ℓ2 from equation (14), and (b,c) the log likelihoods ℓ1
from equation (4), ℓ2 from equation (10), rendered in the color corresponding
to the noise (blue) or signal segment (red) of the synthetic time series, one
realization of which is displayed in (d). The true variances σ21∘ � 1 and
σ22∘ � 2 serve as normalization on the abscissa axes. The population
expectations are μ1∘ � μ2∘ � 0. The changepoint between the noise and
signal segments occurs at k∘ � 500, the halfway point in each of these
length N � 1000 simulations (which turns the color for the summed log
likelihoods into magenta, the sum of an even mixture of blue and red). Black-
filled circles mark the MLE of the variances σ̂21 and σ̂

2
2, and their averages are

shown by white-filled circles, offset vertically for clarity from their average log
likelihoods marked by the horizontal lines, with whiskers extending two
standard deviations in both directions in both coordinates.
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as a function of the normalized-variance parameters σ21=σ
2
1∘
and

σ22=σ
2
2∘
, that is, normalized by the true variances. The MLEs σ̂21

and σ̂22 and their log likelihoods, ℓ1�θ̂1; x1;…; xk∘� and

ℓ2�θ̂2; xk∘�1;…; xN�, respectively, are marked by black-filled

circles, the average of which over all the 25 trials in this example

is rendered as a white-filled circle at the correct location on the

abscissa axes, and offset from their average log likelihood,

marked by the horizontal line, by an arbitrary amount for

clarity. Whiskers extend two standard deviations in both direc-

tions on both axes. Figure 1a shows the summed log likelihoods

ℓ�Θ; x; k∘�. There we use normalized-variance-sum coordinates

denoted by σ2=σ2∘ such that the summed log-likelihood value at

σ2=σ2∘ � 1 is the sum of the log-likelihood values of Figure 1b at

σ21=σ
2
1∘
� 1 and Figure 1c at σ22=σ

2
2∘
� 1. Similar to Figure 1b,c,

the black-filled circles correspond to the sums of the MLEs, the

white-filled circle their average over the 25 trials in this experi-

ment, and the horizontal black line the average of those summed

log likelihoods. As expected, the maximum-likelihood variance

estimates are on average very close to the truth; that is, given a

range of parameter values to test (the normalized abscissa axes

in Fig. 1a–c), the MLE, Θ̂, of the population parameters, Θ,

converges to the truth Θ∘.

In Figure 2, we investigate the effect on the likelihoods and

their ratios of varying k, holding k∘ fixed as an unknown truth.

We hold all the population parameters unchanged from the

cases presented in Figure 1. What varies is the sample at which

we split the time series into an assumed “noise” and an

assumed “signal” segment. Figure 2e,f contains two realizations

of our same process, but now we color blue the first

segment, until the index k marked by the dotted line, which

we may consider to be “noise,” and we color red the second

segment, which we may consider to be “signal.” Figure 2e is

an example of where our identification is tardy, k > k∘, and

Figure 2f is an example of where our identification is early,

k < k∘. As in Figure 1, the true noise segment contains sample

indexes k � �1;…; 500�, and the signal k � �501;…; 1000�.

Corresponding to Figure 2e, and for 25 such identical

experiments, we show the log likelihoods of the misidentified

“noise” segments as the blue curves in Figure 2b, and, corre-

sponding to Figure 2f, we show the log likelihoods of the mis-

identified “signal” segments as the red curves in Figure 2c. We

are not showing the log likelihoods of the corresponding

red signal segments in Figure 2e, nor of the blue noise segments

in Figure 2f, because those do not consist of wrongly mixed

models, and their shapes are similar to those plotted in

Figure 1c,b.

The black-filled circles on each log-likelihood curve in

Figure 2a–d mark the MLEs of the variances and their corre-

sponding log likelihoods. The horizontal black line marks the

average likelihood value of the MLEs of the variances for the 25

trials shown, whereas the white-filled circle, arbitrarily offset on

the ordinate axis, marks the average MLE, with whiskers extend-

ing two standard deviations in both directions on both axes.

Figure 2a contains the summed log likelihoods of the data

segmentation of Figure 2e, combining the log likelihoods shown

in Figure 2b with those of the trailing segment (not shown for the

reason stated earlier), and again rendered in the appropriately

mixed colors. Figure 2d contains the summed log likelihoods

of the data segmentation plotted in Figure 2f, combining the

log likelihoods of Figure 2c with those of the leading segment

(not shown).

As in Figure 1, each log-likelihood curve is plotted on an

abscissa axis that is normalized with respect to the true popula-

tion parameters. For Figure 2a,d, as for Figure 1a, such an axis

normalization amounts to summing along a 1:1 diagonal section

through a 2D likelihood surface parameterized in those normal-

ized coordinates. Such a construct is theoretical: in the Expected

Behavior section, we discuss its expected behavior, and in The

Summed Log Likelihood section how to sum the likelihoods

appropriately in a way that is diagnostic for model identification.

Expected behavior
When the estimated changepoint is late, k > k∘, the expecta-

tion of the sample variance of the first mixed segment of x (the

blue “noise” portion in Fig. 2e), is

EQ-TARGET;temp:intralink-;df16;320;458E�σ̂21�k>k∘
�

1

k
�k∘σ

2
1∘
� �k − k∘�σ

2
2∘
�: �16�

The expectation of the sample variance of the remaining

abbreviated signal segment is the trivial identity

EQ-TARGET;temp:intralink-;df17;320;388E�σ̂22�k>k∘
� σ22∘ : �17�

When k > k∘, the expectation of the sample variance of the

mixed “noise” segment, normalized in terms of the population

variance of the true noise segment, is

EQ-TARGET;temp:intralink-;df18;320;315E

�

σ̂21
σ21∘

�

k>k∘

�
1

k

�

k∘ � �k − k∘�
σ22∘
σ21∘

�

; �18�

which evaluates to 1:333 in the case shown in Figure 2b, in which

σ21∘ � 1, σ22∘ � 2, and k � 750. The mean value over 25 tests,

1.324, is marked by the white-filled circle in Figure 2b, implying

suitable convergence. The corresponding log likelihood at this

incorrect candidate changepoint is given by equation (8), and is

approximately equal to −1172, which is close to the value marked

by the horizontal line in Figure 2b. The expectation of the sample

variance of the remaining abbreviated signal segment (the red

signal portion in Figure 2e, whose likelihoods are not shown)

is uninteresting because it simply equals the true population vari-

ance (in which σ22∘ � 2 and E�σ̂22=σ
2
2∘
�k>k∘

� 1). Its correspond-

ing log likelihood is given by equation (13), and is approximately

equal to −441.

Similarly, when the estimated changepoint is early, k < k∘,

the expectation of the sample variance of the mixed second

segment of x (the red “signal” portion in Fig. 2f), is

4 • Bulletin of the Seismological Society of America www.bssaonline.org Volume XX Number XX – 2020

Downloaded from https://pubs.geoscienceworld.org/ssa/bssa/article-pdf/doi/10.1785/0120190173/4967090/bssa-2019173.1.pdf
by guustnolet 
on 17 March 2020



EQ-TARGET;temp:intralink-;df19;41;287E�σ̂22�k<k∘ �
1

�N − k�
� k∘ − k� �σ21∘ � �N − k∘�σ

2
2∘
�: �19�

The expectation of the sample variance of the shortened noise

segment is again trivial

EQ-TARGET;temp:intralink-;df20;41;223E�σ̂21�k<k∘
� σ21∘ : �20�

When k < k∘, the expectation of the sample variance of the

mixed “signal” segment, normalized in terms of the population

variance of the true signal segment, is given by

EQ-TARGET;temp:intralink-;df21;41;145E

�

σ̂22
σ22∘

�

k<k∘

�
1

�N − k�

�

�k∘ − k�
σ21∘
σ22∘

� �N − k∘�

�

; �21�

which evaluates to 0:833 in the case shown in Figure 2c, in

which σ21∘ � 1, σ22∘ � 2, and k � 250. The mean value over 25

tests, 0.826, is marked by the white-filled circle in Figure 2c,

(a) (b) (c)

(d) (e)

(f)

Figure 2. MLE of the sample variance of synthetic time series that follow the
same simple model as in Figure 1 but for the case of an unknown changepoint.
Two realizations are shown, and the cases illustrated have k∘ � 500, marked
by solid vertical lines, but pertain to (e) a tardy (k � 750), and (f) an early
(k � 250) assumed changepoint, marked by the dotted vertical lines. The log
likelihood that applies to the blue section (which includes the full noise segment
and a portion of the signal) in (e) is shown in (b), and constitutes one term in
the sum, the first term in equation (14), shown in (a). The log likelihood of the
corresponding red section (which only includes signal) of (e), the second term in
the sum in equation (14), is not shown separately. Similarly, the log likelihood
of the red section (some of the noise segment and all of the signal) of (f) is
shown in (c). Again, the log likelihood of the corresponding blue section
(containing only noise) of (f) is not shown. (a) Plots of the summed log
likelihoods for the time series in (e), with the color revealing the relative amount
of signal mixed in with “noise.” (d) The equivalent summed log likelihoods for
the time series in (f), with the color betraying the relative amount of noise mixed
in with the “signal.” As in Figure 1, MLEs are marked by black-filled circles and
their average by white-filled circles with whiskers extending two standard
deviations in both directions in both coordinates, offset vertically for clarity from
the black horizontal lines that mark the average log likelihoods of the MLEs.
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implying suitable convergence as in Figure 2b. The log likeli-

hood associated with this changepoint is given by equation (13),

and is approximately equal to −1256. Like the abbreviated signal

section of Figure 2e, the abbreviated noise segment of Figure 2f

(in blue, the likelihoods of which are not shown) contains no

improperly mixed sample indexes and thus the expectation

of its sample variance is equal to the corresponding true pop-

ulation variance (σ21∘ � 1; E�σ̂21=σ
2
1∘
�k<k∘ � 1). The correspond-

ing log likelihood is given by equation (8) and is approximately

equal to −355.

In the jointly normalized abscissa coordinates of Figures 1a,

and 2a,d, the location of the maximizer along the diagonal

of the summed log likelihoods lies at a linear mixture of the

sample variances of the misidentified segments proportional to

the length of the segments over which they are assumed to

apply:

EQ-TARGET;temp:intralink-;df22;53;536

σ̂2

σ2∘
�

1

N

�

1

σ21∘
kσ̂21 �

1

σ22∘
�N − k�σ̂22

�

: �22�

Substituting equations (16) and (17) into the generalized

summed log-likelihood expression of equation (22) yields

EQ-TARGET;temp:intralink-;df23;53;457E

�

σ̂2

σ2∘

�

k>k∘

� 1�
1

N

�

�k − k∘�

�

σ22∘
σ21∘

− 1

��

: �23�

Substituting equations (19) and (20) into the generalized

summed log-likelihood expression of equation (22) yields

EQ-TARGET;temp:intralink-;df24;53;373E

�

σ̂2

σ2∘

�

k<k∘

� 1�
1

N

�

�k∘ − k�

�

σ21∘
σ22∘

− 1

��

: �24�

In Figure 2a, k � 750 and equation (22) evaluates to 1.250.

In Figure 2d, k � 250 and equation (22) evaluates to 0.875.

These are indeed the expected linear sums of the sample

variances, normalized proportionally to the true population

variances, for both Figure 2e,f, to which the experiments

converged, as shown by the white-filled circles in Figure 2a,d.

The summed log likelihood
The summed log likelihoods shown in Figures 1d and 2a,d are

diagonal profiles through a 2D surface in two ratio variables

(they are normalized variances). No estimation method is

expected to hug this diagonal unless σ22∘=σ
2
1∘
, the true sig-

nal-to-noise ratio (SNR), is unity. Thus, a general method

would need to construct a 2D summed log-likelihood surface

for a suitably large cross-product space of ratios in either

variable, for a given candidate changepoint k, find and re-

cord the maximum of the summed log likelihood, and then

repeat the process at every new candidate changepoint. See

Figure 3 for a graphical illustration at three different candidate

changepoints.

A procedure properly diagnostic of the true changepoint k∘
would recover both it and the variances of the noise and signal

segments, σ21∘ and σ22∘ . A profile through the 3D likelihood vol-

ume (in the parameters k, σ21, and σ22) does indeed peak at the

correct triplet of true values k∘, σ
2
1∘
, and σ22∘ . This behavior is

borne out by Figure 4, which portends the success of a method

that simply takes Θ̂, containing the sample means μ̂1 and μ̂2
and variances σ̂21 and σ̂22, of the segmentation of the time series

x, calculates the summed log likelihood ℓ�Θ̂; x; k� according to

equation (15), and defines the MLE for the changepoint as the

argument that maximizes ℓ�Θ̂; x; k� over k.

Figure 4 plots those evaluated summed log likelihoods at the

sample indexes k � �1;…;N �, both in expectation (colored

curve, substituting Θ̂ � Θ∘), and for 25 realizations of x (gray

curves, when in general, Θ̂ ≠ Θ∘) and their mean (black curve).

As in Figures 1d and 2e,f, and for all tests here, N � 1000,

k∘ � 500, and Θ∘ � fμ1∘ ; σ
2
1∘
; μ2∘ ; σ

2
2∘
g � f0; 1; 0; 2g. The col-

ored curve in Figure 4 uses a color gradient as in Figures 1

and 2, revealing the amount of incorrect mixing between the

noise and signal segments at any given changepoint. Red domi-

nates the first half of the curve, implying that at early change-

points the “noise” model includes too much signal; the second

half grades to blue implying the reverse. At every changepoint,

the sample variances of the noise and mixed “signal” segments

(k < k∘, equations 20 and 19), or the mixed “noise” and signal

segments (k > k∘, equations 16 and 17), are computed and sub-

stituted into equation (15). The filled circles highlight three sam-

ple indexes, k � f250; 500; 750g, and their respective summed

log likelihoods, ℓ ≈ f−1611;−1592;−1613g. These correspond

exactly to the maximum summed log-likelihood values obtained

at the MLEs of variances in Figure 3a (changepoint early), 3b

(changepoint correct), 3c (changepoint late), and to the values

approached by the (slightly differently) summed log likelihoods

of the similarly mixed time series underlying the curves of

Figures 2d, 1a, and 2a, and drawn there as horizontal lines.

It is clear that, on average, the likelihood associated with the

correct changepoint model, k � k∘, is greater than any of the

incorrect changepoint models, k ≠ k∘, wherein either the

“noise” or “signal” segment contains samples from two distinct

processes, and thus is not i.i.d. The gray curves in Figure 4 plot

the summed log likelihood for 25 synthetically generated time

series (examples of which were shown in Figs. 1d and 2e,f).

Here, then, the sample variances of the “noise” and “signal”

segments are given by equations (7) and (12), respectively,

calculated at every changepoint and substituted into equa-

tion (15). In the limit of many trials, the average of these like-

lihood curves converges to the theoretical values of the colored

curve. Figure 4 implies this to be the case.

Take-home message 1
From Figures 1 and 2, we learn that the expectation of the sam-

ple variance converges to the true population variance. Thus, we

can drop the requirement of a priori knowledge of the true
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population parameters and instead rely on the statistics of many

trials to converge to the truth. Further, we find that the ratio of

the sample variances of both examples in Figure 2 is smaller

than that in Figure 1, and indeed note the correct changepoint

lies at the sample index at which the ratio of the sample varian-

ces is the largest. Figures 1a and 2a,d also show us that for three

different changepoint models, the summed log likelihoods

are informative, specifically telegraphing the “identicality” or

“i.i.d.-ness” of the modeled “noise” and “signal” segments from

which the data were most likely generated. The highest summed

log likelihood identifies the split in the time series where the

“noise” and “signal” segmentations are simultaneously indivi-

dually best fit by a single-variance, i.i.d. process. The average

summed log likelihoods marked by horizontal lines in

Figure 2a,d, which represent two incorrect changepoint models,

are each lower than in Figure 1a, the correct changepoint model.

Figures 3 and 4 cement our understanding in showing that

the highest summed log likelihood among all tested change-

point models k � �1;…;N� corresponds to the case when

the changepoint model is exactly correct, k � k∘. Therefore,

a relative comparison of summed log likelihoods for every

changepoint model intuitively defines a scheme for seismic

arrival identification whereby the highest likelihood after test-

ing all possible models identifies the sample index at which the

seismogram is most likely split into two distinct and individu-

ally i.i.d. processes: for example, ambient noise and a seismic

arrival. Our experiments show the ability of summed log

likelihoods, evaluated at the maximum-likelihood variance

estimate, to partition an incoming data stream into two seg-

ments that are most likely individually identifiable as being

from distinct generating distributions. In the illustrations of

our model, the two portions, separated at the changepoint,

specifically differ only in their variance. In practice, we also

estimate the mean. For every changepoint model, we assume

that the first segment is composed of noise and the remainder,

signal. Signal-to-noise considerations, of course, are to follow.

In preparation for defining an algorithm to apply to real

data, we hereafter drop the quotes around “noise” and “signal,”

by which we denoted the departure of a segment from a known

truth, because real data have no “true” changepoint against

which to test. For the remainder of this study, we will refer

to every segmentation at every model changepoint as either

noise or signal, without quotes.

THE AIC

In his seminal 1973 paper (reprinted as Akaike, 1998), Akaike

links MLE via evaluated likelihoods to information theory.

Briefly, Akaike shows that the dual problem of parameter esti-

mation and model testing can be solved simultaneously. At its

core, the criterion that bears his name seeks to identify a best-

fitting model from a set of candidate models via minimization

of a loss function. The loss function used is an estimate of the

Kullback and Leibler (1951) divergence (KL), which we under-

stand as a measure of the information separation between

(a) (b) (c)

Figure 3. Summed log-likelihood plots in the two variables of interest for the
cases where the changepoint estimate is early, correct, and late, respectively. In
each panel, the left and lower axes are quoted in terms of the MLEs of the
variances of the assumed “signal” and “noise” segmentations, one or both of
which is composed entirely of the true signal or noise segment, normalized by
their true variances, respectively; and the right and upper axes are in terms of the
MLEs of the variances of the same segmentations not normalized by their true
values. The color maps are identical, and the crosses mark the average MLEs
over the 1000 tests considered here. (a) Changepoint early, (b) changepoint
correct, and (c) changepoint late correspond to the segmentations of x analyzed
in Figures 2d, 1a, and 2a, respectively. What differs here is that the estimate of
the variances maximizes the entire summed log-likelihood surface, not the
version restricted to the 1:1 diagonal shown in the earlier figures. This 2D
procedure at each changepoint model k correctly identifies the normalized
variances of the two segmentations, converging to the true values of
(1:000; 0:8333) in (a), at (1.000,1.000) in (b), and at (1:333; 1:000) in (c).
Further, the summed log-likelihood value, considering all three tests shown, is
maximized when the changepoint is exactly correct, as will be shown in Figure 4.
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two probability distributions, that is, the “distance” between

“responses” due to an evaluated model and the truth.

Importantly, when real data are being considered, their true

generating distributions, and thus their KL divergences, can

never be known and must, therefore, be estimated. Akaike’s

contribution was the rigorous derivation of such an estimated

loss function and the proof that their relative comparisons,

after accounting for model complexity via a penalty term, is

useful and appropriate for model discrimination.

For our purposes, as we illustrated in The Summed Log

Likelihood section, these are the ideas that allow us to make the

logical leap from equation (4) to equation (8), and, similarly, from

equation (10) to equation (13), and to using the likelihoods evalu-

ated in equation (15) to discriminate between changepoint mod-

els and choose a “best” fit among them. In the examples shown

there, we had access to the true generating distributions, but we

showed that estimates suffice in the absence of such knowledge.

AIC-based changepoint estimation
Using the summed log likelihood of equation (15), we write the

AIC as

EQ-TARGET;temp:intralink-;df25;53;133A�Θ̂; x; k� � −2ℓ�Θ̂; x; k� � ∥Θ̂∥; �25�

whereby ∥Θ̂∥, the length of the vector of model parameters,

accounts for the degrees of freedom in the system. The first

term on the right side of equation (25) is a measure of the

model fit. The second term is a bias-correction term that

rewards model parsimony. Likelihoods of the exponential

form in our model (e.g., equations 4 and 10) are distributed

as χ2=2 variates, which explains the factor of 2 in equation (25).

In our case, ∥Θ̂∥ � 4, but we may ignore it altogether because it

does not depend on the changepoint model k. The distributions

that we consider remain unchanged between possible segmen-

tations, and they furthermore remain in the specific Gaussian

form of equation (2). Morita and Hamaguchi (1984), Maeda

(1985), and Sleeman and van Eck (1999) discuss a framework

by which other noise and signal models, for example, autore-

gressive ones, can be decorrelated into satisfying our model

assumptions.

The use of the AIC for seismological event detection is wide-

spread (e.g., Maeda, 1985; Leonard and Kennett, 1999; Sleeman

and van Eck, 1999; Zhang et al., 2003, 2017; Rastin et al., 2013).

At its essence, the AIC approach is sensitive to changes in vari-

ance (second moments) between trial segments, which it is

able to neatly separate with high temporal resolution. So-called

short-term average over long-term average (STA/LTA) meth-

ods, based on comparing first-moment ratios (e.g., Allen, 1978),

are most efficient at picking out segments, not points, of interest.

Methods that utilize higher-order (e.g., squared-envelope,

skewness, kurtosis) statistics (e.g., Baer and Kradolfer, 1987;

Saragiotis et al., 2002; Baillard et al., 2014) base their estimates

on exploiting the changing nature of the distribution over

segments of fixed length, which imprints a certain time and fre-

quency resolution to the event identification. However, powerful

and performant any of these alternative approaches, our method

has no tunable parameters, it obtains excellent results for our

data types, and it remains usefully insensitive to perturbations

in our initial model assumptions, which, additionally, we remo-

tivate in the supplemental material.

Substituting the evaluated summed log likelihoods of equa-

tion (15) into equation (25), ignoring the constant of the for-

mer and bias-correction term of the latter, and simplifying the

notation to make the dependence of the AIC value on the

changepoint model k explicit, we write, for an input time series

x of length N

EQ-TARGET;temp:intralink-;df26;320;237A�k� � k ln�σ̂21� � �N − k� ln�σ̂22�: �26�

The discussion in The Summed Log Likelihood section implies

that a natural changepoint estimate is the sample index that max-

imizes equation (15), or indeed, minimizes the AIC in equa-

tion (26), over the set of changepoint models k � �1;…;N �.

We call this estimator

EQ-TARGET;temp:intralink-;df27;320;132km � argmin�A�k��: �27�

Furthermore, we showed there that the absolute values

of summed log likelihoods are irrelevant, and instead it is their

relative difference that bolsters the designation of a “best”

Figure 4. Summed log likelihoods (equation 15) plotted at every changepoint
model, k � �1;…;N�. The colored curve is the expected behavior, when
Θ̂ � Θ∘, with the color-coding based on the amount of incorrect mixing
between the (blue) noise and (red) signal sections. The three likelihood
values marked by the filled circles correspond to, from left to right, the
mixtures shown in Figures 2d, 1a, and 2a, respectively. Gray curves plot 25
evaluations of equation (15) for synthetically generated time series like
those in Figures 1d, 2e, and 2f, and where Θ̂ is being estimated from those
data. The black curve is the average of the 25 tests shown in gray.
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changepoint model. Following the discussion of Burnham and

Anderson (2002), we introduce the AIC difference, the distance

along the ordinate axis between an AIC value obtained at a par-

ticular model k and the minimum AIC value of the ensemble

EQ-TARGET;temp:intralink-;df28;41;368Δ�k� � A�k� −A�km�: �28�

A small AIC difference implies the model in question is relatively

likely given the set of all models tested, and a large AIC difference

provides reason to believe the opposite is true. We leverage the

AIC differences as a tool for model discrimination, by interpret-

ing the exponential form exp�− 1
2
Δ�k�� as a measure of the rel-

ative likelihood of the model k compared to the set. With Li et al.

(2009), we define a second changepoint estimator, kw

EQ-TARGET;temp:intralink-;df29;41;236kw �
X

N

k�1

kw�k�; �29�

using what are now commonly called Akaike weights

EQ-TARGET;temp:intralink-;df30;41;172w�k� �
exp�− 1

2
Δ�k��

P

N
i�1 exp�−

1
2
Δ�i��

: �30�

Figure 5 shows the difference between the estimators km
of equation (27) and kw of equation (29) for a synthetic time

series, in which N � 1000, and k∘ � 500, as derived from the

AIC curve calculated using equation (26). In this example,

km � 507, which is late compared to k∘. In contrast, the second

changepoint estimator is early, kw � 495, preceding k∘.

The SNR
We estimate the SNR from the ratio of sample variances of

the segments identified as signal and noise. For a particular

changepoint index k, using equations (7) and (12), we define

EQ-TARGET;temp:intralink-;df31;308;314SNR � σ̂22=σ̂
2
1: �31�

A time series characterized by a high SNR will be revealed by a

steep AIC curve that rapidly and almost surely monotonically

decreases, and then rapidly and virtually monotonically

increases, after reaching an easily identified, single, global mini-

mum, and finally, flattening asymptotically. The Akaike weights

(equation 30) are near zero everywhere, except within a small

sample span about the true changepoint. In these cases, km
and kw will generally coincide. Conversely, a low-SNR time

series will have a flatter AIC curve with multiple local minima

and no obvious global minimum, and the associated weights will

be more broadly spread about the true changepoint. In those

cases, kw and kw may differ greatly.

Figure 6 shows this behavior. In Figure 6a, we plot two syn-

thetic times series: a low SNR � 2 example in black, and a high

SNR � 25 example in gray. Figure 6b plots their associated

AIC functions (equation 26), and Figure 6c plots their Akaike

weights (equation 30). As in all previous examples N � 1000

(a)

(b)

Figure 5. A model time series, its associated Akaike information criterion
(AIC) curve, and the changepoint estimators km and kw. (a) Synthetic
time series, x�k�, as in Figures 1 and 2, N � 1000, with a true changepoint,
k∘, at sample index 500, marked by a black vertical line. The noise is drawn
fromN �μ � 0; σ2 � 1�, and the signal fromN �μ � 0; σ2 � 2�. (b) The
AIC curve associated with the time series shown in (a), calculated from
equation (26). Again, k∘ is marked in black, whereas the estimator km
(equation 27) is marked in blue, and the estimator kw (equation 29) in red.

(a)

(b)

(c)

Figure 6. High-signal-to-noise ratio (SNR) and low-SNR synthetic time series,
their AIC curves, their Akaike weights, and the changepoint estimates. As
before, N � 1000 and k∘ � 500 for both examples shown here, and k∘ is
marked by a black vertical line. (a) High-SNR synthetic time series (SNR � 25)
in gray, and a low-SNR synthetic time series (SNR � 2) in black. (b) Their
associated AIC curves (equation 26), with the label on the left ordinate axis
corresponding to the low-SNR example and the label on the right ordinate
axis to the high-SNR example. (c) Akaike weights (equation 30) associated
with both examples, again with a double ordinate axis, on a zoomed-in
abscissa axis to show detail about the true changepoint.
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and k∘ � 500, and k∘ is marked with a black vertical line in

Figure 6a–c. Both Figure 6b,c have a double ordinate axis: the

left corresponds to the low-SNR time series and the right to the

high-SNR time series. Note their order-of-magnitude differ-

ence in range.

In Figure 6b, the low-SNR black AIC curve has many local

minima surrounding the global minimum and is much flatter

compared to the gray high-SNR curve, which steeply and nearly

monotonically decreases to an obvious global minimum, and

then rapidly increases to an asymptote. The effect of these min-

ima on the Akaike weights is apparent from Figure 6c, which is

rescaled between sample indexes 460 and 540 to show detail

about the true changepoint. Here, the weights in the high-SNR

case are narrowly distributed and nearly centered on k∘, whereas

the low-SNR case has a broad, multimodal distribution. In the

latter case, kw is early at kw � 491 and is marked by the red

vertical lines, whereas km is late at km � 504 and is marked by

the blue vertical lines. The two changepoint estimators for the

high-SNR case coincide with k∘.

FORMALIZING THE AIC TIMING UNCERTAINTY

The novelty of our work lies in the development of a statistical

framework to estimate the timing uncertainty of the change-

point estimates km and kw. We present two distinct methods.

Both calculate error statistics using many realizations of AIC

curves, the associated time series of which were generated by

random sampling from distributions with known statistics, but

they work in different coordinates. Method I collects the error

along the sample index (or equivalently, time) axis of the AIC

curve (a distance), whereas Method II performs hypothesis

tests using the AIC values themselves (as percentages). We dis-

cuss the relative utility of both methods to inform the uncer-

tainty estimation and the assignment of confidence intervals of

the changepoint estimates km and kw.

A baseline scenario to compare the bias and variance of the

changepoint estimators km and kw involves testing their per-

formance using a time series built of noise and signal segments

randomly sampled from distributions with known statistical

parameters Θ∘, concatenated at a known true changepoint k∘.

As before, and for all tests in this section, we generate low-SNR

synthetic time series of length N � 1000, for which sample

indexes k � �1;…; 500� are drawn from N �μ � 0; σ2 � 1�,

and samples k � �501;…; 1000� from N �μ � 0; σ2 � 2�.

Here, then, the SNR is 2, and the true changepoint that we

attempt to locate is sample index 500, the last sample index

of the noise segment.

Method I: Monte Carlo resimulation
The Method I (M1) test procedure directly measures the tim-

ing error, the discrepancy between a true changepoint, k∘, and

an estimated changepoint, k̂, either km or kw, calculated for a

synthetic time series. We define the timing error in terms of

sample indexes as the signed distance

EQ-TARGET;temp:intralink-;df32;320;405k̂ − k∘: �32�

To evaluate the bias and variance of km and kw, we generate

many random realizations of the low-SNR time-series model

(SNR � 2) described in the previous paragraph, calculate the

corresponding AIC curve via equation (26), calculate change-

point estimates km and kw with equations (27) and (29),

respectively, and then tally the timing errors between these

estimates and k∘ with equation (32). We summarize the error

statistics after many realizations of this procedure.

Figure 7 displays one realization of the M1 testing scheme

applied to the same AIC curve in Figure 5b but shown with a

zoomed-in abscissa axis. Here, k∘ is marked with a black-filled

circle and intersecting vertical line, and km and kw are marked

with blue and red-filled circles, respectively. The distance in

sample indexes between each changepoint estimate and the

truth is marked by a similarly color-coded horizontal bar of the

appropriate length. In this example, the minimum-AIC esti-

mator, km � 507, is late, and the weighted-average estimator,

kw � 495, is early.

Figure 8 summarizes the M1 error statistics after one mil-

lion realizations of the procedure just described. The sample-

distance errors are grouped into one-integer bins and plotted

as histograms. The unfilled bars with black edges represent the

distribution of the error of the estimator km, whereas the gray

bars represent the error of the kw estimator. Overlain are two

curves, blue for km and red for kw, respectively, which represent

Figure 7. One realization of the Method I (M1) testing procedure, tallying the
distance in sample indexes between the true changepoint and its estimates,
applied to the same AIC curve in Figure 5b (SNR � 2), shown in detail
about the true changepoint, k∘, marked by a black-filled circle. The esti-
mator km (equation 27) is marked by a blue-filled circle, and kw (equa-
tion 29) by a red-filled circle. The timing error is the difference between the
estimate and the truth (equation 32), shown here as blue and red horizontal
lines that connect km and kw to the vertical line at k∘. In this example, km is
seven sample indexes late, whereas kw is five sample indexes early.
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their corresponding best-fitting Gaussian probability distribu-

tion functions (pdfs) given the statistics quoted in the legend

and elaborated upon later. The abscissa axis is limited to �50

sample indexes for display purposes, but mass extends beyond

these limits for both histograms. Inset into the upper right cor-

ner of Figure 8 is a quantile–quantile plot that displays the

sample-distance error quantiles as a function of the quantiles

of their best-fitting Gaussian pdfs, again color-coded blue for

km and red for kw. A black line with a slope equal to 1 is also

plotted for reference.

Invoking Figure 8, we submit that kw is a better estimator

than km. Neither of them is Gaussian. Our test reveals that even

in extremely low-SNR regimes kw is an unbiased estimator,

whereas km is biased, here with a mean error of 3.8 sample

indexes. We also find that kw has a narrower error distribution

with a standard deviation of 21 sample indexes compared with

25 sample indexes for km.

The story grows somewhat more complex when the data are

more fully inspected. For example, the km errors have their

mode at 0 sample indexes and their median at 2 sample indexes,

whereas the kw errors have their mode at −3 samples and their

median at −1. The peak at 0 sample indexes in the km error

histogram shows that this estimator is about twice as likely as

the kw estimator to be exactly correct; however, the lower stan-

dard deviation of the kw error data shows that, on average, kw
will be closer to the truth. Even though any given kw estimate is

less likely than a km estimate to be exactly correct, we still con-

sider kw to be a better estimator than km because it is unbiased,

when km is not, and lower variance than km.

A positive bias of the minimum-AIC estimator was also doc-

umented by Leonard (2000). There, the author compares the

slope of an autoregressive variant of our AIC curve immediately

following km with analyst picks of the onset to derive an empiri-

cal relation to adjust the typically tardy estimate backward in

time.

Method II: Using the shape of the AIC curve
The Method II (M2) test procedure comprises two hypothesis

tests that employ a proxy for the sharpness of the AIC curve

near k̂. We know from numerical experiments that in high-

SNR cases the AIC curve rapidly and monotonically descends

to a single and obvious global minimum at the true change-

point, then rapidly and monotonically ascends to an asymp-

tote. Conversely, in low-SNR cases the AIC curve is much

flatter, with a lower overall range, and many local minima that

amplify changepoint estimation uncertainty. The M2 test pro-

cedure proposed here seeks to quantitatively relate the shape of

the AIC curve itself to a timing-confidence interval. Each test

in the M2 suite asks a variation of the basic question: how steep

is the AIC curve around the changepoint estimator k̂, and how

much greater is the AIC value at the true changepoint k∘ com-

pared to the AIC value at its estimate? Like the M1 test pro-

cedure, statistics are generated via repetition of the M2 test

over many randomly generated synthetic time series. Unlike

M1, the confidence intervals returned are asymmetric, not

measures of center and spread. Altogether, M2 produces prob-

ability curves that relate the shape of the AIC curve near k̂ to a

confidence interval on the estimate.

We define α as a percentage of the total range of the AIC

curve (equation 26), and β as the sum of the αth fraction of the

range and the AIC value of the changepoint estimator, k̂, either

km or kw

EQ-TARGET;temp:intralink-;df33;308;276β�k̂; α� � A�k̂� �
α

100
�max�A�k�� −min�A�k���: �33�

With this, we define our first “unrestricted” β hypothesis test

EQ-TARGET;temp:intralink-;df34;308;211H0 : A�k∘� > β�k̂; α�; �34�

EQ-TARGET;temp:intralink-;df35;308;172H1 : A�k∘� ≤ β�k̂; α�: �35�

In the unrestricted β-test, the null hypothesis is rejected if the

AIC value of the true changepoint is equal to or less than the

AIC value of the estimated changepoint plus a variably defined

percentage of the total range of the AIC curve over the segment

considered. We label the first and last sample indexes whose

AIC values are less than or equal to β as

Figure 8. Histograms of estimation errors of the estimators km (black-unfilled
bars) and kw (gray-filled bars), after one million realizations of the Method I
(M1) testing procedure, one of which is displayed in Figure 7. Overlain on
both histograms are their best-fitting Gaussian probability distribution
functions, blue for km and red for kw, respectively, the means and standard
deviations of which are quoted in the legend. Inset in the upper right is a
quantile–quantile plot, again color-coded. In this low-SNR model
(SNR � 2), the kw estimator is unbiased and has a lower standard deviation
than the km estimator, which has a positive bias revealing that, on average,
it estimates the changepoint late.
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EQ-TARGET;temp:intralink-;df36;53;744k′ � minfk : A�k� ≤ β�k̂; α�g; �36�

EQ-TARGET;temp:intralink-;df37;53;719k″ � maxfk : A�k� ≤ β�k̂; α�g: �37�

Last, we note a mapping exists that relates α to the correspond-

ing maximum sample span to which this test could apply, and

call it the

EQ-TARGET;temp:intralink-;df38;53;639unrestricted β-test sample span � 1� �k″ − k′�: �38�

Herein lies the origin of our use of the term “unrestricted,”

because the elements in the set fA�k� : k � k′;…; k″g need not

all be less than or equal to β. As written in equations (34) and

(35), the unrestricted β-test is applied in the ordinate direction:

defined in terms of AIC values, not sample indexes (potential

changepoint models), at which those AIC values are obtained.

The definitions of k′ and k″ were introduced to formalize the

α-to-sample-span map, which is pivotal to the utility of M2.

Conversely, in defining our second hypothesis test, the

“restricted” β-test, we begin by highlighting the relevant

sample span of that test, which we term the

EQ-TARGET;temp:intralink-;df39;53;458restricted β-test sample span � 1� �k†† − k†�; �39�

in which, for the relevant values of α,

EQ-TARGET;temp:intralink-;df40;53;406k† � maxfk < k̂ : A�k� > β�k̂; α�g � 1; �40�

EQ-TARGET;temp:intralink-;df41;53;366k†† � minfk > k̂ : A�k� > β�k̂; α�g − 1: �41�

If it is nonempty, the elements in the set fA�k� : k � k†;…; k††g

are all equal to or less than β. A restricted β-test asks if k∘ lies

within this contiguous set

EQ-TARGET;temp:intralink-;df42;53;288H0 : k∘ ∉ �k†;…; k††�; �42�

EQ-TARGET;temp:intralink-;df43;53;262H1 : k∘ ∈ �k†;…; k††�: �43�

In graphical terms, the restricted β-test asks: (1) is A�k∘� below

β, and if so, (2) is k∘ in the same trough of the AIC curve that

contains k̂? Unlike an unrestricted β-test, where the null hypoth-

esis may be rejected even if the AIC values between A�k̂� and

A�k∘� are greater than β, a restricted β-test does not allow a local

maximum, where the AIC curve rises above β, to be crossed in

search of A�k∘�. In both unrestricted and restricted β-tests, as α

increases, the sample span (number of changepoint models)

under consideration increases and the null hypothesis is rejected

more frequently. Given these definitions, we expect that

restricted β-tests applied to km reject the null hypothesis at the

lowest rate because they consider the smallest sample spans, and

that unrestricted β-tests applied to kw would reject the null

hypothesis at the highest rate because they consider the largest

sample spans.

The utility of the M2 testing procedure is in the generation

of probability graphs that measure the shape of the AIC curve

by relating α to sample-span confidence intervals that include

the truth some proportion of the time. As in M1, these curves

are generated by applying M2 to many realizations of synthetic

time series. With each realization, both an unrestricted and

restricted β-test is performed, and their test results (null

hypothesis rejection rates) and associated sample spans (equa-

tions 38 and 39) are recorded.

Figure 9 shows one such M2 test realization applied to the

same section of the same AIC curve of Figure 7 (SNR � 2).

The AIC value of the true changepoint, A�k∘�, is marked by

a black-filled circle bisected by a black horizontal line. This rep-

resents the value that βmust exceed to reject the null hypothesis

in an unrestricted test, and the value at or below which both

A�k̂� and A�k∘� must lie, in the same trough, to reject the null

hypothesis in a restricted β-test. A blue-filled circle marks km
and a red-filled circle marks kw. Three β-values for both estima-

tors are shown as horizontal lines, using the same color scheme,

at α-values equal to 0%, 3%, and 6%. Solid horizontal lines

Figure 9. One realization of the Method II (M2) hypothesis test, applied to
the same AIC curve shown in Figure 7. Again, k∘, km, and kw are marked by
black-, blue-, and red-filled circles, and A�k∘� by a black horizontal line.
Three values of β (equation 33), corresponding to three percentages of the
total range of the AIC curve, α, of 0%, 3%, and 6%, are shown in blue and
red as related to km and kw, respectively. Solid blue and red lines represent
the sample spans to which a restricted β-test maps (equation 39), whereas
the dashed lines represent the additive sample spans through which an
unrestricted β-test maps (equation 38). For a specific α, a restricted β-test
(equations 42 and 43) asks if k∘ falls in the interval below the colored solid
line, whereas an unrestricted β-test (equations 34 and 35) asks whether k∘
falls under either the colored solid or dashed lines. The null hypothesis in
both cases remains that k∘ is found outside those intervals. In this example,
for both restricted and unrestricted β-tests the null hypothesis is only
rejected for km when α � 6%, though it is rejected for all α related to kw.
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represent the sample spans to which the restricted β-tests map

(equation 39), and dashed horizontal lines represent the sample

spans to which an unrestricted β-test maps (equation 38) in addi-

tion to those already considered in a restricted β-test.

For km in Figure 9, α � 0%, α � 3%, and α � 6% corre-

spond to sample spans equal to 1, 4, and 11, respectively, for

a restricted β-test, and 1, 21, and 24, respectively, for an unre-

stricted β-test. The null hypothesis is not rejected at α � 0% or

α � 3%, for either the restricted or unrestricted β-test, though

it is rejected at α � 6% in both tests.

In contrast, for kw in Figure 9, α � 0%, α � 3%, and

α � 6% correspond to sample spans equal to 13, 33, and 46,

respectively, for a restricted β-test, and 25, 33, and 46, respec-

tively, for an unrestricted β-test. The null hypothesis is rejected

at all α-values for both restricted and unrestricted β-tests.

Figure 10 displays the results of 1000 realizations of M2

applied to synthetic time series of the same model as in the

Method I: Monte Carlo Resimulation section (SNR � 2), one

example of which is shown in Figure 5a. Here, the test proceeds

for α in the inclusive range α � �0;…; 100�, tested in α � 0:1

increments, for both restricted and unrestricted β-tests, for both

estimators km and kw. The data are plotted in terms of the prob-

ability of rejecting H0 as a function of α. As before, the prob-

ability curves are color-coded blue and red for changepoint

estimators km and kw, respectively. As in Figure 9, the solid

curves represent the results of restricted β-tests, whereas the

dashed curves show the results of unrestricted β-tests. As

expected, Figure 10 shows that, in general, β-tests associated with

km reject the null hypothesis at a lower rate than those associated

with kw, and restricted β-tests reject the null hypothesis at a

lower rate than their unrestricted relatives.

Figure 11 plots the same results as in Figure 10 except here

the probability of rejecting H0 is plotted as a function of the

average sample span considered under each β-test. Again,

curves corresponding to km and kw are blue and red, respec-

tively, and restricted β-tests curves are solid and unrestricted

β-test curves dashed. Black horizontal dashed lines originating

from the ordinate axis at 0.68 and 0.95 are plotted to guide the

eye to their corresponding timing confidence intervals, respec-

tively. These confidence intervals are marked by vertical solid

lines that originate from the abscissa axis and intersect the

horizontal dashed lines. From left, the first pair of vertical lines

marks the total spread of the average of the sample spans con-

sidered under each β-test that included the truth 68% of the

time. The lower bound of this confidence interval is defined

by the restricted km curve at 22 sample indexes, and the upper

bound is defined by the unrestricted kw curve at 37. The second

pair of vertical lines marks the total spread of the average of the

sample spans considered under each β-test that included the

truth 95% of the time. The lower bound of this confidence

interval is defined by the unrestricted km curve at 62 sample

indexes, and the upper bound is defined by the unrestricted kw
curve at 69 sample indexes.

Comparison of Methods I and II
The β-test curves of Figure 11 connect theM2 hypothesis testing

procedure to the M1 Monte Carlo resimulation. In Figure 8, we

find that the M1 one-standard-deviation error estimates of kw
and km are 21 and 25 sample indexes, respectively. From

Figure 11, we see that the M2 one-standard deviation confidence

interval is between 22 and 37 sample indexes, a similar though

larger range than what was found in M1. However, there is a

cluster of β-test curves near the lower end of the M2 one-stan-

dard-deviation confidence interval, implying that the true one-

standard-deviation confidence interval is nearer 22 sample

indexes than 37. The large spread in β-test sample spans

between km restricted tests and kw unrestricted tests is greatly

diminished in higher-SNR cases, where the AIC curve is less flat

and the four tests see roughly the same sample spans.

The lack of agreement between the M1 two-standard

deviation error estimate between 42 and 50 sample indexes

(Fig. 8) and the M2 two-standard deviation confidence interval

at 62 and 69 sample indexes (Fig. 11) is likely due to a few

factors. First, the asymmetric nature of the AIC curve may play

a part. AIC curves tend to have a lower gradient immediately

before the true changepoint compared to the gradient immedi-

ately after it (note this phenomenon in Fig. 9). What this

Figure 10. Probability of rejecting H0 as a function of α for restricted and
unrestricted β-tests for both changepoint estimators km and kw. These
curves summarize the output of M2 after many test realizations, one
example of which is displayed in Figure 9. Here, restricted (equations 42 and
43) and unrestricted β-tests (equations 34 and 35) were each applied 1000
times at every α. As in Figure 9, the test curves associated with km and kw
are color-coded blue and red, respectively, and solid and dashed lines
represent the outcomes of restricted and unrestricted β-tests, respectively.
Overall, restricted β-tests corresponding to km generally map to the shortest
sample spans (equation 39) and thus reject the null hypothesis at the lowest
rate, whereas unrestricted β-tests corresponding to kw generally have the
highest rejection rate at the expense of mapping to the longest sample
spans (equation 39). Figure 11 replots these results as the probability of
rejecting H0 as a function of the average sample span of each β-test.
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means is that the sample span considered under an unre-

stricted β-test to the left of an incorrect changepoint estimate

may be quite large, even if the estimate differs from the truth by

only a single sample index. In addition, M2 confidence inter-

vals will always be at least as large, but likely larger, than the

error estimates returned in M1. This is due to the fact that M1

simply tallies the error from an estimate to a truth with no

overshoot, whereas any given β-test will more than likely

include more sample indexes than are required to find the

truth. Stated another way: there is likely to be overshoot in

the sample span of a β-test in the event that enough sample

indexes are considered to reject the null hypothesis. This over-

shoot can be reduced by refining the discretization of α at the

expense of increased computational complexity.

The utility of M2 is the generation of curves that negate the

need for resimulation of synthetic data as in M1. Assuming a

time series of similar SNR has previously been processed

through the M2 procedure, a researcher may immediately quote

any arbitrary confidence interval given a probability range of

interest simply by querying the appropriate β-test curve.

Take-home message 2
The contribution of this study is a scheme for the rapid esti-

mation of timing-error confidence intervals by inspection of

the shape of the AIC curve, without the need for resimulation

using synthetic data. After the generation of a library of curves

detailing the probability of rejecting H0 as a function of the

average sample span of each β-test, like the one shown in

Figure 11, for seismograms with various SNRs, no new syn-

thetic time series for testing need be generated. Instead, a

researcher may simply ask: “what is the probability that the

truth lies within a sample span equal to (an arbitrary number

of sample indexes) that also includes k̂?” or alternatively, “what

is the sample span that includes k̂ and has a probability of (an

arbitrary value) of including the truth?”

MULTISCALE ANALYSIS METHODOLOGY

The waveforms of various arriving seismic phases have distinct

frequency signatures, and that information can and needs to be

explicitly taken into account during inversion (e.g., Luo and

Schuster, 1991; Dahlen et al., 2000; Yuan and Simons, 2014).

In what follows we prepare to apply the concepts of The AIC

and Formalizing the AIC Timing Uncertainty sections to a very

specific type of timescale analysis via the wavelet transform

(Strang and Nguyen, 1997; Mallat, 1998).

Our philosophy is perhaps closest to that of Zhang et al.

(2003), and our contribution can be understood as picking

up where they left off. Although Zhang et al. (2003) use an

AIC on wavelet-coefficient time series, they only use those

picks and their consistency across neighboring scales to iden-

tify waveform segments of interest, which they then analyze

with the AIC on the original time series. In contrast, here,

our goal is to use AIC and wavelet analysis to determine scale-

dependent seismic arrival-time picks and their associated

uncertainties.

The discrete wavelet transform
We transform the time series into the multiresolution wavelet

domain. Various orthogonal or biorthogonal sets of self-similar

scaled (dilated) and shifted (translated) basis functions (wave-

lets, ψ�k�, scaling functions, ϕ�k�, and their duals) can be used

to decompose our time series x�k�. The analysis yields a set j �

�1;…; J � of scaling coefficients aj�l�, containing approximations

at a certain scale j (where a high number denotes a coarse res-

olution of x), and wavelet coefficients, dj�l�, which provide

the details missing to proceed to higher-resolution (at a lower

scale number). The index sets in the timescale domain are

scale dependent, l � �1;…;M�j��, hereinafter implied where

not explicitly stated, and encode the translations of the basis

functions, giving them two indexes, ψj;l�k� and ϕj;l�k�. The

identity

EQ-TARGET;temp:intralink-;df44;320;147x�k� �
X

J

j�1

X

M�j�

l�1

dj;lψj;l�k� �
X

M�J�

l�1

aJ;lϕJ;l�k�; �44�

leads to two ways of implementing our detection algorithm:

either in the timescale domain, that is, directly on the coefficient

sequences

Figure 11. Probability of rejecting H0 as a function of the average sample span
considered under each β-test. These curves render the same simulation results
as Figure 10 except they are now plotted in terms of the average sample span
of each β-test. Vertical lines tied to the curves reaching 0.68 and 0.95 on the
ordinate axis, from left to right, define the corresponding confidence intervals.
The 68% confidence interval is bounded on the left at 22 sample indexes by
the restricted β-test curve corresponding to km, and at 37 sample indexes on
the right by the unrestricted β-test curve corresponding to kw. The 95%
confidence interval is bounded on the left at 62 samples by the unrestricted β-
test curve corresponding to km, and on the right at 69 sample indexes by the
unrestricted β-test curve corresponding to kw.

14 • Bulletin of the Seismological Society of America www.bssaonline.org Volume XX Number XX – 2020

Downloaded from https://pubs.geoscienceworld.org/ssa/bssa/article-pdf/doi/10.1785/0120190173/4967090/bssa-2019173.1.pdf
by guustnolet 
on 17 March 2020



EQ-TARGET;temp:intralink-;df45;41;744dj;l; �45�

EQ-TARGET;temp:intralink-;df46;41;717aJ;l; �46�

or in the time domain using the timescale subspace projections,

EQ-TARGET;temp:intralink-;df47;41;666xj�k� �
X

M�j�

l�1

dj;lψj;l�k�; �47�

EQ-TARGET;temp:intralink-;df48;41;607xj�k� �
X

M�j�

l�1

aj;lϕj;l�k�: �48�

The nested structure implied by equations (44)–(48) explains

why the detail coefficients dj;l are colloquially referred to as

“differences” because they hold the information lost in the suc-

cessively coarsening approximations aj;l, or “averages.”A similar

procedure was followed by Anant and Dowla (1997), who called

the sequences (47) and (48) “interpolated coefficients.”

The timescale coefficients are inner products of the input time

series with the basis functions ψ and ϕ. We utilize wavelets with

compact support that have nonzero, real values only over a finite

interval. As the scale number increases, the support of the wavelet

and scaling functions doubles. The detail coefficients derive from

a high-pass or differencing filter, whereas the approximation

coefficients are the results of low-pass or moving-average filters.

Our wavelet transform is nonredundant: details and approxima-

tions at increasing scales are obtained by iterating on the low-pass

branch of what amounts to a filter bank (Strang and Nguyen,

1997). Various fast algorithms for wavelet analysis and synthesis

are in use: here, we use the lifting scheme of Sweldens (1996).

Many wavelet bases exist and their choice depends on multi-

ple factors including the domain of application, computational

complexity, symmetry and smoothness of the basis functions,

and the data themselves, as well as timescale tiling considera-

tions. Compared to alternative decompositions as, for example,

the discrete-time short-time Fourier transform, where the

window length must be specified a priori and thus the timing

resolution for all frequencies is constant, wavelet methods sub-

divide the timescale domain into tiles of variable size, whose

duration is inversely proportional to frequency (e.g., Chakraborty

and Okaya, 1995; Tibuleac and Herrin, 1999). At the lowest

scale numbers, j, we thus experience excellent time resolution

and are able to extract high-frequency information, whereas at

the higher scale numbers the opposite is true. With the wavelet

transform, the character of abrupt (e.g., the arrival of high-

frequency P-wave energy) or emergent (e.g., the slow onset of

a T wave) signals is revealed upon inspection (e.g., Gendron

et al., 2000; Simons et al., 2009; Sukhovich et al., 2011, 2014).

Let us return to the problem of the article. The application

of the wavelet transform to the time series of interest, x�k�,

yields two new sets of time series, sensitive to information at

different scales, j. One type is a coefficient series indexed in the

timescale domain, that is, the dj;l and aj;l of equation (44), the

other is a regular time series containing the subspace projec-

tions, that is, the xj�k� and xj�k� of equations (47) and (48).

Multiscale AIC-based changepoint estimation
Acting on x�k�, equation (26) led to the estimates km and kw in

equations (27) and (29). We can now substitute any of the four

coefficient or time series just derived into equation (26), to

return eight new changepoint estimators. Forgoing km, which

we showed to be biased, we focus on the multiscale analogs to

kw to define the set

EQ-TARGET;temp:intralink-;df49;308;575kwj
derived from thewavelet-space projection xj�k�; �49�

EQ-TARGET;temp:intralink-;df50;308;522kw j
derived from the scaling-space projection xj�k�; �50�

EQ-TARGET;temp:intralink-;df51;308;499lwj
derived from thewavelet coefficient series dj;l; �51�

EQ-TARGET;temp:intralink-;df52;308;461lw j
derived from the scaling coefficient series aj;l: �52�

The first two are available for immediate use in seismology.

The latter two require a method to map a timescale domain

coefficient index to the time domain, in practice: the range

of time-domain indexes that a timescale domain index is sen-

sitive to under the forward and inverse wavelets transforms.

The mapping under the forward transform is described next,

and under the inverse transform in the supplemental material,

allowing for the possibility that the forward and inverse trans-

forms need to be considered separately, as is the case for any

biorthogonal transform. Readers uninterested in the mechan-

ics of the algorithmic implementation are invited to skip for-

ward to the Multiscale Analysis in Practice section, where we

illustrate that the method works, or to the Application to

MERMAID Seismograms section, where we illustrate its appli-

cation to real data.

Timescale to time mapping: forward transform
A particular timescale coefficient index l at a particular scale j

may be associated with a set of time-domain sample indexes,

identifying those points in the time domain from which a

particular coefficient in the timescale domain receives contri-

butions under the forward wavelet transform, via the mapping

EQ-TARGET;temp:intralink-;df53;308;133F′

j�l� � k′⋆j;l : �53�

The asterisk reminds us that the output of F′

j�l� for a single time-

scale domain index l at a single scale j is a contiguous time-

domain sample span and not a single time-domain index k. Such
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a mapping exists for every index l at every scale j and is particular

to the basis used. The support of a wavelet or scaling basis func-

tion used in the forward transform, at a certain scale and trans-

lation, is completely described by the corresponding set k′⋆j;l .

We call out three time-domain sample indexes in each set,

k′⋆j;l : the “left” edge, the “middle,” and the “right” boundary:

EQ-TARGET;temp:intralink-;df54;53;666k′⊥j;l � min�k′⋆j;l �; �54�

EQ-TARGET;temp:intralink-;df55;53;628k
′j
j;l �

�

1

2
�k′⊥j;l � k′⊤j;l �

�

; �55�

EQ-TARGET;temp:intralink-;df56;53;576k′⊤j;l � max�k′⋆j;l �; �56�

in which be in equation (55) signifies rounding to the nearest

integer. Equations (54)–(56) allow us to tack a changepoint

estimate determined in the timescale domain, and thus repre-

senting a time smear, to a single time-domain sample index.

The supplemental material contains the complementary map

for the inverse wavelet transform, and details our treatment of

edges in both transform directions.

Multiscale changepoints to multiscale arrival times
The time-domain changepoint estimate (equation 29) by our

definition is the last sample of the noise segment; thus, the

reported arrival time of a specific seismic phase will be at the

sample index that immediately follows, kw � 1.

Similarly, the multiscale changepoint estimates of equa-

tions (49) and (50) effortlessly map into arrival times by adding

one to their time-domain sample indexes, kwj
� 1 and kw j

� 1.

We note that these may correspond to different seismic phases,

or differently resolved specific arrivals.

For their part, the changepoint estimates (51) and (52) need

to be mapped into the time-domain sample indexes that capture

arrival times in a way that is not similarly trivial. Indeed, in this

case all of our operations (AIC picking, SNR estimation, and

uncertainty estimation) occur natively in the timescale domain,

not after conversion to the time domain. We leverage the map-

ping established in the Timescale to Time Mapping: Forward

Transform section to label the time-domain sample spans

k′⋆j;lw�1 and k′⋆
j;lw�1

, where we draw attention to the fact that

the addition of one index occurs in the subscripted timescale

domain. From there on, we can use equations (54)–(56) to

report individual time-domain sample indexes.

The final conversion of course, of any and all of these esti-

mates, will map time-domain sample indexes into time by tak-

ing into account any initial offset and the sampling rate.

Take-home message 3
The careful mapping of time-domain sample indexes of a time

series of interest onto timescale domain coefficients, and vice

versa, for orthogonal and biorthogonal wavelet and scaling

functions, under the wavelet transform and its inverse, allows

us to carry out changepoint estimation via the AIC in either

domain, giving us three options: directly in the time domain,

directly on the timescale domain coefficient sequences, or on

partially reconstructed subspace projections in the time

domain, leading to true multiscale arrival-time detection.

MULTISCALE ANALYSIS IN PRACTICE

As we did in the Formalizing the AIC Timing Uncertainty sec-

tion with the time-domain changepoint estimation, here in this

section we test the performance of the multiscale method and

its implementation in code. We stick with the Cohen–

Daubechies–Feauveau wavelet basis CDF(2,4), with two primal

and four dual vanishing moments (Cohen et al., 1992), based on

prior experience with actual data: their basis functions are short

and capture the P-wave onset with just a handful of diagnostic

coefficients (Simons, Dando, and Allen, 2006; Sukhovich et al.,

2011; Yuan and Simons 2014).

The changepoint estimators that we study in detail are:

those derived by applying the AIC to the time-domain wave-

let-subspace projection of the time series xj�k� at a particular

scale j � 1;…; J� �, namely

EQ-TARGET;temp:intralink-;df57;320;445kwj
for j � 1;…; J� �; from equation �49�; �57�

one derived from the complementary scaling-space projection

xJ�k� at the coarsest scale J , namely

EQ-TARGET;temp:intralink-;df58;320;381kw j
for j � J ; from equation �50�; �58�

and last, the pairs of triplets that result from the application of

the timescale to time-domain mappings of equations (54)–(56)

to the estimates of equations (51) and (52), and which we write

here as

EQ-TARGET;temp:intralink-;df59;320;287k′⊥j;lw for j � 1;…; J� � and k′⊥
J ;lw

; �59�

EQ-TARGET;temp:intralink-;df60;320;238k
′j
j;lw

for j � 1;…; J� � and k
′j

J ;lw
; �60�

EQ-TARGET;temp:intralink-;df61;320;212k′⊤j;lw for j � 1;…; J� � and k′⊤
J ;lw

: �61�

Each of these various scale-dependent estimates will be gen-

erically referred to as k̂j if they serve to estimate a certain

changepoint k∘ in a time series as modeled in the General

Considerations section.

Multiscale AIC-based changepoint estimators
It is important to note that we are testing the performance

of measurements made at a certain scale j ≠ 0 that estimate

changepoints k∘ that, under our model espoused in the
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A Simple Model of Noise and Signal section, are changes at

scale j � 0. This apples-to-oranges comparison is necessary

because it might correspond to how our algorithm is used in

practice. The comparison of how a particular k̂j is successful at

estimating a particular k∘j at the same scale j is exactly what has

been covered in the Formalizing the AIC Timing Uncertainty

section: after all, our model is that of a certain sequence that

changes at a certain index, regardless of scale.

Should our model be that of a time series that had a change-

point at a particular scale, even multiple different ones, the multi-

resolution wavelet analysis would produce coefficient sequences

that, thanks to mutual orthogonality, would be uncorrelated

between different scales, and the AIC-based methodology would

lead to the proper identification of the changepoint at the appro-

priate scale. An example would be where different seismic phases

with intrinsically different time–frequency signatures (e.g., P or

SS) would be properly identified in time and scale (Tibuleac

et al., 2003).

Timing uncertainty of changepoint estimators
The uncertainty estimates of the Formalizing the AIC Timing

Uncertainty section are found in the domain in which the

changepoint is estimated. For both time-domain and time-

scale-domain cases, the procedures of the Method I: Monte

Carlo Resimulation and Method II: Using the Shape of the

AIC Curve sections are followed at each individual scale using

the domain-specific indexes of interest: k in the time domain,

and l in the timescale domain.

Foruncertaintyestimationofmultiscalechangepointestimates

in the time domain, equations (32)–(43) are computed as written,

acting on k, except they are repeated at every scale, j, and each

can be considered reproduced here as such with that subscript.

For uncertainty estimation associated with scale-dependent

changepoint estimates l̂ made in the timescale domain, those

same equations are computed with l in place of k, again at each

scale j. In that case, the M1 statistic (equation 32) becomes

l̂ − l∘, and the index spans relevant to the two M2 hypothesis

tests (equations 38 and 39) become the timescale domain

coefficient index spans, 1� �l′;…; l″�, and 1� �l†;…; l††�.

Finally, multiplication of these statistics by the length of the

appropriate span, either k′⋆j;lw or k
′⋆

J ;lw
, maps them back to the time

domain.

In summary, at any given scale a unit error associated with

either kwj
or kw J

maps to one time domain sample index; whereas

a unit error of lw or lw maps to the length of the time smear

associated with the changepoint estimate itself, k′⋆j;lw or k′⋆
J ;lw

.

Therefore, uncertainty estimates associated with changepoint esti-

mates derived in the timescale domain see their uncertainty dilate

in concert with the wavelets and scaling functions themselves.

Multiscale AIC-changepoint timing uncertainty
Let us examine what happens when we follow the Monte Carlo

resimulation method M1 detailed in the Method I: Monte Carlo

Resimulation section, using many realizations of synthetic time

series of length N � 4000 with a known true changepoint, k∘, at

time-domain sample index 2000. Each synthetic time series was

generated by concatenation at k∘ of two random samples drawn

from Gaussian distributions with zero expectation, the variances

of which differed by a prescribed factor. As with all previous

synthetic time series, the first segment, time-domain sample

indexes k � �1;…; k∘�, was noise drawn from the standard nor-

mal distribution, N �μ � 0; σ2 � 1�, whereas the second seg-

ment, k � �k∘ � 1;…;N �, was signal drawn from a density

N �μ � 0; σ2 � SNR�, in which SNR was varied between 2

and 1024, increasing in powers of two. We decompose each time

series to five wavelet scales.

We evaluate the performance of a generic single-scale

changepoint estimate via the statistics of the signed distance

k̂j − k∘, the time-domain sample-index error. Figure 12 shows

the result of 1000 tests for each k̂j at every SNR considered. For

ease of reporting, we label results for kwj
and kw J

, and likewise

for all the other pairs of changepoint estimates ultimately

derived from wavelet-space or scaling-space representations,

respectively, on a common axis, where we will draw a bar over

the scale number to identify its scaling-space nature: for exam-

ple, results for kw5
will be reported at the points marked 5,

whereas results for kw5
will be drawn at 5 on the abscissa axis.

In each of Figure 12a–j, the colored curves connect the

observed average error at every scale, marked as a filled dia-

mond or circle, with the ticks extending vertically in both

directions from the marker indicating the width of the distri-

bution by mirroring their standard deviations. The curves are

color-coded to differentiate the changepoint estimator: those

derived in the time domain, kwj
and kw J

, the average errors

of which are marked with purple diamonds; and those derived

in the timescale domain and mapped back to the time domain,

the average errors of which are marked with filled circles, either

teal for k′⊥j;lw or k
′⊥

J;lw
, red for k

′j
j;lw

or k
′j

J;lw
, or green for k′⊤j;lw or k

′⊤

J;lw
.

The axes for all of the panels are equal, with the ordinate axis

representing the changepoint estimation error and bounding

the span of −200 and 200 time-domain sample indexes, while

the abscissa axis denotes the scale at which the M1 test was

performed, with the overline notation for the scaling-space

as discussed earlier.

The estimator pairs (k
′j
j;lw
; k

′j

J ;lw
) and (kwj

; kw J
), perform the

best, the former having acceptable bias even at high scales

and low SNR, and the latter being better than the others at

all but the lowest-SNRs. Regardless of SNR, all changepoint

estimate pairs (kwj
; kw J

) display either large biases and/or large

standard deviations at the highest scale, j � 5. Of course, the

“edge” changepoint estimators, (k′⊥j;lw ; k
′⊥

J ;lw
) and (k′⊤j;lw ; k

′⊤

J ;lw
),

perform most poorly, showing growing negative (early) and

positive (late) biases regardless of SNR, as the scales increase.

They represent the two end-member cases for estimates made

in the timescale domain and mapped back to the time domain.

As mentioned, the compromise between the two, (k
′j
j;lw
; k

′j

J;lw
),
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outperforms either of its two siblings, especially at low SNRs,

though it does display bias at high SNRs.

Coherence across scales
A takeaway from Figure 12 is that all of the changepoint

estimators k̂j perform well at high resolution, when the scale

is low, j � 1 or j � 2, regardless of SNR. Indeed, even at the

lowest SNR tested, SNR � 2, all such estimators were on aver-

age within five time-domain sample indexes of the truth. The

short time-domain support at the lowest scales lessens the

mapped time smears of the basis functions, k′⋆j;l . A shorter basis

function always results in more precise changepoint estimates

as long as the time window is sufficiently long to capture it.

As the scales increase timing resolution degrades because

the basis functions dilate to capture longer-period features.

The shape of the curves in Figure 12 reveals the twofold dila-

tion of the basis functions at every scale. In particular for the

CDF(2,4) basis that we used, the primal wavelets and scaling

functions have support of three and nine time-domain sample

indexes, respectively. At the highest scale, after five successive

dilations, the effective support balloons to 153 for ψ5;l and 249

for ϕ5;l. In the frequency domain, a simple rule of thumb holds

that the first scale of a wavelet-decomposed time series is

approximately sensitive to the frequency band spanning

1/2–1/4 the sampling rate of the input time series. Each sub-

sequent scale further halves the sensitivity frequency band of

the previous, leading to a recursive relation approximating the

frequency sensitivity of a wavelet at scale j as

EQ-TARGET;temp:intralink-;df62;53;107 ∼ �fs=2
j
↔ fs=2

�j�1��; �62�

in which f s is the sampling rate of the input time series.

The behaviors in this section illustrate the coherence and

the range over which it persists, between changepoint esti-

mates made at different scales, that can be expected, and

indeed, is often implicitly assumed or enforced, with the

notion of there being a single onset happening at the raw sam-

pling rate. In what we propose, our picks are single scale at

multiple scales, and no interscale coherence is required for

their validation.

Figure 12 may be used to intuit the accuracy of a specific

changepoint method but should not be construed to represent

the precision associated with each. It is presented partly to

show that in extremely low-SNR cases, for example, SNR � 2,

if accuracy is paramount to uncertainty estimation, one may

wish to derive changepoint estimates in the timescale domain

and tack their time-domain time smears to a single sample

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 12. Multiscale changepoint estimation errors at various SNRs (equa-
tion 31) for timescale and time domain changepoint estimates at five wavelet
scales, and one approximation scale, labeled 5. The individual panels (a–j)
each have the same abscissa axis (low to high scale, or equivalently, high to
low resolution) from left to right, and ordinate axis (−200 to 200 time-domain
sample indexes), and are arranged from high- to low-SNR tests (noted in the
upper left corner of each panel). In each of (a–j), the filled markers (circles or
diamonds), connected as a curve, represent the mean changepoint estimation

error (via the M1 procedure, k̂j − k∘) for 1000 test realizations in which k̂j is

one of: kwj
or kw J

(purple), marked with filled diamonds; or k′⊥j;lw or k
′⊥

J;lw
(teal),

k
′j

j;lw
or k′j

J;lw
(red), or k′⊤j;lw or k′⊤

J;lw
(green), marked with filled circles. The ticks

extend up and down from each mean estimate by once the standard
deviation. Each test realization was performed on a synthetic time series of
N � 4000 generated via the concatenation at k∘ � 2000 of two random
samples drawn from Gaussian distributions of zero expectation that differ in
variance by the SNRs indicated in legends.
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index with the pairs (k
′j
j;lw
; k

′j

J;lw
), instead of picking them in the

time domain with the pairs (kwj
; kw J

). However, although an

estimator like k
′j
j;lw

may be more accurate than kwj
at low

SNRs, at high scales its precision degrades.

For this reason, we adopt as our preferred arrival-time esti-

mates kwj
and kw J

, found at the subspace projections xj and xJ ,

rather than the estimates k′⋆j;lw or k′⋆
J;lw

(or any individual sample

within that span) found using the raw detail and approximation

coefficients. In the Application to MERMAID Seismograms

section, we apply our multiscale-AIC method in both domains

and the differences in timing-uncertainty estimates will become

clearer.

Uncertainty estimation in practice, with real data when k∘
is not known, is discussed next, with particular emphasis given

to the problem of uncertainty estimation associated with

changepoint estimates derived in the timescale domain. In that

case, the assumed “truth,” l∘, must exist distinctly at every scale j

in the timescale domain, which differs from the error measure-

ments of this section, which occurred after mapping lw and lw
back to the time domain and assigning to each of them a single

time domain sample index against which signed distances could

be measured.

From synthetics to actual data
Until now, we have discussed changepoint estimation methods

and timing uncertainty appraisal on synthetically modeled

data, for which the true changepoint k∘ or k∘j is known.

With actual data, which we will discuss in the Application

to MERMAID Seismograms section, we replace k∘j with the

changepoint estimate made on the real data at the relevant

scale: one of either �lw; lw� or �kwj
; kw J

� depending on the

domain in which it is determined.

Synthetic seismograms generated for uncertainty estimation

via the M1 resimulation and M2 curvature analysis methods

of the Formalizing the AIC Timing Uncertainty section are con-

structed in the same domain that the changepoint estimate was

made, at every scale. At each scale, many randomized synthetic

seismograms are constructed by concatenation at �lw; lw�

or �kwj
; kw J

� of two samples drawn from two different and dis-

tinct Gaussian distributions: N �μ̂1; σ̂
2
1� and N �μ̂2; σ̂

2
2�, the

parameters of which are computed from the noise and signal seg-

ments, respectively, of the seismogram at that scale. The means

and variances μ̂ and σ̂2 pertain to the coefficients �dj;l; aJ;l� in the

timescale domain, or to the projections �xj; xJ� in the time

domain, as segmented into noise and signal by the changepoint

estimators.

THE DATA SET

The parameters of many of our examples shown thus far to illus-

trate our procedures and methodology have been appropriate for

a very specific data set collected by a very specific type of seis-

mological instrument. In this section, we turn to describing

MERMAID before applying our techniques to seismograms

collected at sea in the Application to MERMAID Seismograms

section.

MERMAID is an autonomous ocean-going diver with a

hydrophone that continuously records and processes the ambi-

ent acoustic wavefield at midcolumn depths. Its primary goal

is to monitor worldwide earthquake activity, and specifically,

to provide arrival times of teleseismic waves suitable for global

seismic tomography (Simons, Nolet, et al., 2006; Hello et al.,

2011). A subset of the data collected, all of the data that we

analyze in this study, are publicly available in Seismic Analysis

Code and miniSEED formats (see Data and Resources).

The instrument
While at depth, the acoustic data: a hydroacoustic time series,

hereafter the “seismogram” (Joubert, Nolet, Sukhovich et al.,

2015), are filtered between �0:10–10� Hz and digitized in real

time at a sampling rate of 40 Hz. The digitized data are then

immediately processed by an STA/LTA algorithm (Allen,

1978) to identify segments of interest (Simons et al., 2009)

where a possible signal rises above the level of the noise. When

a predetermined STA/LTA trigger threshold is exceeded,

MERMAID passes a windowed segment containing pre-

and post-trigger data into the wavelet-based (Simons, Nolet,

et al., 2006; Sukhovich et al., 2011) detection algorithm of

Sukhovich et al. (2014). This discrimination procedure

inspects the energy partitioning between different wavelet

scales and assigns a criterion value to the hypothesis that

the waveform includes a P-wave arrival generated by a teleseis-

mic earthquake, and not some other energy generated by a

nonseismic source (e.g., ship propellers or ocean storms, which

distribute energy differently over various scales). The on-board

algorithm decomposes the 40 Hz data to six wavelet scales via

the same lifting algorithm (Sweldens, 1996) and CDF(2,4)

wavelet basis (Cohen et al., 1992) as in this study. If the signal

is deemed to be a teleseismic arrival, a 200–250-second-long

seismogram, containing the STA/LTA trigger at about 100 s,

is returned to shore via the Iridium satellite constellation at

MERMAID’s next surfacing. Because MERMAID freely drifts

with the ocean currents its location at the time of recording

the seismogram must be interpolated from multiple Global

Positioning System locations fixed at the surface. The exact

details of this procedure are described by Joubert, Nolet,

Bonnieux, et al. (2015).

The seismograms
By default, MERMAID transmits the raw detail and approxi-

mation coefficient series at scales 2–6, omitting scale 1 to save

data-transfer cost, and because scale 1 is not particularly useful

for teleseismic P-wave analysis (at f s � 40 Hz, it covers the

frequency band spanning roughly [10–20] Hz). The seismogram

is then reconstructed onshore via the inverse wavelet transform

at an effective sampling rate of f s � 20 Hz. In this study, we

decompose these 20 Hz seismograms to five scales so as to
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analyze the data at the same res-

olution as the on-board detec-

tion algorithm. In some cases,

only three out of six wavelet

coefficient sets are being

returned, which leaves us with

f s � 5 Hz seismograms.

Table 1 lists the approxi-

mate frequency bands to which

each wavelet is sensitive at the

five scales in our numbering

scheme for seismograms

sampled at 20 Hz and 5 Hz.

Later, we compute arrival time

estimates and their uncertain-

ties, and travel-time residuals

considering the entire public

MERMAID catalog. So as to

compare arrival-time picks

made at the same resolutions,

scale 1 for 5 Hz seismograms

will be analyzed with scale 3 for 20 Hz seismograms, scale 2

for 5 Hz seismograms will be analyzed with scale 4 for

20 Hz seismograms, and so on.

The initial events catalog
Prior work (Joubert, Nolet, Bonnieux, et al., 2015; Sukhovich

et al., 2015; Nolet et al., 2019) has resulted in a catalog of “iden-

tified” events (and a complement with “unidentified” seismo-

grams). The classification indicates whether the seismograms

were matched to known seismic events, that is, earthquakes, as

determined by querying published seismic catalogs available at

the time. In this study, we focus our attention on 445 identified

MERMAID seismograms. These seismograms represent global

earthquakes recorded at disparate times between December

2012 and February 2018 and various (time-variable) locations

both in the Indian Ocean and Mediterranean Sea.

We maintained the event identifications but updated their

details to the most up-to-date information available from the

Incorporated Research Institutions for Seismology (IRIS).

Because the original event identification consisted of an epi-

central location, origin time, and magnitude, we maintained

the match by querying the latest catalogs within a buffer of 30 s

and 1° in time and location, and of no more than one magni-

tude unit less than the original. In the few rare instances where

our match was nonunique using these criteria, we selected the

one provided by the International Seismological Centre (2016)

online bulletin. Only a handful of cases required manual inter-

vention to complete our revised event catalog.

Figure 13 displays the updated locations of our events (red

asterisks) and the interpolated positions of the MERMAID

instruments that recorded them (yellow triangles). Great circles

connect event–station pairs to give a sense of the geographic

areas sampled most by our data set. Although only 13 individual

MERMAID instruments are present, there are 445 unique

receiver locations plotted, illustrating their passive drift with the

ocean currents.

We computed arrival times of various seismic phases in the

ak135 velocity model of Kennett et al. (1995). We first computed

the theoretical travel times with MatTaup, specifically using the

taupTime method. These codes are dated November 2002 but

were distributed without a version number. They are based on

TauP, described by Crotwell et al. (1999). The arrival time was

obtained as the updated event time plus the theoretical travel

time, minus the time at the first sample of the seismogram.

Inspired by our experience with our own data sets (e.g.,

Simons et al., 2009; Sukhovich et al., 2015; Nolet et al., 2019),

TABLE 1
Approximate Frequency Sensitivity of Wavelets

Scale f s � 20 Hz f s � 5 Hz

1 [5.00–10.0] Hz [1.25–2.50] Hz

2 [2.50–5.00] Hz [0.62–1.25] Hz

3 [1.25–2.50] Hz [0.31–0.62] Hz

3 — [0.1*–0.31] Hz

4 [0.62–1.25] Hz —

5 [0.31–0.62] Hz —

5 [0.1*–0.31] Hz —

The approximate frequency bands (equation 62) to which individual wavelets are

sensitive to, based on the sampling rate (f s) in Hz of the Mobile Earthquake

Recording in Marine Areas by Independent Divers (MERMAID) seismogram.

*The approximation, noted here with an overline at scale 3 or 5 depending on the

sampling rate of the seismogram, in theory approximates a low-pass filter (with

sensitivity down to 0 Hz), but in practice only has sensitivity to 0.1 Hz because

MERMAID data are filtered onboard between [0.10–10] Hz before digitization

(see The Instrument section).

Figure 13. Global map of all events and stations used in this study. Great-circle paths connect the event locations
(red asterisks) to the Mobile Earthquake Recording in Marine Areas by Independent Divers (MERMAID) positions
(yellow triangles) at the time the seismogram was recorded.
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and by work conducted by other researchers on hydroacoustic

time series elsewhere (e.g., Bohnenstiehl et al., 2002; Smith

et al., 2002; Dziak et al., 2004; McGuire et al., 2012), we con-

sider the following phases likely to be present in MERMAID

seismograms: p, P, pP, PP, Pn, Pg, PcP, Pdiff, PKP, PKiKP,

PKIKP, s, S, Sn, Sg (using the phase-naming convention of

Crotwell et al., 1999). We allowed the computation of arrival

times of extraordinary phases (e.g., SKiKP for seismograms

m31.20140910T053727.sac and m33.20150916T142424.sac)

only if they were listed in the events.txt file distributed with the

public MERMAID catalog. Such instances were rare, and we

reserve the discussion on possible phase ambiguity for the

Computing Travel-Time Residuals section.

APPLICATION TO MERMAID SEISMOGRAMS

We apply our AIC-based multiscale methods to the MERMAID

data set described. We detrended the seismograms and trimmed

the last sample index to render all of them of even length. We

used the CDF(2,4) wavelet transform to five scales for the

f s � 20 Hz seismograms and to three scales for the f s � 5 Hz

set (see Table 1).

Multiscale AIC measurements and their uncertainty
Figures 14 and 15 provide the first illustrations of the determi-

nation of an independent set of multiscale arrival-time estimates

and their uncertainties from which to compute residuals with the

theoretical arrival times in the catalog. For these two example

earthquakes in the Bali Sea and the Tyrrhenian Sea, which

yielded a low-SNR and a high-SNR seismogram, respectively,

the top set of panels, labeled (a), illustrate changepoint estimates

made in the time domain (on the subspace projections), whereas

the bottom set, labeled (b), illustrate changepoint estimates made

in the timescale domain (on the coefficient series) as explained in

the Multiscale AIC-Based Changepoint Estimation section.

In both figures, for both sets (a) and (b), the topmost panel

plots theMERMAID seismogram, x, in blue, normalized between

−1 and 1. Earthquake magnitude, epicentral distance (in degrees)

to the recording MERMAID, and event depth are listed in the

legends. For the set (a), the panels below the raw seismogram are

the subspace projections after wavelet decomposition �xj; xJ�, in

gray, normalized between −1 and 1. For the set (b), the panels

below the first one show the absolute values of the detail and

approximation coefficients, �dj;l; aJ ;l�, in gray, smeared over the

time spans to which they are sensitive, k′⋆j;l , and normalized

between 0 and 1. The abscissa axes, in seconds offset from

the start of the seismogram (t � 0 at k � 1), are unchanged

between subplots. The subspace projection series in (a) are at

least as truncated as the raw coefficient series in (b), but usually

more so, due to the increased influence of the edges in the time

domain compared to the timescale domain, as explained in the

supplemental material.

Overlain in black are the AIC functions, normalized per

panel, as time-domain traces for the set (a), and as black

(a)

(b)

Figure 14. Multiscale arrival-time estimation of a seismogram from the
MERMAID data set in the low-SNR regime: a seismogram detected in
the Mauritius–Réunion region corresponding to an earthquake in the Bali
Sea. In both (a,b), the top panel plots the same raw seismogram (normalized
between −1 and 1) in blue with the same theoretical arrival time of the P
wave marked with a black vertical line. Legends provide magnitude, great-
circle distance between the epicenter and MERMAID, and the depth of the
corresponding earthquake. The panels below the first one show, for the set
(a), subspace projections at varying wavelet scales in gray (normalized
between −1 and 1), with their AIC curves overlain in black. In the set (b),
below the seismogram, the panels show the absolute values of the wavelet
and scaling coefficient time series (normalized between 0 and 1), and their
AIC function, rendered as the corresponding time smears. Event detections
were made at scales 1–3, in the time domain in set (a) where they are
marked in purple, and in the timescale domain in set (b) using teal, red, and
green to mark the beginning, middle, and end of the arrival time smears.
The two standard deviations of the error distributions, obtained by Monte
Carlo resimulation, are listed to the right of the ordinate axis. Scales 4 and 5
each had SNRs less than or equal to 1, and thus no arrival time is reported.
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horizontal dashes over the corresponding time smears per scale

in (b). The vertical lines mark the changepoint estimates: pur-

ple for the subspace-projection estimates in (a), and teal, red,

and green for the coefficient series estimates in (b). The latter

triplet of colors marks the beginning, middle, and end of the

time smears, (k′⋆j;lw ; k
′⋆

J;lw
), of the estimated arrival-time detail or

approximation coefficients, as detailed in the Timescale to Time

Mapping: Forward Transform section. These are the same colors

used in Figure 12, but here we mark the estimated arrival times,

and there we analyze the statistics of the estimated changepoints

(the mapping between the two is discussed in the Multiscale

Changepoints to Multiscale Arrival Times section). The dilation

of the wavelet with increasing scales is easily seen when plotted

in this manner, especially in Figures 15b, 16b, and 17b, where

arrival-time estimates were made at every scale (all SNR > 1),

and the time smear of the basis function is seen to lengthen at

every scale to over 12 s at scale 5.

The corresponding SNR at each scale is labeled in the lower-

left corner legend of each panel, and when it is smaller than or

equal to one no arrival-time estimate is reported. The two-

standard deviation of the error distribution (after 1000 test

realizations at each scale) is to the right of the ordinate axis,

in seconds, as determined using the M1 test of the Method I:

Monte Carlo Resimulation section.

Figures 16 and 17 contain additional examples, presented in

the same layout and with legends and labeling as in Figures 14

and 15. Figure 16 successfully separates core phases PKIKP and

PKP, and Figure 17 separates P from PP. One more example is

given in the supplemental material.

Computing travel-time residuals
We make the assumption that the theoretical phase arrival

nearest in time to our AIC-based arrival-time estimate corre-

sponds to the true seismic phase identified by our method,

which gives us a scale-dependent travel-time residual against

the ak135 velocity model. In Figures 14–17, the travel-time

residuals and their associated phases are quoted to the right

of the ordinate axes, at each scale. There will be ambiguities:

for example, in Figure 17a at wavelet scale 5, where the arrival

time is tagged as a pP wave instead of the preceding P wave,

which is arguably more likely, and which one might disambig-

uate by taking amplitude information, or other attributes, into

account. Similarly, the arrivals in scales 1–4 in Figure 17b

might derive from either of two P waves, from the same earth-

quake, with predicted arrival times very near each other.

As explained in the Take-HomeMessage 1 section, the MLE

procedure that underpins our AIC-based method selects the

index in the time series for which the ratio of variances of

the signal and noise segmentations is the largest; it maximizes

the SNR after testing all possible combinations. Without iter-

ation, our method only allows for the identification of a single

seismic phase at each scale. This is generally appropriate in our

(a)

(b)

Figure 15. Multiscale arrival-time estimation of a seismogram from the
MERMAID data set in the high-SNR regime: a seismogram detected near
the Balearic Islands, Spain, corresponding to an earthquake in the
Tyrrhenian Sea. Arrangement and labeling are as in Figure 14. Here, we see
clear P-wave detection coherently across all scales. The increase in low-
frequency energy around 200 s is the arrival of an S wave. This arrival is
especially apparent at scale 5, where the AIC function dips to nearly the
same low value (high likelihood of a second changepoint) as obtained at the
P-wave pick, hinting at the prospect of an extended utility of our method by
recursive implementation; that is, reapplication of our AIC-based arrival-
time detector on a shortened �xj ; xJ� or �dj;l ; aJ;l� series that begins
immediately after the initial P-wave detection. Also note here that although
the ak135 travel-time residuals in (a,b) are similar at every scale, their
estimated uncertainties are not, (b) with those made in the timescale
domain much greater than (a) those made in the time domain. This is due to
the dilation of the wavelets themselves at increasing scales, which manifests
as stretched time smears, and which is well illustrated in (b) by the increased
separation between the teal and green vertical bars that mark the beginning
and end of the timescale coefficient smears of the estimated arrivals.
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(a)

(b)

Figure 16. A mid-SNR seismogram detected near the south coast of France
corresponding to an earthquake in the Kermadec Islands, New Zealand.
This is the first illustration of our procedure resulting in multiphase
detection of two distinct core phases at separate scales: PKP-wave
detections at scales 2–5 (at the resolution of the details) and PKIKP-wave
detection at scale 5 (at the resolution of the approximation). There is an
arrival pick at scale 1, though its SNR is low and thus its uncertainty is
high. Such a pick is not considered high quality and is not included in
Figure 18 or Table 2.

(a)

(b)

Figure 17. A low-SNR seismogram detected over Broken Ridge corre-
sponding to an earthquake in the southern Indian Ocean. Here, we
see the matching of different phases at scale 5 between arrival-time picks
made in the two domains: (a) a pP wave in time, and (b) a P wave in
timescale. Furthermore, in (b) there are two distinct P waves with ak135
arrivals very near in time to each other, one or the other of which
minimizes the travel-time residual at one of the scales 1–5. Unresolved
ambiguities of this sort are discussed in the Computing Travel-Time
Residuals section.

Volume XX Number XX – 2020 www.bssaonline.org Bulletin of the Seismological Society of America • 23

Downloaded from https://pubs.geoscienceworld.org/ssa/bssa/article-pdf/doi/10.1785/0120190173/4967090/bssa-2019173.1.pdf
by guustnolet 
on 17 March 2020



case, given that a MERMAID seismogram most typically in-

cludes a single P-wave arrival, as in Figure 14, or a single picked

P-wave arrival, as in Figure 15. Furthermore, the frequency

bands of our wavelet decomposition are sufficiently narrow to

successfully partition the arrival of distinctly pickable

seismic phases over separate scales, as exemplified by

Figures 16 and 17.

Picking up additional arrivals, should they contain substan-

tial energy within the same scale, can be accomplished, if

further decomposition to higher scales is not an option, by iter-

ating our method on the identified signal segment. A good can-

didate is shown in Figure 15, where the energy increase near

200 s is an S-wave arrival drowned out at wavelet scale 5, and in

the shadow of the coda of the preceding P-wave arrival at

approximation scale 5. Our algorithm could be run recursively

at those scales, on a truncated time window beginning just after

the P-wave arrival so as to bracket only the segment containing

the S-wave arrival.

Distribution of travel-time residuals
We apply the procedure illustrated in Figures 14–17 to the

complete data set of 445 identified MERMAID seismograms.

We work in the time domain using the subspace projections

(xj, xJ ) per the timing considerations discussed in the Multiscale

Analysis in Practice section. For every seismogram at each scale,

we compute: (1) an AIC-based arrival-time estimate; (2) the

uncertainty associated with that arrival time using 1000 realiza-

tions of method M1; (3) the travel-time residual by considering

all phases that might arrive in the time window of the seis-

mogram, retaining the minimum travel-time residual and its

associated phase.

Figure 18 shows the multiscale distribution of travel-time

residuals in our data set. We only show those that we deem

to be of “high quality,” falling within 6 s of a theoretical phase

arrival, and for which the two-standard deviation uncertainties

per the M1 method are smaller than 1 s. These quality criteria

resolve some of the possible issues with phase ambiguity, guar-

antee sufficient SNR to reduce the likelihood of falsely trigger-

ing on spurious energies not related to a phase arrival, and, last,

they produce histograms that are in line with expectations for

mantle P waves (e.g., Simmons et al., 2012) without generating

long tails beyond the 6 s cutoff.

Figure 18a–f plots histograms of travel-time residuals at

scales 1–5 for 20 Hz seismograms. Figure 18c–f also contains

the residuals at scales 1–3 for 5 Hz data, so as to compare resid-

uals made at the same resolution. In each panel, the mean of the

residuals is quoted in the upper left, and their standard deviation

in the upper right. The scale(s) that contributed data to the

histogram, and the approximate frequency bands spanned by

these scales (see Table 1), are quoted also. Table 2 is a break-

down of the phases included in the histograms of Figure 18.

Although we are confident that, taken as a whole, the resid-

uals presented in this study and summarized here faithfully rec-

ord the signal of the Earth, we are aware that false triggers and

mismatched phases may exist in our catalog, as is true for all

automated arrival-time identification and phase-picking meth-

ods. Future work will necessarily include waveform modeling to

better tack our AIC-based arrival times to their associated

phases in MERMAID seismograms.

Of the 445 seismograms considered, 339 were sampled at

20 Hz and 106 at 5 Hz. The limits of the ordinate axes in

Figure 18a–f are adjusted to reflect the fact that roughly 25%

more data are available for consideration in Figure 18c–f than

in Figure 18a,b. The total numbers of arrival-time estimates

(SNR > 1) and residuals computed at each resolution of

Figure 18a–f are 238, 296, 410, 410, 401, and 384, with the num-

bers of high-quality residuals actually plotted displayed above

each plot. The bracketed numbers are the percentages of high-

quality residuals contained in the histogram, relative to the total

(a) (b) (c) (d) (e) (f)

St. dev. = 2.2 St. dev. = 2.2 St. dev. = 2.1 St. dev. = 2.3 St. dev. = 2.1 St. dev. = 2.0

Figure 18. High-quality travel-time residuals in the public MERMAID catalog.
(a–f) Each is a histogram of residuals from high to low resolutions. Each
histogram displays only travel-time residuals for which the absolute values
are less than or equal to 6 s and for which the two-standard-deviation error
by the M1 method of the Method I: Monte Carlo Resimulation section is
smaller than 1 s. In each panel, the mean and standard deviation of the
residuals at that resolution are listed inside, the total number of residuals
and their percentage relative to all arrival-time estimates (SNR > 1) at that
resolution are listed above, and the scales considered and their approximate
frequency sensitivities (Table 1) at that resolution are listed below.
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available at each resolution. We immediately see that the lowest

percentage of high-quality residuals is computed at scale 1 for

20 Hz data. Otherwise, the percentage of high-quality resi-

duals hovers near or just above 60% at all other resolutions.

Computing these travel-time residuals is the first step in the

inverse problem of tomography, and their bias alerts us to veloc-

ity perturbations encountered along the ray paths. From the dis-

cussion in the Method I: Monte Carlo Resimulation section, we

know that our AIC-based changepoint estimator is unbiased.

Thus, these residuals are not an artifact of our arrival-time esti-

mation procedure but rather a direct measure of velocity anoma-

lies in the Earth.

The updated events catalog
We have compiled an updated events catalog of all of the seis-

mograms in our data set, without applying any quality criteria.

Figure 19 shows two entries of the updated catalog available

in the supplemental material. The upper half of each block

(ending at the line beginning “Updated”) lists general event

information, including the date that the IRIS database was last

queried for metadata related to that event, and the “Initial”

(which contained no magnitude type) and “Updated” event

parameters as returned on the date of the last query. The initial

and updated event information are often (but not always) the

same, as shown in the examples here.

The lower half of each block in Figure 19 lists phase-arrival

information starting with the name of the phase initially asso-

ciated with this seismogram as reported in the events.txt file

distributed by GéoAzur, but reported there without an arrival

time. The lines that follow list the multiscale arrival picks,

travel-time residuals, and uncertainties found in this study.

The first alerts the reader to the number of scales used in

the wavelet decomposition: always either five if the sampling

rate was 20 Hz or three if the sampling rate was 5 Hz. Next, a

header line describes the forthcoming columns: the phase

name associated with this travel-time residual; the observed

arrival time in seconds into the seismogram, computed by our

changepoint estimation procedure; the time residual in sec-

onds between our arrival-time pick and the theoretical arrival

time of the listed phase; the SNR of this arrival; and the mean

and two standard deviation of the estimated error distribution

in seconds, per the M1 procedure of the Method I: Monte

Carlo Resimulation section after 1000 realizations. Each line

corresponds to one scale starting at scale 1 and ending at

the scale corresponding to the resolution of the approximation,

either scale 5, or scale 3 as shown here.

Figure 19. Two event blocks in the catalog that accompanies this study in the
supplemental material. The upper portion of each block (ending with
“Updated”) lists event metadata, including the originally reported event
information recorded in the Seismic Analysis Code (SAC) header, and the
updated event information per the last query to Incorporated Research
Institutions for Seismology (IRIS), noted as the “Last updated” date. The lower
portion of each block lists phase information, beginning with the phase
associated with this seismogram as initially reported without an arrival time.
Next we list, from the lowest to the highest scale: the phase name; arrival
time; travel-time residual; SNR; and the mean and two standard deviation of
the error estimate derived from 1000 realizations of the M1 method, identified
by our arrival-time estimation procedure. Considering both events shown, only
the estimated travel-time residual (−2:32 s) and phase (P) associated with the
arrival-time estimate made at scale 1 for the top event is included in Figure 18
and listed in Table 2. All other travel-time residuals and/or the two-standard-
deviation errors of the uncertainty estimates are too great to be considered of
“high quality.”

TABLE 2
Phases in Figure 18

Phase (a) (b) (c) (d) (e) (f) Total

P 44 106 134 129 100 110 623

pP 6 26 48 46 43 33 202

PcP 8 14 25 22 27 29 125

PKIKP 0 10 15 18 20 33 96

PKP 1 10 15 16 13 6 61

PKiKP 0 7 10 7 8 6 38

PP 1 2 2 2 5 9 21

Pn 2 1 1 1 0 6 11

p 1 1 2 1 1 2 8

Pdiff 0 0 0 0 0 1 1

S 1 1 2 3 7 14 28

Sn 0 1 1 1 1 1 5

SKiKP 0 0 0 0 0 1 1

Total 64 179 255 246 225 251

Identified phases associated with the high-quality travel-time residuals of Figure 18. The

columns correspond to the histograms in Figure 18a–f, listed from fine to coarse

resolution. The last column sums the number of high-quality identifications across

all scales for the phase specified. The bottom row totals the number of high-quality

travel-time residuals collected at each scale and is the same number listed above

each histogram in Figure 18. We did not actually observe an arrival associated with

the phase SKiKP (nor PKiKP, see e.g., in the supplemental material) but kept the

entry as an example of the issue of phase ambiguity associated with our phase-

matching scheme. See the discussion in The Initial Events Catalog and Computing

Travel-Time Residuals sections.
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For the event described in the first block in Figure 19, only

the travel-time residual and two-standard deviation of the

uncertainty estimate made at scale 1 are smaller than 6 and

1 s, respectively. Thus, that is the only travel-time residual

included in Figure 18, with its associated phase, P, listed in

Table 2. The estimates made at all other resolutions are char-

acterized by a large travel-time residual and/or a high two-

standard-deviation uncertainty, and thus are not plotted in

Figure 18 or listed in Table 2. Similarly, none of the estimated

arrival times or their associated phases in the second event

block in Figure 19 are plotted in Figure 18 or listed in Table 2,

because the two-standard-deviation uncertainty at scales 1–3

are too large to be considered likely arrivals, and the travel-

time residual at scale 3 is too great to truly match the assumed

P-wave arrival listed there.

CONCLUSION

We have developed a method to detect arrival times of seismic

energy at multiple scales in noisy seismograms and estimate their

uncertainties. Our procedure centers on the wavelet-multiscale

application of an AIC-based changepoint-detection scheme,

which we have applied to the problem of computing travel-time

residuals in low-SNR hydroacoustic records. Our uncertainty

estimation procedure provides a quantitative metric for weight-

ing residuals during tomographic inversions.

We have defined two changepoint estimators useful

for arrival-time identification: the minimum, km, and the

weighted average kw, respectively, of the AIC function.

We investigated two methods to compute the uncertainty

associated with these estimates, one using brute-force Monte

Carlo resimulation, and another through the analysis of the

shape of the AIC curve itself. The former gives an estimated

error distribution, whereas the latter assigns confidence inter-

vals to the estimates. We showed that the weighted-average kw
estimator is unbiased, unlike the oft-used km estimator. For this

reason, we suggest the adoption of the former. We discussed

the nuances of applying our procedure in the time and time-

scale domains and recommend the former to ensure the lowest

uncertainties.

We apply our preferred method to 445 MERMAID seismo-

grams to identify seismic phase arrivals and compute their

travel-time residuals. Our multiscale AIC-based method is able

to identify seismic phases with low uncertainty. The majority

of the events in our MERMAID catalog corresponds to P

waves, but we are also able to identify a few S waves as well

as core phases.

We discussed the multiscale distributions of high-quality

travel-time residuals in the MERMAID data set. In the supple-

mental material, we provide an updated events catalog that

details those multiscale phase identifications, their travel-time

residuals, and their uncertainty estimates. The software that

automates these tasks is available for immediate deployment

by other scientists. We hope it will be of use to the community.

DATA AND RESOURCES

We use Mobile Earthquake Recording in Marine Areas by

Independent Divers (MERMAID) seismograms with identified events

available from geoazur.unice.fr/ftp/mermaid/ (last accessed March

2019). We rely on irisFetch.m v.2.0.10, available from Incorporated

Research Institutions for Seismology (IRIS), to query seismic catalogs

available through the International Federation of Digital Seismograph

Networks (FDSN). Manual event matching, where required (as

described in The Initial Events Catalog section), was performed using

the International Seismological Centre (2016) online bulletin. We use

MatTaup, written in MATLAB by Qin Li while at the University of

Washington in 2002, to compute theoretical travel times in the ak135

velocity model of Kennett et al. (1995). Wemaintain all of those codes,

with minor modifications, at github.com/joelsimon/omnia (last

accessed January 2020), which furthermore contains all of our soft-

ware developed for this study. The supplemental material contains

our catalog of MERMAID arrival times and their uncertainties, exam-

ples of our method applied to non-Gaussian synthetic and more seis-

mic data, and details on our treatment of the edges of the seismogram

during the forward and inverse wavelet transform.
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Supplemental Material:

Multiscale estimation of event arrival times and their uncertainties in
hydroacoustic records from autonomous oceanic floats

Joel D. Simon, Frederik J. Simons and Guust Nolet

Description

This supplement contains details concerning the algorithmic implementation of our method, as well as more examples of it applied to

synthetic and real data. Specifically it contains, in order: a mapping similar to that described in section Timescale to time mapping: forward

transform, but described here for the inverse transform; the treatment of the edges by our multiscale method; our method applied to non-

Gaussian synthetic time series; and our method applied to real data containing a supposed PKiKP-wave arrival. The latter is provided both

to display an interesting seismogram as well as to illustrate the issue of phase ambiguity with our automated method.

Finally, as supplementary data to this study we also provide a separate plain text catalog of MERMAID arrival times and their uncertain-

ties, the format of which is detailed in section The updated events catalog of the main text.

Timescale to time mapping: inverse transform

In preparing to describe our scheme to handle the edges of the time series we first define the inverse map which complements that described

in section Timescale to time mapping: forward transform. The mapping between a timescale domain coefficient index l at scale j, and the

time-domain sample-span to which l is sensitive under the inverse wavelet transform, is

F̀j(l) = k̀
?
j,l. (S1)

As in the case of F́j , the output of F̀j is a time-domain sample span. Similarly to ḱ?
j,l, the support of a wavelet or scaling basis function of

the inverse wavelet transform is completely described by k̀?
j,l.

Similar to equations (54) and (56) we define the left and right boundaries by, respectively,

k̀
?

j,l = min(k̀?
j,l), (S2)

k̀
>

j,l = max(k̀?
j,l). (S3)

Handling edges

In the main text we ignored the edges of any times series considered. Rather than building them into the construction of the transform itself,

we opt to remove spurious wavelet values, those influenced by the edges, before changepoint estimation.

Edge sensitivity in the timescale domain

At every scale, the last, and first, timescale domain coefficient indices, which sense the left, and right, edges of x during forward wavelet

transformation are

ĺL = max{l : 1 ∈ ḱ
?
j,l}, (S4)

ĺR = min{l : N ∈ ḱ
?
j,l}, (S5)

respectively. Upon mapping to the time domain the first and last sample indices which are not influenced by the edges after forward wavelet

transformation are

ḱL = min(ḱ?

j,ĺL+1
), (S6)

ḱR = max(ḱ>

j,ĺR−1
), (S7)

respectively. In the forward wavelet transformation every timescale domain coefficient is independent and unaware of the edge unless it

receives contributions directly from the edge.

At every scale, before applying the multiscale analog of equation (26) directly on the timescale domain coefficient series dj,l and aj,l,

en route to finding the estimators lwj
and lwj

of equations (51) and (52), we remove from consideration the edge-sensitive timescale domain

coefficients.
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Edge sensitivity in the time domain

Similarly, at every scale, the last and first timescale coefficient indices which sense the left and right edges, respectively, of x during inverse

wavelet transformation are

l̀L = max{l : 1 ∈ k̀
?
j,l}, (S8)

l̀R = min{l : N ∈ k̀
?
j,l}. (S9)

During reconstruction via the inverse wavelet transformation, a temporally overlapping wavelets potentially propagate edge-effects deeper

into the partially-reconstructed time series, xj or xj , than in the case presented in section Edge sensitivity in the timescale domain. Therefore,

during reconstruction we cannot simply augment l by ±1 to locate the time-domain sample indices which are surely not influenced by the

edge, as we did in equations (S6) and (S7). Indeed, this overlap implies that

max(ḱ?

j,ĺL
) ≥ min(ḱ?

j,ĺL+1
), (S10)

max(k̀?

j,l̀L
) ≥ min(k̀?

j,l̀L+1
), (S11)

min(ḱ>

j,ĺR
) ≤ max(ḱ>

j,ĺR−1
), (S12)

min(k̀>

j,l̀R
) ≤ max(k̀>

j,l̀R−1
). (S13)

The left-hand sides in equations (S10)–(S13) are time-domain sample indices that are assured to be free of edge influence: the first and

last being given respectively by equations (S10) and (S12) after forward wavelet transformation, and equations (S11) and (S13) after in-

verse wavelet transformation. To be conservative we keep the larger and smaller of these as the first and last time domain sample indices,

respectively, which are not influenced by the edges of x, defining

k̀L = max{ḱ?

j,ĺL
, k̀

?

j,l̀L
}+ 1, (S14)

k̀R = min{ḱ>

j,ĺR
, k̀

>

j,l̀R
} − 1. (S15)

At every scale, before applying the multiscale analog of equation (26) on the time-domain subspace projection series xj and xj , en

route to finding the estimators kwj
and kwj

of equations (49) and (50), we remove the edge-sensitive time-domain sample indices from

consideration.

Non-Gaussian models

We have intimated that our AIC-based event detection method will enjoy broad application beyond the scope of this study. Indeed, our

multiscale changepoint estimation procedure is completely agnostic of seismology. The general form of equation (26) in terms of natural

logarithms multiplied by the sample variances of the segments implies that it can be readily applied to any time series that can be modeled

as concatenated samples from distributions in the larger exponential family. We forgo showing such examples here.

Future applications that may opt for entirely different synthetic model formulations may simply rederive the appropriate AIC function

and deploy it as part of our workflow. On the other hand, our AIC formulation quite simply compares ratios of variances and thus it is likely

to remain useful even when applied to time series whose generating distributions are not in the exponential form. Figures S1 and S2 recreate

Figure 5, assuming that x is drawn from two concatenated Student t-distributions, or from two F-distributions, respectively, with different

variances. Our changepoint detection method remains on target, although the longer tails of these generating distributions will lead to broader

error distributions than is the case of the assumed Gaussian models of this study.

A final data example

Presented in the same layout as Figures 14–17, Figure S3 discriminates the (reported) inner-core reflection PKiKP wave from the reflected

mantle phase PP. Note that the former is more likely a PKIKP wave that bottoms just inside the inner core, as this phase also appears around

114◦ in the ak135 velocity model for an earthquake at 607 km depth.
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(a)

(b)

Figure S1. A recreation of Figure 5 using a non-Gaussian generating distribution. Here x is a sample of length N = 1000 drawn from a Student t-distribution

with 10 degrees of freedom. Sample indices k = [501, . . . , 1000] are multiplied by
√
2, therefore generating a time series with SNR ≈ 2 and a true change-

point at sample index 500. In this example km = 499 and kw = 507.

(a)

(b)

Figure S2. A recreation of Figure S1, this time assuming that the time series under consideration x is drawn from the F-distribution with parameters (10, 10).

Like Figure S1, sample indices k = [501, . . . , 1000] are multiplied by
√
2 to yield SNR ≈ 2 and k◦ = 500. In this example the estimated changepoints

are km = 493 and kw = 495, illustrating again that our procedure remains broadly valid, while uncertainties and confidence intervals will require suitable

adaptation.
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(a)

(b)

Figure S3. A mid-SNR seismogram detected in the southern Indian Ocean corresponding to an earthquake in the Sea of Okhotsk. Here our procedure picks

a reported PKiKP wave (but more likely a PKIKP wave; see section Computing travel-time residuals) at scales 1 and 2 and a PP wave at scale 3, in both

domains. Note that the sampling rate of this seismogram is only 5 Hz, and therefore was decomposed only to three scales (see Table 1).


